diff --git a/diffsynth/__init__.py b/diffsynth/__init__.py deleted file mode 100644 index ae0a45c2e2dc61f8f16354feb1b0c481776b523f..0000000000000000000000000000000000000000 --- a/diffsynth/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ -from .data import * -from .models import * -from .prompters import * -from .schedulers import * -from .pipelines import * -from .controlnets import * diff --git a/diffsynth/configs/__init__.py b/diffsynth/configs/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/diffsynth/configs/model_config.py b/diffsynth/configs/model_config.py deleted file mode 100644 index 8fdb50a4e0420fdcc5fc0c24c2d3559ee18976cd..0000000000000000000000000000000000000000 --- a/diffsynth/configs/model_config.py +++ /dev/null @@ -1,806 +0,0 @@ -from typing_extensions import Literal, TypeAlias - -from ..models.sd_text_encoder import SDTextEncoder -from ..models.sd_unet import SDUNet -from ..models.sd_vae_encoder import SDVAEEncoder -from ..models.sd_vae_decoder import SDVAEDecoder - -from ..models.sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2 -from ..models.sdxl_unet import SDXLUNet -from ..models.sdxl_vae_decoder import SDXLVAEDecoder -from ..models.sdxl_vae_encoder import SDXLVAEEncoder - -from ..models.sd3_text_encoder import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3 -from ..models.sd3_dit import SD3DiT -from ..models.sd3_vae_decoder import SD3VAEDecoder -from ..models.sd3_vae_encoder import SD3VAEEncoder - -from ..models.sd_controlnet import SDControlNet -from ..models.sdxl_controlnet import SDXLControlNetUnion - -from ..models.sd_motion import SDMotionModel -from ..models.sdxl_motion import SDXLMotionModel - -from ..models.svd_image_encoder import SVDImageEncoder -from ..models.svd_unet import SVDUNet -from ..models.svd_vae_decoder import SVDVAEDecoder -from ..models.svd_vae_encoder import SVDVAEEncoder - -from ..models.sd_ipadapter import SDIpAdapter, IpAdapterCLIPImageEmbedder -from ..models.sdxl_ipadapter import SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder - -from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder -from ..models.hunyuan_dit import HunyuanDiT - -from ..models.flux_dit import FluxDiT -from ..models.flux_text_encoder import FluxTextEncoder2 -from ..models.flux_vae import FluxVAEEncoder, FluxVAEDecoder -from ..models.flux_controlnet import FluxControlNet -from ..models.flux_ipadapter import FluxIpAdapter -from ..models.flux_infiniteyou import InfiniteYouImageProjector - -from ..models.cog_vae import CogVAEEncoder, CogVAEDecoder -from ..models.cog_dit import CogDiT - -from ..models.omnigen import OmniGenTransformer - -from ..models.hunyuan_video_vae_decoder import HunyuanVideoVAEDecoder -from ..models.hunyuan_video_vae_encoder import HunyuanVideoVAEEncoder - -from ..extensions.RIFE import IFNet -from ..extensions.ESRGAN import RRDBNet - -from ..models.hunyuan_video_dit import HunyuanVideoDiT - -from ..models.stepvideo_vae import StepVideoVAE -from ..models.stepvideo_dit import StepVideoModel - -from ..models.wan_video_dit import WanModel -from ..models.wan_video_text_encoder import WanTextEncoder -from ..models.wan_video_image_encoder import WanImageEncoder -from ..models.wan_video_vae import WanVideoVAE -from ..models.wan_video_motion_controller import WanMotionControllerModel - - -model_loader_configs = [ - # These configs are provided for detecting model type automatically. - # The format is (state_dict_keys_hash, state_dict_keys_hash_with_shape, model_names, model_classes, model_resource) - (None, "091b0e30e77c76626b3ba62acdf95343", ["sd_controlnet"], [SDControlNet], "civitai"), - (None, "4a6c8306a27d916dea81263c8c88f450", ["hunyuan_dit_clip_text_encoder"], [HunyuanDiTCLIPTextEncoder], "civitai"), - (None, "f4aec400fe394297961218c768004521", ["hunyuan_dit"], [HunyuanDiT], "civitai"), - (None, "9e6e58043a5a2e332803ed42f6ee7181", ["hunyuan_dit_t5_text_encoder"], [HunyuanDiTT5TextEncoder], "civitai"), - (None, "13115dd45a6e1c39860f91ab073b8a78", ["sdxl_vae_encoder", "sdxl_vae_decoder"], [SDXLVAEEncoder, SDXLVAEDecoder], "diffusers"), - (None, "d78aa6797382a6d455362358a3295ea9", ["sd_ipadapter_clip_image_encoder"], [IpAdapterCLIPImageEmbedder], "diffusers"), - (None, "e291636cc15e803186b47404262ef812", ["sd_ipadapter"], [SDIpAdapter], "civitai"), - (None, "399c81f2f8de8d1843d0127a00f3c224", ["sdxl_ipadapter_clip_image_encoder"], [IpAdapterXLCLIPImageEmbedder], "diffusers"), - (None, "a64eac9aa0db4b9602213bc0131281c7", ["sdxl_ipadapter"], [SDXLIpAdapter], "civitai"), - (None, "52817e4fdd89df154f02749ca6f692ac", ["sdxl_unet"], [SDXLUNet], "diffusers"), - (None, "03343c606f16d834d6411d0902b53636", ["sd_text_encoder", "sd_unet", "sd_vae_decoder", "sd_vae_encoder"], [SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder], "civitai"), - (None, "d4ba77a7ece070679b4a987f58f201e9", ["sd_text_encoder"], [SDTextEncoder], "civitai"), - (None, "d0c89e55c5a57cf3981def0cb1c9e65a", ["sd_vae_decoder", "sd_vae_encoder"], [SDVAEDecoder, SDVAEEncoder], "civitai"), - (None, "3926bf373b39a67eeafd7901478a47a7", ["sd_unet"], [SDUNet], "civitai"), - (None, "1e0c39ec176b9007c05f76d52b554a4d", ["sd3_text_encoder_1", "sd3_text_encoder_2", "sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3TextEncoder1, SD3TextEncoder2, SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"), - (None, "d9e0290829ba8d98e28e1a2b1407db4a", ["sd3_text_encoder_1", "sd3_text_encoder_2", "sd3_text_encoder_3", "sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3, SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"), - (None, "5072d0b24e406b49507abe861cf97691", ["sd3_text_encoder_3"], [SD3TextEncoder3], "civitai"), - (None, "4cf64a799d04260df438c6f33c9a047e", ["sdxl_text_encoder", "sdxl_text_encoder_2", "sdxl_unet", "sdxl_vae_decoder", "sdxl_vae_encoder"], [SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder], "civitai"), - (None, "d9b008a867c498ab12ad24042eff8e3f", ["sdxl_text_encoder", "sdxl_text_encoder_2", "sdxl_unet", "sdxl_vae_decoder", "sdxl_vae_encoder"], [SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder], "civitai"), # SDXL-Turbo - (None, "025bb7452e531a3853d951d77c63f032", ["sdxl_text_encoder", "sdxl_text_encoder_2"], [SDXLTextEncoder, SDXLTextEncoder2], "civitai"), - (None, "298997b403a4245c04102c9f36aac348", ["sdxl_unet"], [SDXLUNet], "civitai"), - (None, "2a07abce74b4bdc696b76254ab474da6", ["svd_image_encoder", "svd_unet", "svd_vae_decoder", "svd_vae_encoder"], [SVDImageEncoder, SVDUNet, SVDVAEDecoder, SVDVAEEncoder], "civitai"), - (None, "c96a285a6888465f87de22a984d049fb", ["sd_motion_modules"], [SDMotionModel], "civitai"), - (None, "72907b92caed19bdb2adb89aa4063fe2", ["sdxl_motion_modules"], [SDXLMotionModel], "civitai"), - (None, "31d2d9614fba60511fc9bf2604aa01f7", ["sdxl_controlnet"], [SDXLControlNetUnion], "diffusers"), - (None, "94eefa3dac9cec93cb1ebaf1747d7b78", ["sd3_text_encoder_1"], [SD3TextEncoder1], "diffusers"), - (None, "1aafa3cc91716fb6b300cc1cd51b85a3", ["flux_vae_encoder", "flux_vae_decoder"], [FluxVAEEncoder, FluxVAEDecoder], "diffusers"), - (None, "21ea55f476dfc4fd135587abb59dfe5d", ["flux_vae_encoder", "flux_vae_decoder"], [FluxVAEEncoder, FluxVAEDecoder], "civitai"), - (None, "a29710fea6dddb0314663ee823598e50", ["flux_dit"], [FluxDiT], "civitai"), - (None, "57b02550baab820169365b3ee3afa2c9", ["flux_dit"], [FluxDiT], "civitai"), - (None, "3394f306c4cbf04334b712bf5aaed95f", ["flux_dit"], [FluxDiT], "civitai"), - (None, "023f054d918a84ccf503481fd1e3379e", ["flux_dit"], [FluxDiT], "civitai"), - (None, "605c56eab23e9e2af863ad8f0813a25d", ["flux_dit"], [FluxDiT], "diffusers"), - (None, "280189ee084bca10f70907bf6ce1649d", ["cog_vae_encoder", "cog_vae_decoder"], [CogVAEEncoder, CogVAEDecoder], "diffusers"), - (None, "9b9313d104ac4df27991352fec013fd4", ["rife"], [IFNet], "civitai"), - (None, "6b7116078c4170bfbeaedc8fe71f6649", ["esrgan"], [RRDBNet], "civitai"), - (None, "61cbcbc7ac11f169c5949223efa960d1", ["omnigen_transformer"], [OmniGenTransformer], "diffusers"), - (None, "78d18b9101345ff695f312e7e62538c0", ["flux_controlnet"], [FluxControlNet], "diffusers"), - (None, "b001c89139b5f053c715fe772362dd2a", ["flux_controlnet"], [FluxControlNet], "diffusers"), - (None, "52357cb26250681367488a8954c271e8", ["flux_controlnet"], [FluxControlNet], "diffusers"), - (None, "0cfd1740758423a2a854d67c136d1e8c", ["flux_controlnet"], [FluxControlNet], "diffusers"), - (None, "7f9583eb8ba86642abb9a21a4b2c9e16", ["flux_controlnet"], [FluxControlNet], "diffusers"), - (None, "c07c0f04f5ff55e86b4e937c7a40d481", ["infiniteyou_image_projector"], [InfiniteYouImageProjector], "diffusers"), - (None, "4daaa66cc656a8fe369908693dad0a35", ["flux_ipadapter"], [FluxIpAdapter], "diffusers"), - (None, "51aed3d27d482fceb5e0739b03060e8f", ["sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"), - (None, "98cc34ccc5b54ae0e56bdea8688dcd5a", ["sd3_text_encoder_2"], [SD3TextEncoder2], "civitai"), - (None, "77ff18050dbc23f50382e45d51a779fe", ["sd3_dit", "sd3_vae_encoder", "sd3_vae_decoder"], [SD3DiT, SD3VAEEncoder, SD3VAEDecoder], "civitai"), - (None, "5da81baee73198a7c19e6d2fe8b5148e", ["sd3_text_encoder_1"], [SD3TextEncoder1], "diffusers"), - (None, "aeb82dce778a03dcb4d726cb03f3c43f", ["hunyuan_video_vae_decoder", "hunyuan_video_vae_encoder"], [HunyuanVideoVAEDecoder, HunyuanVideoVAEEncoder], "diffusers"), - (None, "b9588f02e78f5ccafc9d7c0294e46308", ["hunyuan_video_dit"], [HunyuanVideoDiT], "civitai"), - (None, "84ef4bd4757f60e906b54aa6a7815dc6", ["hunyuan_video_dit"], [HunyuanVideoDiT], "civitai"), - (None, "68beaf8429b7c11aa8ca05b1bd0058bd", ["stepvideo_vae"], [StepVideoVAE], "civitai"), - (None, "5c0216a2132b082c10cb7a0e0377e681", ["stepvideo_dit"], [StepVideoModel], "civitai"), - (None, "9269f8db9040a9d860eaca435be61814", ["wan_video_dit"], [WanModel], "civitai"), - (None, "aafcfd9672c3a2456dc46e1cb6e52c70", ["wan_video_dit"], [WanModel], "civitai"), - (None, "6bfcfb3b342cb286ce886889d519a77e", ["wan_video_dit"], [WanModel], "civitai"), - (None, "6d6ccde6845b95ad9114ab993d917893", ["wan_video_dit"], [WanModel], "civitai"), - (None, "6bfcfb3b342cb286ce886889d519a77e", ["wan_video_dit"], [WanModel], "civitai"), - (None, "349723183fc063b2bfc10bb2835cf677", ["wan_video_dit"], [WanModel], "civitai"), - (None, "efa44cddf936c70abd0ea28b6cbe946c", ["wan_video_dit"], [WanModel], "civitai"), - (None, "cb104773c6c2cb6df4f9529ad5c60d0b", ["wan_video_dit"], [WanModel], "diffusers"), - (None, "9c8818c2cbea55eca56c7b447df170da", ["wan_video_text_encoder"], [WanTextEncoder], "civitai"), - (None, "5941c53e207d62f20f9025686193c40b", ["wan_video_image_encoder"], [WanImageEncoder], "civitai"), - (None, "1378ea763357eea97acdef78e65d6d96", ["wan_video_vae"], [WanVideoVAE], "civitai"), - (None, "ccc42284ea13e1ad04693284c7a09be6", ["wan_video_vae"], [WanVideoVAE], "civitai"), - (None, "dbd5ec76bbf977983f972c151d545389", ["wan_video_motion_controller"], [WanMotionControllerModel], "civitai"), -] -huggingface_model_loader_configs = [ - # These configs are provided for detecting model type automatically. - # The format is (architecture_in_huggingface_config, huggingface_lib, model_name, redirected_architecture) - ("ChatGLMModel", "diffsynth.models.kolors_text_encoder", "kolors_text_encoder", None), - ("MarianMTModel", "transformers.models.marian.modeling_marian", "translator", None), - ("BloomForCausalLM", "transformers.models.bloom.modeling_bloom", "beautiful_prompt", None), - ("Qwen2ForCausalLM", "transformers.models.qwen2.modeling_qwen2", "qwen_prompt", None), - # ("LlamaForCausalLM", "transformers.models.llama.modeling_llama", "omost_prompt", None), - ("T5EncoderModel", "diffsynth.models.flux_text_encoder", "flux_text_encoder_2", "FluxTextEncoder2"), - ("CogVideoXTransformer3DModel", "diffsynth.models.cog_dit", "cog_dit", "CogDiT"), - ("SiglipModel", "transformers.models.siglip.modeling_siglip", "siglip_vision_model", "SiglipVisionModel"), - ("LlamaForCausalLM", "diffsynth.models.hunyuan_video_text_encoder", "hunyuan_video_text_encoder_2", "HunyuanVideoLLMEncoder"), - ("LlavaForConditionalGeneration", "diffsynth.models.hunyuan_video_text_encoder", "hunyuan_video_text_encoder_2", "HunyuanVideoMLLMEncoder"), - ("Step1Model", "diffsynth.models.stepvideo_text_encoder", "stepvideo_text_encoder_2", "STEP1TextEncoder"), -] -patch_model_loader_configs = [ - # These configs are provided for detecting model type automatically. - # The format is (state_dict_keys_hash_with_shape, model_name, model_class, extra_kwargs) - ("9a4ab6869ac9b7d6e31f9854e397c867", ["svd_unet"], [SVDUNet], {"add_positional_conv": 128}), -] - -preset_models_on_huggingface = { - "HunyuanDiT": [ - ("Tencent-Hunyuan/HunyuanDiT", "t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/clip_text_encoder"), - ("Tencent-Hunyuan/HunyuanDiT", "t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5"), - ("Tencent-Hunyuan/HunyuanDiT", "t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/model"), - ("Tencent-Hunyuan/HunyuanDiT", "t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix"), - ], - "stable-video-diffusion-img2vid-xt": [ - ("stabilityai/stable-video-diffusion-img2vid-xt", "svd_xt.safetensors", "models/stable_video_diffusion"), - ], - "ExVideo-SVD-128f-v1": [ - ("ECNU-CILab/ExVideo-SVD-128f-v1", "model.fp16.safetensors", "models/stable_video_diffusion"), - ], - # Stable Diffusion - "StableDiffusion_v15": [ - ("benjamin-paine/stable-diffusion-v1-5", "v1-5-pruned-emaonly.safetensors", "models/stable_diffusion"), - ], - "DreamShaper_8": [ - ("Yntec/Dreamshaper8", "dreamshaper_8.safetensors", "models/stable_diffusion"), - ], - # Textual Inversion - "TextualInversion_VeryBadImageNegative_v1.3": [ - ("gemasai/verybadimagenegative_v1.3", "verybadimagenegative_v1.3.pt", "models/textual_inversion"), - ], - # Stable Diffusion XL - "StableDiffusionXL_v1": [ - ("stabilityai/stable-diffusion-xl-base-1.0", "sd_xl_base_1.0.safetensors", "models/stable_diffusion_xl"), - ], - "BluePencilXL_v200": [ - ("frankjoshua/bluePencilXL_v200", "bluePencilXL_v200.safetensors", "models/stable_diffusion_xl"), - ], - "StableDiffusionXL_Turbo": [ - ("stabilityai/sdxl-turbo", "sd_xl_turbo_1.0_fp16.safetensors", "models/stable_diffusion_xl_turbo"), - ], - # Stable Diffusion 3 - "StableDiffusion3": [ - ("stabilityai/stable-diffusion-3-medium", "sd3_medium_incl_clips_t5xxlfp16.safetensors", "models/stable_diffusion_3"), - ], - "StableDiffusion3_without_T5": [ - ("stabilityai/stable-diffusion-3-medium", "sd3_medium_incl_clips.safetensors", "models/stable_diffusion_3"), - ], - # ControlNet - "ControlNet_v11f1p_sd15_depth": [ - ("lllyasviel/ControlNet-v1-1", "control_v11f1p_sd15_depth.pth", "models/ControlNet"), - ("lllyasviel/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators") - ], - "ControlNet_v11p_sd15_softedge": [ - ("lllyasviel/ControlNet-v1-1", "control_v11p_sd15_softedge.pth", "models/ControlNet"), - ("lllyasviel/Annotators", "ControlNetHED.pth", "models/Annotators") - ], - "ControlNet_v11f1e_sd15_tile": [ - ("lllyasviel/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet") - ], - "ControlNet_v11p_sd15_lineart": [ - ("lllyasviel/ControlNet-v1-1", "control_v11p_sd15_lineart.pth", "models/ControlNet"), - ("lllyasviel/Annotators", "sk_model.pth", "models/Annotators"), - ("lllyasviel/Annotators", "sk_model2.pth", "models/Annotators") - ], - "ControlNet_union_sdxl_promax": [ - ("xinsir/controlnet-union-sdxl-1.0", "diffusion_pytorch_model_promax.safetensors", "models/ControlNet/controlnet_union"), - ("lllyasviel/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators") - ], - # AnimateDiff - "AnimateDiff_v2": [ - ("guoyww/animatediff", "mm_sd_v15_v2.ckpt", "models/AnimateDiff"), - ], - "AnimateDiff_xl_beta": [ - ("guoyww/animatediff", "mm_sdxl_v10_beta.ckpt", "models/AnimateDiff"), - ], - - # Qwen Prompt - "QwenPrompt": [ - ("Qwen/Qwen2-1.5B-Instruct", "config.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("Qwen/Qwen2-1.5B-Instruct", "generation_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("Qwen/Qwen2-1.5B-Instruct", "model.safetensors", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("Qwen/Qwen2-1.5B-Instruct", "special_tokens_map.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("Qwen/Qwen2-1.5B-Instruct", "tokenizer.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("Qwen/Qwen2-1.5B-Instruct", "tokenizer_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("Qwen/Qwen2-1.5B-Instruct", "merges.txt", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("Qwen/Qwen2-1.5B-Instruct", "vocab.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ], - # Beautiful Prompt - "BeautifulPrompt": [ - ("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "generation_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "model.safetensors", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "special_tokens_map.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "tokenizer.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ("alibaba-pai/pai-bloom-1b1-text2prompt-sd", "tokenizer_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ], - # Omost prompt - "OmostPrompt":[ - ("lllyasviel/omost-llama-3-8b-4bits", "model-00001-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("lllyasviel/omost-llama-3-8b-4bits", "model-00002-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("lllyasviel/omost-llama-3-8b-4bits", "tokenizer.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("lllyasviel/omost-llama-3-8b-4bits", "tokenizer_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("lllyasviel/omost-llama-3-8b-4bits", "config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("lllyasviel/omost-llama-3-8b-4bits", "generation_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("lllyasviel/omost-llama-3-8b-4bits", "model.safetensors.index.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("lllyasviel/omost-llama-3-8b-4bits", "special_tokens_map.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ], - # Translator - "opus-mt-zh-en": [ - ("Helsinki-NLP/opus-mt-zh-en", "config.json", "models/translator/opus-mt-zh-en"), - ("Helsinki-NLP/opus-mt-zh-en", "generation_config.json", "models/translator/opus-mt-zh-en"), - ("Helsinki-NLP/opus-mt-zh-en", "metadata.json", "models/translator/opus-mt-zh-en"), - ("Helsinki-NLP/opus-mt-zh-en", "pytorch_model.bin", "models/translator/opus-mt-zh-en"), - ("Helsinki-NLP/opus-mt-zh-en", "source.spm", "models/translator/opus-mt-zh-en"), - ("Helsinki-NLP/opus-mt-zh-en", "target.spm", "models/translator/opus-mt-zh-en"), - ("Helsinki-NLP/opus-mt-zh-en", "tokenizer_config.json", "models/translator/opus-mt-zh-en"), - ("Helsinki-NLP/opus-mt-zh-en", "vocab.json", "models/translator/opus-mt-zh-en"), - ], - # IP-Adapter - "IP-Adapter-SD": [ - ("h94/IP-Adapter", "models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion/image_encoder"), - ("h94/IP-Adapter", "models/ip-adapter_sd15.bin", "models/IpAdapter/stable_diffusion"), - ], - "IP-Adapter-SDXL": [ - ("h94/IP-Adapter", "sdxl_models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion_xl/image_encoder"), - ("h94/IP-Adapter", "sdxl_models/ip-adapter_sdxl.bin", "models/IpAdapter/stable_diffusion_xl"), - ], - "SDXL-vae-fp16-fix": [ - ("madebyollin/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors", "models/sdxl-vae-fp16-fix") - ], - # Kolors - "Kolors": [ - ("Kwai-Kolors/Kolors", "text_encoder/config.json", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model.bin.index.json", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00001-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00002-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00003-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00004-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00005-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00006-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00007-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "unet/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/unet"), - ("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/vae"), - ], - # FLUX - "FLUX.1-dev": [ - ("black-forest-labs/FLUX.1-dev", "text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder"), - ("black-forest-labs/FLUX.1-dev", "text_encoder_2/config.json", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("black-forest-labs/FLUX.1-dev", "text_encoder_2/model-00001-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("black-forest-labs/FLUX.1-dev", "text_encoder_2/model-00002-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("black-forest-labs/FLUX.1-dev", "text_encoder_2/model.safetensors.index.json", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("black-forest-labs/FLUX.1-dev", "ae.safetensors", "models/FLUX/FLUX.1-dev"), - ("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "models/FLUX/FLUX.1-dev"), - ], - "InstantX/FLUX.1-dev-IP-Adapter": { - "file_list": [ - ("InstantX/FLUX.1-dev-IP-Adapter", "ip-adapter.bin", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter"), - ("google/siglip-so400m-patch14-384", "model.safetensors", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"), - ("google/siglip-so400m-patch14-384", "config.json", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"), - ], - "load_path": [ - "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/ip-adapter.bin", - "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder", - ], - }, - # RIFE - "RIFE": [ - ("AlexWortega/RIFE", "flownet.pkl", "models/RIFE"), - ], - # CogVideo - "CogVideoX-5B": [ - ("THUDM/CogVideoX-5b", "text_encoder/config.json", "models/CogVideo/CogVideoX-5b/text_encoder"), - ("THUDM/CogVideoX-5b", "text_encoder/model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/text_encoder"), - ("THUDM/CogVideoX-5b", "text_encoder/model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"), - ("THUDM/CogVideoX-5b", "text_encoder/model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"), - ("THUDM/CogVideoX-5b", "transformer/config.json", "models/CogVideo/CogVideoX-5b/transformer"), - ("THUDM/CogVideoX-5b", "transformer/diffusion_pytorch_model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/transformer"), - ("THUDM/CogVideoX-5b", "transformer/diffusion_pytorch_model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"), - ("THUDM/CogVideoX-5b", "transformer/diffusion_pytorch_model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"), - ("THUDM/CogVideoX-5b", "vae/diffusion_pytorch_model.safetensors", "models/CogVideo/CogVideoX-5b/vae"), - ], - # Stable Diffusion 3.5 - "StableDiffusion3.5-large": [ - ("stabilityai/stable-diffusion-3.5-large", "sd3.5_large.safetensors", "models/stable_diffusion_3"), - ("stabilityai/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"), - ("stabilityai/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"), - ("stabilityai/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"), - ], -} -preset_models_on_modelscope = { - # Hunyuan DiT - "HunyuanDiT": [ - ("modelscope/HunyuanDiT", "t2i/clip_text_encoder/pytorch_model.bin", "models/HunyuanDiT/t2i/clip_text_encoder"), - ("modelscope/HunyuanDiT", "t2i/mt5/pytorch_model.bin", "models/HunyuanDiT/t2i/mt5"), - ("modelscope/HunyuanDiT", "t2i/model/pytorch_model_ema.pt", "models/HunyuanDiT/t2i/model"), - ("modelscope/HunyuanDiT", "t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin", "models/HunyuanDiT/t2i/sdxl-vae-fp16-fix"), - ], - # Stable Video Diffusion - "stable-video-diffusion-img2vid-xt": [ - ("AI-ModelScope/stable-video-diffusion-img2vid-xt", "svd_xt.safetensors", "models/stable_video_diffusion"), - ], - # ExVideo - "ExVideo-SVD-128f-v1": [ - ("ECNU-CILab/ExVideo-SVD-128f-v1", "model.fp16.safetensors", "models/stable_video_diffusion"), - ], - "ExVideo-CogVideoX-LoRA-129f-v1": [ - ("ECNU-CILab/ExVideo-CogVideoX-LoRA-129f-v1", "ExVideo-CogVideoX-LoRA-129f-v1.safetensors", "models/lora"), - ], - # Stable Diffusion - "StableDiffusion_v15": [ - ("AI-ModelScope/stable-diffusion-v1-5", "v1-5-pruned-emaonly.safetensors", "models/stable_diffusion"), - ], - "DreamShaper_8": [ - ("sd_lora/dreamshaper_8", "dreamshaper_8.safetensors", "models/stable_diffusion"), - ], - "AingDiffusion_v12": [ - ("sd_lora/aingdiffusion_v12", "aingdiffusion_v12.safetensors", "models/stable_diffusion"), - ], - "Flat2DAnimerge_v45Sharp": [ - ("sd_lora/Flat-2D-Animerge", "flat2DAnimerge_v45Sharp.safetensors", "models/stable_diffusion"), - ], - # Textual Inversion - "TextualInversion_VeryBadImageNegative_v1.3": [ - ("sd_lora/verybadimagenegative_v1.3", "verybadimagenegative_v1.3.pt", "models/textual_inversion"), - ], - # Stable Diffusion XL - "StableDiffusionXL_v1": [ - ("AI-ModelScope/stable-diffusion-xl-base-1.0", "sd_xl_base_1.0.safetensors", "models/stable_diffusion_xl"), - ], - "BluePencilXL_v200": [ - ("sd_lora/bluePencilXL_v200", "bluePencilXL_v200.safetensors", "models/stable_diffusion_xl"), - ], - "StableDiffusionXL_Turbo": [ - ("AI-ModelScope/sdxl-turbo", "sd_xl_turbo_1.0_fp16.safetensors", "models/stable_diffusion_xl_turbo"), - ], - "SDXL_lora_zyd232_ChineseInkStyle_SDXL_v1_0": [ - ("sd_lora/zyd232_ChineseInkStyle_SDXL_v1_0", "zyd232_ChineseInkStyle_SDXL_v1_0.safetensors", "models/lora"), - ], - # Stable Diffusion 3 - "StableDiffusion3": [ - ("AI-ModelScope/stable-diffusion-3-medium", "sd3_medium_incl_clips_t5xxlfp16.safetensors", "models/stable_diffusion_3"), - ], - "StableDiffusion3_without_T5": [ - ("AI-ModelScope/stable-diffusion-3-medium", "sd3_medium_incl_clips.safetensors", "models/stable_diffusion_3"), - ], - # ControlNet - "ControlNet_v11f1p_sd15_depth": [ - ("AI-ModelScope/ControlNet-v1-1", "control_v11f1p_sd15_depth.pth", "models/ControlNet"), - ("sd_lora/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators") - ], - "ControlNet_v11p_sd15_softedge": [ - ("AI-ModelScope/ControlNet-v1-1", "control_v11p_sd15_softedge.pth", "models/ControlNet"), - ("sd_lora/Annotators", "ControlNetHED.pth", "models/Annotators") - ], - "ControlNet_v11f1e_sd15_tile": [ - ("AI-ModelScope/ControlNet-v1-1", "control_v11f1e_sd15_tile.pth", "models/ControlNet") - ], - "ControlNet_v11p_sd15_lineart": [ - ("AI-ModelScope/ControlNet-v1-1", "control_v11p_sd15_lineart.pth", "models/ControlNet"), - ("sd_lora/Annotators", "sk_model.pth", "models/Annotators"), - ("sd_lora/Annotators", "sk_model2.pth", "models/Annotators") - ], - "ControlNet_union_sdxl_promax": [ - ("AI-ModelScope/controlnet-union-sdxl-1.0", "diffusion_pytorch_model_promax.safetensors", "models/ControlNet/controlnet_union"), - ("sd_lora/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators") - ], - "Annotators:Depth": [ - ("sd_lora/Annotators", "dpt_hybrid-midas-501f0c75.pt", "models/Annotators"), - ], - "Annotators:Softedge": [ - ("sd_lora/Annotators", "ControlNetHED.pth", "models/Annotators"), - ], - "Annotators:Lineart": [ - ("sd_lora/Annotators", "sk_model.pth", "models/Annotators"), - ("sd_lora/Annotators", "sk_model2.pth", "models/Annotators"), - ], - "Annotators:Normal": [ - ("sd_lora/Annotators", "scannet.pt", "models/Annotators"), - ], - "Annotators:Openpose": [ - ("sd_lora/Annotators", "body_pose_model.pth", "models/Annotators"), - ("sd_lora/Annotators", "facenet.pth", "models/Annotators"), - ("sd_lora/Annotators", "hand_pose_model.pth", "models/Annotators"), - ], - # AnimateDiff - "AnimateDiff_v2": [ - ("Shanghai_AI_Laboratory/animatediff", "mm_sd_v15_v2.ckpt", "models/AnimateDiff"), - ], - "AnimateDiff_xl_beta": [ - ("Shanghai_AI_Laboratory/animatediff", "mm_sdxl_v10_beta.ckpt", "models/AnimateDiff"), - ], - # RIFE - "RIFE": [ - ("Damo_XR_Lab/cv_rife_video-frame-interpolation", "flownet.pkl", "models/RIFE"), - ], - # Qwen Prompt - "QwenPrompt": { - "file_list": [ - ("qwen/Qwen2-1.5B-Instruct", "config.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("qwen/Qwen2-1.5B-Instruct", "generation_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("qwen/Qwen2-1.5B-Instruct", "model.safetensors", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("qwen/Qwen2-1.5B-Instruct", "special_tokens_map.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("qwen/Qwen2-1.5B-Instruct", "tokenizer.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("qwen/Qwen2-1.5B-Instruct", "tokenizer_config.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("qwen/Qwen2-1.5B-Instruct", "merges.txt", "models/QwenPrompt/qwen2-1.5b-instruct"), - ("qwen/Qwen2-1.5B-Instruct", "vocab.json", "models/QwenPrompt/qwen2-1.5b-instruct"), - ], - "load_path": [ - "models/QwenPrompt/qwen2-1.5b-instruct", - ], - }, - # Beautiful Prompt - "BeautifulPrompt": { - "file_list": [ - ("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "generation_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "model.safetensors", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "special_tokens_map.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "tokenizer.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ("AI-ModelScope/pai-bloom-1b1-text2prompt-sd", "tokenizer_config.json", "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd"), - ], - "load_path": [ - "models/BeautifulPrompt/pai-bloom-1b1-text2prompt-sd", - ], - }, - # Omost prompt - "OmostPrompt": { - "file_list": [ - ("Omost/omost-llama-3-8b-4bits", "model-00001-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("Omost/omost-llama-3-8b-4bits", "model-00002-of-00002.safetensors", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("Omost/omost-llama-3-8b-4bits", "tokenizer.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("Omost/omost-llama-3-8b-4bits", "tokenizer_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("Omost/omost-llama-3-8b-4bits", "config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("Omost/omost-llama-3-8b-4bits", "generation_config.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("Omost/omost-llama-3-8b-4bits", "model.safetensors.index.