Spaces:
Running
on
Zero
Running
on
Zero
<fix> seperate model init and inference.
Browse files
app.py
CHANGED
@@ -46,9 +46,9 @@ The corresponding condition images will be automatically extracted.
|
|
46 |
"""
|
47 |
|
48 |
|
|
|
|
|
49 |
|
50 |
-
@spaces.GPU
|
51 |
-
def process_image_and_text(condition_image, target_prompt, condition_image_prompt, task):
|
52 |
# init models
|
53 |
transformer = HunyuanVideoTransformer3DModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
|
54 |
subfolder="transformer",
|
@@ -162,6 +162,10 @@ def process_image_and_text(condition_image, target_prompt, condition_image_promp
|
|
162 |
image_processor=image_processor,
|
163 |
)
|
164 |
|
|
|
|
|
|
|
|
|
165 |
# start generation
|
166 |
c_txt = None if condition_image_prompt == "" else condition_image_prompt
|
167 |
c_img = condition_image.resize((512, 512))
|
@@ -235,6 +239,9 @@ def process_image_and_text(condition_image, target_prompt, condition_image_promp
|
|
235 |
c_img = c_img.resize((args.img_size, args.img_size))
|
236 |
c_img.save(os.path.join(save_dir, f"low_to_high.png"))
|
237 |
|
|
|
|
|
|
|
238 |
gen_img = pipe(
|
239 |
image=c_img,
|
240 |
prompt=[t_txt.strip()],
|
|
|
46 |
"""
|
47 |
|
48 |
|
49 |
+
def init_pipeline():
|
50 |
+
global pipe
|
51 |
|
|
|
|
|
52 |
# init models
|
53 |
transformer = HunyuanVideoTransformer3DModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
|
54 |
subfolder="transformer",
|
|
|
162 |
image_processor=image_processor,
|
163 |
)
|
164 |
|
165 |
+
|
166 |
+
@spaces.GPU
|
167 |
+
def process_image_and_text(condition_image, target_prompt, condition_image_prompt, task):
|
168 |
+
|
169 |
# start generation
|
170 |
c_txt = None if condition_image_prompt == "" else condition_image_prompt
|
171 |
c_img = condition_image.resize((512, 512))
|
|
|
239 |
c_img = c_img.resize((args.img_size, args.img_size))
|
240 |
c_img.save(os.path.join(save_dir, f"low_to_high.png"))
|
241 |
|
242 |
+
if pipe is None:
|
243 |
+
init_pipeline()
|
244 |
+
|
245 |
gen_img = pipe(
|
246 |
image=c_img,
|
247 |
prompt=[t_txt.strip()],
|