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ("Omost/omost-llama-3-8b-4bits", "special_tokens_map.json", "models/OmostPrompt/omost-llama-3-8b-4bits"), - ], - "load_path": [ - "models/OmostPrompt/omost-llama-3-8b-4bits", - ], - }, - # Translator - "opus-mt-zh-en": { - "file_list": [ - ("moxying/opus-mt-zh-en", "config.json", "models/translator/opus-mt-zh-en"), - ("moxying/opus-mt-zh-en", "generation_config.json", "models/translator/opus-mt-zh-en"), - ("moxying/opus-mt-zh-en", "metadata.json", "models/translator/opus-mt-zh-en"), - ("moxying/opus-mt-zh-en", "pytorch_model.bin", "models/translator/opus-mt-zh-en"), - ("moxying/opus-mt-zh-en", "source.spm", "models/translator/opus-mt-zh-en"), - ("moxying/opus-mt-zh-en", "target.spm", "models/translator/opus-mt-zh-en"), - ("moxying/opus-mt-zh-en", "tokenizer_config.json", "models/translator/opus-mt-zh-en"), - ("moxying/opus-mt-zh-en", "vocab.json", "models/translator/opus-mt-zh-en"), - ], - "load_path": [ - "models/translator/opus-mt-zh-en", - ], - }, - # IP-Adapter - "IP-Adapter-SD": [ - ("AI-ModelScope/IP-Adapter", "models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion/image_encoder"), - ("AI-ModelScope/IP-Adapter", "models/ip-adapter_sd15.bin", "models/IpAdapter/stable_diffusion"), - ], - "IP-Adapter-SDXL": [ - ("AI-ModelScope/IP-Adapter", "sdxl_models/image_encoder/model.safetensors", "models/IpAdapter/stable_diffusion_xl/image_encoder"), - ("AI-ModelScope/IP-Adapter", "sdxl_models/ip-adapter_sdxl.bin", "models/IpAdapter/stable_diffusion_xl"), - ], - # Kolors - "Kolors": { - "file_list": [ - ("Kwai-Kolors/Kolors", "text_encoder/config.json", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model.bin.index.json", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00001-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00002-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00003-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00004-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00005-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00006-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "text_encoder/pytorch_model-00007-of-00007.bin", "models/kolors/Kolors/text_encoder"), - ("Kwai-Kolors/Kolors", "unet/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/unet"), - ("Kwai-Kolors/Kolors", "vae/diffusion_pytorch_model.safetensors", "models/kolors/Kolors/vae"), - ], - "load_path": [ - "models/kolors/Kolors/text_encoder", - "models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors", - "models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors", - ], - }, - "SDXL-vae-fp16-fix": [ - ("AI-ModelScope/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors", "models/sdxl-vae-fp16-fix") - ], - # FLUX - "FLUX.1-dev": { - "file_list": [ - ("AI-ModelScope/FLUX.1-dev", "text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder"), - ("AI-ModelScope/FLUX.1-dev", "text_encoder_2/config.json", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00001-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00002-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model.safetensors.index.json", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("AI-ModelScope/FLUX.1-dev", "ae.safetensors", "models/FLUX/FLUX.1-dev"), - ("AI-ModelScope/FLUX.1-dev", "flux1-dev.safetensors", "models/FLUX/FLUX.1-dev"), - ], - "load_path": [ - "models/FLUX/FLUX.1-dev/text_encoder/model.safetensors", - "models/FLUX/FLUX.1-dev/text_encoder_2", - "models/FLUX/FLUX.1-dev/ae.safetensors", - "models/FLUX/FLUX.1-dev/flux1-dev.safetensors" - ], - }, - "FLUX.1-schnell": { - "file_list": [ - ("AI-ModelScope/FLUX.1-dev", "text_encoder/model.safetensors", "models/FLUX/FLUX.1-dev/text_encoder"), - ("AI-ModelScope/FLUX.1-dev", "text_encoder_2/config.json", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00001-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model-00002-of-00002.safetensors", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("AI-ModelScope/FLUX.1-dev", "text_encoder_2/model.safetensors.index.json", "models/FLUX/FLUX.1-dev/text_encoder_2"), - ("AI-ModelScope/FLUX.1-dev", "ae.safetensors", "models/FLUX/FLUX.1-dev"), - ("AI-ModelScope/FLUX.1-schnell", "flux1-schnell.safetensors", "models/FLUX/FLUX.1-schnell"), - ], - "load_path": [ - "models/FLUX/FLUX.1-dev/text_encoder/model.safetensors", - "models/FLUX/FLUX.1-dev/text_encoder_2", - "models/FLUX/FLUX.1-dev/ae.safetensors", - "models/FLUX/FLUX.1-schnell/flux1-schnell.safetensors" - ], - }, - "InstantX/FLUX.1-dev-Controlnet-Union-alpha": [ - ("InstantX/FLUX.1-dev-Controlnet-Union-alpha", "diffusion_pytorch_model.safetensors", "models/ControlNet/InstantX/FLUX.1-dev-Controlnet-Union-alpha"), - ], - "jasperai/Flux.1-dev-Controlnet-Depth": [ - ("jasperai/Flux.1-dev-Controlnet-Depth", "diffusion_pytorch_model.safetensors", "models/ControlNet/jasperai/Flux.1-dev-Controlnet-Depth"), - ], - "jasperai/Flux.1-dev-Controlnet-Surface-Normals": [ - ("jasperai/Flux.1-dev-Controlnet-Surface-Normals", "diffusion_pytorch_model.safetensors", "models/ControlNet/jasperai/Flux.1-dev-Controlnet-Surface-Normals"), - ], - "jasperai/Flux.1-dev-Controlnet-Upscaler": [ - ("jasperai/Flux.1-dev-Controlnet-Upscaler", "diffusion_pytorch_model.safetensors", "models/ControlNet/jasperai/Flux.1-dev-Controlnet-Upscaler"), - ], - "alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha": [ - ("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", "diffusion_pytorch_model.safetensors", "models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha"), - ], - "alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta": [ - ("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", "diffusion_pytorch_model.safetensors", "models/ControlNet/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta"), - ], - "Shakker-Labs/FLUX.1-dev-ControlNet-Depth": [ - ("Shakker-Labs/FLUX.1-dev-ControlNet-Depth", "diffusion_pytorch_model.safetensors", "models/ControlNet/Shakker-Labs/FLUX.1-dev-ControlNet-Depth"), - ], - "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro": [ - ("Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", "diffusion_pytorch_model.safetensors", "models/ControlNet/Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro"), - ], - "InstantX/FLUX.1-dev-IP-Adapter": { - "file_list": [ - ("InstantX/FLUX.1-dev-IP-Adapter", "ip-adapter.bin", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter"), - ("AI-ModelScope/siglip-so400m-patch14-384", "model.safetensors", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"), - ("AI-ModelScope/siglip-so400m-patch14-384", "config.json", "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder"), - ], - "load_path": [ - "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/ip-adapter.bin", - "models/IpAdapter/InstantX/FLUX.1-dev-IP-Adapter/image_encoder", - ], - }, - "InfiniteYou":{ - "file_list":[ - ("ByteDance/InfiniteYou", "infu_flux_v1.0/aes_stage2/InfuseNetModel/diffusion_pytorch_model-00001-of-00002.safetensors", "models/InfiniteYou/InfuseNetModel"), - ("ByteDance/InfiniteYou", "infu_flux_v1.0/aes_stage2/InfuseNetModel/diffusion_pytorch_model-00002-of-00002.safetensors", "models/InfiniteYou/InfuseNetModel"), - ("ByteDance/InfiniteYou", "infu_flux_v1.0/aes_stage2/image_proj_model.bin", "models/InfiniteYou"), - ("ByteDance/InfiniteYou", "supports/insightface/models/antelopev2/1k3d68.onnx", "models/InfiniteYou/insightface/models/antelopev2"), - ("ByteDance/InfiniteYou", "supports/insightface/models/antelopev2/2d106det.onnx", "models/InfiniteYou/insightface/models/antelopev2"), - ("ByteDance/InfiniteYou", "supports/insightface/models/antelopev2/genderage.onnx", "models/InfiniteYou/insightface/models/antelopev2"), - ("ByteDance/InfiniteYou", "supports/insightface/models/antelopev2/glintr100.onnx", "models/InfiniteYou/insightface/models/antelopev2"), - ("ByteDance/InfiniteYou", "supports/insightface/models/antelopev2/scrfd_10g_bnkps.onnx", "models/InfiniteYou/insightface/models/antelopev2"), - ], - "load_path":[ - [ - "models/InfiniteYou/InfuseNetModel/diffusion_pytorch_model-00001-of-00002.safetensors", - "models/InfiniteYou/InfuseNetModel/diffusion_pytorch_model-00002-of-00002.safetensors" - ], - "models/InfiniteYou/image_proj_model.bin", - ], - }, - # ESRGAN - "ESRGAN_x4": [ - ("AI-ModelScope/Real-ESRGAN", "RealESRGAN_x4.pth", "models/ESRGAN"), - ], - # RIFE - "RIFE": [ - ("AI-ModelScope/RIFE", "flownet.pkl", "models/RIFE"), - ], - # Omnigen - "OmniGen-v1": { - "file_list": [ - ("BAAI/OmniGen-v1", "vae/diffusion_pytorch_model.safetensors", "models/OmniGen/OmniGen-v1/vae"), - ("BAAI/OmniGen-v1", "model.safetensors", "models/OmniGen/OmniGen-v1"), - ("BAAI/OmniGen-v1", "config.json", "models/OmniGen/OmniGen-v1"), - ("BAAI/OmniGen-v1", "special_tokens_map.json", "models/OmniGen/OmniGen-v1"), - ("BAAI/OmniGen-v1", "tokenizer_config.json", "models/OmniGen/OmniGen-v1"), - ("BAAI/OmniGen-v1", "tokenizer.json", "models/OmniGen/OmniGen-v1"), - ], - "load_path": [ - "models/OmniGen/OmniGen-v1/vae/diffusion_pytorch_model.safetensors", - "models/OmniGen/OmniGen-v1/model.safetensors", - ] - }, - # CogVideo - "CogVideoX-5B": { - "file_list": [ - ("ZhipuAI/CogVideoX-5b", "text_encoder/config.json", "models/CogVideo/CogVideoX-5b/text_encoder"), - ("ZhipuAI/CogVideoX-5b", "text_encoder/model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/text_encoder"), - ("ZhipuAI/CogVideoX-5b", "text_encoder/model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"), - ("ZhipuAI/CogVideoX-5b", "text_encoder/model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/text_encoder"), - ("ZhipuAI/CogVideoX-5b", "transformer/config.json", "models/CogVideo/CogVideoX-5b/transformer"), - ("ZhipuAI/CogVideoX-5b", "transformer/diffusion_pytorch_model.safetensors.index.json", "models/CogVideo/CogVideoX-5b/transformer"), - ("ZhipuAI/CogVideoX-5b", "transformer/diffusion_pytorch_model-00001-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"), - ("ZhipuAI/CogVideoX-5b", "transformer/diffusion_pytorch_model-00002-of-00002.safetensors", "models/CogVideo/CogVideoX-5b/transformer"), - ("ZhipuAI/CogVideoX-5b", "vae/diffusion_pytorch_model.safetensors", "models/CogVideo/CogVideoX-5b/vae"), - ], - "load_path": [ - "models/CogVideo/CogVideoX-5b/text_encoder", - "models/CogVideo/CogVideoX-5b/transformer", - "models/CogVideo/CogVideoX-5b/vae/diffusion_pytorch_model.safetensors", - ], - }, - # Stable Diffusion 3.5 - "StableDiffusion3.5-large": [ - ("AI-ModelScope/stable-diffusion-3.5-large", "sd3.5_large.safetensors", "models/stable_diffusion_3"), - ("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"), - ("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"), - ("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"), - ], - "StableDiffusion3.5-medium": [ - ("AI-ModelScope/stable-diffusion-3.5-medium", "sd3.5_medium.safetensors", "models/stable_diffusion_3"), - ("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"), - ("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"), - ("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"), - ], - "StableDiffusion3.5-large-turbo": [ - ("AI-ModelScope/stable-diffusion-3.5-large-turbo", "sd3.5_large_turbo.safetensors", "models/stable_diffusion_3"), - ("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_l.safetensors", "models/stable_diffusion_3/text_encoders"), - ("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/clip_g.safetensors", "models/stable_diffusion_3/text_encoders"), - ("AI-ModelScope/stable-diffusion-3.5-large", "text_encoders/t5xxl_fp16.safetensors", "models/stable_diffusion_3/text_encoders"), - ], - "HunyuanVideo":{ - "file_list": [ - ("AI-ModelScope/clip-vit-large-patch14", "model.safetensors", "models/HunyuanVideo/text_encoder"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00001-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00002-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00003-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00004-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "config.json", "models/HunyuanVideo/text_encoder_2"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model.safetensors.index.json", "models/HunyuanVideo/text_encoder_2"), - ("AI-ModelScope/HunyuanVideo", "hunyuan-video-t2v-720p/vae/pytorch_model.pt", "models/HunyuanVideo/vae"), - ("AI-ModelScope/HunyuanVideo", "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt", "models/HunyuanVideo/transformers") - ], - "load_path": [ - "models/HunyuanVideo/text_encoder/model.safetensors", - "models/HunyuanVideo/text_encoder_2", - "models/HunyuanVideo/vae/pytorch_model.pt", - "models/HunyuanVideo/transformers/mp_rank_00_model_states.pt" - ], - }, - "HunyuanVideoI2V":{ - "file_list": [ - ("AI-ModelScope/clip-vit-large-patch14", "model.safetensors", "models/HunyuanVideoI2V/text_encoder"), - ("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "model-00001-of-00004.safetensors", "models/HunyuanVideoI2V/text_encoder_2"), - ("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "model-00002-of-00004.safetensors", "models/HunyuanVideoI2V/text_encoder_2"), - ("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "model-00003-of-00004.safetensors", "models/HunyuanVideoI2V/text_encoder_2"), - ("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "model-00004-of-00004.safetensors", "models/HunyuanVideoI2V/text_encoder_2"), - ("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "config.json", "models/HunyuanVideoI2V/text_encoder_2"), - ("AI-ModelScope/llava-llama-3-8b-v1_1-transformers", "model.safetensors.index.json", "models/HunyuanVideoI2V/text_encoder_2"), - ("AI-ModelScope/HunyuanVideo-I2V", "hunyuan-video-i2v-720p/vae/pytorch_model.pt", "models/HunyuanVideoI2V/vae"), - ("AI-ModelScope/HunyuanVideo-I2V", "hunyuan-video-i2v-720p/transformers/mp_rank_00_model_states.pt", "models/HunyuanVideoI2V/transformers") - ], - "load_path": [ - "models/HunyuanVideoI2V/text_encoder/model.safetensors", - "models/HunyuanVideoI2V/text_encoder_2", - "models/HunyuanVideoI2V/vae/pytorch_model.pt", - "models/HunyuanVideoI2V/transformers/mp_rank_00_model_states.pt" - ], - }, - "HunyuanVideo-fp8":{ - "file_list": [ - ("AI-ModelScope/clip-vit-large-patch14", "model.safetensors", "models/HunyuanVideo/text_encoder"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00001-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00002-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00003-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model-00004-of-00004.safetensors", "models/HunyuanVideo/text_encoder_2"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "config.json", "models/HunyuanVideo/text_encoder_2"), - ("DiffSynth-Studio/HunyuanVideo_MLLM_text_encoder", "model.safetensors.index.json", "models/HunyuanVideo/text_encoder_2"), - ("AI-ModelScope/HunyuanVideo", "hunyuan-video-t2v-720p/vae/pytorch_model.pt", "models/HunyuanVideo/vae"), - ("DiffSynth-Studio/HunyuanVideo-safetensors", "model.fp8.safetensors", "models/HunyuanVideo/transformers") - ], - "load_path": [ - "models/HunyuanVideo/text_encoder/model.safetensors", - "models/HunyuanVideo/text_encoder_2", - "models/HunyuanVideo/vae/pytorch_model.pt", - "models/HunyuanVideo/transformers/model.fp8.safetensors" - ], - }, -} -Preset_model_id: TypeAlias = Literal[ - "HunyuanDiT", - "stable-video-diffusion-img2vid-xt", - "ExVideo-SVD-128f-v1", - "ExVideo-CogVideoX-LoRA-129f-v1", - "StableDiffusion_v15", - "DreamShaper_8", - "AingDiffusion_v12", - "Flat2DAnimerge_v45Sharp", - "TextualInversion_VeryBadImageNegative_v1.3", - "StableDiffusionXL_v1", - "BluePencilXL_v200", - "StableDiffusionXL_Turbo", - "ControlNet_v11f1p_sd15_depth", - "ControlNet_v11p_sd15_softedge", - "ControlNet_v11f1e_sd15_tile", - "ControlNet_v11p_sd15_lineart", - "AnimateDiff_v2", - "AnimateDiff_xl_beta", - "RIFE", - "BeautifulPrompt", - "opus-mt-zh-en", - "IP-Adapter-SD", - "IP-Adapter-SDXL", - "StableDiffusion3", - "StableDiffusion3_without_T5", - "Kolors", - "SDXL-vae-fp16-fix", - "ControlNet_union_sdxl_promax", - "FLUX.1-dev", - "FLUX.1-schnell", - "InstantX/FLUX.1-dev-Controlnet-Union-alpha", - "jasperai/Flux.1-dev-Controlnet-Depth", - "jasperai/Flux.1-dev-Controlnet-Surface-Normals", - "jasperai/Flux.1-dev-Controlnet-Upscaler", - "alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha", - "alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", - "Shakker-Labs/FLUX.1-dev-ControlNet-Depth", - "Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro", - "InstantX/FLUX.1-dev-IP-Adapter", - "InfiniteYou", - "SDXL_lora_zyd232_ChineseInkStyle_SDXL_v1_0", - "QwenPrompt", - "OmostPrompt", - "ESRGAN_x4", - "RIFE", - "OmniGen-v1", - "CogVideoX-5B", - "Annotators:Depth", - "Annotators:Softedge", - "Annotators:Lineart", - "Annotators:Normal", - "Annotators:Openpose", - "StableDiffusion3.5-large", - "StableDiffusion3.5-medium", - "HunyuanVideo", - "HunyuanVideo-fp8", - "HunyuanVideoI2V", -] diff --git a/diffsynth/controlnets/__init__.py b/diffsynth/controlnets/__init__.py deleted file mode 100644 index a3e15add6ab116bf261804b8c83c86ff4d61c41b..0000000000000000000000000000000000000000 --- a/diffsynth/controlnets/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -from .controlnet_unit import ControlNetConfigUnit, ControlNetUnit, MultiControlNetManager, FluxMultiControlNetManager -from .processors import Annotator diff --git a/diffsynth/controlnets/controlnet_unit.py b/diffsynth/controlnets/controlnet_unit.py deleted file mode 100644 index fdb4829483d208ec0295d1b5a8f82681b4251ea4..0000000000000000000000000000000000000000 --- a/diffsynth/controlnets/controlnet_unit.py +++ /dev/null @@ -1,91 +0,0 @@ -import torch -import numpy as np -from .processors import Processor_id - - -class ControlNetConfigUnit: - def __init__(self, processor_id: Processor_id, model_path, scale=1.0, skip_processor=False): - self.processor_id = processor_id - self.model_path = model_path - self.scale = scale - self.skip_processor = skip_processor - - -class ControlNetUnit: - def __init__(self, processor, model, scale=1.0): - self.processor = processor - self.model = model - self.scale = scale - - -class MultiControlNetManager: - def __init__(self, controlnet_units=[]): - self.processors = [unit.processor for unit in controlnet_units] - self.models = [unit.model for unit in controlnet_units] - self.scales = [unit.scale for unit in controlnet_units] - - def cpu(self): - for model in self.models: - model.cpu() - - def to(self, device): - for model in self.models: - model.to(device) - for processor in self.processors: - processor.to(device) - - def process_image(self, image, processor_id=None): - if processor_id is None: - processed_image = [processor(image) for processor in self.processors] - else: - processed_image = [self.processors[processor_id](image)] - processed_image = torch.concat([ - torch.Tensor(np.array(image_, dtype=np.float32) / 255).permute(2, 0, 1).unsqueeze(0) - for image_ in processed_image - ], dim=0) - return processed_image - - def __call__( - self, - sample, timestep, encoder_hidden_states, conditionings, - tiled=False, tile_size=64, tile_stride=32, **kwargs - ): - res_stack = None - for processor, conditioning, model, scale in zip(self.processors, conditionings, self.models, self.scales): - res_stack_ = model( - sample, timestep, encoder_hidden_states, conditioning, **kwargs, - tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, - processor_id=processor.processor_id - ) - res_stack_ = [res * scale for res in res_stack_] - if res_stack is None: - res_stack = res_stack_ - else: - res_stack = [i + j for i, j in zip(res_stack, res_stack_)] - return res_stack - - -class FluxMultiControlNetManager(MultiControlNetManager): - def __init__(self, controlnet_units=[]): - super().__init__(controlnet_units=controlnet_units) - - def process_image(self, image, processor_id=None): - if processor_id is None: - processed_image = [processor(image) for processor in self.processors] - else: - processed_image = [self.processors[processor_id](image)] - return processed_image - - def __call__(self, conditionings, **kwargs): - res_stack, single_res_stack = None, None - for processor, conditioning, model, scale in zip(self.processors, conditionings, self.models, self.scales): - res_stack_, single_res_stack_ = model(controlnet_conditioning=conditioning, processor_id=processor.processor_id, **kwargs) - res_stack_ = [res * scale for res in res_stack_] - single_res_stack_ = [res * scale for res in single_res_stack_] - if res_stack is None: - res_stack = res_stack_ - single_res_stack = single_res_stack_ - else: - res_stack = [i + j for i, j in zip(res_stack, res_stack_)] - single_res_stack = [i + j for i, j in zip(single_res_stack, single_res_stack_)] - return res_stack, single_res_stack diff --git a/diffsynth/controlnets/processors.py b/diffsynth/controlnets/processors.py deleted file mode 100644 index 06553e06d1c6d09f5a3deecfd4ea5604c5dd4352..0000000000000000000000000000000000000000 --- a/diffsynth/controlnets/processors.py +++ /dev/null @@ -1,62 +0,0 @@ -from typing_extensions import Literal, TypeAlias - - -Processor_id: TypeAlias = Literal[ - "canny", "depth", "softedge", "lineart", "lineart_anime", "openpose", "normal", "tile", "none", "inpaint" -] - -class Annotator: - def __init__(self, processor_id: Processor_id, model_path="models/Annotators", detect_resolution=None, device='cuda', skip_processor=False): - if not skip_processor: - if processor_id == "canny": - from controlnet_aux.processor import CannyDetector - self.processor = CannyDetector() - elif processor_id == "depth": - from controlnet_aux.processor import MidasDetector - self.processor = MidasDetector.from_pretrained(model_path).to(device) - elif processor_id == "softedge": - from controlnet_aux.processor import HEDdetector - self.processor = HEDdetector.from_pretrained(model_path).to(device) - elif processor_id == "lineart": - from controlnet_aux.processor import LineartDetector - self.processor = LineartDetector.from_pretrained(model_path).to(device) - elif processor_id == "lineart_anime": - from controlnet_aux.processor import LineartAnimeDetector - self.processor = LineartAnimeDetector.from_pretrained(model_path).to(device) - elif processor_id == "openpose": - from controlnet_aux.processor import OpenposeDetector - self.processor = OpenposeDetector.from_pretrained(model_path).to(device) - elif processor_id == "normal": - from controlnet_aux.processor import NormalBaeDetector - self.processor = NormalBaeDetector.from_pretrained(model_path).to(device) - elif processor_id == "tile" or processor_id == "none" or processor_id == "inpaint": - self.processor = None - else: - raise ValueError(f"Unsupported processor_id: {processor_id}") - else: - self.processor = None - - self.processor_id = processor_id - self.detect_resolution = detect_resolution - - def to(self,device): - if hasattr(self.processor,"model") and hasattr(self.processor.model,"to"): - - self.processor.model.to(device) - - def __call__(self, image, mask=None): - width, height = image.size - if self.processor_id == "openpose": - kwargs = { - "include_body": True, - "include_hand": True, - "include_face": True - } - else: - kwargs = {} - if self.processor is not None: - detect_resolution = self.detect_resolution if self.detect_resolution is not None else min(width, height) - image = self.processor(image, detect_resolution=detect_resolution, image_resolution=min(width, height), **kwargs) - image = image.resize((width, height)) - return image - diff --git a/diffsynth/data/__init__.py b/diffsynth/data/__init__.py deleted file mode 100644 index de09a29905d289673e40e53278a0a3181232640d..0000000000000000000000000000000000000000 --- a/diffsynth/data/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .video import VideoData, save_video, save_frames diff --git a/diffsynth/data/simple_text_image.py b/diffsynth/data/simple_text_image.py deleted file mode 100644 index 7a9525e3c8a4d21418c1464fe11fc621450fd0d8..0000000000000000000000000000000000000000 --- a/diffsynth/data/simple_text_image.py +++ /dev/null @@ -1,41 +0,0 @@ -import torch, os, torchvision -from torchvision import transforms -import pandas as pd -from PIL import Image - - - -class TextImageDataset(torch.utils.data.Dataset): - def __init__(self, dataset_path, steps_per_epoch=10000, height=1024, width=1024, center_crop=True, random_flip=False): - self.steps_per_epoch = steps_per_epoch - metadata = pd.read_csv(os.path.join(dataset_path, "train/metadata.csv")) - self.path = [os.path.join(dataset_path, "train", file_name) for file_name in metadata["file_name"]] - self.text = metadata["text"].to_list() - self.height = height - self.width = width - self.image_processor = transforms.Compose( - [ - transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)), - transforms.RandomHorizontalFlip() if random_flip else transforms.Lambda(lambda x: x), - transforms.ToTensor(), - transforms.Normalize([0.5], [0.5]), - ] - ) - - - def __getitem__(self, index): - data_id = torch.randint(0, len(self.path), (1,))[0] - data_id = (data_id + index) % len(self.path) # For fixed seed. - text = self.text[data_id] - image = Image.open(self.path[data_id]).convert("RGB") - target_height, target_width = self.height, self.width - width, height = image.size - scale = max(target_width / width, target_height / height) - shape = [round(height*scale),round(width*scale)] - image = torchvision.transforms.functional.resize(image,shape,interpolation=transforms.InterpolationMode.BILINEAR) - image = self.image_processor(image) - return {"text": text, "image": image} - - - def __len__(self): - return self.steps_per_epoch diff --git a/diffsynth/data/video.py b/diffsynth/data/video.py deleted file mode 100644 index 8eafa66855fa5668d42a65ac205776ed254213cf..0000000000000000000000000000000000000000 --- a/diffsynth/data/video.py +++ /dev/null @@ -1,148 +0,0 @@ -import imageio, os -import numpy as np -from PIL import Image -from tqdm import tqdm - - -class LowMemoryVideo: - def __init__(self, file_name): - self.reader = imageio.get_reader(file_name) - - def __len__(self): - return self.reader.count_frames() - - def __getitem__(self, item): - return Image.fromarray(np.array(self.reader.get_data(item))).convert("RGB") - - def __del__(self): - self.reader.close() - - -def split_file_name(file_name): - result = [] - number = -1 - for i in file_name: - if ord(i)>=ord("0") and ord(i)<=ord("9"): - if number == -1: - number = 0 - number = number*10 + ord(i) - ord("0") - else: - if number != -1: - result.append(number) - number = -1 - result.append(i) - if number != -1: - result.append(number) - result = tuple(result) - return result - - -def search_for_images(folder): - file_list = [i for i in os.listdir(folder) if i.endswith(".jpg") or i.endswith(".png")] - file_list = [(split_file_name(file_name), file_name) for file_name in file_list] - file_list = [i[1] for i in sorted(file_list)] - file_list = [os.path.join(folder, i) for i in file_list] - return file_list - - -class LowMemoryImageFolder: - def __init__(self, folder, file_list=None): - if file_list is None: - self.file_list = search_for_images(folder) - else: - self.file_list = [os.path.join(folder, file_name) for file_name in file_list] - - def __len__(self): - return len(self.file_list) - - def __getitem__(self, item): - return Image.open(self.file_list[item]).convert("RGB") - - def __del__(self): - pass - - -def crop_and_resize(image, height, width): - image = np.array(image) - image_height, image_width, _ = image.shape - if image_height / image_width < height / width: - croped_width = int(image_height / height * width) - left = (image_width - croped_width) // 2 - image = image[:, left: left+croped_width] - image = Image.fromarray(image).resize((width, height)) - else: - croped_height = int(image_width / width * height) - left = (image_height - croped_height) // 2 - image = image[left: left+croped_height, :] - image = Image.fromarray(image).resize((width, height)) - return image - - -class VideoData: - def __init__(self, video_file=None, image_folder=None, height=None, width=None, **kwargs): - if video_file is not None: - self.data_type = "video" - self.data = LowMemoryVideo(video_file, **kwargs) - elif image_folder is not None: - self.data_type = "images" - self.data = LowMemoryImageFolder(image_folder, **kwargs) - else: - raise ValueError("Cannot open video or image folder") - self.length = None - self.set_shape(height, width) - - def raw_data(self): - frames = [] - for i in range(self.__len__()): - frames.append(self.__getitem__(i)) - return frames - - def set_length(self, length): - self.length = length - - def set_shape(self, height, width): - self.height = height - self.width = width - - def __len__(self): - if self.length is None: - return len(self.data) - else: - return self.length - - def shape(self): - if self.height is not None and self.width is not None: - return self.height, self.width - else: - height, width, _ = self.__getitem__(0).shape - return height, width - - def __getitem__(self, item): - frame = self.data.__getitem__(item) - width, height = frame.size - if self.height is not None and self.width is not None: - if self.height != height or self.width != width: - frame = crop_and_resize(frame, self.height, self.width) - return frame - - def __del__(self): - pass - - def save_images(self, folder): - os.makedirs(folder, exist_ok=True) - for i in tqdm(range(self.__len__()), desc="Saving images"): - frame = self.__getitem__(i) - frame.save(os.path.join(folder, f"{i}.png")) - - -def save_video(frames, save_path, fps, quality=9, ffmpeg_params=None): - writer = imageio.get_writer(save_path, fps=fps, quality=quality, ffmpeg_params=ffmpeg_params) - for frame in tqdm(frames, desc="Saving video"): - frame = np.array(frame) - writer.append_data(frame) - writer.close() - -def save_frames(frames, save_path): - os.makedirs(save_path, exist_ok=True) - for i, frame in enumerate(tqdm(frames, desc="Saving images")): - frame.save(os.path.join(save_path, f"{i}.png")) diff --git a/diffsynth/distributed/__init__.py b/diffsynth/distributed/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/diffsynth/distributed/xdit_context_parallel.py b/diffsynth/distributed/xdit_context_parallel.py deleted file mode 100644 index 2c1a2572539aba98ecf900ae264dbaaf29286371..0000000000000000000000000000000000000000 --- a/diffsynth/distributed/xdit_context_parallel.py +++ /dev/null @@ -1,129 +0,0 @@ -import torch -from typing import Optional -from einops import rearrange -from xfuser.core.distributed import (get_sequence_parallel_rank, - get_sequence_parallel_world_size, - get_sp_group) -from xfuser.core.long_ctx_attention import xFuserLongContextAttention - -def sinusoidal_embedding_1d(dim, position): - sinusoid = torch.outer(position.type(torch.float64), torch.pow( - 10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2))) - x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) - return x.to(position.dtype) - -def pad_freqs(original_tensor, target_len): - seq_len, s1, s2 = original_tensor.shape - pad_size = target_len - seq_len - padding_tensor = torch.ones( - pad_size, - s1, - s2, - dtype=original_tensor.dtype, - device=original_tensor.device) - padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0) - return padded_tensor - -def rope_apply(x, freqs, num_heads): - x = rearrange(x, "b s (n d) -> b s n d", n=num_heads) - s_per_rank = x.shape[1] - - x_out = torch.view_as_complex(x.to(torch.float64).reshape( - x.shape[0], x.shape[1], x.shape[2], -1, 2)) - - sp_size = get_sequence_parallel_world_size() - sp_rank = get_sequence_parallel_rank() - freqs = pad_freqs(freqs, s_per_rank * sp_size) - freqs_rank = freqs[(sp_rank * s_per_rank):((sp_rank + 1) * s_per_rank), :, :] - - x_out = torch.view_as_real(x_out * freqs_rank).flatten(2) - return x_out.to(x.dtype) - -def usp_dit_forward(self, - x: torch.Tensor, - timestep: torch.Tensor, - context: torch.Tensor, - clip_feature: Optional[torch.Tensor] = None, - y: Optional[torch.Tensor] = None, - use_gradient_checkpointing: bool = False, - use_gradient_checkpointing_offload: bool = False, - **kwargs, - ): - t = self.time_embedding( - sinusoidal_embedding_1d(self.freq_dim, timestep)) - t_mod = self.time_projection(t).unflatten(1, (6, self.dim)) - context = self.text_embedding(context) - - if self.has_image_input: - x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w) - clip_embdding = self.img_emb(clip_feature) - context = torch.cat([clip_embdding, context], dim=1) - - x, (f, h, w) = self.patchify(x) - - freqs = torch.cat([ - self.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), - self.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), - self.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) - ], dim=-1).reshape(f * h * w, 1, -1).to(x.device) - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - return custom_forward - - # Context Parallel - x = torch.chunk( - x, get_sequence_parallel_world_size(), - dim=1)[get_sequence_parallel_rank()] - - for block in self.blocks: - if self.training and use_gradient_checkpointing: - if use_gradient_checkpointing_offload: - with torch.autograd.graph.save_on_cpu(): - x = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - x, context, t_mod, freqs, - use_reentrant=False, - ) - else: - x = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - x, context, t_mod, freqs, - use_reentrant=False, - ) - else: - x = block(x, context, t_mod, freqs) - - x = self.head(x, t) - - # Context Parallel - x = get_sp_group().all_gather(x, dim=1) - - # unpatchify - x = self.unpatchify(x, (f, h, w)) - return x - - -def usp_attn_forward(self, x, freqs): - q = self.norm_q(self.q(x)) - k = self.norm_k(self.k(x)) - v = self.v(x) - - q = rope_apply(q, freqs, self.num_heads) - k = rope_apply(k, freqs, self.num_heads) - q = rearrange(q, "b s (n d) -> b s n d", n=self.num_heads) - k = rearrange(k, "b s (n d) -> b s n d", n=self.num_heads) - v = rearrange(v, "b s (n d) -> b s n d", n=self.num_heads) - - x = xFuserLongContextAttention()( - None, - query=q, - key=k, - value=v, - ) - x = x.flatten(2) - - del q, k, v - torch.cuda.empty_cache() - return self.o(x) \ No newline at end of file diff --git a/diffsynth/extensions/ESRGAN/__init__.py b/diffsynth/extensions/ESRGAN/__init__.py deleted file mode 100644 index 94aff4c6fe8d75ff65e30d672dbe3e38a0d919c3..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ESRGAN/__init__.py +++ /dev/null @@ -1,137 +0,0 @@ -import torch -from einops import repeat -from PIL import Image -import numpy as np - - -class ResidualDenseBlock(torch.nn.Module): - - def __init__(self, num_feat=64, num_grow_ch=32): - super(ResidualDenseBlock, self).__init__() - self.conv1 = torch.nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1) - self.conv2 = torch.nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1) - self.conv3 = torch.nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1) - self.conv4 = torch.nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1) - self.conv5 = torch.nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1) - self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True) - - def forward(self, x): - x1 = self.lrelu(self.conv1(x)) - x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) - x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) - x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) - x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) - return x5 * 0.2 + x - - -class RRDB(torch.nn.Module): - - def __init__(self, num_feat, num_grow_ch=32): - super(RRDB, self).__init__() - self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch) - self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch) - self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch) - - def forward(self, x): - out = self.rdb1(x) - out = self.rdb2(out) - out = self.rdb3(out) - return out * 0.2 + x - - -class RRDBNet(torch.nn.Module): - - def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, **kwargs): - super(RRDBNet, self).__init__() - self.conv_first = torch.nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) - self.body = torch.torch.nn.Sequential(*[RRDB(num_feat=num_feat, num_grow_ch=num_grow_ch) for _ in range(num_block)]) - self.conv_body = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1) - # upsample - self.conv_up1 = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1) - self.conv_up2 = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1) - self.conv_hr = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1) - self.conv_last = torch.nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) - self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True) - - def forward(self, x): - feat = x - feat = self.conv_first(feat) - body_feat = self.conv_body(self.body(feat)) - feat = feat + body_feat - # upsample - feat = repeat(feat, "B C H W -> B C (H 2) (W 2)") - feat = self.lrelu(self.conv_up1(feat)) - feat = repeat(feat, "B C H W -> B C (H 2) (W 2)") - feat = self.lrelu(self.conv_up2(feat)) - out = self.conv_last(self.lrelu(self.conv_hr(feat))) - return out - - @staticmethod - def state_dict_converter(): - return RRDBNetStateDictConverter() - - -class RRDBNetStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - return state_dict, {"upcast_to_float32": True} - - def from_civitai(self, state_dict): - return state_dict, {"upcast_to_float32": True} - - -class ESRGAN(torch.nn.Module): - def __init__(self, model): - super().__init__() - self.model = model - - @staticmethod - def from_model_manager(model_manager): - return ESRGAN(model_manager.fetch_model("esrgan")) - - def process_image(self, image): - image = torch.Tensor(np.array(image, dtype=np.float32) / 255).permute(2, 0, 1) - return image - - def process_images(self, images): - images = [self.process_image(image) for image in images] - images = torch.stack(images) - return images - - def decode_images(self, images): - images = (images.permute(0, 2, 3, 1) * 255).clip(0, 255).numpy().astype(np.uint8) - images = [Image.fromarray(image) for image in images] - return images - - @torch.no_grad() - def upscale(self, images, batch_size=4, progress_bar=lambda x:x): - if not isinstance(images, list): - images = [images] - is_single_image = True - else: - is_single_image = False - - # Preprocess - input_tensor = self.process_images(images) - - # Interpolate - output_tensor = [] - for batch_id in progress_bar(range(0, input_tensor.shape[0], batch_size)): - batch_id_ = min(batch_id + batch_size, input_tensor.shape[0]) - batch_input_tensor = input_tensor[batch_id: batch_id_] - batch_input_tensor = batch_input_tensor.to( - device=self.model.conv_first.weight.device, - dtype=self.model.conv_first.weight.dtype) - batch_output_tensor = self.model(batch_input_tensor) - output_tensor.append(batch_output_tensor.cpu()) - - # Output - output_tensor = torch.concat(output_tensor, dim=0) - - # To images - output_images = self.decode_images(output_tensor) - if is_single_image: - output_images = output_images[0] - return output_images diff --git a/diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-310.pyc b/diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index f0eb54a5639149f56ec9e2bb6d635d6a1cbdb75b..0000000000000000000000000000000000000000 Binary files a/diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-311.pyc b/diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-311.pyc deleted file mode 100644 index 3ab44872f5144f61911d614b9ae14fee51c3b87d..0000000000000000000000000000000000000000 Binary files a/diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-311.pyc and /dev/null differ diff --git a/diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-312.pyc b/diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-312.pyc deleted file mode 100644 index a0fc95b26b00cc63c60422a27b028ab248238168..0000000000000000000000000000000000000000 Binary files a/diffsynth/extensions/ESRGAN/__pycache__/__init__.cpython-312.pyc and /dev/null differ diff --git a/diffsynth/extensions/FastBlend/__init__.py b/diffsynth/extensions/FastBlend/__init__.py deleted file mode 100644 index 2bf812c2085082bfa82658dd249ebca89e9fb465..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/FastBlend/__init__.py +++ /dev/null @@ -1,63 +0,0 @@ -from .runners.fast import TableManager, PyramidPatchMatcher -from PIL import Image -import numpy as np -import cupy as cp - - -class FastBlendSmoother: - def __init__(self): - self.batch_size = 8 - self.window_size = 64 - self.ebsynth_config = { - "minimum_patch_size": 5, - "threads_per_block": 8, - "num_iter": 5, - "gpu_id": 0, - "guide_weight": 10.0, - "initialize": "identity", - "tracking_window_size": 0, - } - - @staticmethod - def from_model_manager(model_manager): - # TODO: fetch GPU ID from model_manager - return FastBlendSmoother() - - def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config): - frames_guide = [np.array(frame) for frame in frames_guide] - frames_style = [np.array(frame) for frame in frames_style] - table_manager = TableManager() - patch_match_engine = PyramidPatchMatcher( - image_height=frames_style[0].shape[0], - image_width=frames_style[0].shape[1], - channel=3, - **ebsynth_config - ) - # left part - table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, batch_size, desc="FastBlend Step 1/4") - table_l = table_manager.remapping_table_to_blending_table(table_l) - table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, window_size, batch_size, desc="FastBlend Step 2/4") - # right part - table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, batch_size, desc="FastBlend Step 3/4") - table_r = table_manager.remapping_table_to_blending_table(table_r) - table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, window_size, batch_size, desc="FastBlend Step 4/4")[::-1] - # merge - frames = [] - for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r): - weight_m = -1 - weight = weight_l + weight_m + weight_r - frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight) - frames.append(frame) - frames = [Image.fromarray(frame.clip(0, 255).astype("uint8")) for frame in frames] - return frames - - def __call__(self, rendered_frames, original_frames=None, **kwargs): - frames = self.run( - original_frames, rendered_frames, - self.batch_size, self.window_size, self.ebsynth_config - ) - mempool = cp.get_default_memory_pool() - pinned_mempool = cp.get_default_pinned_memory_pool() - mempool.free_all_blocks() - pinned_mempool.free_all_blocks() - return frames \ No newline at end of file diff --git a/diffsynth/extensions/FastBlend/api.py b/diffsynth/extensions/FastBlend/api.py deleted file mode 100644 index 2db24330e375ed62065af54613b6ab956c9c64cf..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/FastBlend/api.py +++ /dev/null @@ -1,397 +0,0 @@ -from .runners import AccurateModeRunner, FastModeRunner, BalancedModeRunner, InterpolationModeRunner, InterpolationModeSingleFrameRunner -from .data import VideoData, get_video_fps, save_video, search_for_images -import os -import gradio as gr - - -def check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder): - frames_guide = VideoData(video_guide, video_guide_folder) - frames_style = VideoData(video_style, video_style_folder) - message = "" - if len(frames_guide) < len(frames_style): - message += f"The number of frames mismatches. Only the first {len(frames_guide)} frames of style video will be used.\n" - frames_style.set_length(len(frames_guide)) - elif len(frames_guide) > len(frames_style): - message += f"The number of frames mismatches. Only the first {len(frames_style)} frames of guide video will be used.\n" - frames_guide.set_length(len(frames_style)) - height_guide, width_guide = frames_guide.shape() - height_style, width_style = frames_style.shape() - if height_guide != height_style or width_guide != width_style: - message += f"The shape of frames mismatches. The frames in style video will be resized to (height: {height_guide}, width: {width_guide})\n" - frames_style.set_shape(height_guide, width_guide) - return frames_guide, frames_style, message - - -def smooth_video( - video_guide, - video_guide_folder, - video_style, - video_style_folder, - mode, - window_size, - batch_size, - tracking_window_size, - output_path, - fps, - minimum_patch_size, - num_iter, - guide_weight, - initialize, - progress = None, -): - # input - frames_guide, frames_style, message = check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder) - if len(message) > 0: - print(message) - # output - if output_path == "": - if video_style is None: - output_path = os.path.join(video_style_folder, "output") - else: - output_path = os.path.join(os.path.split(video_style)[0], "output") - os.makedirs(output_path, exist_ok=True) - print("No valid output_path. Your video will be saved here:", output_path) - elif not os.path.exists(output_path): - os.makedirs(output_path, exist_ok=True) - print("Your video will be saved here:", output_path) - frames_path = os.path.join(output_path, "frames") - video_path = os.path.join(output_path, "video.mp4") - os.makedirs(frames_path, exist_ok=True) - # process - if mode == "Fast" or mode == "Balanced": - tracking_window_size = 0 - ebsynth_config = { - "minimum_patch_size": minimum_patch_size, - "threads_per_block": 8, - "num_iter": num_iter, - "gpu_id": 0, - "guide_weight": guide_weight, - "initialize": initialize, - "tracking_window_size": tracking_window_size, - } - if mode == "Fast": - FastModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path) - elif mode == "Balanced": - BalancedModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path) - elif mode == "Accurate": - AccurateModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path) - # output - try: - fps = int(fps) - except: - fps = get_video_fps(video_style) if video_style is not None else 30 - print("Fps:", fps) - print("Saving video...") - video_path = save_video(frames_path, video_path, num_frames=len(frames_style), fps=fps) - print("Success!") - print("Your frames are here:", frames_path) - print("Your video is here:", video_path) - return output_path, fps, video_path - - -class KeyFrameMatcher: - def __init__(self): - pass - - def extract_number_from_filename(self, file_name): - result = [] - number = -1 - for i in file_name: - if ord(i)>=ord("0") and ord(i)<=ord("9"): - if number == -1: - number = 0 - number = number*10 + ord(i) - ord("0") - else: - if number != -1: - result.append(number) - number = -1 - if number != -1: - result.append(number) - result = tuple(result) - return result - - def extract_number_from_filenames(self, file_names): - numbers = [self.extract_number_from_filename(file_name) for file_name in file_names] - min_length = min(len(i) for i in numbers) - for i in range(min_length-1, -1, -1): - if len(set(number[i] for number in numbers))==len(file_names): - return [number[i] for number in numbers] - return list(range(len(file_names))) - - def match_using_filename(self, file_names_a, file_names_b): - file_names_b_set = set(file_names_b) - matched_file_name = [] - for file_name in file_names_a: - if file_name not in file_names_b_set: - matched_file_name.append(None) - else: - matched_file_name.append(file_name) - return matched_file_name - - def match_using_numbers(self, file_names_a, file_names_b): - numbers_a = self.extract_number_from_filenames(file_names_a) - numbers_b = self.extract_number_from_filenames(file_names_b) - numbers_b_dict = {number: file_name for number, file_name in zip(numbers_b, file_names_b)} - matched_file_name = [] - for number in numbers_a: - if number in numbers_b_dict: - matched_file_name.append(numbers_b_dict[number]) - else: - matched_file_name.append(None) - return matched_file_name - - def match_filenames(self, file_names_a, file_names_b): - matched_file_name = self.match_using_filename(file_names_a, file_names_b) - if sum([i is not None for i in matched_file_name]) > 0: - return matched_file_name - matched_file_name = self.match_using_numbers(file_names_a, file_names_b) - return matched_file_name - - -def detect_frames(frames_path, keyframes_path): - if not os.path.exists(frames_path) and not os.path.exists(keyframes_path): - return "Please input the directory of guide video and rendered frames" - elif not os.path.exists(frames_path): - return "Please input the directory of guide video" - elif not os.path.exists(keyframes_path): - return "Please input the directory of rendered frames" - frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)] - keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)] - if len(frames)==0: - return f"No images detected in {frames_path}" - if len(keyframes)==0: - return f"No images detected in {keyframes_path}" - matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes) - max_filename_length = max([len(i) for i in frames]) - if sum([i is not None for i in matched_keyframes])==0: - message = "" - for frame, matched_keyframe in zip(frames, matched_keyframes): - message += frame + " " * (max_filename_length - len(frame) + 1) - message += "--> No matched keyframes\n" - else: - message = "" - for frame, matched_keyframe in zip(frames, matched_keyframes): - message += frame + " " * (max_filename_length - len(frame) + 1) - if matched_keyframe is None: - message += "--> [to be rendered]\n" - else: - message += f"--> {matched_keyframe}\n" - return message - - -def check_input_for_interpolating(frames_path, keyframes_path): - # search for images - frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)] - keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)] - # match frames - matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes) - file_list = [file_name for file_name in matched_keyframes if file_name is not None] - index_style = [i for i, file_name in enumerate(matched_keyframes) if file_name is not None] - frames_guide = VideoData(None, frames_path) - frames_style = VideoData(None, keyframes_path, file_list=file_list) - # match shape - message = "" - height_guide, width_guide = frames_guide.shape() - height_style, width_style = frames_style.shape() - if height_guide != height_style or width_guide != width_style: - message += f"The shape of frames mismatches. The rendered keyframes will be resized to (height: {height_guide}, width: {width_guide})\n" - frames_style.set_shape(height_guide, width_guide) - return frames_guide, frames_style, index_style, message - - -def interpolate_video( - frames_path, - keyframes_path, - output_path, - fps, - batch_size, - tracking_window_size, - minimum_patch_size, - num_iter, - guide_weight, - initialize, - progress = None, -): - # input - frames_guide, frames_style, index_style, message = check_input_for_interpolating(frames_path, keyframes_path) - if len(message) > 0: - print(message) - # output - if output_path == "": - output_path = os.path.join(keyframes_path, "output") - os.makedirs(output_path, exist_ok=True) - print("No valid output_path. Your video will be saved here:", output_path) - elif not os.path.exists(output_path): - os.makedirs(output_path, exist_ok=True) - print("Your video will be saved here:", output_path) - output_frames_path = os.path.join(output_path, "frames") - output_video_path = os.path.join(output_path, "video.mp4") - os.makedirs(output_frames_path, exist_ok=True) - # process - ebsynth_config = { - "minimum_patch_size": minimum_patch_size, - "threads_per_block": 8, - "num_iter": num_iter, - "gpu_id": 0, - "guide_weight": guide_weight, - "initialize": initialize, - "tracking_window_size": tracking_window_size - } - if len(index_style)==1: - InterpolationModeSingleFrameRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path) - else: - InterpolationModeRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path) - try: - fps = int(fps) - except: - fps = 30 - print("Fps:", fps) - print("Saving video...") - video_path = save_video(output_frames_path, output_video_path, num_frames=len(frames_guide), fps=fps) - print("Success!") - print("Your frames are here:", output_frames_path) - print("Your video is here:", video_path) - return output_path, fps, video_path - - -def on_ui_tabs(): - with gr.Blocks(analytics_enabled=False) as ui_component: - with gr.Tab("Blend"): - gr.Markdown(""" -# Blend - -Given a guide video and a style video, this algorithm will make the style video fluent according to the motion features of the guide video. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/208d902d-6aba-48d7-b7d5-cd120ebd306d) to see the example. Note that this extension doesn't support long videos. Please use short videos (e.g., several seconds). The algorithm is mainly designed for 512*512 resolution. Please use a larger `Minimum patch size` for higher resolution. - """) - with gr.Row(): - with gr.Column(): - with gr.Tab("Guide video"): - video_guide = gr.Video(label="Guide video") - with gr.Tab("Guide video (images format)"): - video_guide_folder = gr.Textbox(label="Guide video (images format)", value="") - with gr.Column(): - with gr.Tab("Style video"): - video_style = gr.Video(label="Style video") - with gr.Tab("Style video (images format)"): - video_style_folder = gr.Textbox(label="Style video (images format)", value="") - with gr.Column(): - output_path = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of style video") - fps = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps") - video_output = gr.Video(label="Output video", interactive=False, show_share_button=True) - btn = gr.Button(value="Blend") - with gr.Row(): - with gr.Column(): - gr.Markdown("# Settings") - mode = gr.Radio(["Fast", "Balanced", "Accurate"], label="Inference mode", value="Fast", interactive=True) - window_size = gr.Slider(label="Sliding window size", value=15, minimum=1, maximum=1000, step=1, interactive=True) - batch_size = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True) - tracking_window_size = gr.Slider(label="Tracking window size (only for accurate mode)", value=0, minimum=0, maximum=10, step=1, interactive=True) - gr.Markdown("## Advanced Settings") - minimum_patch_size = gr.Slider(label="Minimum patch size (odd number)", value=5, minimum=5, maximum=99, step=2, interactive=True) - num_iter = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True) - guide_weight = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True) - initialize = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True) - with gr.Column(): - gr.Markdown(""" -# Reference - -* Output directory: the directory to save the video. -* Inference mode - -|Mode|Time|Memory|Quality|Frame by frame output|Description| -|-|-|-|-|-|-| -|Fast|■|■■■|■■|No|Blend the frames using a tree-like data structure, which requires much RAM but is fast.| -|Balanced|■■|■|■■|Yes|Blend the frames naively.| -|Accurate|■■■|■|■■■|Yes|Blend the frames and align them together for higher video quality. When [batch size] >= [sliding window size] * 2 + 1, the performance is the best.| - -* Sliding window size: our algorithm will blend the frames in a sliding windows. If the size is n, each frame will be blended with the last n frames and the next n frames. A large sliding window can make the video fluent but sometimes smoggy. -* Batch size: a larger batch size makes the program faster but requires more VRAM. -* Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough. -* Advanced settings - * Minimum patch size (odd number): the minimum patch size used for patch matching. (Default: 5) - * Number of iterations: the number of iterations of patch matching. (Default: 5) - * Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10) - * NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity) - """) - btn.click( - smooth_video, - inputs=[ - video_guide, - video_guide_folder, - video_style, - video_style_folder, - mode, - window_size, - batch_size, - tracking_window_size, - output_path, - fps, - minimum_patch_size, - num_iter, - guide_weight, - initialize - ], - outputs=[output_path, fps, video_output] - ) - with gr.Tab("Interpolate"): - gr.Markdown(""" -# Interpolate - -Given a guide video and some rendered keyframes, this algorithm will render the remaining frames. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/3490c5b4-8f67-478f-86de-f9adc2ace16a) to see the example. The algorithm is experimental and is only tested for 512*512 resolution. - """) - with gr.Row(): - with gr.Column(): - with gr.Row(): - with gr.Column(): - video_guide_folder_ = gr.Textbox(label="Guide video (images format)", value="") - with gr.Column(): - rendered_keyframes_ = gr.Textbox(label="Rendered keyframes (images format)", value="") - with gr.Row(): - detected_frames = gr.Textbox(label="Detected frames", value="Please input the directory of guide video and rendered frames", lines=9, max_lines=9, interactive=False) - video_guide_folder_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames) - rendered_keyframes_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames) - with gr.Column(): - output_path_ = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of rendered keyframes") - fps_ = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps") - video_output_ = gr.Video(label="Output video", interactive=False, show_share_button=True) - btn_ = gr.Button(value="Interpolate") - with gr.Row(): - with gr.Column(): - gr.Markdown("# Settings") - batch_size_ = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True) - tracking_window_size_ = gr.Slider(label="Tracking window size", value=0, minimum=0, maximum=10, step=1, interactive=True) - gr.Markdown("## Advanced Settings") - minimum_patch_size_ = gr.Slider(label="Minimum patch size (odd number, larger is better)", value=15, minimum=5, maximum=99, step=2, interactive=True) - num_iter_ = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True) - guide_weight_ = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True) - initialize_ = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True) - with gr.Column(): - gr.Markdown(""" -# Reference - -* Output directory: the directory to save the video. -* Batch size: a larger batch size makes the program faster but requires more VRAM. -* Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough. -* Advanced settings - * Minimum patch size (odd number): the minimum patch size used for patch matching. **This parameter should be larger than that in blending. (Default: 15)** - * Number of iterations: the number of iterations of patch matching. (Default: 5) - * Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10) - * NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity) - """) - btn_.click( - interpolate_video, - inputs=[ - video_guide_folder_, - rendered_keyframes_, - output_path_, - fps_, - batch_size_, - tracking_window_size_, - minimum_patch_size_, - num_iter_, - guide_weight_, - initialize_, - ], - outputs=[output_path_, fps_, video_output_] - ) - - return [(ui_component, "FastBlend", "FastBlend_ui")] diff --git a/diffsynth/extensions/FastBlend/cupy_kernels.py b/diffsynth/extensions/FastBlend/cupy_kernels.py deleted file mode 100644 index 70e2790a2c67a2dd537f4188b38ebfc785f1fb34..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/FastBlend/cupy_kernels.py +++ /dev/null @@ -1,119 +0,0 @@ -import cupy as cp - -remapping_kernel = cp.RawKernel(r''' -extern "C" __global__ -void remap( - const int height, - const int width, - const int channel, - const int patch_size, - const int pad_size, - const float* source_style, - const int* nnf, - float* target_style -) { - const int r = (patch_size - 1) / 2; - const int x = blockDim.x * blockIdx.x + threadIdx.x; - const int y = blockDim.y * blockIdx.y + threadIdx.y; - if (x >= height or y >= width) return; - const int z = blockIdx.z * (height + pad_size * 2) * (width + pad_size * 2) * channel; - const int pid = (x + pad_size) * (width + pad_size * 2) + (y + pad_size); - const int min_px = x < r ? -x : -r; - const int max_px = x + r > height - 1 ? height - 1 - x : r; - const int min_py = y < r ? -y : -r; - const int max_py = y + r > width - 1 ? width - 1 - y : r; - int num = 0; - for (int px = min_px; px <= max_px; px++){ - for (int py = min_py; py <= max_py; py++){ - const int nid = (x + px) * width + y + py; - const int x_ = nnf[blockIdx.z * height * width * 2 + nid*2 + 0] - px; - const int y_ = nnf[blockIdx.z * height * width * 2 + nid*2 + 1] - py; - if (x_ < 0 or y_ < 0 or x_ >= height or y_ >= width)continue; - const int pid_ = (x_ + pad_size) * (width + pad_size * 2) + (y_ + pad_size); - num++; - for (int c = 0; c < channel; c++){ - target_style[z + pid * channel + c] += source_style[z + pid_ * channel + c]; - } - } - } - for (int c = 0; c < channel; c++){ - target_style[z + pid * channel + c] /= num; - } -} -''', 'remap') - - -patch_error_kernel = cp.RawKernel(r''' -extern "C" __global__ -void patch_error( - const int height, - const int width, - const int channel, - const int patch_size, - const int pad_size, - const float* source, - const int* nnf, - const float* target, - float* error -) { - const int r = (patch_size - 1) / 2; - const int x = blockDim.x * blockIdx.x + threadIdx.x; - const int y = blockDim.y * blockIdx.y + threadIdx.y; - const int z = blockIdx.z * (height + pad_size * 2) * (width + pad_size * 2) * channel; - if (x >= height or y >= width) return; - const int x_ = nnf[blockIdx.z * height * width * 2 + (x * width + y)*2 + 0]; - const int y_ = nnf[blockIdx.z * height * width * 2 + (x * width + y)*2 + 1]; - float e = 0; - for (int px = -r; px <= r; px++){ - for (int py = -r; py <= r; py++){ - const int pid = (x + pad_size + px) * (width + pad_size * 2) + y + pad_size + py; - const int pid_ = (x_ + pad_size + px) * (width + pad_size * 2) + y_ + pad_size + py; - for (int c = 0; c < channel; c++){ - const float diff = target[z + pid * channel + c] - source[z + pid_ * channel + c]; - e += diff * diff; - } - } - } - error[blockIdx.z * height * width + x * width + y] = e; -} -''', 'patch_error') - - -pairwise_patch_error_kernel = cp.RawKernel(r''' -extern "C" __global__ -void pairwise_patch_error( - const int height, - const int width, - const int channel, - const int patch_size, - const int pad_size, - const float* source_a, - const int* nnf_a, - const float* source_b, - const int* nnf_b, - float* error -) { - const int r = (patch_size - 1) / 2; - const int x = blockDim.x * blockIdx.x + threadIdx.x; - const int y = blockDim.y * blockIdx.y + threadIdx.y; - const int z = blockIdx.z * (height + pad_size * 2) * (width + pad_size * 2) * channel; - if (x >= height or y >= width) return; - const int z_nnf = blockIdx.z * height * width * 2 + (x * width + y) * 2; - const int x_a = nnf_a[z_nnf + 0]; - const int y_a = nnf_a[z_nnf + 1]; - const int x_b = nnf_b[z_nnf + 0]; - const int y_b = nnf_b[z_nnf + 1]; - float e = 0; - for (int px = -r; px <= r; px++){ - for (int py = -r; py <= r; py++){ - const int pid_a = (x_a + pad_size + px) * (width + pad_size * 2) + y_a + pad_size + py; - const int pid_b = (x_b + pad_size + px) * (width + pad_size * 2) + y_b + pad_size + py; - for (int c = 0; c < channel; c++){ - const float diff = source_a[z + pid_a * channel + c] - source_b[z + pid_b * channel + c]; - e += diff * diff; - } - } - } - error[blockIdx.z * height * width + x * width + y] = e; -} -''', 'pairwise_patch_error') diff --git a/diffsynth/extensions/FastBlend/data.py b/diffsynth/extensions/FastBlend/data.py deleted file mode 100644 index dcaddd77de9eaf208cd083dd522e5eaa6b58f783..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/FastBlend/data.py +++ /dev/null @@ -1,146 +0,0 @@ -import imageio, os -import numpy as np -from PIL import Image - - -def read_video(file_name): - reader = imageio.get_reader(file_name) - video = [] - for frame in reader: - frame = np.array(frame) - video.append(frame) - reader.close() - return video - - -def get_video_fps(file_name): - reader = imageio.get_reader(file_name) - fps = reader.get_meta_data()["fps"] - reader.close() - return fps - - -def save_video(frames_path, video_path, num_frames, fps): - writer = imageio.get_writer(video_path, fps=fps, quality=9) - for i in range(num_frames): - frame = np.array(Image.open(os.path.join(frames_path, "%05d.png" % i))) - writer.append_data(frame) - writer.close() - return video_path - - -class LowMemoryVideo: - def __init__(self, file_name): - self.reader = imageio.get_reader(file_name) - - def __len__(self): - return self.reader.count_frames() - - def __getitem__(self, item): - return np.array(self.reader.get_data(item)) - - def __del__(self): - self.reader.close() - - -def split_file_name(file_name): - result = [] - number = -1 - for i in file_name: - if ord(i)>=ord("0") and ord(i)<=ord("9"): - if number == -1: - number = 0 - number = number*10 + ord(i) - ord("0") - else: - if number != -1: - result.append(number) - number = -1 - result.append(i) - if number != -1: - result.append(number) - result = tuple(result) - return result - - -def search_for_images(folder): - file_list = [i for i in os.listdir(folder) if i.endswith(".jpg") or i.endswith(".png")] - file_list = [(split_file_name(file_name), file_name) for file_name in file_list] - file_list = [i[1] for i in sorted(file_list)] - file_list = [os.path.join(folder, i) for i in file_list] - return file_list - - -def read_images(folder): - file_list = search_for_images(folder) - frames = [np.array(Image.open(i)) for i in file_list] - return frames - - -class LowMemoryImageFolder: - def __init__(self, folder, file_list=None): - if file_list is None: - self.file_list = search_for_images(folder) - else: - self.file_list = [os.path.join(folder, file_name) for file_name in file_list] - - def __len__(self): - return len(self.file_list) - - def __getitem__(self, item): - return np.array(Image.open(self.file_list[item])) - - def __del__(self): - pass - - -class VideoData: - def __init__(self, video_file, image_folder, **kwargs): - if video_file is not None: - self.data_type = "video" - self.data = LowMemoryVideo(video_file, **kwargs) - elif image_folder is not None: - self.data_type = "images" - self.data = LowMemoryImageFolder(image_folder, **kwargs) - else: - raise ValueError("Cannot open video or image folder") - self.length = None - self.height = None - self.width = None - - def raw_data(self): - frames = [] - for i in range(self.__len__()): - frames.append(self.__getitem__(i)) - return frames - - def set_length(self, length): - self.length = length - - def set_shape(self, height, width): - self.height = height - self.width = width - - def __len__(self): - if self.length is None: - return len(self.data) - else: - return self.length - - def shape(self): - if self.height is not None and self.width is not None: - return self.height, self.width - else: - height, width, _ = self.__getitem__(0).shape - return height, width - - def __getitem__(self, item): - frame = self.data.__getitem__(item) - height, width, _ = frame.shape - if self.height is not None and self.width is not None: - if self.height != height or self.width != width: - frame = Image.fromarray(frame).resize((self.width, self.height)) - frame = np.array(frame) - return frame - - def __del__(self): - pass diff --git a/diffsynth/extensions/FastBlend/patch_match.py b/diffsynth/extensions/FastBlend/patch_match.py deleted file mode 100644 index aeb1f7f9e31b4b2ad77ec58ba8d32361315e0390..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/FastBlend/patch_match.py +++ /dev/null @@ -1,298 +0,0 @@ -from .cupy_kernels import remapping_kernel, patch_error_kernel, pairwise_patch_error_kernel -import numpy as np -import cupy as cp -import cv2 - - -class PatchMatcher: - def __init__( - self, height, width, channel, minimum_patch_size, - threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0, - random_search_steps=3, random_search_range=4, - use_mean_target_style=False, use_pairwise_patch_error=False, - tracking_window_size=0 - ): - self.height = height - self.width = width - self.channel = channel - self.minimum_patch_size = minimum_patch_size - self.threads_per_block = threads_per_block - self.num_iter = num_iter - self.gpu_id = gpu_id - self.guide_weight = guide_weight - self.random_search_steps = random_search_steps - self.random_search_range = random_search_range - self.use_mean_target_style = use_mean_target_style - self.use_pairwise_patch_error = use_pairwise_patch_error - self.tracking_window_size = tracking_window_size - - self.patch_size_list = [minimum_patch_size + i*2 for i in range(num_iter)][::-1] - self.pad_size = self.patch_size_list[0] // 2 - self.grid = ( - (height + threads_per_block - 1) // threads_per_block, - (width + threads_per_block - 1) // threads_per_block - ) - self.block = (threads_per_block, threads_per_block) - - def pad_image(self, image): - return cp.pad(image, ((0, 0), (self.pad_size, self.pad_size), (self.pad_size, self.pad_size), (0, 0))) - - def unpad_image(self, image): - return image[:, self.pad_size: -self.pad_size, self.pad_size: -self.pad_size, :] - - def apply_nnf_to_image(self, nnf, source): - batch_size = source.shape[0] - target = cp.zeros((batch_size, self.height + self.pad_size * 2, self.width + self.pad_size * 2, self.channel), dtype=cp.float32) - remapping_kernel( - self.grid + (batch_size,), - self.block, - (self.height, self.width, self.channel, self.patch_size, self.pad_size, source, nnf, target) - ) - return target - - def get_patch_error(self, source, nnf, target): - batch_size = source.shape[0] - error = cp.zeros((batch_size, self.height, self.width), dtype=cp.float32) - patch_error_kernel( - self.grid + (batch_size,), - self.block, - (self.height, self.width, self.channel, self.patch_size, self.pad_size, source, nnf, target, error) - ) - return error - - def get_pairwise_patch_error(self, source, nnf): - batch_size = source.shape[0]//2 - error = cp.zeros((batch_size, self.height, self.width), dtype=cp.float32) - source_a, nnf_a = source[0::2].copy(), nnf[0::2].copy() - source_b, nnf_b = source[1::2].copy(), nnf[1::2].copy() - pairwise_patch_error_kernel( - self.grid + (batch_size,), - self.block, - (self.height, self.width, self.channel, self.patch_size, self.pad_size, source_a, nnf_a, source_b, nnf_b, error) - ) - error = error.repeat(2, axis=0) - return error - - def get_error(self, source_guide, target_guide, source_style, target_style, nnf): - error_guide = self.get_patch_error(source_guide, nnf, target_guide) - if self.use_mean_target_style: - target_style = self.apply_nnf_to_image(nnf, source_style) - target_style = target_style.mean(axis=0, keepdims=True) - target_style = target_style.repeat(source_guide.shape[0], axis=0) - if self.use_pairwise_patch_error: - error_style = self.get_pairwise_patch_error(source_style, nnf) - else: - error_style = self.get_patch_error(source_style, nnf, target_style) - error = error_guide * self.guide_weight + error_style - return error - - def clamp_bound(self, nnf): - nnf[:,:,:,0] = cp.clip(nnf[:,:,:,0], 0, self.height-1) - nnf[:,:,:,1] = cp.clip(nnf[:,:,:,1], 0, self.width-1) - return nnf - - def random_step(self, nnf, r): - batch_size = nnf.shape[0] - step = cp.random.randint(-r, r+1, size=(batch_size, self.height, self.width, 2), dtype=cp.int32) - upd_nnf = self.clamp_bound(nnf + step) - return upd_nnf - - def neighboor_step(self, nnf, d): - if d==0: - upd_nnf = cp.concatenate([nnf[:, :1, :], nnf[:, :-1, :]], axis=1) - upd_nnf[:, :, :, 0] += 1 - elif d==1: - upd_nnf = cp.concatenate([nnf[:, :, :1], nnf[:, :, :-1]], axis=2) - upd_nnf[:, :, :, 1] += 1 - elif d==2: - upd_nnf = cp.concatenate([nnf[:, 1:, :], nnf[:, -1:, :]], axis=1) - upd_nnf[:, :, :, 0] -= 1 - elif d==3: - upd_nnf = cp.concatenate([nnf[:, :, 1:], nnf[:, :, -1:]], axis=2) - upd_nnf[:, :, :, 1] -= 1 - upd_nnf = self.clamp_bound(upd_nnf) - return upd_nnf - - def shift_nnf(self, nnf, d): - if d>0: - d = min(nnf.shape[0], d) - upd_nnf = cp.concatenate([nnf[d:]] + [nnf[-1:]] * d, axis=0) - else: - d = max(-nnf.shape[0], d) - upd_nnf = cp.concatenate([nnf[:1]] * (-d) + [nnf[:d]], axis=0) - return upd_nnf - - def track_step(self, nnf, d): - if self.use_pairwise_patch_error: - upd_nnf = cp.zeros_like(nnf) - upd_nnf[0::2] = self.shift_nnf(nnf[0::2], d) - upd_nnf[1::2] = self.shift_nnf(nnf[1::2], d) - else: - upd_nnf = self.shift_nnf(nnf, d) - return upd_nnf - - def C(self, n, m): - # not used - c = 1 - for i in range(1, n+1): - c *= i - for i in range(1, m+1): - c //= i - for i in range(1, n-m+1): - c //= i - return c - - def bezier_step(self, nnf, r): - # not used - n = r * 2 - 1 - upd_nnf = cp.zeros(shape=nnf.shape, dtype=cp.float32) - for i, d in enumerate(list(range(-r, 0)) + list(range(1, r+1))): - if d>0: - ctl_nnf = cp.concatenate([nnf[d:]] + [nnf[-1:]] * d, axis=0) - elif d<0: - ctl_nnf = cp.concatenate([nnf[:1]] * (-d) + [nnf[:d]], axis=0) - upd_nnf += ctl_nnf * (self.C(n, i) / 2**n) - upd_nnf = self.clamp_bound(upd_nnf).astype(nnf.dtype) - return upd_nnf - - def update(self, source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf): - upd_err = self.get_error(source_guide, target_guide, source_style, target_style, upd_nnf) - upd_idx = (upd_err < err) - nnf[upd_idx] = upd_nnf[upd_idx] - err[upd_idx] = upd_err[upd_idx] - return nnf, err - - def propagation(self, source_guide, target_guide, source_style, target_style, nnf, err): - for d in cp.random.permutation(4): - upd_nnf = self.neighboor_step(nnf, d) - nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf) - return nnf, err - - def random_search(self, source_guide, target_guide, source_style, target_style, nnf, err): - for i in range(self.random_search_steps): - upd_nnf = self.random_step(nnf, self.random_search_range) - nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf) - return nnf, err - - def track(self, source_guide, target_guide, source_style, target_style, nnf, err): - for d in range(1, self.tracking_window_size + 1): - upd_nnf = self.track_step(nnf, d) - nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf) - upd_nnf = self.track_step(nnf, -d) - nnf, err = self.update(source_guide, target_guide, source_style, target_style, nnf, err, upd_nnf) - return nnf, err - - def iteration(self, source_guide, target_guide, source_style, target_style, nnf, err): - nnf, err = self.propagation(source_guide, target_guide, source_style, target_style, nnf, err) - nnf, err = self.random_search(source_guide, target_guide, source_style, target_style, nnf, err) - nnf, err = self.track(source_guide, target_guide, source_style, target_style, nnf, err) - return nnf, err - - def estimate_nnf(self, source_guide, target_guide, source_style, nnf): - with cp.cuda.Device(self.gpu_id): - source_guide = self.pad_image(source_guide) - target_guide = self.pad_image(target_guide) - source_style = self.pad_image(source_style) - for it in range(self.num_iter): - self.patch_size = self.patch_size_list[it] - target_style = self.apply_nnf_to_image(nnf, source_style) - err = self.get_error(source_guide, target_guide, source_style, target_style, nnf) - nnf, err = self.iteration(source_guide, target_guide, source_style, target_style, nnf, err) - target_style = self.unpad_image(self.apply_nnf_to_image(nnf, source_style)) - return nnf, target_style - - -class PyramidPatchMatcher: - def __init__( - self, image_height, image_width, channel, minimum_patch_size, - threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0, - use_mean_target_style=False, use_pairwise_patch_error=False, - tracking_window_size=0, - initialize="identity" - ): - maximum_patch_size = minimum_patch_size + (num_iter - 1) * 2 - self.pyramid_level = int(np.log2(min(image_height, image_width) / maximum_patch_size)) - self.pyramid_heights = [] - self.pyramid_widths = [] - self.patch_matchers = [] - self.minimum_patch_size = minimum_patch_size - self.num_iter = num_iter - self.gpu_id = gpu_id - self.initialize = initialize - for level in range(self.pyramid_level): - height = image_height//(2**(self.pyramid_level - 1 - level)) - width = image_width//(2**(self.pyramid_level - 1 - level)) - self.pyramid_heights.append(height) - self.pyramid_widths.append(width) - self.patch_matchers.append(PatchMatcher( - height, width, channel, minimum_patch_size=minimum_patch_size, - threads_per_block=threads_per_block, num_iter=num_iter, gpu_id=gpu_id, guide_weight=guide_weight, - use_mean_target_style=use_mean_target_style, use_pairwise_patch_error=use_pairwise_patch_error, - tracking_window_size=tracking_window_size - )) - - def resample_image(self, images, level): - height, width = self.pyramid_heights[level], self.pyramid_widths[level] - images = images.get() - images_resample = [] - for image in images: - image_resample = cv2.resize(image, (width, height), interpolation=cv2.INTER_AREA) - images_resample.append(image_resample) - images_resample = cp.array(np.stack(images_resample), dtype=cp.float32) - return images_resample - - def initialize_nnf(self, batch_size): - if self.initialize == "random": - height, width = self.pyramid_heights[0], self.pyramid_widths[0] - nnf = cp.stack([ - cp.random.randint(0, height, (batch_size, height, width), dtype=cp.int32), - cp.random.randint(0, width, (batch_size, height, width), dtype=cp.int32) - ], axis=3) - elif self.initialize == "identity": - height, width = self.pyramid_heights[0], self.pyramid_widths[0] - nnf = cp.stack([ - cp.repeat(cp.arange(height), width).reshape(height, width), - cp.tile(cp.arange(width), height).reshape(height, width) - ], axis=2) - nnf = cp.stack([nnf] * batch_size) - else: - raise NotImplementedError() - return nnf - - def update_nnf(self, nnf, level): - # upscale - nnf = nnf.repeat(2, axis=1).repeat(2, axis=2) * 2 - nnf[:,[i for i in range(nnf.shape[0]) if i&1],:,0] += 1 - nnf[:,:,[i for i in range(nnf.shape[0]) if i&1],1] += 1 - # check if scale is 2 - height, width = self.pyramid_heights[level], self.pyramid_widths[level] - if height != nnf.shape[0] * 2 or width != nnf.shape[1] * 2: - nnf = nnf.get().astype(np.float32) - nnf = [cv2.resize(n, (width, height), interpolation=cv2.INTER_LINEAR) for n in nnf] - nnf = cp.array(np.stack(nnf), dtype=cp.int32) - nnf = self.patch_matchers[level].clamp_bound(nnf) - return nnf - - def apply_nnf_to_image(self, nnf, image): - with cp.cuda.Device(self.gpu_id): - image = self.patch_matchers[-1].pad_image(image) - image = self.patch_matchers[-1].apply_nnf_to_image(nnf, image) - return image - - def estimate_nnf(self, source_guide, target_guide, source_style): - with cp.cuda.Device(self.gpu_id): - if not isinstance(source_guide, cp.ndarray): - source_guide = cp.array(source_guide, dtype=cp.float32) - if not isinstance(target_guide, cp.ndarray): - target_guide = cp.array(target_guide, dtype=cp.float32) - if not isinstance(source_style, cp.ndarray): - source_style = cp.array(source_style, dtype=cp.float32) - for level in range(self.pyramid_level): - nnf = self.initialize_nnf(source_guide.shape[0]) if level==0 else self.update_nnf(nnf, level) - source_guide_ = self.resample_image(source_guide, level) - target_guide_ = self.resample_image(target_guide, level) - source_style_ = self.resample_image(source_style, level) - nnf, target_style = self.patch_matchers[level].estimate_nnf( - source_guide_, target_guide_, source_style_, nnf - ) - return nnf.get(), target_style.get() diff --git a/diffsynth/extensions/FastBlend/runners/__init__.py b/diffsynth/extensions/FastBlend/runners/__init__.py deleted file mode 100644 index 078382729690d282436411661693ce22f3dcc033..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/FastBlend/runners/__init__.py +++ /dev/null @@ -1,4 +0,0 @@ -from .accurate import AccurateModeRunner -from .fast import FastModeRunner -from .balanced import BalancedModeRunner -from .interpolation import InterpolationModeRunner, InterpolationModeSingleFrameRunner diff --git a/diffsynth/extensions/FastBlend/runners/accurate.py b/diffsynth/extensions/FastBlend/runners/accurate.py deleted file mode 100644 index 2e4a47f1981ebc1ec9a034a814dfc1130955c2e1..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/FastBlend/runners/accurate.py +++ /dev/null @@ -1,35 +0,0 @@ -from ..patch_match import PyramidPatchMatcher -import os -import numpy as np -from PIL import Image -from tqdm import tqdm - - -class AccurateModeRunner: - def __init__(self): - pass - - def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, desc="Accurate Mode", save_path=None): - patch_match_engine = PyramidPatchMatcher( - image_height=frames_style[0].shape[0], - image_width=frames_style[0].shape[1], - channel=3, - use_mean_target_style=True, - **ebsynth_config - ) - # run - n = len(frames_style) - for target in tqdm(range(n), desc=desc): - l, r = max(target - window_size, 0), min(target + window_size + 1, n) - remapped_frames = [] - for i in range(l, r, batch_size): - j = min(i + batch_size, r) - source_guide = np.stack([frames_guide[source] for source in range(i, j)]) - target_guide = np.stack([frames_guide[target]] * (j - i)) - source_style = np.stack([frames_style[source] for source in range(i, j)]) - _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) - remapped_frames.append(target_style) - frame = np.concatenate(remapped_frames, axis=0).mean(axis=0) - frame = frame.clip(0, 255).astype("uint8") - if save_path is not None: - Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target)) \ No newline at end of file diff --git a/diffsynth/extensions/FastBlend/runners/balanced.py b/diffsynth/extensions/FastBlend/runners/balanced.py deleted file mode 100644 index 1c9a2bb7e438b49c89d0786e858ccf03302fab35..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/FastBlend/runners/balanced.py +++ /dev/null @@ -1,46 +0,0 @@ -from ..patch_match import PyramidPatchMatcher -import os -import numpy as np -from PIL import Image -from tqdm import tqdm - - -class BalancedModeRunner: - def __init__(self): - pass - - def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, desc="Balanced Mode", save_path=None): - patch_match_engine = PyramidPatchMatcher( - image_height=frames_style[0].shape[0], - image_width=frames_style[0].shape[1], - channel=3, - **ebsynth_config - ) - # tasks - n = len(frames_style) - tasks = [] - for target in range(n): - for source in range(target - window_size, target + window_size + 1): - if source >= 0 and source < n and source != target: - tasks.append((source, target)) - # run - frames = [(None, 1) for i in range(n)] - for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc): - tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))] - source_guide = np.stack([frames_guide[source] for source, target in tasks_batch]) - target_guide = np.stack([frames_guide[target] for source, target in tasks_batch]) - source_style = np.stack([frames_style[source] for source, target in tasks_batch]) - _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) - for (source, target), result in zip(tasks_batch, target_style): - frame, weight = frames[target] - if frame is None: - frame = frames_style[target] - frames[target] = ( - frame * (weight / (weight + 1)) + result / (weight + 1), - weight + 1 - ) - if weight + 1 == min(n, target + window_size + 1) - max(0, target - window_size): - frame = frame.clip(0, 255).astype("uint8") - if save_path is not None: - Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target)) - frames[target] = (None, 1) diff --git a/diffsynth/extensions/FastBlend/runners/fast.py b/diffsynth/extensions/FastBlend/runners/fast.py deleted file mode 100644 index 2ba5731475ab875929b14181e0c22f4fd466c591..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/FastBlend/runners/fast.py +++ /dev/null @@ -1,141 +0,0 @@ -from ..patch_match import PyramidPatchMatcher -import functools, os -import numpy as np -from PIL import Image -from tqdm import tqdm - - -class TableManager: - def __init__(self): - pass - - def task_list(self, n): - tasks = [] - max_level = 1 - while (1<=n: - break - meta_data = { - "source": i, - "target": j, - "level": level + 1 - } - tasks.append(meta_data) - tasks.sort(key=functools.cmp_to_key(lambda u, v: u["level"]-v["level"])) - return tasks - - def build_remapping_table(self, frames_guide, frames_style, patch_match_engine, batch_size, desc=""): - n = len(frames_guide) - tasks = self.task_list(n) - remapping_table = [[(frames_style[i], 1)] for i in range(n)] - for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc): - tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))] - source_guide = np.stack([frames_guide[task["source"]] for task in tasks_batch]) - target_guide = np.stack([frames_guide[task["target"]] for task in tasks_batch]) - source_style = np.stack([frames_style[task["source"]] for task in tasks_batch]) - _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) - for task, result in zip(tasks_batch, target_style): - target, level = task["target"], task["level"] - if len(remapping_table[target])==level: - remapping_table[target].append((result, 1)) - else: - frame, weight = remapping_table[target][level] - remapping_table[target][level] = ( - frame * (weight / (weight + 1)) + result / (weight + 1), - weight + 1 - ) - return remapping_table - - def remapping_table_to_blending_table(self, table): - for i in range(len(table)): - for j in range(1, len(table[i])): - frame_1, weight_1 = table[i][j-1] - frame_2, weight_2 = table[i][j] - frame = (frame_1 + frame_2) / 2 - weight = weight_1 + weight_2 - table[i][j] = (frame, weight) - return table - - def tree_query(self, leftbound, rightbound): - node_list = [] - node_index = rightbound - while node_index>=leftbound: - node_level = 0 - while (1<=leftbound: - node_level += 1 - node_list.append((node_index, node_level)) - node_index -= 1<0: - tasks = [] - for m in range(index_style[0]): - tasks.append((index_style[0], m, index_style[0])) - task_group.append(tasks) - # middle frames - for l, r in zip(index_style[:-1], index_style[1:]): - tasks = [] - for m in range(l, r): - tasks.append((l, m, r)) - task_group.append(tasks) - # last frame - tasks = [] - for m in range(index_style[-1], n): - tasks.append((index_style[-1], m, index_style[-1])) - task_group.append(tasks) - return task_group - - def run(self, frames_guide, frames_style, index_style, batch_size, ebsynth_config, save_path=None): - patch_match_engine = PyramidPatchMatcher( - image_height=frames_style[0].shape[0], - image_width=frames_style[0].shape[1], - channel=3, - use_mean_target_style=False, - use_pairwise_patch_error=True, - **ebsynth_config - ) - # task - index_dict = self.get_index_dict(index_style) - task_group = self.get_task_group(index_style, len(frames_guide)) - # run - for tasks in task_group: - index_start, index_end = min([i[1] for i in tasks]), max([i[1] for i in tasks]) - for batch_id in tqdm(range(0, len(tasks), batch_size), desc=f"Rendering frames {index_start}...{index_end}"): - tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))] - source_guide, target_guide, source_style = [], [], [] - for l, m, r in tasks_batch: - # l -> m - source_guide.append(frames_guide[l]) - target_guide.append(frames_guide[m]) - source_style.append(frames_style[index_dict[l]]) - # r -> m - source_guide.append(frames_guide[r]) - target_guide.append(frames_guide[m]) - source_style.append(frames_style[index_dict[r]]) - source_guide = np.stack(source_guide) - target_guide = np.stack(target_guide) - source_style = np.stack(source_style) - _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) - if save_path is not None: - for frame_l, frame_r, (l, m, r) in zip(target_style[0::2], target_style[1::2], tasks_batch): - weight_l, weight_r = self.get_weight(l, m, r) - frame = frame_l * weight_l + frame_r * weight_r - frame = frame.clip(0, 255).astype("uint8") - Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % m)) - - -class InterpolationModeSingleFrameRunner: - def __init__(self): - pass - - def run(self, frames_guide, frames_style, index_style, batch_size, ebsynth_config, save_path=None): - # check input - tracking_window_size = ebsynth_config["tracking_window_size"] - if tracking_window_size * 2 >= batch_size: - raise ValueError("batch_size should be larger than track_window_size * 2") - frame_style = frames_style[0] - frame_guide = frames_guide[index_style[0]] - patch_match_engine = PyramidPatchMatcher( - image_height=frame_style.shape[0], - image_width=frame_style.shape[1], - channel=3, - **ebsynth_config - ) - # run - frame_id, n = 0, len(frames_guide) - for i in tqdm(range(0, n, batch_size - tracking_window_size * 2), desc=f"Rendering frames 0...{n}"): - if i + batch_size > n: - l, r = max(n - batch_size, 0), n - else: - l, r = i, i + batch_size - source_guide = np.stack([frame_guide] * (r-l)) - target_guide = np.stack([frames_guide[i] for i in range(l, r)]) - source_style = np.stack([frame_style] * (r-l)) - _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) - for i, frame in zip(range(l, r), target_style): - if i==frame_id: - frame = frame.clip(0, 255).astype("uint8") - Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % frame_id)) - frame_id += 1 - if r < n and r-frame_id <= tracking_window_size: - break diff --git a/diffsynth/extensions/ImageQualityMetric/BLIP/__init__.py b/diffsynth/extensions/ImageQualityMetric/BLIP/__init__.py deleted file mode 100644 index 885dcf8f76ad77865054f0c033f8541ae08b1e04..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/BLIP/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .blip_pretrain import * diff --git a/diffsynth/extensions/ImageQualityMetric/BLIP/blip.py b/diffsynth/extensions/ImageQualityMetric/BLIP/blip.py deleted file mode 100644 index 6b24c3c17fdeff6949c3692164362abb8d8d0989..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/BLIP/blip.py +++ /dev/null @@ -1,77 +0,0 @@ -''' - * Adapted from BLIP (https://github.com/salesforce/BLIP) -''' - -import warnings -warnings.filterwarnings("ignore") - -import torch -import os -from urllib.parse import urlparse -from timm.models.hub import download_cached_file -from transformers import BertTokenizer -from .vit import VisionTransformer, interpolate_pos_embed - - -def default_bert(): - current_dir = os.path.dirname(os.path.abspath(__file__)) - project_root = os.path.abspath(os.path.join(current_dir, '../../../../')) - model_path = os.path.join(project_root, 'models', 'QualityMetric') - return os.path.join(model_path, "bert-base-uncased") - - -def init_tokenizer(bert_model_path): - tokenizer = BertTokenizer.from_pretrained(bert_model_path) - tokenizer.add_special_tokens({'bos_token':'[DEC]'}) - tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) - tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] - return tokenizer - - -def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): - - assert vit in ['base', 'large'], "vit parameter must be base or large" - if vit=='base': - vision_width = 768 - visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, - num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, - drop_path_rate=0 or drop_path_rate - ) - elif vit=='large': - vision_width = 1024 - visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, - num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, - drop_path_rate=0.1 or drop_path_rate - ) - return visual_encoder, vision_width - - -def is_url(url_or_filename): - parsed = urlparse(url_or_filename) - return parsed.scheme in ("http", "https") - -def load_checkpoint(model,url_or_filename): - if is_url(url_or_filename): - cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) - checkpoint = torch.load(cached_file, map_location='cpu') - elif os.path.isfile(url_or_filename): - checkpoint = torch.load(url_or_filename, map_location='cpu') - else: - raise RuntimeError('checkpoint url or path is invalid') - - state_dict = checkpoint['model'] - - state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) - if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): - state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], - model.visual_encoder_m) - for key in model.state_dict().keys(): - if key in state_dict.keys(): - if state_dict[key].shape!=model.state_dict()[key].shape: - print(key, ": ", state_dict[key].shape, ', ', model.state_dict()[key].shape) - del state_dict[key] - - msg = model.load_state_dict(state_dict,strict=False) - print('load checkpoint from %s'%url_or_filename) - return model,msg - diff --git a/diffsynth/extensions/ImageQualityMetric/BLIP/blip_pretrain.py b/diffsynth/extensions/ImageQualityMetric/BLIP/blip_pretrain.py deleted file mode 100644 index ba711e2776fd086190ca940248e022b4e083819a..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/BLIP/blip_pretrain.py +++ /dev/null @@ -1,44 +0,0 @@ -''' - * Adapted from BLIP (https://github.com/salesforce/BLIP) -''' - -import transformers -transformers.logging.set_verbosity_error() - -from torch import nn -import os -from .med import BertConfig, BertModel -from .blip import create_vit, init_tokenizer - -class BLIP_Pretrain(nn.Module): - def __init__(self, - med_config = "med_config.json", - image_size = 224, - vit = 'base', - vit_grad_ckpt = False, - vit_ckpt_layer = 0, - embed_dim = 256, - queue_size = 57600, - momentum = 0.995, - bert_model_path = "" - ): - """ - Args: - med_config (str): path for the mixture of encoder-decoder model's configuration file - image_size (int): input image size - vit (str): model size of vision transformer - """ - super().__init__() - - self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0) - - self.tokenizer = init_tokenizer(bert_model_path) - encoder_config = BertConfig.from_json_file(med_config) - encoder_config.encoder_width = vision_width - self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False) - - text_width = self.text_encoder.config.hidden_size - - self.vision_proj = nn.Linear(vision_width, embed_dim) - self.text_proj = nn.Linear(text_width, embed_dim) - diff --git a/diffsynth/extensions/ImageQualityMetric/BLIP/med.py b/diffsynth/extensions/ImageQualityMetric/BLIP/med.py deleted file mode 100644 index 426f4689833d988526c6e26cd627f30975ab7606..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/BLIP/med.py +++ /dev/null @@ -1,947 +0,0 @@ -''' - * Adapted from BLIP (https://github.com/salesforce/BLIP) - * Based on huggingface code base - * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert -''' - -import math -from typing import Tuple - -import torch -from torch import Tensor, device, nn -import torch.utils.checkpoint -from torch import nn -from torch.nn import CrossEntropyLoss - -from transformers.activations import ACT2FN -from transformers.file_utils import ( - ModelOutput, -) -from transformers.modeling_outputs import ( - BaseModelOutputWithPastAndCrossAttentions, - BaseModelOutputWithPoolingAndCrossAttentions, - CausalLMOutputWithCrossAttentions, - MaskedLMOutput, - MultipleChoiceModelOutput, - NextSentencePredictorOutput, - QuestionAnsweringModelOutput, - SequenceClassifierOutput, - TokenClassifierOutput, -) -from transformers.modeling_utils import ( - PreTrainedModel, - apply_chunking_to_forward, - find_pruneable_heads_and_indices, - prune_linear_layer, -) -from transformers.utils import logging -from transformers.models.bert.configuration_bert import BertConfig - - -logger = logging.get_logger(__name__) - - -class BertEmbeddings(nn.Module): - """Construct the embeddings from word and position embeddings.""" - - def __init__(self, config): - super().__init__() - self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) - self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) - - # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load - # any TensorFlow checkpoint file - self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - - # position_ids (1, len position emb) is contiguous in memory and exported when serialized - self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1))) - self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") - - self.config = config - - def forward( - self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 - ): - if input_ids is not None: - input_shape = input_ids.size() - else: - input_shape = inputs_embeds.size()[:-1] - - seq_length = input_shape[1] - - if position_ids is None: - position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] - - if inputs_embeds is None: - inputs_embeds = self.word_embeddings(input_ids) - - embeddings = inputs_embeds - - if self.position_embedding_type == "absolute": - position_embeddings = self.position_embeddings(position_ids) - embeddings += position_embeddings - embeddings = self.LayerNorm(embeddings) - embeddings = self.dropout(embeddings) - return embeddings - - -class BertSelfAttention(nn.Module): - def __init__(self, config, is_cross_attention): - super().__init__() - self.config = config - if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): - raise ValueError( - "The hidden size (%d) is not a multiple of the number of attention " - "heads (%d)" % (config.hidden_size, config.num_attention_heads) - ) - - self.num_attention_heads = config.num_attention_heads - self.attention_head_size = int(config.hidden_size / config.num_attention_heads) - self.all_head_size = self.num_attention_heads * self.attention_head_size - - self.query = nn.Linear(config.hidden_size, self.all_head_size) - if is_cross_attention: - self.key = nn.Linear(config.encoder_width, self.all_head_size) - self.value = nn.Linear(config.encoder_width, self.all_head_size) - else: - self.key = nn.Linear(config.hidden_size, self.all_head_size) - self.value = nn.Linear(config.hidden_size, self.all_head_size) - - self.dropout = nn.Dropout(config.attention_probs_dropout_prob) - self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") - if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": - self.max_position_embeddings = config.max_position_embeddings - self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) - self.save_attention = False - - def save_attn_gradients(self, attn_gradients): - self.attn_gradients = attn_gradients - - def get_attn_gradients(self): - return self.attn_gradients - - def save_attention_map(self, attention_map): - self.attention_map = attention_map - - def get_attention_map(self): - return self.attention_map - - def transpose_for_scores(self, x): - new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) - x = x.view(*new_x_shape) - return x.permute(0, 2, 1, 3) - - def forward( - self, - hidden_states, - attention_mask=None, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_value=None, - output_attentions=False, - ): - mixed_query_layer = self.query(hidden_states) - - # If this is instantiated as a cross-attention module, the keys - # and values come from an encoder; the attention mask needs to be - # such that the encoder's padding tokens are not attended to. - is_cross_attention = encoder_hidden_states is not None - - if is_cross_attention: - key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) - value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) - attention_mask = encoder_attention_mask - elif past_key_value is not None: - key_layer = self.transpose_for_scores(self.key(hidden_states)) - value_layer = self.transpose_for_scores(self.value(hidden_states)) - key_layer = torch.cat([past_key_value[0], key_layer], dim=2) - value_layer = torch.cat([past_key_value[1], value_layer], dim=2) - else: - key_layer = self.transpose_for_scores(self.key(hidden_states)) - value_layer = self.transpose_for_scores(self.value(hidden_states)) - - query_layer = self.transpose_for_scores(mixed_query_layer) - - past_key_value = (key_layer, value_layer) - - # Take the dot product between "query" and "key" to get the raw attention scores. - attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) - - if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": - seq_length = hidden_states.size()[1] - position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) - position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) - distance = position_ids_l - position_ids_r - positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) - positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility - - if self.position_embedding_type == "relative_key": - relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) - attention_scores = attention_scores + relative_position_scores - elif self.position_embedding_type == "relative_key_query": - relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) - relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) - attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key - - attention_scores = attention_scores / math.sqrt(self.attention_head_size) - if attention_mask is not None: - # Apply the attention mask is (precomputed for all layers in BertModel forward() function) - attention_scores = attention_scores + attention_mask - - # Normalize the attention scores to probabilities. - attention_probs = nn.Softmax(dim=-1)(attention_scores) - - if is_cross_attention and self.save_attention: - self.save_attention_map(attention_probs) - attention_probs.register_hook(self.save_attn_gradients) - - # This is actually dropping out entire tokens to attend to, which might - # seem a bit unusual, but is taken from the original Transformer paper. - attention_probs_dropped = self.dropout(attention_probs) - - # Mask heads if we want to - if head_mask is not None: - attention_probs_dropped = attention_probs_dropped * head_mask - - context_layer = torch.matmul(attention_probs_dropped, value_layer) - - context_layer = context_layer.permute(0, 2, 1, 3).contiguous() - new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) - context_layer = context_layer.view(*new_context_layer_shape) - - outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) - - outputs = outputs + (past_key_value,) - return outputs - - -class BertSelfOutput(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - - def forward(self, hidden_states, input_tensor): - hidden_states = self.dense(hidden_states) - hidden_states = self.dropout(hidden_states) - hidden_states = self.LayerNorm(hidden_states + input_tensor) - return hidden_states - - -class BertAttention(nn.Module): - def __init__(self, config, is_cross_attention=False): - super().__init__() - self.self = BertSelfAttention(config, is_cross_attention) - self.output = BertSelfOutput(config) - self.pruned_heads = set() - - def prune_heads(self, heads): - if len(heads) == 0: - return - heads, index = find_pruneable_heads_and_indices( - heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads - ) - - # Prune linear layers - self.self.query = prune_linear_layer(self.self.query, index) - self.self.key = prune_linear_layer(self.self.key, index) - self.self.value = prune_linear_layer(self.self.value, index) - self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) - - # Update hyper params and store pruned heads - self.self.num_attention_heads = self.self.num_attention_heads - len(heads) - self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads - self.pruned_heads = self.pruned_heads.union(heads) - - def forward( - self, - hidden_states, - attention_mask=None, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_value=None, - output_attentions=False, - ): - self_outputs = self.self( - hidden_states, - attention_mask, - head_mask, - encoder_hidden_states, - encoder_attention_mask, - past_key_value, - output_attentions, - ) - attention_output = self.output(self_outputs[0], hidden_states) - outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them - return outputs - - -class BertIntermediate(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.intermediate_size) - if isinstance(config.hidden_act, str): - self.intermediate_act_fn = ACT2FN[config.hidden_act] - else: - self.intermediate_act_fn = config.hidden_act - - def forward(self, hidden_states): - hidden_states = self.dense(hidden_states) - hidden_states = self.intermediate_act_fn(hidden_states) - return hidden_states - - -class BertOutput(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.intermediate_size, config.hidden_size) - self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - self.dropout = nn.Dropout(config.hidden_dropout_prob) - - def forward(self, hidden_states, input_tensor): - hidden_states = self.dense(hidden_states) - hidden_states = self.dropout(hidden_states) - hidden_states = self.LayerNorm(hidden_states + input_tensor) - return hidden_states - - -class BertLayer(nn.Module): - def __init__(self, config, layer_num): - super().__init__() - self.config = config - self.chunk_size_feed_forward = config.chunk_size_feed_forward - self.seq_len_dim = 1 - self.attention = BertAttention(config) - self.layer_num = layer_num - if self.config.add_cross_attention: - self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention) - self.intermediate = BertIntermediate(config) - self.output = BertOutput(config) - - def forward( - self, - hidden_states, - attention_mask=None, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_value=None, - output_attentions=False, - mode=None, - ): - # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 - self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None - self_attention_outputs = self.attention( - hidden_states, - attention_mask, - head_mask, - output_attentions=output_attentions, - past_key_value=self_attn_past_key_value, - ) - attention_output = self_attention_outputs[0] - - outputs = self_attention_outputs[1:-1] - present_key_value = self_attention_outputs[-1] - - if mode=='multimodal': - assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers" - - cross_attention_outputs = self.crossattention( - attention_output, - attention_mask, - head_mask, - encoder_hidden_states, - encoder_attention_mask, - output_attentions=output_attentions, - ) - attention_output = cross_attention_outputs[0] - outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights - layer_output = apply_chunking_to_forward( - self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output - ) - outputs = (layer_output,) + outputs - - outputs = outputs + (present_key_value,) - - return outputs - - def feed_forward_chunk(self, attention_output): - intermediate_output = self.intermediate(attention_output) - layer_output = self.output(intermediate_output, attention_output) - return layer_output - - -class BertEncoder(nn.Module): - def __init__(self, config): - super().__init__() - self.config = config - self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)]) - self.gradient_checkpointing = False - - def forward( - self, - hidden_states, - attention_mask=None, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_values=None, - use_cache=None, - output_attentions=False, - output_hidden_states=False, - return_dict=True, - mode='multimodal', - ): - all_hidden_states = () if output_hidden_states else None - all_self_attentions = () if output_attentions else None - all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None - - next_decoder_cache = () if use_cache else None - - for i in range(self.config.num_hidden_layers): - layer_module = self.layer[i] - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - layer_head_mask = head_mask[i] if head_mask is not None else None - past_key_value = past_key_values[i] if past_key_values is not None else None - - if self.gradient_checkpointing and self.training: - - if use_cache: - logger.warn( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs, past_key_value, output_attentions) - - return custom_forward - - layer_outputs = torch.utils.checkpoint.checkpoint( - create_custom_forward(layer_module), - hidden_states, - attention_mask, - layer_head_mask, - encoder_hidden_states, - encoder_attention_mask, - mode=mode, - ) - else: - layer_outputs = layer_module( - hidden_states, - attention_mask, - layer_head_mask, - encoder_hidden_states, - encoder_attention_mask, - past_key_value, - output_attentions, - mode=mode, - ) - - hidden_states = layer_outputs[0] - if use_cache: - next_decoder_cache += (layer_outputs[-1],) - if output_attentions: - all_self_attentions = all_self_attentions + (layer_outputs[1],) - - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - if not return_dict: - return tuple( - v - for v in [ - hidden_states, - next_decoder_cache, - all_hidden_states, - all_self_attentions, - all_cross_attentions, - ] - if v is not None - ) - return BaseModelOutputWithPastAndCrossAttentions( - last_hidden_state=hidden_states, - past_key_values=next_decoder_cache, - hidden_states=all_hidden_states, - attentions=all_self_attentions, - cross_attentions=all_cross_attentions, - ) - - -class BertPooler(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - self.activation = nn.Tanh() - - def forward(self, hidden_states): - # We "pool" the model by simply taking the hidden state corresponding - # to the first token. - first_token_tensor = hidden_states[:, 0] - pooled_output = self.dense(first_token_tensor) - pooled_output = self.activation(pooled_output) - return pooled_output - - -class BertPredictionHeadTransform(nn.Module): - def __init__(self, config): - super().__init__() - self.dense = nn.Linear(config.hidden_size, config.hidden_size) - if isinstance(config.hidden_act, str): - self.transform_act_fn = ACT2FN[config.hidden_act] - else: - self.transform_act_fn = config.hidden_act - self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) - - def forward(self, hidden_states): - hidden_states = self.dense(hidden_states) - hidden_states = self.transform_act_fn(hidden_states) - hidden_states = self.LayerNorm(hidden_states) - return hidden_states - - -class BertLMPredictionHead(nn.Module): - def __init__(self, config): - super().__init__() - self.transform = BertPredictionHeadTransform(config) - - # The output weights are the same as the input embeddings, but there is - # an output-only bias for each token. - self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - - self.bias = nn.Parameter(torch.zeros(config.vocab_size)) - - # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` - self.decoder.bias = self.bias - - def forward(self, hidden_states): - hidden_states = self.transform(hidden_states) - hidden_states = self.decoder(hidden_states) - return hidden_states - - -class BertOnlyMLMHead(nn.Module): - def __init__(self, config): - super().__init__() - self.predictions = BertLMPredictionHead(config) - - def forward(self, sequence_output): - prediction_scores = self.predictions(sequence_output) - return prediction_scores - - -class BertPreTrainedModel(PreTrainedModel): - """ - An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained - models. - """ - - config_class = BertConfig - base_model_prefix = "bert" - _keys_to_ignore_on_load_missing = [r"position_ids"] - - def _init_weights(self, module): - """ Initialize the weights """ - if isinstance(module, (nn.Linear, nn.Embedding)): - # Slightly different from the TF version which uses truncated_normal for initialization - # cf https://github.com/pytorch/pytorch/pull/5617 - module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) - elif isinstance(module, nn.LayerNorm): - module.bias.data.zero_() - module.weight.data.fill_(1.0) - if isinstance(module, nn.Linear) and module.bias is not None: - module.bias.data.zero_() - - -class BertModel(BertPreTrainedModel): - """ - The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of - cross-attention is added between the self-attention layers, following the architecture described in `Attention is - all you need `__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, - Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. - argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an - input to the forward pass. - """ - - def __init__(self, config, add_pooling_layer=True): - super().__init__(config) - self.config = config - - self.embeddings = BertEmbeddings(config) - - self.encoder = BertEncoder(config) - - self.pooler = BertPooler(config) if add_pooling_layer else None - - self.init_weights() - - - def get_input_embeddings(self): - return self.embeddings.word_embeddings - - def set_input_embeddings(self, value): - self.embeddings.word_embeddings = value - - def _prune_heads(self, heads_to_prune): - """ - Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base - class PreTrainedModel - """ - for layer, heads in heads_to_prune.items(): - self.encoder.layer[layer].attention.prune_heads(heads) - - - def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor: - """ - Makes broadcastable attention and causal masks so that future and masked tokens are ignored. - - Arguments: - attention_mask (:obj:`torch.Tensor`): - Mask with ones indicating tokens to attend to, zeros for tokens to ignore. - input_shape (:obj:`Tuple[int]`): - The shape of the input to the model. - device: (:obj:`torch.device`): - The device of the input to the model. - - Returns: - :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`. - """ - # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] - # ourselves in which case we just need to make it broadcastable to all heads. - if attention_mask.dim() == 3: - extended_attention_mask = attention_mask[:, None, :, :] - elif attention_mask.dim() == 2: - # Provided a padding mask of dimensions [batch_size, seq_length] - # - if the model is a decoder, apply a causal mask in addition to the padding mask - # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] - if is_decoder: - batch_size, seq_length = input_shape - - seq_ids = torch.arange(seq_length, device=device) - causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None] - # in case past_key_values are used we need to add a prefix ones mask to the causal mask - # causal and attention masks must have same type with pytorch version < 1.3 - causal_mask = causal_mask.to(attention_mask.dtype) - - if causal_mask.shape[1] < attention_mask.shape[1]: - prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1] - causal_mask = torch.cat( - [ - torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype), - causal_mask, - ], - axis=-1, - ) - - extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :] - else: - extended_attention_mask = attention_mask[:, None, None, :] - else: - raise ValueError( - "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format( - input_shape, attention_mask.shape - ) - ) - - # Since attention_mask is 1.0 for positions we want to attend and 0.0 for - # masked positions, this operation will create a tensor which is 0.0 for - # positions we want to attend and -10000.0 for masked positions. - # Since we are adding it to the raw scores before the softmax, this is - # effectively the same as removing these entirely. - extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility - extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 - return extended_attention_mask - - def forward( - self, - input_ids=None, - attention_mask=None, - position_ids=None, - head_mask=None, - inputs_embeds=None, - encoder_embeds=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_values=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - is_decoder=False, - mode='multimodal', - ): - r""" - encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): - Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if - the model is configured as a decoder. - encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): - Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in - the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): - Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. - If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` - (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` - instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. - use_cache (:obj:`bool`, `optional`): - If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up - decoding (see :obj:`past_key_values`). - """ - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if is_decoder: - use_cache = use_cache if use_cache is not None else self.config.use_cache - else: - use_cache = False - - if input_ids is not None and inputs_embeds is not None: - raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") - elif input_ids is not None: - input_shape = input_ids.size() - batch_size, seq_length = input_shape - device = input_ids.device - elif inputs_embeds is not None: - input_shape = inputs_embeds.size()[:-1] - batch_size, seq_length = input_shape - device = inputs_embeds.device - elif encoder_embeds is not None: - input_shape = encoder_embeds.size()[:-1] - batch_size, seq_length = input_shape - device = encoder_embeds.device - else: - raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds") - - # past_key_values_length - past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 - - if attention_mask is None: - attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) - - # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] - # ourselves in which case we just need to make it broadcastable to all heads. - extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, - device, is_decoder) - - # If a 2D or 3D attention mask is provided for the cross-attention - # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] - if encoder_hidden_states is not None: - if type(encoder_hidden_states) == list: - encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() - else: - encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() - encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) - - if type(encoder_attention_mask) == list: - encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] - elif encoder_attention_mask is None: - encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) - encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) - else: - encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) - else: - encoder_extended_attention_mask = None - - # Prepare head mask if needed - # 1.0 in head_mask indicate we keep the head - # attention_probs has shape bsz x n_heads x N x N - # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] - # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] - head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) - - if encoder_embeds is None: - embedding_output = self.embeddings( - input_ids=input_ids, - position_ids=position_ids, - inputs_embeds=inputs_embeds, - past_key_values_length=past_key_values_length, - ) - else: - embedding_output = encoder_embeds - - encoder_outputs = self.encoder( - embedding_output, - attention_mask=extended_attention_mask, - head_mask=head_mask, - encoder_hidden_states=encoder_hidden_states, - encoder_attention_mask=encoder_extended_attention_mask, - past_key_values=past_key_values, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - mode=mode, - ) - sequence_output = encoder_outputs[0] - pooled_output = self.pooler(sequence_output) if self.pooler is not None else None - - if not return_dict: - return (sequence_output, pooled_output) + encoder_outputs[1:] - - return BaseModelOutputWithPoolingAndCrossAttentions( - last_hidden_state=sequence_output, - pooler_output=pooled_output, - past_key_values=encoder_outputs.past_key_values, - hidden_states=encoder_outputs.hidden_states, - attentions=encoder_outputs.attentions, - cross_attentions=encoder_outputs.cross_attentions, - ) - - - -class BertLMHeadModel(BertPreTrainedModel): - - _keys_to_ignore_on_load_unexpected = [r"pooler"] - _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"] - - def __init__(self, config): - super().__init__(config) - - self.bert = BertModel(config, add_pooling_layer=False) - self.cls = BertOnlyMLMHead(config) - - self.init_weights() - - def get_output_embeddings(self): - return self.cls.predictions.decoder - - def set_output_embeddings(self, new_embeddings): - self.cls.predictions.decoder = new_embeddings - - def forward( - self, - input_ids=None, - attention_mask=None, - position_ids=None, - head_mask=None, - inputs_embeds=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - labels=None, - past_key_values=None, - use_cache=None, - output_attentions=None, - output_hidden_states=None, - return_dict=None, - return_logits=False, - is_decoder=True, - reduction='mean', - mode='multimodal', - ): - r""" - encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): - Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if - the model is configured as a decoder. - encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): - Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in - the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``: - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): - Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in - ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are - ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]`` - past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): - Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. - If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` - (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` - instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. - use_cache (:obj:`bool`, `optional`): - If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up - decoding (see :obj:`past_key_values`). - Returns: - Example:: - >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig - >>> import torch - >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased') - >>> config = BertConfig.from_pretrained("bert-base-cased") - >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config) - >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") - >>> outputs = model(**inputs) - >>> prediction_logits = outputs.logits - """ - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - if labels is not None: - use_cache = False - - outputs = self.bert( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - head_mask=head_mask, - inputs_embeds=inputs_embeds, - encoder_hidden_states=encoder_hidden_states, - encoder_attention_mask=encoder_attention_mask, - past_key_values=past_key_values, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - is_decoder=is_decoder, - mode=mode, - ) - - sequence_output = outputs[0] - prediction_scores = self.cls(sequence_output) - - if return_logits: - return prediction_scores[:, :-1, :].contiguous() - - lm_loss = None - if labels is not None: - # we are doing next-token prediction; shift prediction scores and input ids by one - shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() - labels = labels[:, 1:].contiguous() - loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1) - lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) - if reduction=='none': - lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1) - - if not return_dict: - output = (prediction_scores,) + outputs[2:] - return ((lm_loss,) + output) if lm_loss is not None else output - - return CausalLMOutputWithCrossAttentions( - loss=lm_loss, - logits=prediction_scores, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - cross_attentions=outputs.cross_attentions, - ) - - def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs): - input_shape = input_ids.shape - # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly - if attention_mask is None: - attention_mask = input_ids.new_ones(input_shape) - - # cut decoder_input_ids if past is used - if past is not None: - input_ids = input_ids[:, -1:] - - return { - "input_ids": input_ids, - "attention_mask": attention_mask, - "past_key_values": past, - "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None), - "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None), - "is_decoder": True, - } - - def _reorder_cache(self, past, beam_idx): - reordered_past = () - for layer_past in past: - reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) - return reordered_past diff --git a/diffsynth/extensions/ImageQualityMetric/BLIP/vit.py b/diffsynth/extensions/ImageQualityMetric/BLIP/vit.py deleted file mode 100644 index cef7b650a95f56266775cf0f18b28bc0f74987ab..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/BLIP/vit.py +++ /dev/null @@ -1,301 +0,0 @@ -''' - * Adapted from BLIP (https://github.com/salesforce/BLIP) - * Based on timm code base - * https://github.com/rwightman/pytorch-image-models/tree/master/timm -''' - -import torch -import torch.nn as nn -import torch.nn.functional as F -from functools import partial - -from timm.models.vision_transformer import _cfg, PatchEmbed -from timm.models.registry import register_model -from timm.models.layers import trunc_normal_, DropPath -from timm.models.helpers import named_apply, adapt_input_conv - -# from fairscale.nn.checkpoint.checkpoint_activations import checkpoint_wrapper - -class Mlp(nn.Module): - """ MLP as used in Vision Transformer, MLP-Mixer and related networks - """ - def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): - super().__init__() - out_features = out_features or in_features - hidden_features = hidden_features or in_features - self.fc1 = nn.Linear(in_features, hidden_features) - self.act = act_layer() - self.fc2 = nn.Linear(hidden_features, out_features) - self.drop = nn.Dropout(drop) - - def forward(self, x): - x = self.fc1(x) - x = self.act(x) - x = self.drop(x) - x = self.fc2(x) - x = self.drop(x) - return x - - -class Attention(nn.Module): - def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): - super().__init__() - self.num_heads = num_heads - head_dim = dim // num_heads - # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights - self.scale = qk_scale or head_dim ** -0.5 - self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) - self.attn_drop = nn.Dropout(attn_drop) - self.proj = nn.Linear(dim, dim) - self.proj_drop = nn.Dropout(proj_drop) - self.attn_gradients = None - self.attention_map = None - - def save_attn_gradients(self, attn_gradients): - self.attn_gradients = attn_gradients - - def get_attn_gradients(self): - return self.attn_gradients - - def save_attention_map(self, attention_map): - self.attention_map = attention_map - - def get_attention_map(self): - return self.attention_map - - def forward(self, x, register_hook=False): - B, N, C = x.shape - qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) - q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) - - attn = (q @ k.transpose(-2, -1)) * self.scale - attn = attn.softmax(dim=-1) - attn = self.attn_drop(attn) - - if register_hook: - self.save_attention_map(attn) - attn.register_hook(self.save_attn_gradients) - - x = (attn @ v).transpose(1, 2).reshape(B, N, C) - x = self.proj(x) - x = self.proj_drop(x) - return x - - -class Block(nn.Module): - - def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., - drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False): - super().__init__() - self.norm1 = norm_layer(dim) - self.attn = Attention( - dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) - # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here - self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() - self.norm2 = norm_layer(dim) - mlp_hidden_dim = int(dim * mlp_ratio) - self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) - - # if use_grad_checkpointing: - # self.attn = checkpoint_wrapper(self.attn) - # self.mlp = checkpoint_wrapper(self.mlp) - - def forward(self, x, register_hook=False): - x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook)) - x = x + self.drop_path(self.mlp(self.norm2(x))) - return x - - -class VisionTransformer(nn.Module): - """ Vision Transformer - A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - - https://arxiv.org/abs/2010.11929 - """ - def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, - num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, - drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, - use_grad_checkpointing=False, ckpt_layer=0): - """ - Args: - img_size (int, tuple): input image size - patch_size (int, tuple): patch size - in_chans (int): number of input channels - num_classes (int): number of classes for classification head - embed_dim (int): embedding dimension - depth (int): depth of transformer - num_heads (int): number of attention heads - mlp_ratio (int): ratio of mlp hidden dim to embedding dim - qkv_bias (bool): enable bias for qkv if True - qk_scale (float): override default qk scale of head_dim ** -0.5 if set - representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set - drop_rate (float): dropout rate - attn_drop_rate (float): attention dropout rate - drop_path_rate (float): stochastic depth rate - norm_layer: (nn.Module): normalization layer - """ - super().__init__() - self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models - norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) - - self.patch_embed = PatchEmbed( - img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) - - num_patches = self.patch_embed.num_patches - - self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) - self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) - self.pos_drop = nn.Dropout(p=drop_rate) - - dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule - self.blocks = nn.ModuleList([ - Block( - dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, - drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, - use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer) - ) - for i in range(depth)]) - self.norm = norm_layer(embed_dim) - - trunc_normal_(self.pos_embed, std=.02) - trunc_normal_(self.cls_token, std=.02) - self.apply(self._init_weights) - - def _init_weights(self, m): - if isinstance(m, nn.Linear): - trunc_normal_(m.weight, std=.02) - if isinstance(m, nn.Linear) and m.bias is not None: - nn.init.constant_(m.bias, 0) - elif isinstance(m, nn.LayerNorm): - nn.init.constant_(m.bias, 0) - nn.init.constant_(m.weight, 1.0) - - @torch.jit.ignore - def no_weight_decay(self): - return {'pos_embed', 'cls_token'} - - def forward(self, x, register_blk=-1): - B = x.shape[0] - x = self.patch_embed(x) - - cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks - x = torch.cat((cls_tokens, x), dim=1) - - x = x + self.pos_embed[:,:x.size(1),:] - x = self.pos_drop(x) - - for i,blk in enumerate(self.blocks): - x = blk(x, register_blk==i) - x = self.norm(x) - - return x - - @torch.jit.ignore() - def load_pretrained(self, checkpoint_path, prefix=''): - _load_weights(self, checkpoint_path, prefix) - - -@torch.no_grad() -def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''): - """ Load weights from .npz checkpoints for official Google Brain Flax implementation - """ - import numpy as np - - def _n2p(w, t=True): - if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1: - w = w.flatten() - if t: - if w.ndim == 4: - w = w.transpose([3, 2, 0, 1]) - elif w.ndim == 3: - w = w.transpose([2, 0, 1]) - elif w.ndim == 2: - w = w.transpose([1, 0]) - return torch.from_numpy(w) - - w = np.load(checkpoint_path) - if not prefix and 'opt/target/embedding/kernel' in w: - prefix = 'opt/target/' - - if hasattr(model.patch_embed, 'backbone'): - # hybrid - backbone = model.patch_embed.backbone - stem_only = not hasattr(backbone, 'stem') - stem = backbone if stem_only else backbone.stem - stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel']))) - stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale'])) - stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias'])) - if not stem_only: - for i, stage in enumerate(backbone.stages): - for j, block in enumerate(stage.blocks): - bp = f'{prefix}block{i + 1}/unit{j + 1}/' - for r in range(3): - getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel'])) - getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale'])) - getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias'])) - if block.downsample is not None: - block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel'])) - block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale'])) - block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias'])) - embed_conv_w = _n2p(w[f'{prefix}embedding/kernel']) - else: - embed_conv_w = adapt_input_conv( - model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel'])) - model.patch_embed.proj.weight.copy_(embed_conv_w) - model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias'])) - model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False)) - pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False) - if pos_embed_w.shape != model.pos_embed.shape: - pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights - pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size) - model.pos_embed.copy_(pos_embed_w) - model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale'])) - model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias'])) -# if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]: -# model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel'])) -# model.head.bias.copy_(_n2p(w[f'{prefix}head/bias'])) -# if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w: -# model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel'])) -# model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias'])) - for i, block in enumerate(model.blocks.children()): - block_prefix = f'{prefix}Transformer/encoderblock_{i}/' - mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/' - block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale'])) - block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias'])) - block.attn.qkv.weight.copy_(torch.cat([ - _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')])) - block.attn.qkv.bias.copy_(torch.cat([ - _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')])) - block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1)) - block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias'])) - for r in range(2): - getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel'])) - getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias'])) - block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale'])) - block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias'])) - - -def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder): - # interpolate position embedding - embedding_size = pos_embed_checkpoint.shape[-1] - num_patches = visual_encoder.patch_embed.num_patches - num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches - # height (== width) for the checkpoint position embedding - orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5) - # height (== width) for the new position embedding - new_size = int(num_patches ** 0.5) - - if orig_size!=new_size: - # class_token and dist_token are kept unchanged - extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens] - # only the position tokens are interpolated - pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:] - pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2) - pos_tokens = torch.nn.functional.interpolate( - pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False) - pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2) - new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1) - print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2)) - - return new_pos_embed - else: - return pos_embed_checkpoint \ No newline at end of file diff --git a/diffsynth/extensions/ImageQualityMetric/__init__.py b/diffsynth/extensions/ImageQualityMetric/__init__.py deleted file mode 100644 index fcfb7c02b0ce2b6a2fbe345d87c31e0d1bb3a128..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/__init__.py +++ /dev/null @@ -1,148 +0,0 @@ -from modelscope import snapshot_download -from typing_extensions import Literal, TypeAlias -import os -from diffsynth.extensions.ImageQualityMetric.aesthetic import AestheticScore -from diffsynth.extensions.ImageQualityMetric.imagereward import ImageRewardScore -from diffsynth.extensions.ImageQualityMetric.pickscore import PickScore -from diffsynth.extensions.ImageQualityMetric.clip import CLIPScore -from diffsynth.extensions.ImageQualityMetric.hps import HPScore_v2 -from diffsynth.extensions.ImageQualityMetric.mps import MPScore - - -preference_model_id: TypeAlias = Literal[ - "ImageReward", - "Aesthetic", - "PickScore", - "CLIP", - "HPSv2", - "HPSv2.1", - "MPS", -] -model_dict = { - "ImageReward": { - "model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained", - "allow_file_pattern": [ - "ImageReward/ImageReward.safetensors", - "ImageReward/med_config.json", - "bert-base-uncased/config.json", - "bert-base-uncased/model.safetensors", - "bert-base-uncased/tokenizer.json", - "bert-base-uncased/tokenizer_config.json", - "bert-base-uncased/vocab.txt", - ], - "load_path": { - "imagereward": "ImageReward/ImageReward.safetensors", - "med_config": "ImageReward/med_config.json", - "bert_model_path": "bert-base-uncased", - }, - "model_class": ImageRewardScore - }, - "Aesthetic": { - "model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained", - "allow_file_pattern": [ - "aesthetic-predictor/sac+logos+ava1-l14-linearMSE.safetensors", - "clip-vit-large-patch14/config.json", - "clip-vit-large-patch14/merges.txt", - "clip-vit-large-patch14/model.safetensors", - "clip-vit-large-patch14/preprocessor_config.json", - "clip-vit-large-patch14/special_tokens_map.json", - "clip-vit-large-patch14/tokenizer.json", - "clip-vit-large-patch14/tokenizer_config.json", - "clip-vit-large-patch14/vocab.json", - ], - "load_path": { - "aesthetic_predictor": "aesthetic-predictor/sac+logos+ava1-l14-linearMSE.safetensors", - "clip-large": "clip-vit-large-patch14", - }, - "model_class": AestheticScore - }, - "PickScore": { - "model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained", - "allow_file_pattern": [ - "PickScore_v1/*", - "CLIP-ViT-H-14-laion2B-s32B-b79K/config.json", - "CLIP-ViT-H-14-laion2B-s32B-b79K/merges.txt", - "CLIP-ViT-H-14-laion2B-s32B-b79K/preprocessor_config.json", - "CLIP-ViT-H-14-laion2B-s32B-b79K/special_tokens_map.json", - "CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer.json", - "CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer_config.json", - "CLIP-ViT-H-14-laion2B-s32B-b79K/vocab.json", - ], - "load_path": { - "pickscore": "PickScore_v1", - "clip": "CLIP-ViT-H-14-laion2B-s32B-b79K", - }, - "model_class": PickScore - }, - "CLIP": { - "model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained", - "allow_file_pattern": [ - "CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin", - "bpe_simple_vocab_16e6.txt.gz", - ], - "load_path": { - "open_clip": "CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin", - "open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz", - }, - "model_class": CLIPScore - }, - "HPSv2": { - "model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained", - "allow_file_pattern": [ - "HPS_v2/HPS_v2_compressed.safetensors", - "bpe_simple_vocab_16e6.txt.gz", - ], - "load_path": { - "hpsv2": "HPS_v2/HPS_v2_compressed.safetensors", - "open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz", - }, - "model_class": HPScore_v2, - "extra_kwargs": {"model_version": "v2"} - }, - "HPSv2.1": { - "model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained", - "allow_file_pattern": [ - "HPS_v2/HPS_v2.1_compressed.safetensors", - "bpe_simple_vocab_16e6.txt.gz", - ], - "load_path": { - "hpsv2.1": "HPS_v2/HPS_v2.1_compressed.safetensors", - "open_clip_bpe": "bpe_simple_vocab_16e6.txt.gz", - }, - "model_class": HPScore_v2, - "extra_kwargs": {"model_version": "v21"} - }, - "MPS": { - "model_id": "DiffSynth-Studio/QualityMetric_reward_pretrained", - "allow_file_pattern": [ - "MPS_overall_checkpoint/MPS_overall_checkpoint_diffsynth.safetensors", - "CLIP-ViT-H-14-laion2B-s32B-b79K/config.json", - "CLIP-ViT-H-14-laion2B-s32B-b79K/merges.txt", - "CLIP-ViT-H-14-laion2B-s32B-b79K/preprocessor_config.json", - "CLIP-ViT-H-14-laion2B-s32B-b79K/special_tokens_map.json", - "CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer.json", - "CLIP-ViT-H-14-laion2B-s32B-b79K/tokenizer_config.json", - "CLIP-ViT-H-14-laion2B-s32B-b79K/vocab.json", - ], - "load_path": { - "mps": "MPS_overall_checkpoint/MPS_overall_checkpoint_diffsynth.safetensors", - "clip": "CLIP-ViT-H-14-laion2B-s32B-b79K", - }, - "model_class": MPScore - }, -} - - -def download_preference_model(model_name: preference_model_id, cache_dir="models"): - metadata = model_dict[model_name] - snapshot_download(model_id=metadata["model_id"], allow_file_pattern=metadata["allow_file_pattern"], cache_dir=cache_dir) - load_path = metadata["load_path"] - load_path = {key: os.path.join(cache_dir, metadata["model_id"], path) for key, path in load_path.items()} - return load_path - - -def load_preference_model(model_name: preference_model_id, device = "cuda", path = None): - model_class = model_dict[model_name]["model_class"] - extra_kwargs = model_dict[model_name].get("extra_kwargs", {}) - preference_model = model_class(device=device, path=path, **extra_kwargs) - return preference_model diff --git a/diffsynth/extensions/ImageQualityMetric/aesthetic.py b/diffsynth/extensions/ImageQualityMetric/aesthetic.py deleted file mode 100644 index 13da98a1f45ca7eea0411e18c307cc5d0154488f..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/aesthetic.py +++ /dev/null @@ -1,148 +0,0 @@ -from typing import List, Optional -from PIL import Image -import torch -from transformers import AutoProcessor, AutoModel -from safetensors.torch import load_file -import os -from typing import Union, List -from .config import MODEL_PATHS - -class MLP(torch.nn.Module): - def __init__(self, input_size: int, xcol: str = "emb", ycol: str = "avg_rating"): - super().__init__() - self.input_size = input_size - self.xcol = xcol - self.ycol = ycol - self.layers = torch.nn.Sequential( - torch.nn.Linear(self.input_size, 1024), - #torch.nn.ReLU(), - torch.nn.Dropout(0.2), - torch.nn.Linear(1024, 128), - #torch.nn.ReLU(), - torch.nn.Dropout(0.2), - torch.nn.Linear(128, 64), - #torch.nn.ReLU(), - torch.nn.Dropout(0.1), - torch.nn.Linear(64, 16), - #torch.nn.ReLU(), - torch.nn.Linear(16, 1), - ) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - return self.layers(x) - - def training_step(self, batch: dict, batch_idx: int) -> torch.Tensor: - x = batch[self.xcol] - y = batch[self.ycol].reshape(-1, 1) - x_hat = self.layers(x) - loss = torch.nn.functional.mse_loss(x_hat, y) - return loss - - def validation_step(self, batch: dict, batch_idx: int) -> torch.Tensor: - x = batch[self.xcol] - y = batch[self.ycol].reshape(-1, 1) - x_hat = self.layers(x) - loss = torch.nn.functional.mse_loss(x_hat, y) - return loss - - def configure_optimizers(self) -> torch.optim.Optimizer: - return torch.optim.Adam(self.parameters(), lr=1e-3) - - -class AestheticScore(torch.nn.Module): - def __init__(self, device: torch.device, path: str = MODEL_PATHS): - super().__init__() - self.device = device - self.aes_model_path = path.get("aesthetic_predictor") - # Load the MLP model - self.model = MLP(768) - try: - if self.aes_model_path.endswith(".safetensors"): - state_dict = load_file(self.aes_model_path) - else: - state_dict = torch.load(self.aes_model_path) - self.model.load_state_dict(state_dict) - except Exception as e: - raise ValueError(f"Error loading model weights from {self.aes_model_path}: {e}") - - self.model.to(device) - self.model.eval() - - # Load the CLIP model and processor - clip_model_name = path.get('clip-large') - self.model2 = AutoModel.from_pretrained(clip_model_name).eval().to(device) - self.processor = AutoProcessor.from_pretrained(clip_model_name) - - def _calculate_score(self, image: torch.Tensor) -> float: - """Calculate the aesthetic score for a single image. - - Args: - image (torch.Tensor): The processed image tensor. - - Returns: - float: The aesthetic score. - """ - with torch.no_grad(): - # Get image embeddings - image_embs = self.model2.get_image_features(image) - image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True) - - # Compute score - score = self.model(image_embs).cpu().flatten().item() - - return score - - @torch.no_grad() - def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str = "") -> List[float]: - """Score the images based on their aesthetic quality. - - Args: - images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s). - - Returns: - List[float]: List of scores for the images. - """ - try: - if isinstance(images, (str, Image.Image)): - # Single image - if isinstance(images, str): - pil_image = Image.open(images) - else: - pil_image = images - - # Prepare image inputs - image_inputs = self.processor( - images=pil_image, - padding=True, - truncation=True, - max_length=77, - return_tensors="pt", - ).to(self.device) - - return [self._calculate_score(image_inputs["pixel_values"])] - elif isinstance(images, list): - # Multiple images - scores = [] - for one_image in images: - if isinstance(one_image, str): - pil_image = Image.open(one_image) - elif isinstance(one_image, Image.Image): - pil_image = one_image - else: - raise TypeError("The type of parameter images is illegal.") - - # Prepare image inputs - image_inputs = self.processor( - images=pil_image, - padding=True, - truncation=True, - max_length=77, - return_tensors="pt", - ).to(self.device) - - scores.append(self._calculate_score(image_inputs["pixel_values"])) - return scores - else: - raise TypeError("The type of parameter images is illegal.") - except Exception as e: - raise RuntimeError(f"Error in scoring images: {e}") diff --git a/diffsynth/extensions/ImageQualityMetric/clip.py b/diffsynth/extensions/ImageQualityMetric/clip.py deleted file mode 100644 index f70941e0a45db61be87e21c347e97ad8bb390fff..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/clip.py +++ /dev/null @@ -1,97 +0,0 @@ -from typing import List, Union -from PIL import Image -import torch -from .open_clip import create_model_and_transforms, get_tokenizer -from .config import MODEL_PATHS - -class CLIPScore(torch.nn.Module): - def __init__(self, device: torch.device, path: str = MODEL_PATHS): - super().__init__() - """Initialize the CLIPScore with a model and tokenizer. - - Args: - device (torch.device): The device to load the model on. - """ - self.device = device - - # Create model and transforms - self.model, _, self.preprocess_val = create_model_and_transforms( - "ViT-H-14", - # "laion2B-s32B-b79K", - pretrained=path.get("open_clip"), - precision="amp", - device=device, - jit=False, - force_quick_gelu=False, - force_custom_text=False, - force_patch_dropout=False, - force_image_size=None, - pretrained_image=False, - image_mean=None, - image_std=None, - light_augmentation=True, - aug_cfg={}, - output_dict=True, - with_score_predictor=False, - with_region_predictor=False, - ) - - # Initialize tokenizer - self.tokenizer = get_tokenizer("ViT-H-14", path["open_clip_bpe"]) - self.model = self.model.to(device) - self.model.eval() - - def _calculate_score(self, image: torch.Tensor, prompt: str) -> float: - """Calculate the CLIP score for a single image and prompt. - - Args: - image (torch.Tensor): The processed image tensor. - prompt (str): The prompt text. - - Returns: - float: The CLIP score. - """ - with torch.no_grad(): - # Process the prompt - text = self.tokenizer([prompt]).to(device=self.device, non_blocking=True) - - # Calculate the CLIP score - outputs = self.model(image, text) - image_features, text_features = outputs["image_features"], outputs["text_features"] - logits_per_image = image_features @ text_features.T - clip_score = torch.diagonal(logits_per_image).cpu().numpy() - - return clip_score[0].item() - - @torch.no_grad() - def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]: - """Score the images based on the prompt. - - Args: - images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s). - prompt (str): The prompt text. - - Returns: - List[float]: List of CLIP scores for the images. - """ - if isinstance(images, (str, Image.Image)): - # Single image - if isinstance(images, str): - image = self.preprocess_val(Image.open(images)).unsqueeze(0).to(device=self.device, non_blocking=True) - else: - image = self.preprocess_val(images).unsqueeze(0).to(device=self.device, non_blocking=True) - return [self._calculate_score(image, prompt)] - elif isinstance(images, list): - # Multiple images - scores = [] - for one_images in images: - if isinstance(one_images, str): - image = self.preprocess_val(Image.open(one_images)).unsqueeze(0).to(device=self.device, non_blocking=True) - elif isinstance(one_images, Image.Image): - image = self.preprocess_val(one_images).unsqueeze(0).to(device=self.device, non_blocking=True) - else: - raise TypeError("The type of parameter images is illegal.") - scores.append(self._calculate_score(image, prompt)) - return scores - else: - raise TypeError("The type of parameter images is illegal.") diff --git a/diffsynth/extensions/ImageQualityMetric/config.py b/diffsynth/extensions/ImageQualityMetric/config.py deleted file mode 100644 index 60faadcb1e5554c8f8f29a64fc55c3150d8a8bbe..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/config.py +++ /dev/null @@ -1,23 +0,0 @@ -import os - -current_dir = os.path.dirname(os.path.abspath(__file__)) -project_root = os.path.abspath(os.path.join(current_dir, '../../../')) -model_path = os.path.join(project_root, 'models', 'QualityMetric') - - -def get_model_path(model_name): - return os.path.join(model_path, model_name) - - -MODEL_PATHS = { - "aesthetic_predictor": get_model_path("aesthetic-predictor/sac+logos+ava1-l14-linearMSE.safetensors"), - "open_clip": get_model_path("CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin"), - "hpsv2": get_model_path("HPS_v2/HPS_v2_compressed.safetensors"), - "hpsv2.1": get_model_path("HPS_v2/HPS_v2.1_compressed.safetensors"), - "imagereward": get_model_path("ImageReward/ImageReward.safetensors"), - "med_config": get_model_path("ImageReward/med_config.json"), - "clip": get_model_path("CLIP-ViT-H-14-laion2B-s32B-b79K"), - "clip-large": get_model_path("clip-vit-large-patch14"), - "mps": get_model_path("MPS_overall_checkpoint/MPS_overall_checkpoint_diffsynth.safetensors"), - "pickscore": get_model_path("PickScore_v1") -} \ No newline at end of file diff --git a/diffsynth/extensions/ImageQualityMetric/hps.py b/diffsynth/extensions/ImageQualityMetric/hps.py deleted file mode 100644 index a4b266bd261a95676ba700d38c3a63b143bbbb40..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/hps.py +++ /dev/null @@ -1,118 +0,0 @@ -from typing import List, Union -from PIL import Image -import torch -from .open_clip import create_model_and_transforms, get_tokenizer -from safetensors.torch import load_file -import os -from .config import MODEL_PATHS - -class HPScore_v2(torch.nn.Module): - def __init__(self, device: torch.device, path: str = MODEL_PATHS, model_version: str = "v2"): - super().__init__() - """Initialize the Selector with a model and tokenizer. - - Args: - device (torch.device): The device to load the model on. - model_version (str): The version of the model to load. Supports "v2" or "v21". Default is "v2". - """ - self.device = device - - if model_version == "v2": - safetensors_path = path.get("hpsv2") - elif model_version == "v21": - safetensors_path = path.get("hpsv2.1") - else: - raise ValueError(f"Unsupported model version: {model_version}. Choose 'v2' or 'v21'.") - - # Create model and transforms - model, _, self.preprocess_val = create_model_and_transforms( - "ViT-H-14", - # "laion2B-s32B-b79K", - pretrained=path.get("open_clip"), - precision="amp", - device=device, - jit=False, - force_quick_gelu=False, - force_custom_text=False, - force_patch_dropout=False, - force_image_size=None, - pretrained_image=False, - image_mean=None, - image_std=None, - light_augmentation=True, - aug_cfg={}, - output_dict=True, - with_score_predictor=False, - with_region_predictor=False, - ) - - # Load model weights - try: - state_dict = load_file(safetensors_path) - model.load_state_dict(state_dict) - except Exception as e: - raise ValueError(f"Error loading model weights from {safetensors_path}: {e}") - - # Initialize tokenizer and model - self.tokenizer = get_tokenizer("ViT-H-14", path["open_clip_bpe"]) - model = model.to(device) - model.eval() - self.model = model - - def _calculate_score(self, image: torch.Tensor, prompt: str) -> float: - """Calculate the HPS score for a single image and prompt. - - Args: - image (torch.Tensor): The processed image tensor. - prompt (str): The prompt text. - - Returns: - float: The HPS score. - """ - with torch.no_grad(): - # Process the prompt - text = self.tokenizer([prompt]).to(device=self.device, non_blocking=True) - - # Calculate the HPS score - outputs = self.model(image, text) - image_features, text_features = outputs["image_features"], outputs["text_features"] - logits_per_image = image_features @ text_features.T - hps_score = torch.diagonal(logits_per_image).cpu().numpy() - - return hps_score[0].item() - - @torch.no_grad() - def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]: - """Score the images based on the prompt. - - Args: - images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s). - prompt (str): The prompt text. - - Returns: - List[float]: List of HPS scores for the images. - """ - try: - if isinstance(images, (str, Image.Image)): - # Single image - if isinstance(images, str): - image = self.preprocess_val(Image.open(images)).unsqueeze(0).to(device=self.device, non_blocking=True) - else: - image = self.preprocess_val(images).unsqueeze(0).to(device=self.device, non_blocking=True) - return [self._calculate_score(image, prompt)] - elif isinstance(images, list): - # Multiple images - scores = [] - for one_images in images: - if isinstance(one_images, str): - image = self.preprocess_val(Image.open(one_images)).unsqueeze(0).to(device=self.device, non_blocking=True) - elif isinstance(one_images, Image.Image): - image = self.preprocess_val(one_images).unsqueeze(0).to(device=self.device, non_blocking=True) - else: - raise TypeError("The type of parameter images is illegal.") - scores.append(self._calculate_score(image, prompt)) - return scores - else: - raise TypeError("The type of parameter images is illegal.") - except Exception as e: - raise RuntimeError(f"Error in scoring images: {e}") diff --git a/diffsynth/extensions/ImageQualityMetric/imagereward.py b/diffsynth/extensions/ImageQualityMetric/imagereward.py deleted file mode 100644 index 27607904b23fa1691c5a6966eb4030cd813567b0..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/imagereward.py +++ /dev/null @@ -1,212 +0,0 @@ -import os -import torch -from PIL import Image -from typing import List, Union -from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize -from .BLIP.blip_pretrain import BLIP_Pretrain -from torchvision.transforms import InterpolationMode -from safetensors.torch import load_file -from .config import MODEL_PATHS -BICUBIC = InterpolationMode.BICUBIC - -def _convert_image_to_rgb(image): - return image.convert("RGB") - -def _transform(n_px): - return Compose([ - Resize(n_px, interpolation=BICUBIC), - CenterCrop(n_px), - _convert_image_to_rgb, - ToTensor(), - Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), - ]) - -class MLP(torch.nn.Module): - def __init__(self, input_size): - super().__init__() - self.input_size = input_size - - self.layers = torch.nn.Sequential( - torch.nn.Linear(self.input_size, 1024), - #nn.ReLU(), - torch.nn.Dropout(0.2), - torch.nn.Linear(1024, 128), - #nn.ReLU(), - torch.nn.Dropout(0.2), - torch.nn.Linear(128, 64), - #nn.ReLU(), - torch.nn.Dropout(0.1), - torch.nn.Linear(64, 16), - #nn.ReLU(), - torch.nn.Linear(16, 1) - ) - - # initial MLP param - for name, param in self.layers.named_parameters(): - if 'weight' in name: - torch.nn.init.normal_(param, mean=0.0, std=1.0/(self.input_size+1)) - if 'bias' in name: - torch.nn.init.constant_(param, val=0) - - def forward(self, input): - return self.layers(input) - -class ImageReward(torch.nn.Module): - def __init__(self, med_config, device='cpu', bert_model_path=""): - super().__init__() - self.device = device - - self.blip = BLIP_Pretrain(image_size=224, vit='large', med_config=med_config, bert_model_path=bert_model_path) - self.preprocess = _transform(224) - self.mlp = MLP(768) - - self.mean = 0.16717362830052426 - self.std = 1.0333394966054072 - - def score_grad(self, prompt_ids, prompt_attention_mask, image): - """Calculate the score with gradient for a single image and prompt. - - Args: - prompt_ids (torch.Tensor): Tokenized prompt IDs. - prompt_attention_mask (torch.Tensor): Attention mask for the prompt. - image (torch.Tensor): The processed image tensor. - - Returns: - torch.Tensor: The reward score. - """ - image_embeds = self.blip.visual_encoder(image) - image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.device) - text_output = self.blip.text_encoder( - prompt_ids, - attention_mask=prompt_attention_mask, - encoder_hidden_states=image_embeds, - encoder_attention_mask=image_atts, - return_dict=True, - ) - txt_features = text_output.last_hidden_state[:, 0, :] - rewards = self.mlp(txt_features) - rewards = (rewards - self.mean) / self.std - return rewards - - def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str = "") -> List[float]: - """Score the images based on the prompt. - - Args: - prompt (str): The prompt text. - images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s). - - Returns: - List[float]: List of scores for the images. - """ - if isinstance(images, (str, Image.Image)): - # Single image - if isinstance(images, str): - pil_image = Image.open(images) - else: - pil_image = images - image = self.preprocess(pil_image).unsqueeze(0).to(self.device) - return [self._calculate_score(prompt, image).item()] - elif isinstance(images, list): - # Multiple images - scores = [] - for one_image in images: - if isinstance(one_image, str): - pil_image = Image.open(one_image) - elif isinstance(one_image, Image.Image): - pil_image = one_image - else: - raise TypeError("The type of parameter images is illegal.") - image = self.preprocess(pil_image).unsqueeze(0).to(self.device) - scores.append(self._calculate_score(prompt, image).item()) - return scores - else: - raise TypeError("The type of parameter images is illegal.") - - def _calculate_score(self, prompt: str, image: torch.Tensor) -> torch.Tensor: - """Calculate the score for a single image and prompt. - - Args: - prompt (str): The prompt text. - image (torch.Tensor): The processed image tensor. - - Returns: - torch.Tensor: The reward score. - """ - text_input = self.blip.tokenizer(prompt, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(self.device) - image_embeds = self.blip.visual_encoder(image) - image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.device) - text_output = self.blip.text_encoder( - text_input.input_ids, - attention_mask=text_input.attention_mask, - encoder_hidden_states=image_embeds, - encoder_attention_mask=image_atts, - return_dict=True, - ) - txt_features = text_output.last_hidden_state[:, 0, :].float() - rewards = self.mlp(txt_features) - rewards = (rewards - self.mean) / self.std - return rewards - - def inference_rank(self, prompt: str, generations_list: List[Union[str, Image.Image]]) -> tuple: - """Rank the images based on the prompt. - - Args: - prompt (str): The prompt text. - generations_list (List[Union[str, Image.Image]]): List of image paths or PIL images. - - Returns: - tuple: (indices, rewards) where indices are the ranks and rewards are the scores. - """ - text_input = self.blip.tokenizer(prompt, padding='max_length', truncation=True, max_length=35, return_tensors="pt").to(self.device) - txt_set = [] - for generation in generations_list: - if isinstance(generation, str): - pil_image = Image.open(generation) - elif isinstance(generation, Image.Image): - pil_image = generation - else: - raise TypeError("The type of parameter generations_list is illegal.") - image = self.preprocess(pil_image).unsqueeze(0).to(self.device) - image_embeds = self.blip.visual_encoder(image) - image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.device) - text_output = self.blip.text_encoder( - text_input.input_ids, - attention_mask=text_input.attention_mask, - encoder_hidden_states=image_embeds, - encoder_attention_mask=image_atts, - return_dict=True, - ) - txt_set.append(text_output.last_hidden_state[:, 0, :]) - txt_features = torch.cat(txt_set, 0).float() - rewards = self.mlp(txt_features) - rewards = (rewards - self.mean) / self.std - rewards = torch.squeeze(rewards) - _, rank = torch.sort(rewards, dim=0, descending=True) - _, indices = torch.sort(rank, dim=0) - indices = indices + 1 - return indices.detach().cpu().numpy().tolist(), rewards.detach().cpu().numpy().tolist() - - -class ImageRewardScore(torch.nn.Module): - def __init__(self, device: Union[str, torch.device], path: str = MODEL_PATHS): - super().__init__() - self.device = device if isinstance(device, torch.device) else torch.device(device) - model_path = path.get("imagereward") - med_config = path.get("med_config") - state_dict = load_file(model_path) - self.model = ImageReward(device=self.device, med_config=med_config, bert_model_path=path.get("bert_model_path")).to(self.device) - self.model.load_state_dict(state_dict, strict=False) - self.model.eval() - - @torch.no_grad() - def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]: - """Score the images based on the prompt. - - Args: - images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s). - prompt (str): The prompt text. - - Returns: - List[float]: List of scores for the images. - """ - return self.model.score(images, prompt) diff --git a/diffsynth/extensions/ImageQualityMetric/mps.py b/diffsynth/extensions/ImageQualityMetric/mps.py deleted file mode 100644 index d15aad4b81026a743911512bcc569520182b31c5..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/mps.py +++ /dev/null @@ -1,129 +0,0 @@ -import numpy as np -import torch -from PIL import Image -from io import BytesIO -from tqdm.auto import tqdm -from transformers import CLIPFeatureExtractor, CLIPImageProcessor -from transformers import CLIPConfig -from dataclasses import dataclass -from transformers import CLIPModel as HFCLIPModel -from safetensors.torch import load_file -from torch import nn, einsum - -from .trainer.models.base_model import BaseModelConfig - -from transformers import CLIPConfig -from transformers import AutoProcessor, AutoModel, AutoTokenizer -from typing import Any, Optional, Tuple, Union, List -import torch - -from .trainer.models.cross_modeling import Cross_model -from .trainer.models import clip_model -import torch.nn.functional as F -import gc -import json -from .config import MODEL_PATHS - -class MPScore(torch.nn.Module): - def __init__(self, device: Union[str, torch.device], path: str = MODEL_PATHS, condition: str = 'overall'): - super().__init__() - """Initialize the MPSModel with a processor, tokenizer, and model. - - Args: - device (Union[str, torch.device]): The device to load the model on. - """ - self.device = device - processor_name_or_path = path.get("clip") - self.image_processor = CLIPImageProcessor.from_pretrained(processor_name_or_path) - self.tokenizer = AutoTokenizer.from_pretrained(processor_name_or_path, trust_remote_code=True) - self.model = clip_model.CLIPModel(processor_name_or_path, config_file=True) - state_dict = load_file(path.get("mps")) - self.model.load_state_dict(state_dict, strict=False) - self.model.to(device) - self.condition = condition - - def _calculate_score(self, image: torch.Tensor, prompt: str) -> float: - """Calculate the reward score for a single image and prompt. - - Args: - image (torch.Tensor): The processed image tensor. - prompt (str): The prompt text. - - Returns: - float: The reward score. - """ - def _tokenize(caption): - input_ids = self.tokenizer( - caption, - max_length=self.tokenizer.model_max_length, - padding="max_length", - truncation=True, - return_tensors="pt" - ).input_ids - return input_ids - - text_input = _tokenize(prompt).to(self.device) - if self.condition == 'overall': - condition_prompt = 'light, color, clarity, tone, style, ambiance, artistry, shape, face, hair, hands, limbs, structure, instance, texture, quantity, attributes, position, number, location, word, things' - elif self.condition == 'aesthetics': - condition_prompt = 'light, color, clarity, tone, style, ambiance, artistry' - elif self.condition == 'quality': - condition_prompt = 'shape, face, hair, hands, limbs, structure, instance, texture' - elif self.condition == 'semantic': - condition_prompt = 'quantity, attributes, position, number, location' - else: - raise ValueError( - f"Unsupported condition: {self.condition}. Choose 'overall', 'aesthetics', 'quality', or 'semantic'.") - condition_batch = _tokenize(condition_prompt).repeat(text_input.shape[0], 1).to(self.device) - - with torch.no_grad(): - text_f, text_features = self.model.model.get_text_features(text_input) - - image_f = self.model.model.get_image_features(image.half()) - condition_f, _ = self.model.model.get_text_features(condition_batch) - - sim_text_condition = einsum('b i d, b j d -> b j i', text_f, condition_f) - sim_text_condition = torch.max(sim_text_condition, dim=1, keepdim=True)[0] - sim_text_condition = sim_text_condition / sim_text_condition.max() - mask = torch.where(sim_text_condition > 0.3, 0, float('-inf')) - mask = mask.repeat(1, image_f.shape[1], 1) - image_features = self.model.cross_model(image_f, text_f, mask.half())[:, 0, :] - - image_features = image_features / image_features.norm(dim=-1, keepdim=True) - text_features = text_features / text_features.norm(dim=-1, keepdim=True) - image_score = self.model.logit_scale.exp() * text_features @ image_features.T - - return image_score[0].cpu().numpy().item() - - @torch.no_grad() - def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]: - """Score the images based on the prompt. - - Args: - images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s). - prompt (str): The prompt text. - - Returns: - List[float]: List of reward scores for the images. - """ - if isinstance(images, (str, Image.Image)): - # Single image - if isinstance(images, str): - image = self.image_processor(Image.open(images), return_tensors="pt")["pixel_values"].to(self.device) - else: - image = self.image_processor(images, return_tensors="pt")["pixel_values"].to(self.device) - return [self._calculate_score(image, prompt)] - elif isinstance(images, list): - # Multiple images - scores = [] - for one_images in images: - if isinstance(one_images, str): - image = self.image_processor(Image.open(one_images), return_tensors="pt")["pixel_values"].to(self.device) - elif isinstance(one_images, Image.Image): - image = self.image_processor(one_images, return_tensors="pt")["pixel_values"].to(self.device) - else: - raise TypeError("The type of parameter images is illegal.") - scores.append(self._calculate_score(image, prompt)) - return scores - else: - raise TypeError("The type of parameter images is illegal.") diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/__init__.py b/diffsynth/extensions/ImageQualityMetric/open_clip/__init__.py deleted file mode 100644 index 1560db0b543b7b8857f39d7de435c834380666ab..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/__init__.py +++ /dev/null @@ -1,14 +0,0 @@ -from .coca_model import CoCa -from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD -from .factory import create_model, create_model_and_transforms, create_model_from_pretrained, get_tokenizer, create_loss -from .factory import list_models, add_model_config, get_model_config, load_checkpoint -from .loss import ClipLoss, DistillClipLoss, CoCaLoss -from .model import CLIP, CustomTextCLIP, CLIPTextCfg, CLIPVisionCfg, \ - convert_weights_to_lp, convert_weights_to_fp16, trace_model, get_cast_dtype -from .openai import load_openai_model, list_openai_models -from .pretrained import list_pretrained, list_pretrained_models_by_tag, list_pretrained_tags_by_model, \ - get_pretrained_url, download_pretrained_from_url, is_pretrained_cfg, get_pretrained_cfg, download_pretrained -from .push_to_hf_hub import push_pretrained_to_hf_hub, push_to_hf_hub -from .tokenizer import SimpleTokenizer -from .transform import image_transform, AugmentationCfg -from .utils import freeze_batch_norm_2d diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/coca_model.py b/diffsynth/extensions/ImageQualityMetric/open_clip/coca_model.py deleted file mode 100644 index 039453af70d1c865dd7cc6016f732aff2f7dc3d2..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/coca_model.py +++ /dev/null @@ -1,458 +0,0 @@ -from typing import Optional - -import torch -from torch import nn -from torch.nn import functional as F -import numpy as np -from dataclasses import dataclass - -from .transformer import ( - LayerNormFp32, - LayerNorm, - QuickGELU, - MultimodalTransformer, -) -from .model import CLIPTextCfg, CLIPVisionCfg, _build_vision_tower, _build_text_tower - -try: - from transformers import ( - BeamSearchScorer, - LogitsProcessorList, - TopPLogitsWarper, - TopKLogitsWarper, - RepetitionPenaltyLogitsProcessor, - MinLengthLogitsProcessor, - MaxLengthCriteria, - StoppingCriteriaList - ) - - GENERATION_TYPES = { - "top_k": TopKLogitsWarper, - "top_p": TopPLogitsWarper, - "beam_search": "beam_search" - } - _has_transformers = True -except ImportError as e: - GENERATION_TYPES = { - "top_k": None, - "top_p": None, - "beam_search": "beam_search" - } - _has_transformers = False - - -@dataclass -class MultimodalCfg(CLIPTextCfg): - mlp_ratio: int = 4 - dim_head: int = 64 - heads: int = 8 - n_queries: int = 256 - attn_pooler_heads: int = 8 - - -def _build_text_decoder_tower( - embed_dim, - multimodal_cfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, -): - multimodal_cfg = MultimodalCfg(**multimodal_cfg) if isinstance(multimodal_cfg, dict) else multimodal_cfg - act_layer = QuickGELU if quick_gelu else nn.GELU - norm_layer = ( - LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm - ) - - decoder = MultimodalTransformer( - context_length=multimodal_cfg.context_length, - width=multimodal_cfg.width, - heads=multimodal_cfg.heads, - layers=multimodal_cfg.layers, - ls_init_value=multimodal_cfg.ls_init_value, - output_dim=embed_dim, - act_layer=act_layer, - norm_layer=norm_layer, - ) - - return decoder - - -class CoCa(nn.Module): - def __init__( - self, - embed_dim, - multimodal_cfg: MultimodalCfg, - text_cfg: CLIPTextCfg, - vision_cfg: CLIPVisionCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, - pad_id: int = 0, - ): - super().__init__() - multimodal_cfg = MultimodalCfg(**multimodal_cfg) if isinstance(multimodal_cfg, dict) else multimodal_cfg - text_cfg = CLIPTextCfg(**text_cfg) if isinstance(text_cfg, dict) else text_cfg - vision_cfg = CLIPVisionCfg(**vision_cfg) if isinstance(vision_cfg, dict) else vision_cfg - - self.text = _build_text_tower( - embed_dim=embed_dim, - text_cfg=text_cfg, - quick_gelu=quick_gelu, - cast_dtype=cast_dtype, - ) - - vocab_size = ( - text_cfg.vocab_size # for hf models - if hasattr(text_cfg, "hf_model_name") and text_cfg.hf_model_name is not None - else text_cfg.vocab_size - ) - - self.visual = _build_vision_tower( - embed_dim=embed_dim, - vision_cfg=vision_cfg, - quick_gelu=quick_gelu, - cast_dtype=cast_dtype, - ) - - self.text_decoder = _build_text_decoder_tower( - vocab_size, - multimodal_cfg=multimodal_cfg, - quick_gelu=quick_gelu, - cast_dtype=cast_dtype, - ) - - self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) - self.pad_id = pad_id - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.visual.set_grad_checkpointing(enable) - self.text.set_grad_checkpointing(enable) - self.text_decoder.set_grad_checkpointing(enable) - - def _encode_image(self, images, normalize=True): - image_latent, tokens_embs = self.visual(images) - image_latent = F.normalize(image_latent, dim=-1) if normalize else image_latent - return image_latent, tokens_embs - - def _encode_text(self, text, normalize=True, embed_cls=True): - text = text[:, :-1] if embed_cls else text # make space for CLS token - text_latent, token_emb = self.text(text) - text_latent = F.normalize(text_latent, dim=-1) if normalize else text_latent - return text_latent, token_emb - - def encode_image(self, images, normalize=True): - image_latent, _ = self._encode_image(images, normalize=normalize) - return image_latent - - def encode_text(self, text, normalize=True, embed_cls=True): - text_latent, _ = self._encode_text(text, normalize=normalize, embed_cls=embed_cls) - return text_latent - - def forward(self, image, text, embed_cls=True, image_latent=None, image_embs=None): - text_latent, token_embs = self._encode_text(text, embed_cls=embed_cls) - if image_latent is None or image_embs is None: - image_latent, image_embs = self._encode_image(image) - - # TODO: add assertion to avoid bugs? - labels = text[:, -token_embs.shape[1]:] - - logits = self.text_decoder(image_embs, token_embs) - return { - "image_features": image_latent, - "text_features": text_latent, - "logits": logits, - "labels": labels, - "logit_scale": self.logit_scale.exp() - } - - def generate( - self, - image, - text=None, - seq_len=30, - max_seq_len=77, - temperature=1., - generation_type="beam_search", - top_p=0.1, # keep tokens in the 1 - top_p quantile - top_k=1, # keeps the top_k most probable tokens - pad_token_id=None, - eos_token_id=None, - sot_token_id=None, - num_beams=6, - num_beam_groups=3, - min_seq_len=5, - stopping_criteria=None, - repetition_penalty=1.0, - fixed_output_length=False # if True output.shape == (batch_size, seq_len) - ): - # taking many ideas and components from HuggingFace GenerationMixin - # https://huggingface.co/docs/transformers/main/en/main_classes/text_generation - assert _has_transformers, "Please install transformers for generate functionality. `pip install transformers`." - assert seq_len > min_seq_len, "seq_len must be larger than min_seq_len" - - with torch.no_grad(): - sot_token_id = 49406 if sot_token_id is None else sot_token_id - eos_token_id = 49407 if eos_token_id is None else eos_token_id - pad_token_id = self.pad_id if pad_token_id is None else pad_token_id - logit_processor = LogitsProcessorList( - [ - MinLengthLogitsProcessor(min_seq_len, eos_token_id), - RepetitionPenaltyLogitsProcessor(repetition_penalty), - ] - ) - - if stopping_criteria is None: - stopping_criteria = [MaxLengthCriteria(max_length=seq_len)] - - stopping_criteria = StoppingCriteriaList( - stopping_criteria - ) - - device = image.device - - if generation_type == "beam_search": - output = self._generate_beamsearch( - image_inputs = image, - pad_token_id=pad_token_id, - eos_token_id=eos_token_id, - sot_token_id=sot_token_id, - num_beams=num_beams, - num_beam_groups=num_beam_groups, - min_seq_len=min_seq_len, - stopping_criteria=stopping_criteria, - logit_processor=logit_processor, - ) - if fixed_output_length and output.shape[1] < seq_len: - return torch.cat( - (output, torch.ones(output.shape[0], seq_len-output.shape[1], device=device, dtype=output.dtype) * self.pad_id), - dim=1 - ) - return output - - elif generation_type == "top_p": - logit_warper = GENERATION_TYPES[generation_type](top_p) - elif generation_type == "top_k": - logit_warper = GENERATION_TYPES[generation_type](top_k) - else: - raise ValueError( - f"generation_type has to be one of " - f"{'| ' + ' | '.join(list(GENERATION_TYPES.keys())) + ' |'}." - ) - - image_latent, image_embs = self._encode_image(image) - - if text is None: - text = torch.ones((image.shape[0], 1), device=device, dtype=torch.long) * sot_token_id - - was_training = self.training - num_dims = len(text.shape) - - if num_dims == 1: - text = text[None, :] - - cur_len = text.shape[1] - self.eval() - out = text - - while True: - x = out[:, -max_seq_len:] - cur_len = x.shape[1] - logits = self(image, x, image_latent=image_latent, image_embs=image_embs, embed_cls=False)["logits"][:, -1] - mask = (out[:, -1] == eos_token_id) | (out[:, -1] == pad_token_id) - sample = torch.ones((out.shape[0], 1), device=device, dtype=torch.long) * pad_token_id - - if mask.all(): - if not fixed_output_length: - break - else: - logits = logits[~mask, :] - filtered_logits = logit_processor(x[~mask, :], logits) - filtered_logits = logit_warper(x[~mask, :], filtered_logits) - probs = F.softmax(filtered_logits / temperature, dim=-1) - - if (cur_len + 1 == seq_len): - sample[~mask, :] = torch.ones((sum(~mask), 1), device=device, dtype=torch.long) * eos_token_id - else: - sample[~mask, :] = torch.multinomial(probs, 1) - - out = torch.cat((out, sample), dim=-1) - - cur_len += 1 - - if stopping_criteria(out, None): - break - - if num_dims == 1: - out = out.squeeze(0) - - self.train(was_training) - return out - - def _generate_beamsearch( - self, - image_inputs, - pad_token_id=None, - eos_token_id=None, - sot_token_id=None, - num_beams=6, - num_beam_groups=3, - min_seq_len=5, - stopping_criteria=None, - logit_processor=None, - logit_warper=None, - ): - device = image_inputs.device - batch_size = image_inputs.shape[0] - image_inputs = torch.repeat_interleave(image_inputs, num_beams, dim=0) - image_latent, image_embs = self._encode_image(image_inputs) - - input_ids = torch.ones((batch_size * num_beams, 1), device=device, dtype=torch.long) - input_ids = input_ids * sot_token_id - beam_scorer = BeamSearchScorer( - batch_size=batch_size, - num_beams=num_beams, - device=device, - num_beam_groups=num_beam_groups, - ) - # instantiate logits processors - logits_processor = ( - LogitsProcessorList([MinLengthLogitsProcessor(min_seq_len, eos_token_id=eos_token_id)]) - if logit_processor is None - else logit_processor - ) - - batch_size = len(beam_scorer._beam_hyps) - num_beams = beam_scorer.num_beams - num_beam_groups = beam_scorer.num_beam_groups - num_sub_beams = num_beams // num_beam_groups - batch_beam_size, cur_len = input_ids.shape - beam_indices = None - - if num_beams * batch_size != batch_beam_size: - raise ValueError( - f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}." - ) - - beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device) - # initialise score of first beam of each group with 0 and the rest with 1e-9. This ensures that the beams in - # the same group don't produce same tokens everytime. - beam_scores[:, ::num_sub_beams] = 0 - beam_scores = beam_scores.view((batch_size * num_beams,)) - - while True: - - # predicted tokens in cur_len step - current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device) - - # indices which will form the beams in the next time step - reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device) - - # do one decoder step on all beams of all sentences in batch - model_inputs = prepare_inputs_for_generation(input_ids=input_ids, image_inputs=image_inputs) - outputs = self( - model_inputs['images'], - model_inputs['text'], - embed_cls=False, - image_latent=image_latent, - image_embs=image_embs - ) - - for beam_group_idx in range(num_beam_groups): - group_start_idx = beam_group_idx * num_sub_beams - group_end_idx = min(group_start_idx + num_sub_beams, num_beams) - group_size = group_end_idx - group_start_idx - - # indices of beams of current group among all sentences in batch - batch_group_indices = [] - - for batch_idx in range(batch_size): - batch_group_indices.extend( - [batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)] - ) - group_input_ids = input_ids[batch_group_indices] - - # select outputs of beams of currentg group only - next_token_logits = outputs['logits'][batch_group_indices, -1, :] - vocab_size = next_token_logits.shape[-1] - - next_token_scores_processed = logits_processor( - group_input_ids, next_token_logits, current_tokens=current_tokens, beam_group_idx=beam_group_idx - ) - next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1) - next_token_scores = next_token_scores.expand_as(next_token_scores_processed) - - # reshape for beam search - next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size) - - next_token_scores, next_tokens = torch.topk( - next_token_scores, 2 * group_size, dim=1, largest=True, sorted=True - ) - - next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor") - next_tokens = next_tokens % vocab_size - - # stateless - process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None - beam_outputs = beam_scorer.process( - group_input_ids, - next_token_scores, - next_tokens, - next_indices, - pad_token_id=pad_token_id, - eos_token_id=eos_token_id, - beam_indices=process_beam_indices, - ) - beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"] - beam_next_tokens = beam_outputs["next_beam_tokens"] - beam_idx = beam_outputs["next_beam_indices"] - - input_ids[batch_group_indices] = group_input_ids[beam_idx] - group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1) - current_tokens[batch_group_indices] = group_input_ids[:, -1] - - # (beam_idx // group_size) -> batch_idx - # (beam_idx % group_size) -> offset of idx inside the group - reordering_indices[batch_group_indices] = ( - num_beams * torch.div(beam_idx, group_size, rounding_mode="floor") + group_start_idx + (beam_idx % group_size) - ) - - input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1) - - # increase cur_len - cur_len = cur_len + 1 - if beam_scorer.is_done or stopping_criteria(input_ids, None): - break - - final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None - sequence_outputs = beam_scorer.finalize( - input_ids, - beam_scores, - next_tokens, - next_indices, - pad_token_id=pad_token_id, - eos_token_id=eos_token_id, - max_length=stopping_criteria.max_length, - beam_indices=final_beam_indices, - ) - return sequence_outputs['sequences'] - - -def prepare_inputs_for_generation(input_ids, image_inputs, past=None, **kwargs): - if past: - input_ids = input_ids[:, -1].unsqueeze(-1) - - attention_mask = kwargs.get("attention_mask", None) - position_ids = kwargs.get("position_ids", None) - - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - else: - position_ids = None - return { - "text": input_ids, - "images": image_inputs, - "past_key_values": past, - "position_ids": position_ids, - "attention_mask": attention_mask, - } diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/constants.py b/diffsynth/extensions/ImageQualityMetric/open_clip/constants.py deleted file mode 100644 index a670bb3fab442baeb9af53b91c312e6982af57ee..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/constants.py +++ /dev/null @@ -1,2 +0,0 @@ -OPENAI_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073) -OPENAI_DATASET_STD = (0.26862954, 0.26130258, 0.27577711) diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/factory.py b/diffsynth/extensions/ImageQualityMetric/open_clip/factory.py deleted file mode 100644 index 5bd51a1bb6b69e0e69147c8b7cb8d7bd4899b349..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/factory.py +++ /dev/null @@ -1,433 +0,0 @@ -import json -import logging -import os -import pathlib -import re -from copy import deepcopy -from pathlib import Path -# from turtle import forward -from typing import Any, Dict, Optional, Tuple, Union - -import torch - -from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD -from .model import CLIP, CustomTextCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ - resize_pos_embed, get_cast_dtype -from .coca_model import CoCa -from .loss import ClipLoss, DistillClipLoss, CoCaLoss -from .openai import load_openai_model -from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model, download_pretrained_from_hf -from .transform import image_transform, AugmentationCfg -from .tokenizer import HFTokenizer, SimpleTokenizer - - -HF_HUB_PREFIX = 'hf-hub:' -_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] -_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs - - -def _natural_key(string_): - return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] - - -def _rescan_model_configs(): - global _MODEL_CONFIGS - - config_ext = ('.json',) - config_files = [] - for config_path in _MODEL_CONFIG_PATHS: - if config_path.is_file() and config_path.suffix in config_ext: - config_files.append(config_path) - elif config_path.is_dir(): - for ext in config_ext: - config_files.extend(config_path.glob(f'*{ext}')) - - for cf in config_files: - with open(cf, 'r') as f: - model_cfg = json.load(f) - if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): - _MODEL_CONFIGS[cf.stem] = model_cfg - - _MODEL_CONFIGS = {k: v for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))} - - -_rescan_model_configs() # initial populate of model config registry - - -def list_models(): - """ enumerate available model architectures based on config files """ - return list(_MODEL_CONFIGS.keys()) - - -def add_model_config(path): - """ add model config path or file and update registry """ - if not isinstance(path, Path): - path = Path(path) - _MODEL_CONFIG_PATHS.append(path) - _rescan_model_configs() - - -def get_model_config(model_name): - if model_name in _MODEL_CONFIGS: - return deepcopy(_MODEL_CONFIGS[model_name]) - else: - return None - - -def get_tokenizer(model_name, open_clip_bpe_path=None): - if model_name.startswith(HF_HUB_PREFIX): - tokenizer = HFTokenizer(model_name[len(HF_HUB_PREFIX):]) - else: - config = get_model_config(model_name) - tokenizer = HFTokenizer( - config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else SimpleTokenizer(open_clip_bpe_path) - return tokenizer - - -def load_state_dict(checkpoint_path: str, map_location='cpu'): - checkpoint = torch.load(checkpoint_path, map_location=map_location) - if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: - state_dict = checkpoint['state_dict'] - else: - state_dict = checkpoint - if next(iter(state_dict.items()))[0].startswith('module'): - state_dict = {k[7:]: v for k, v in state_dict.items()} - return state_dict - - -def load_checkpoint(model, checkpoint_path, strict=True): - state_dict = load_state_dict(checkpoint_path) - # detect old format and make compatible with new format - if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): - state_dict = convert_to_custom_text_state_dict(state_dict) - resize_pos_embed(state_dict, model) - incompatible_keys = model.load_state_dict(state_dict, strict=strict) - return incompatible_keys - - -def create_model( - model_name: str, - pretrained: Optional[str] = None, - precision: str = 'fp32', - device: Union[str, torch.device] = 'cpu', - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_text: bool = False, - force_patch_dropout: Optional[float] = None, - force_image_size: Optional[Union[int, Tuple[int, int]]] = None, - pretrained_image: bool = False, - pretrained_hf: bool = True, - cache_dir: Optional[str] = None, - output_dict: Optional[bool] = None, - require_pretrained: bool = False, -): - has_hf_hub_prefix = model_name.startswith(HF_HUB_PREFIX) - if has_hf_hub_prefix: - model_id = model_name[len(HF_HUB_PREFIX):] - checkpoint_path = download_pretrained_from_hf(model_id, cache_dir=cache_dir) - config_path = download_pretrained_from_hf(model_id, filename='open_clip_config.json', cache_dir=cache_dir) - - with open(config_path, 'r', encoding='utf-8') as f: - config = json.load(f) - pretrained_cfg = config['preprocess_cfg'] - model_cfg = config['model_cfg'] - else: - model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names - checkpoint_path = None - pretrained_cfg = {} - model_cfg = None - - if isinstance(device, str): - device = torch.device(device) - - if pretrained and pretrained.lower() == 'openai': - logging.info(f'Loading pretrained {model_name} from OpenAI.') - model = load_openai_model( - model_name, - precision=precision, - device=device, - jit=jit, - cache_dir=cache_dir, - ) - - # to always output dict even if it is clip - if output_dict and hasattr(model, "output_dict"): - model.output_dict = True - else: - model_cfg = model_cfg or get_model_config(model_name) - if model_cfg is not None: - logging.info(f'Loaded {model_name} model config.') - else: - logging.error(f'Model config for {model_name} not found; available models {list_models()}.') - raise RuntimeError(f'Model config for {model_name} not found.') - - if force_quick_gelu: - # override for use of QuickGELU on non-OpenAI transformer models - model_cfg["quick_gelu"] = True - - if force_patch_dropout is not None: - # override the default patch dropout value - model_cfg["vision_cfg"]["patch_dropout"] = force_patch_dropout - - if force_image_size is not None: - # override model config's image size - model_cfg["vision_cfg"]["image_size"] = force_image_size - - if pretrained_image: - if 'timm_model_name' in model_cfg.get('vision_cfg', {}): - # pretrained weight loading for timm models set via vision_cfg - model_cfg['vision_cfg']['timm_model_pretrained'] = True - else: - assert False, 'pretrained image towers currently only supported for timm models' - - cast_dtype = get_cast_dtype(precision) - is_hf_model = 'hf_model_name' in model_cfg.get('text_cfg', {}) - custom_text = model_cfg.pop('custom_text', False) or force_custom_text or is_hf_model - - if custom_text: - if is_hf_model: - model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf - if "coca" in model_name: - model = CoCa(**model_cfg, cast_dtype=cast_dtype) - else: - model = CustomTextCLIP(**model_cfg, cast_dtype=cast_dtype) - else: - model = CLIP(**model_cfg, cast_dtype=cast_dtype) - - pretrained_loaded = False - if pretrained: - checkpoint_path = '' - pretrained_cfg = get_pretrained_cfg(model_name, pretrained) - if pretrained_cfg: - checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) - elif os.path.exists(pretrained): - checkpoint_path = pretrained - - if checkpoint_path: - logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') - load_checkpoint(model, checkpoint_path) - else: - error_str = ( - f'Pretrained weights ({pretrained}) not found for model {model_name}.' - f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.') - logging.warning(error_str) - raise RuntimeError(error_str) - pretrained_loaded = True - elif has_hf_hub_prefix: - logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') - load_checkpoint(model, checkpoint_path) - pretrained_loaded = True - - if require_pretrained and not pretrained_loaded: - # callers of create_model_from_pretrained always expect pretrained weights - raise RuntimeError( - f'Pretrained weights were required for (model: {model_name}, pretrained: {pretrained}) but not loaded.') - - model.to(device=device) - if precision in ("fp16", "bf16"): - convert_weights_to_lp(model, dtype=torch.bfloat16 if precision == 'bf16' else torch.float16) - - # set image / mean metadata from pretrained_cfg if available, or use default - model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN - model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD - - # to always output dict even if it is clip - if output_dict and hasattr(model, "output_dict"): - model.output_dict = True - - if jit: - model = torch.jit.script(model) - - return model - - -def create_loss(args): - if args.distill: - return DistillClipLoss( - local_loss=args.local_loss, - gather_with_grad=args.gather_with_grad, - cache_labels=True, - rank=args.rank, - world_size=args.world_size, - use_horovod=args.horovod, - ) - elif "coca" in args.model.lower(): - return CoCaLoss( - caption_loss_weight=args.coca_caption_loss_weight, - clip_loss_weight=args.coca_contrastive_loss_weight, - local_loss=args.local_loss, - gather_with_grad=args.gather_with_grad, - cache_labels=True, - rank=args.rank, - world_size=args.world_size, - use_horovod=args.horovod, - ) - return ClipLoss( - local_loss=args.local_loss, - gather_with_grad=args.gather_with_grad, - cache_labels=True, - rank=args.rank, - world_size=args.world_size, - use_horovod=args.horovod, - ) - -class MLP(torch.nn.Module): - def __init__(self, input_size): - super().__init__() - self.input_size = input_size - self.layers = torch.nn.Sequential( - torch.nn.Linear(self.input_size, 1024), - torch.nn.Dropout(0.2), - torch.nn.Linear(1024, 128), - torch.nn.Dropout(0.2), - torch.nn.Linear(128, 64), - torch.nn.Dropout(0.1), - torch.nn.Linear(64, 16), - torch.nn.Linear(16, 1) - ) - - def forward(self, x): - return self.layers(x) - -# class semantic_head(torch.nn.Module): -# def __init__(self, input_size): -# super().__init__() -# self.input_size = input_size # for ViT-L-14 is 1024 -# self.seg_head = torch.nn.Sequential( -# torch.nn.Linear(input_size, 128), -# torch.nn.Dropout(0.2), -# torch.nn.Linear(128, 64), -# torch.nn.Dropout(0.1), -# torch.nn.Linear(64, 16), -# torch.nn.Linear(16, 1), -# ) -# self.sigmoid = torch.nn.Sigmoid() - -# def forward(self, x): -# return self.sigmoid(self.seg_head(x)) - -def create_model_and_transforms( - model_name: str, - pretrained: Optional[str] = None, - precision: str = 'fp32', - device: Union[str, torch.device] = 'cpu', - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_text: bool = False, - force_patch_dropout: Optional[float] = None, - force_image_size: Optional[Union[int, Tuple[int, int]]] = None, - pretrained_image: bool = False, - pretrained_hf: bool = True, - image_mean: Optional[Tuple[float, ...]] = None, - image_std: Optional[Tuple[float, ...]] = None, - aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None, - cache_dir: Optional[str] = None, - light_augmentation = False, - output_dict: Optional[bool] = None, - with_score_predictor: bool = False, - with_region_predictor: bool = False -): - model = create_model( - model_name, - pretrained, - precision=precision, - device=device, - jit=jit, - force_quick_gelu=force_quick_gelu, - force_custom_text=force_custom_text, - force_patch_dropout=force_patch_dropout, - force_image_size=force_image_size, - pretrained_image=pretrained_image, - pretrained_hf=pretrained_hf, - cache_dir=cache_dir, - output_dict=output_dict, - ) - - image_mean = image_mean or getattr(model.visual, 'image_mean', None) - image_std = image_std or getattr(model.visual, 'image_std', None) - - if with_score_predictor: - model.score_predictor = MLP(model.visual.proj.size(1)).to(device=device, dtype=model.visual.proj.dtype) - - if with_region_predictor: - # model.region_predictor = semantic_head(model.visual.proj.size(1)).to(device=device, dtype=model.visual.proj.dtype) - model.region_predictor = torch.nn.Linear(model.visual.proj.size(0), 1).to(device=device, dtype=model.visual.proj.dtype) - # preprocess_train = image_transform_region( - # model.visual.image_size, - # is_train=True, - # mean=image_mean, - # std=image_std - # ) - # preprocess_val = image_transform_region( - # model.visual.image_size, - # is_train=False, - # mean=image_mean, - # std=image_std - # ) - - if light_augmentation: - preprocess_val = image_transform( - model.visual.image_size, - is_train=False, - mean=image_mean, - std=image_std, - resize_longest_max=True, - ) - preprocess_train = preprocess_val - else: - preprocess_train = image_transform( - model.visual.image_size, - is_train=True, - mean=image_mean, - std=image_std - ) - preprocess_val = image_transform( - model.visual.image_size, - is_train=False, - mean=image_mean, - std=image_std - ) - - return model, preprocess_train, preprocess_val - - -def create_model_from_pretrained( - model_name: str, - pretrained: Optional[str] = None, - precision: str = 'fp32', - device: Union[str, torch.device] = 'cpu', - jit: bool = False, - force_quick_gelu: bool = False, - force_custom_text: bool = False, - force_image_size: Optional[Union[int, Tuple[int, int]]] = None, - return_transform: bool = True, - image_mean: Optional[Tuple[float, ...]] = None, - image_std: Optional[Tuple[float, ...]] = None, - cache_dir: Optional[str] = None, -): - model = create_model( - model_name, - pretrained, - precision=precision, - device=device, - jit=jit, - force_quick_gelu=force_quick_gelu, - force_custom_text=force_custom_text, - force_image_size=force_image_size, - cache_dir=cache_dir, - require_pretrained=True, - ) - - if not return_transform: - return model - - image_mean = image_mean or getattr(model.visual, 'image_mean', None) - image_std = image_std or getattr(model.visual, 'image_std', None) - preprocess = image_transform( - model.visual.image_size, - is_train=False, - mean=image_mean, - std=image_std, - ) - - return model, preprocess diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/generation_utils.py b/diffsynth/extensions/ImageQualityMetric/open_clip/generation_utils.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/hf_configs.py b/diffsynth/extensions/ImageQualityMetric/open_clip/hf_configs.py deleted file mode 100644 index e236222bafce0358445ea16953ca0b2d5a84758a..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/hf_configs.py +++ /dev/null @@ -1,45 +0,0 @@ -# HF architecture dict: -arch_dict = { - # https://huggingface.co/docs/transformers/model_doc/roberta#roberta - "roberta": { - "config_names": { - "context_length": "max_position_embeddings", - "vocab_size": "vocab_size", - "width": "hidden_size", - "heads": "num_attention_heads", - "layers": "num_hidden_layers", - "layer_attr": "layer", - "token_embeddings_attr": "embeddings" - }, - "pooler": "mean_pooler", - }, - # https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig - "xlm-roberta": { - "config_names": { - "context_length": "max_position_embeddings", - "vocab_size": "vocab_size", - "width": "hidden_size", - "heads": "num_attention_heads", - "layers": "num_hidden_layers", - "layer_attr": "layer", - "token_embeddings_attr": "embeddings" - }, - "pooler": "mean_pooler", - }, - # https://huggingface.co/docs/transformers/model_doc/mt5#mt5 - "mt5": { - "config_names": { - # unlimited seqlen - # https://github.com/google-research/text-to-text-transfer-transformer/issues/273 - # https://github.com/huggingface/transformers/blob/v4.24.0/src/transformers/models/t5/modeling_t5.py#L374 - "context_length": "", - "vocab_size": "vocab_size", - "width": "d_model", - "heads": "num_heads", - "layers": "num_layers", - "layer_attr": "block", - "token_embeddings_attr": "embed_tokens" - }, - "pooler": "mean_pooler", - }, -} diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/hf_model.py b/diffsynth/extensions/ImageQualityMetric/open_clip/hf_model.py deleted file mode 100644 index fbccc812757bf10b122ff14096980e0e38d1d221..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/hf_model.py +++ /dev/null @@ -1,176 +0,0 @@ -""" huggingface model adapter - -Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model. -""" - -import re - -import torch -import torch.nn as nn -from torch import TensorType - -try: - import transformers - from transformers import AutoModel, AutoTokenizer, AutoConfig, PretrainedConfig - from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \ - BaseModelOutputWithPoolingAndCrossAttentions -except ImportError as e: - transformers = None - - - class BaseModelOutput: - pass - - - class PretrainedConfig: - pass - -from .hf_configs import arch_dict - - -# utils -def _camel2snake(s): - return re.sub(r'(? torch.Tensor: - # calculated ground-truth and cache if enabled - if self.prev_num_logits != num_logits or device not in self.labels: - labels = torch.arange(num_logits, device=device, dtype=torch.long) - if self.world_size > 1 and self.local_loss: - labels = labels + num_logits * self.rank - if self.cache_labels: - self.labels[device] = labels - self.prev_num_logits = num_logits - else: - labels = self.labels[device] - return labels - - def get_logits(self, image_features, text_features, logit_scale): - if self.world_size > 1: - all_image_features, all_text_features = gather_features( - image_features, text_features, - self.local_loss, self.gather_with_grad, self.rank, self.world_size, self.use_horovod) - - if self.local_loss: - logits_per_image = logit_scale * image_features @ all_text_features.T - logits_per_text = logit_scale * text_features @ all_image_features.T - else: - logits_per_image = logit_scale * all_image_features @ all_text_features.T - logits_per_text = logits_per_image.T - else: - logits_per_image = logit_scale * image_features @ text_features.T - logits_per_text = logit_scale * text_features @ image_features.T - - return logits_per_image, logits_per_text - - def forward(self, image_features, text_features, logit_scale, output_dict=False): - device = image_features.device - logits_per_image, logits_per_text = self.get_logits(image_features, text_features, logit_scale) - - labels = self.get_ground_truth(device, logits_per_image.shape[0]) - - total_loss = ( - F.cross_entropy(logits_per_image, labels) + - F.cross_entropy(logits_per_text, labels) - ) / 2 - return total_loss - -class PreferenceLoss(nn.Module): - - def forward(self, logits_per_image, num_images, labels): - - paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))] - paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-999) - - ce_loss = F.cross_entropy(paired_logits, labels) - return ce_loss - -class HPSLoss(nn.Module): - - def forward(self, text_logits, labels): - - device = text_logits.device - text_0_logits, text_1_logits = text_logits.chunk(2, dim=-1) - label_0, label_1 = labels.chunk(2, dim=-1) - - index = torch.arange(text_0_logits.shape[0], device=device, dtype=torch.long) - text_0_logits = text_0_logits[index, index] - text_1_logits = text_1_logits[index, index] - text_logits = torch.stack([text_0_logits, text_1_logits], dim=-1) - text_0_labels = torch.zeros(text_logits.shape[0], device=device, dtype=torch.long) - text_1_labels = text_0_labels + 1 - - text_0_loss = torch.nn.functional.cross_entropy(text_logits, text_0_labels, reduction="none") - text_1_loss = torch.nn.functional.cross_entropy(text_logits, text_1_labels, reduction="none") - - text_loss = label_0 * text_0_loss + label_1 * text_1_loss - - # absolute_example_weight = 1 / num_per_prompt - # denominator = absolute_example_weight.sum() - # weight_per_example = absolute_example_weight / denominator - # text_loss *= weight_per_example - - text_loss = text_loss.sum() - return text_loss - -class RankingLoss(nn.Module): - - def forward(self, logits_per_image, num_images, labels, margin = 1.0): - paired_logits_list = [logit[:,i] for i, logit in enumerate(logits_per_image.split(num_images.tolist()))] - label_list = [label for label in labels.split(num_images.tolist())] - # ranked_logits = [torch.index_select(paired_logits_list[i], 0, rank) for i, rank in enumerate(label_list)] - - paired_logits = pad_sequence(paired_logits_list, batch_first=True, padding_value=-1) - padded_labels = pad_sequence(label_list, batch_first=True, padding_value=10) - - # regulized_logits = torch.log(torch.sigmoid(paired_logits)) - - diff = paired_logits.unsqueeze(1) - paired_logits.unsqueeze(2) - # diff = paired_logits.unsqueeze(1) - paired_logits.unsqueeze(2) - # diff_label = torch.clamp(padded_labels.unsqueeze(1) - padded_labels.unsqueeze(2), min=-1, max=1) - diff_label = - (padded_labels.unsqueeze(1) - padded_labels.unsqueeze(2)) - mask = torch.triu(torch.ones(diff.shape[1], diff.shape[1]), diagonal=1).bool().detach() - - loss = torch.clamp(margin - torch.mul(diff[:, ~mask],diff_label[:,~mask]), min=0).mean() - return loss - -class CoCaLoss(ClipLoss): - def __init__( - self, - caption_loss_weight, - clip_loss_weight, - pad_id=0, # pad_token for open_clip custom tokenizer - local_loss=False, - gather_with_grad=False, - cache_labels=False, - rank=0, - world_size=1, - use_horovod=False, - ): - super().__init__( - local_loss=local_loss, - gather_with_grad=gather_with_grad, - cache_labels=cache_labels, - rank=rank, - world_size=world_size, - use_horovod=use_horovod - ) - - self.clip_loss_weight = clip_loss_weight - self.caption_loss_weight = caption_loss_weight - self.caption_loss = nn.CrossEntropyLoss(ignore_index=pad_id) - - def forward(self, image_features, text_features, logits, labels, logit_scale, output_dict=False): - clip_loss = super().forward(image_features, text_features, logit_scale) - clip_loss = self.clip_loss_weight * clip_loss - - caption_loss = self.caption_loss( - logits.permute(0, 2, 1), - labels, - ) - caption_loss = caption_loss * self.caption_loss_weight - - if output_dict: - return {"contrastive_loss": clip_loss, "caption_loss": caption_loss} - - return clip_loss, caption_loss - - -class DistillClipLoss(ClipLoss): - - def dist_loss(self, teacher_logits, student_logits): - return -(teacher_logits.softmax(dim=1) * student_logits.log_softmax(dim=1)).sum(dim=1).mean(dim=0) - - def forward( - self, - image_features, - text_features, - logit_scale, - dist_image_features, - dist_text_features, - dist_logit_scale, - output_dict=False, - ): - logits_per_image, logits_per_text = \ - self.get_logits(image_features, text_features, logit_scale) - - dist_logits_per_image, dist_logits_per_text = \ - self.get_logits(dist_image_features, dist_text_features, dist_logit_scale) - - labels = self.get_ground_truth(image_features.device, logits_per_image.shape[0]) - - contrastive_loss = ( - F.cross_entropy(logits_per_image, labels) + - F.cross_entropy(logits_per_text, labels) - ) / 2 - - distill_loss = ( - self.dist_loss(dist_logits_per_image, logits_per_image) + - self.dist_loss(dist_logits_per_text, logits_per_text) - ) / 2 - - if output_dict: - return {"contrastive_loss": contrastive_loss, "distill_loss": distill_loss} - - return contrastive_loss, distill_loss diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/model.py b/diffsynth/extensions/ImageQualityMetric/open_clip/model.py deleted file mode 100644 index e347c42fc8df6464ca28e59adadba61e53a38add..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/model.py +++ /dev/null @@ -1,461 +0,0 @@ -""" CLIP Model - -Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. -""" -from dataclasses import dataclass -import logging -import math -from typing import Optional, Tuple, Union - -import numpy as np -import torch -import torch.nn.functional as F -from torch import nn -from torch.utils.checkpoint import checkpoint - -from .hf_model import HFTextEncoder -from .modified_resnet import ModifiedResNet -from .timm_model import TimmModel -from .transformer import LayerNormFp32, LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer -from .utils import to_2tuple - - -@dataclass -class CLIPVisionCfg: - layers: Union[Tuple[int, int, int, int], int] = 12 - width: int = 768 - head_width: int = 64 - mlp_ratio: float = 4.0 - patch_size: int = 16 - image_size: Union[Tuple[int, int], int] = 224 - ls_init_value: Optional[float] = None # layer scale initial value - patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results - input_patchnorm: bool = False # whether to use dual patchnorm - would only apply the input layernorm on each patch, as post-layernorm already exist in original clip vit design - global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580) - attentional_pool: bool = False # whether to use attentional pooler in the last embedding layer - n_queries: int = 256 # n_queries for attentional pooler - attn_pooler_heads: int = 8 # n heads for attentional_pooling - timm_model_name: str = None # a valid model name overrides layers, width, patch_size - timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model - timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') - timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '') - timm_proj_bias: bool = False # enable bias final projection - timm_drop: float = 0. # head dropout - timm_drop_path: Optional[float] = None # backbone stochastic depth - output_tokens: bool = False - - -@dataclass -class CLIPTextCfg: - context_length: int = 77 - vocab_size: int = 49408 - width: int = 512 - heads: int = 8 - layers: int = 12 - ls_init_value: Optional[float] = None # layer scale initial value - hf_model_name: str = None - hf_tokenizer_name: str = None - hf_model_pretrained: bool = True - proj: str = 'mlp' - pooler_type: str = 'mean_pooler' - embed_cls: bool = False - pad_id: int = 0 - output_tokens: bool = False - - -def get_cast_dtype(precision: str): - cast_dtype = None - if precision == 'bf16': - cast_dtype = torch.bfloat16 - elif precision == 'fp16': - cast_dtype = torch.float16 - return cast_dtype - - -def _build_vision_tower( - embed_dim: int, - vision_cfg: CLIPVisionCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None -): - if isinstance(vision_cfg, dict): - vision_cfg = CLIPVisionCfg(**vision_cfg) - - # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more - # memory efficient in recent PyTorch releases (>= 1.10). - # NOTE: timm models always use native GELU regardless of quick_gelu flag. - act_layer = QuickGELU if quick_gelu else nn.GELU - - if vision_cfg.timm_model_name: - visual = TimmModel( - vision_cfg.timm_model_name, - pretrained=vision_cfg.timm_model_pretrained, - pool=vision_cfg.timm_pool, - proj=vision_cfg.timm_proj, - proj_bias=vision_cfg.timm_proj_bias, - drop=vision_cfg.timm_drop, - drop_path=vision_cfg.timm_drop_path, - embed_dim=embed_dim, - image_size=vision_cfg.image_size, - ) - act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models - elif isinstance(vision_cfg.layers, (tuple, list)): - vision_heads = vision_cfg.width * 32 // vision_cfg.head_width - visual = ModifiedResNet( - layers=vision_cfg.layers, - output_dim=embed_dim, - heads=vision_heads, - image_size=vision_cfg.image_size, - width=vision_cfg.width, - ) - else: - vision_heads = vision_cfg.width // vision_cfg.head_width - norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm - visual = VisionTransformer( - image_size=vision_cfg.image_size, - patch_size=vision_cfg.patch_size, - width=vision_cfg.width, - layers=vision_cfg.layers, - heads=vision_heads, - mlp_ratio=vision_cfg.mlp_ratio, - ls_init_value=vision_cfg.ls_init_value, - patch_dropout=vision_cfg.patch_dropout, - input_patchnorm=vision_cfg.input_patchnorm, - global_average_pool=vision_cfg.global_average_pool, - attentional_pool=vision_cfg.attentional_pool, - n_queries=vision_cfg.n_queries, - attn_pooler_heads=vision_cfg.attn_pooler_heads, - output_tokens=vision_cfg.output_tokens, - output_dim=embed_dim, - act_layer=act_layer, - norm_layer=norm_layer, - ) - - return visual - - -def _build_text_tower( - embed_dim: int, - text_cfg: CLIPTextCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, -): - if isinstance(text_cfg, dict): - text_cfg = CLIPTextCfg(**text_cfg) - - if text_cfg.hf_model_name: - text = HFTextEncoder( - text_cfg.hf_model_name, - output_dim=embed_dim, - proj=text_cfg.proj, - pooler_type=text_cfg.pooler_type, - pretrained=text_cfg.hf_model_pretrained, - output_tokens=text_cfg.output_tokens, - ) - else: - act_layer = QuickGELU if quick_gelu else nn.GELU - norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm - - text = TextTransformer( - context_length=text_cfg.context_length, - vocab_size=text_cfg.vocab_size, - width=text_cfg.width, - heads=text_cfg.heads, - layers=text_cfg.layers, - ls_init_value=text_cfg.ls_init_value, - output_dim=embed_dim, - embed_cls=text_cfg.embed_cls, - output_tokens=text_cfg.output_tokens, - pad_id=text_cfg.pad_id, - act_layer=act_layer, - norm_layer=norm_layer, - ) - return text - - -class CLIP(nn.Module): - output_dict: torch.jit.Final[bool] - - def __init__( - self, - embed_dim: int, - vision_cfg: CLIPVisionCfg, - text_cfg: CLIPTextCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, - output_dict: bool = False, - ): - super().__init__() - self.output_dict = output_dict - self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) - - text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) - self.transformer = text.transformer - self.vocab_size = text.vocab_size - self.token_embedding = text.token_embedding - self.positional_embedding = text.positional_embedding - self.ln_final = text.ln_final - self.text_projection = text.text_projection - self.register_buffer('attn_mask', text.attn_mask, persistent=False) - - self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) - - def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): - # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 - self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) - - def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): - locked_layers = [] - locked_layers.append(self.token_embedding) - self.positional_embedding.requires_grad = False - if unlocked_layers > 0: - locked_layers.append(self.transformer.resblocks[:-unlocked_layers]) - else: - locked_layers.append(self.transformer) - locked_layers.append(self.ln_final) - self.text_projection.requires_grad = False - - # freeze layers - for module in locked_layers: - for n, p in module.named_parameters(): - p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.visual.set_grad_checkpointing(enable) - self.transformer.grad_checkpointing = enable - - def encode_image(self, image, normalize: bool = False): - features = self.visual(image) - return F.normalize(features, dim=-1) if normalize else features - - def encode_text(self, text, normalize: bool = False): - cast_dtype = self.transformer.get_cast_dtype() - - x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] - - x = x + self.positional_embedding.to(cast_dtype) - x = x.permute(1, 0, 2) # NLD -> LND - x = self.transformer(x, attn_mask=self.attn_mask) - x = x.permute(1, 0, 2) # LND -> NLD - x = self.ln_final(x) # [batch_size, n_ctx, transformer.width] - # take features from the eot embedding (eot_token is the highest number in each sequence) - x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection - return F.normalize(x, dim=-1) if normalize else x - - def forward(self, image, text): - image_features = self.encode_image(image, normalize=True) - text_features = self.encode_text(text, normalize=True) - if self.output_dict: - return { - "image_features": image_features, - "text_features": text_features, - "logit_scale": self.logit_scale.exp() - } - return image_features, text_features, self.logit_scale.exp() - - -class CustomTextCLIP(nn.Module): - output_dict: torch.jit.Final[bool] - - def __init__( - self, - embed_dim: int, - vision_cfg: CLIPVisionCfg, - text_cfg: CLIPTextCfg, - quick_gelu: bool = False, - cast_dtype: Optional[torch.dtype] = None, - output_dict: bool = False, - ): - super().__init__() - self.output_dict = output_dict - self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype) - self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype) - self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) - - def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False): - # lock image tower as per LiT - https://arxiv.org/abs/2111.07991 - self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats) - - def lock_text_tower(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True): - self.text.lock(unlocked_layers, freeze_layer_norm) - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.visual.set_grad_checkpointing(enable) - self.text.set_grad_checkpointing(enable) - - def encode_image(self, image, normalize: bool = False): - features = self.visual(image) - return F.normalize(features, dim=-1) if normalize else features - - def encode_text(self, text, normalize: bool = False): - features = self.text(text) - return F.normalize(features, dim=-1) if normalize else features - - def forward(self, image, text): - image_features = self.encode_image(image, normalize=True) - text_features = self.encode_text(text, normalize=True) - if self.output_dict: - return { - "image_features": image_features, - "text_features": text_features, - "logit_scale": self.logit_scale.exp() - } - return image_features, text_features, self.logit_scale.exp() - - -def convert_weights_to_lp(model: nn.Module, dtype=torch.float16): - """Convert applicable model parameters to low-precision (bf16 or fp16)""" - - def _convert_weights(l): - if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): - l.weight.data = l.weight.data.to(dtype) - if l.bias is not None: - l.bias.data = l.bias.data.to(dtype) - - if isinstance(l, (nn.MultiheadAttention, Attention)): - for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: - tensor = getattr(l, attr) - if tensor is not None: - tensor.data = tensor.data.to(dtype) - - for name in ["text_projection", "proj"]: - if hasattr(l, name): - attr = getattr(l, name) - if attr is not None: - attr.data = attr.data.to(dtype) - - model.apply(_convert_weights) - - -convert_weights_to_fp16 = convert_weights_to_lp # backwards compat - - -# used to maintain checkpoint compatibility -def convert_to_custom_text_state_dict(state_dict: dict): - if 'text_projection' in state_dict: - # old format state_dict, move text tower -> .text - new_state_dict = {} - for k, v in state_dict.items(): - if any(k.startswith(p) for p in ( - 'text_projection', - 'positional_embedding', - 'token_embedding', - 'transformer', - 'ln_final', - )): - k = 'text.' + k - new_state_dict[k] = v - return new_state_dict - return state_dict - - -def build_model_from_openai_state_dict( - state_dict: dict, - quick_gelu=True, - cast_dtype=torch.float16, -): - vit = "visual.proj" in state_dict - - if vit: - vision_width = state_dict["visual.conv1.weight"].shape[0] - vision_layers = len( - [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) - vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] - grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) - image_size = vision_patch_size * grid_size - else: - counts: list = [ - len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] - vision_layers = tuple(counts) - vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] - output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) - vision_patch_size = None - assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] - image_size = output_width * 32 - - embed_dim = state_dict["text_projection"].shape[1] - context_length = state_dict["positional_embedding"].shape[0] - vocab_size = state_dict["token_embedding.weight"].shape[0] - transformer_width = state_dict["ln_final.weight"].shape[0] - transformer_heads = transformer_width // 64 - transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) - - vision_cfg = CLIPVisionCfg( - layers=vision_layers, - width=vision_width, - patch_size=vision_patch_size, - image_size=image_size, - ) - text_cfg = CLIPTextCfg( - context_length=context_length, - vocab_size=vocab_size, - width=transformer_width, - heads=transformer_heads, - layers=transformer_layers, - ) - model = CLIP( - embed_dim, - vision_cfg=vision_cfg, - text_cfg=text_cfg, - quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU - cast_dtype=cast_dtype, - ) - - for key in ["input_resolution", "context_length", "vocab_size"]: - state_dict.pop(key, None) - - convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16 - model.load_state_dict(state_dict) - return model.eval() - - -def trace_model(model, batch_size=256, device=torch.device('cpu')): - model.eval() - image_size = model.visual.image_size - example_images = torch.ones((batch_size, 3, image_size, image_size), device=device) - example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device) - model = torch.jit.trace_module( - model, - inputs=dict( - forward=(example_images, example_text), - encode_text=(example_text,), - encode_image=(example_images,) - )) - model.visual.image_size = image_size - return model - - -def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', antialias: bool = True): - # Rescale the grid of position embeddings when loading from state_dict - old_pos_embed = state_dict.get('visual.positional_embedding', None) - if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): - return - grid_size = to_2tuple(model.visual.grid_size) - extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more) - new_seq_len = grid_size[0] * grid_size[1] + extra_tokens - if new_seq_len == old_pos_embed.shape[0]: - return - - if extra_tokens: - pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] - else: - pos_emb_tok, pos_emb_img = None, old_pos_embed - old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) - - logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) - pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) - pos_emb_img = F.interpolate( - pos_emb_img, - size=grid_size, - mode=interpolation, - antialias=antialias, - align_corners=False, - ) - pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] - if pos_emb_tok is not None: - new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) - else: - new_pos_embed = pos_emb_img - state_dict['visual.positional_embedding'] = new_pos_embed diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/model_configs/ViT-H-14.json b/diffsynth/extensions/ImageQualityMetric/open_clip/model_configs/ViT-H-14.json deleted file mode 100644 index 3e3a7e934e7f02e41f4829996c4950e05f015a74..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/model_configs/ViT-H-14.json +++ /dev/null @@ -1,17 +0,0 @@ -{ - "embed_dim": 1024, - "vision_cfg": { - "image_size": 224, - "layers": 32, - "width": 1280, - "head_width": 80, - "patch_size": 14 - }, - "text_cfg": { - "context_length": 77, - "vocab_size": 49408, - "width": 1024, - "heads": 16, - "layers": 24 - } -} \ No newline at end of file diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/modified_resnet.py b/diffsynth/extensions/ImageQualityMetric/open_clip/modified_resnet.py deleted file mode 100644 index 6a8d3aeda91ecb394303becbbfccc8acd8cddcd9..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/modified_resnet.py +++ /dev/null @@ -1,181 +0,0 @@ -from collections import OrderedDict - -import torch -from torch import nn -from torch.nn import functional as F - -from .utils import freeze_batch_norm_2d - - -class Bottleneck(nn.Module): - expansion = 4 - - def __init__(self, inplanes, planes, stride=1): - super().__init__() - - # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 - self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) - self.bn1 = nn.BatchNorm2d(planes) - self.act1 = nn.ReLU(inplace=True) - - self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) - self.bn2 = nn.BatchNorm2d(planes) - self.act2 = nn.ReLU(inplace=True) - - self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() - - self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) - self.bn3 = nn.BatchNorm2d(planes * self.expansion) - self.act3 = nn.ReLU(inplace=True) - - self.downsample = None - self.stride = stride - - if stride > 1 or inplanes != planes * Bottleneck.expansion: - # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 - self.downsample = nn.Sequential(OrderedDict([ - ("-1", nn.AvgPool2d(stride)), - ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), - ("1", nn.BatchNorm2d(planes * self.expansion)) - ])) - - def forward(self, x: torch.Tensor): - identity = x - - out = self.act1(self.bn1(self.conv1(x))) - out = self.act2(self.bn2(self.conv2(out))) - out = self.avgpool(out) - out = self.bn3(self.conv3(out)) - - if self.downsample is not None: - identity = self.downsample(x) - - out += identity - out = self.act3(out) - return out - - -class AttentionPool2d(nn.Module): - def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): - super().__init__() - self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) - self.k_proj = nn.Linear(embed_dim, embed_dim) - self.q_proj = nn.Linear(embed_dim, embed_dim) - self.v_proj = nn.Linear(embed_dim, embed_dim) - self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) - self.num_heads = num_heads - - def forward(self, x): - x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC - x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC - x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC - x, _ = F.multi_head_attention_forward( - query=x, key=x, value=x, - embed_dim_to_check=x.shape[-1], - num_heads=self.num_heads, - q_proj_weight=self.q_proj.weight, - k_proj_weight=self.k_proj.weight, - v_proj_weight=self.v_proj.weight, - in_proj_weight=None, - in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), - bias_k=None, - bias_v=None, - add_zero_attn=False, - dropout_p=0., - out_proj_weight=self.c_proj.weight, - out_proj_bias=self.c_proj.bias, - use_separate_proj_weight=True, - training=self.training, - need_weights=False - ) - - return x[0] - - -class ModifiedResNet(nn.Module): - """ - A ResNet class that is similar to torchvision's but contains the following changes: - - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - - The final pooling layer is a QKV attention instead of an average pool - """ - - def __init__(self, layers, output_dim, heads, image_size=224, width=64): - super().__init__() - self.output_dim = output_dim - self.image_size = image_size - - # the 3-layer stem - self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) - self.bn1 = nn.BatchNorm2d(width // 2) - self.act1 = nn.ReLU(inplace=True) - self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) - self.bn2 = nn.BatchNorm2d(width // 2) - self.act2 = nn.ReLU(inplace=True) - self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) - self.bn3 = nn.BatchNorm2d(width) - self.act3 = nn.ReLU(inplace=True) - self.avgpool = nn.AvgPool2d(2) - - # residual layers - self._inplanes = width # this is a *mutable* variable used during construction - self.layer1 = self._make_layer(width, layers[0]) - self.layer2 = self._make_layer(width * 2, layers[1], stride=2) - self.layer3 = self._make_layer(width * 4, layers[2], stride=2) - self.layer4 = self._make_layer(width * 8, layers[3], stride=2) - - embed_dim = width * 32 # the ResNet feature dimension - self.attnpool = AttentionPool2d(image_size // 32, embed_dim, heads, output_dim) - - self.init_parameters() - - def _make_layer(self, planes, blocks, stride=1): - layers = [Bottleneck(self._inplanes, planes, stride)] - - self._inplanes = planes * Bottleneck.expansion - for _ in range(1, blocks): - layers.append(Bottleneck(self._inplanes, planes)) - - return nn.Sequential(*layers) - - def init_parameters(self): - if self.attnpool is not None: - std = self.attnpool.c_proj.in_features ** -0.5 - nn.init.normal_(self.attnpool.q_proj.weight, std=std) - nn.init.normal_(self.attnpool.k_proj.weight, std=std) - nn.init.normal_(self.attnpool.v_proj.weight, std=std) - nn.init.normal_(self.attnpool.c_proj.weight, std=std) - - for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]: - for name, param in resnet_block.named_parameters(): - if name.endswith("bn3.weight"): - nn.init.zeros_(param) - - def lock(self, unlocked_groups=0, freeze_bn_stats=False): - assert unlocked_groups == 0, 'partial locking not currently supported for this model' - for param in self.parameters(): - param.requires_grad = False - if freeze_bn_stats: - freeze_batch_norm_2d(self) - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - # FIXME support for non-transformer - pass - - def stem(self, x): - x = self.act1(self.bn1(self.conv1(x))) - x = self.act2(self.bn2(self.conv2(x))) - x = self.act3(self.bn3(self.conv3(x))) - x = self.avgpool(x) - return x - - def forward(self, x): - x = self.stem(x) - x = self.layer1(x) - x = self.layer2(x) - x = self.layer3(x) - x = self.layer4(x) - x = self.attnpool(x) - - return x diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/openai.py b/diffsynth/extensions/ImageQualityMetric/open_clip/openai.py deleted file mode 100644 index cc4e13e876d6a7a3463b457e62c517cb063b1356..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/openai.py +++ /dev/null @@ -1,144 +0,0 @@ -""" OpenAI pretrained model functions - -Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. -""" - -import os -import warnings -from typing import List, Optional, Union - -import torch - -from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype -from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url - -__all__ = ["list_openai_models", "load_openai_model"] - - -def list_openai_models() -> List[str]: - """Returns the names of available CLIP models""" - return list_pretrained_models_by_tag('openai') - - -def load_openai_model( - name: str, - precision: Optional[str] = None, - device: Optional[Union[str, torch.device]] = None, - jit: bool = True, - cache_dir: Optional[str] = None, -): - """Load a CLIP model - - Parameters - ---------- - name : str - A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict - precision: str - Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'. - device : Union[str, torch.device] - The device to put the loaded model - jit : bool - Whether to load the optimized JIT model (default) or more hackable non-JIT model. - cache_dir : Optional[str] - The directory to cache the downloaded model weights - - Returns - ------- - model : torch.nn.Module - The CLIP model - preprocess : Callable[[PIL.Image], torch.Tensor] - A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input - """ - if device is None: - device = "cuda" if torch.cuda.is_available() else "cpu" - if precision is None: - precision = 'fp32' if device == 'cpu' else 'fp16' - - if get_pretrained_url(name, 'openai'): - model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir) - elif os.path.isfile(name): - model_path = name - else: - raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}") - - try: - # loading JIT archive - model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() - state_dict = None - except RuntimeError: - # loading saved state dict - if jit: - warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") - jit = False - state_dict = torch.load(model_path, map_location="cpu") - - if not jit: - # Build a non-jit model from the OpenAI jitted model state dict - cast_dtype = get_cast_dtype(precision) - try: - model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype) - except KeyError: - sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} - model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype) - - # model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use - model = model.to(device) - if precision.startswith('amp') or precision == 'fp32': - model.float() - elif precision == 'bf16': - convert_weights_to_lp(model, dtype=torch.bfloat16) - - return model - - # patch the device names - device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) - device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] - - def patch_device(module): - try: - graphs = [module.graph] if hasattr(module, "graph") else [] - except RuntimeError: - graphs = [] - - if hasattr(module, "forward1"): - graphs.append(module.forward1.graph) - - for graph in graphs: - for node in graph.findAllNodes("prim::Constant"): - if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): - node.copyAttributes(device_node) - - model.apply(patch_device) - patch_device(model.encode_image) - patch_device(model.encode_text) - - # patch dtype to float32 (typically for CPU) - if precision == 'fp32': - float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) - float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] - float_node = float_input.node() - - def patch_float(module): - try: - graphs = [module.graph] if hasattr(module, "graph") else [] - except RuntimeError: - graphs = [] - - if hasattr(module, "forward1"): - graphs.append(module.forward1.graph) - - for graph in graphs: - for node in graph.findAllNodes("aten::to"): - inputs = list(node.inputs()) - for i in [1, 2]: # dtype can be the second or third argument to aten::to() - if inputs[i].node()["value"] == 5: - inputs[i].node().copyAttributes(float_node) - - model.apply(patch_float) - patch_float(model.encode_image) - patch_float(model.encode_text) - model.float() - - # ensure image_size attr available at consistent location for both jit and non-jit - model.visual.image_size = model.input_resolution.item() - return model diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/pretrained.py b/diffsynth/extensions/ImageQualityMetric/open_clip/pretrained.py deleted file mode 100644 index 87e7e527497d643fdf6ac931ac73b6e887a90d0d..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/pretrained.py +++ /dev/null @@ -1,376 +0,0 @@ -import hashlib -import os -import urllib -import warnings -from functools import partial -from typing import Dict, Union - -from tqdm import tqdm - -from .version import __version__ - -try: - from huggingface_hub import hf_hub_download - hf_hub_download = partial(hf_hub_download, library_name="open_clip", library_version=__version__) - _has_hf_hub = True -except ImportError: - hf_hub_download = None - _has_hf_hub = False - - -def _pcfg(url='', hf_hub='', mean=None, std=None): - return dict( - url=url, - hf_hub=hf_hub, - mean=mean, - std=std, - ) - - -_RN50 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt"), - yfcc15m=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt"), - cc12m=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt"), -) - -_RN50_quickgelu = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt"), - yfcc15m=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-yfcc15m-455df137.pt"), - cc12m=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn50-quickgelu-cc12m-f000538c.pt"), -) - -_RN101 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt"), - yfcc15m=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt"), -) - -_RN101_quickgelu = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt"), - yfcc15m=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/rn101-quickgelu-yfcc15m-3e04b30e.pt"), -) - -_RN50x4 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt"), -) - -_RN50x16 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt"), -) - -_RN50x64 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt"), -) - -_VITB32 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"), - laion400m_e31=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"), - laion400m_e32=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"), - laion2b_e16=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"), - laion2b_s34b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-laion2B-s34B-b79K/') -) - -_VITB32_quickgelu = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"), - laion400m_e31=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"), - laion400m_e32=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"), -) - -_VITB16 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"), - laion400m_e31=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"), - laion400m_e32=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"), - # laion400m_32k=_pcfg( - # url="", - # mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), - # laion400m_64k=_pcfg( - # url="", - # mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), - laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-B-16-laion2B-s34B-b88K/'), -) - -_VITB16_PLUS_240 = dict( - laion400m_e31=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"), - laion400m_e32=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"), -) - -_VITL14 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"), - laion400m_e31=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"), - laion400m_e32=_pcfg( - "https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"), - laion2b_s32b_b82k=_pcfg( - hf_hub='laion/CLIP-ViT-L-14-laion2B-s32B-b82K/', - mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), -) - -_VITL14_336 = dict( - openai=_pcfg( - "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"), -) - -_VITH14 = dict( - laion2b_s32b_b79k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-laion2B-s32B-b79K/'), -) - -_VITg14 = dict( - laion2b_s12b_b42k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s12B-b42K/'), - laion2b_s34b_b88k=_pcfg(hf_hub='laion/CLIP-ViT-g-14-laion2B-s34B-b88K/'), -) - -_VITbigG14 = dict( - laion2b_s39b_b160k=_pcfg(hf_hub='laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/'), -) - -_robertaViTB32 = dict( - laion2b_s12b_b32k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-roberta-base-laion2B-s12B-b32k/'), -) - -_xlmRobertaBaseViTB32 = dict( - laion5b_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k/'), -) - -_xlmRobertaLargeFrozenViTH14 = dict( - frozen_laion5b_s13b_b90k=_pcfg(hf_hub='laion/CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k/'), -) - -_convnext_base = dict( - laion400m_s13b_b51k=_pcfg(hf_hub='laion/CLIP-convnext_base-laion400M-s13B-b51K/'), -) - -_convnext_base_w = dict( - laion2b_s13b_b82k=_pcfg(hf_hub='laion/CLIP-convnext_base_w-laion2B-s13B-b82K/'), - laion2b_s13b_b82k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg/'), - laion_aesthetic_s13b_b82k=_pcfg(hf_hub='laion/CLIP-convnext_base_w-laion_aesthetic-s13B-b82K/'), -) - -_convnext_base_w_320 = dict( - laion_aesthetic_s13b_b82k=_pcfg(hf_hub='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K/'), - laion_aesthetic_s13b_b82k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K-augreg/'), -) - -_convnext_large_d = dict( - laion2b_s26b_b102k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg/'), -) - -_convnext_large_d_320 = dict( - laion2b_s29b_b131k_ft=_pcfg(hf_hub='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft/'), - laion2b_s29b_b131k_ft_soup=_pcfg(hf_hub='laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup/'), -) - -_convnext_xxlarge = dict( - laion2b_s34b_b82k_augreg=_pcfg(hf_hub='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg/'), - laion2b_s34b_b82k_augreg_rewind=_pcfg(hf_hub='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-rewind/'), - laion2b_s34b_b82k_augreg_soup=_pcfg(hf_hub='laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup/'), -) - -_coca_VITB32 = dict( - laion2b_s13b_b90k=_pcfg(hf_hub='laion/CoCa-ViT-B-32-laion2B-s13B-b90k/'), - mscoco_finetuned_laion2b_s13b_b90k=_pcfg(hf_hub='laion/mscoco_finetuned_CoCa-ViT-B-32-laion2B-s13B-b90k/') -) - -_coca_VITL14 = dict( - laion2b_s13b_b90k=_pcfg(hf_hub='laion/CoCa-ViT-L-14-laion2B-s13B-b90k/'), - mscoco_finetuned_laion2b_s13b_b90k=_pcfg(hf_hub='laion/mscoco_finetuned_CoCa-ViT-L-14-laion2B-s13B-b90k/') -) - - -_PRETRAINED = { - "RN50": _RN50, - "RN50-quickgelu": _RN50_quickgelu, - "RN101": _RN101, - "RN101-quickgelu": _RN101_quickgelu, - "RN50x4": _RN50x4, - "RN50x16": _RN50x16, - "RN50x64": _RN50x64, - "ViT-B-32": _VITB32, - "ViT-B-32-quickgelu": _VITB32_quickgelu, - "ViT-B-16": _VITB16, - "ViT-B-16-plus-240": _VITB16_PLUS_240, - "ViT-L-14": _VITL14, - "ViT-L-14-336": _VITL14_336, - "ViT-H-14": _VITH14, - "ViT-g-14": _VITg14, - "ViT-bigG-14": _VITbigG14, - "roberta-ViT-B-32": _robertaViTB32, - "xlm-roberta-base-ViT-B-32": _xlmRobertaBaseViTB32, - "xlm-roberta-large-ViT-H-14": _xlmRobertaLargeFrozenViTH14, - "convnext_base": _convnext_base, - "convnext_base_w": _convnext_base_w, - "convnext_base_w_320": _convnext_base_w_320, - "convnext_large_d": _convnext_large_d, - "convnext_large_d_320": _convnext_large_d_320, - "convnext_xxlarge": _convnext_xxlarge, - "coca_ViT-B-32": _coca_VITB32, - "coca_ViT-L-14": _coca_VITL14, -} - - -def _clean_tag(tag: str): - # normalize pretrained tags - return tag.lower().replace('-', '_') - - -def list_pretrained(as_str: bool = False): - """ returns list of pretrained models - Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True - """ - return [':'.join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()] - - -def list_pretrained_models_by_tag(tag: str): - """ return all models having the specified pretrain tag """ - models = [] - tag = _clean_tag(tag) - for k in _PRETRAINED.keys(): - if tag in _PRETRAINED[k]: - models.append(k) - return models - - -def list_pretrained_tags_by_model(model: str): - """ return all pretrain tags for the specified model architecture """ - tags = [] - if model in _PRETRAINED: - tags.extend(_PRETRAINED[model].keys()) - return tags - - -def is_pretrained_cfg(model: str, tag: str): - if model not in _PRETRAINED: - return False - return _clean_tag(tag) in _PRETRAINED[model] - - -def get_pretrained_cfg(model: str, tag: str): - if model not in _PRETRAINED: - return {} - model_pretrained = _PRETRAINED[model] - return model_pretrained.get(_clean_tag(tag), {}) - - -def get_pretrained_url(model: str, tag: str): - cfg = get_pretrained_cfg(model, _clean_tag(tag)) - return cfg.get('url', '') - - -def download_pretrained_from_url( - url: str, - cache_dir: Union[str, None] = None, -): - if not cache_dir: - cache_dir = os.path.expanduser("~/.cache/clip") - os.makedirs(cache_dir, exist_ok=True) - filename = os.path.basename(url) - - if 'openaipublic' in url: - expected_sha256 = url.split("/")[-2] - elif 'mlfoundations' in url: - expected_sha256 = os.path.splitext(filename)[0].split("-")[-1] - else: - expected_sha256 = '' - - download_target = os.path.join(cache_dir, filename) - - if os.path.exists(download_target) and not os.path.isfile(download_target): - raise RuntimeError(f"{download_target} exists and is not a regular file") - - if os.path.isfile(download_target): - if expected_sha256: - if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): - return download_target - else: - warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") - else: - return download_target - - with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: - with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop: - while True: - buffer = source.read(8192) - if not buffer: - break - - output.write(buffer) - loop.update(len(buffer)) - - if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): - raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") - - return download_target - - -def has_hf_hub(necessary=False): - if not _has_hf_hub and necessary: - # if no HF Hub module installed, and it is necessary to continue, raise error - raise RuntimeError( - 'Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.') - return _has_hf_hub - - -def download_pretrained_from_hf( - model_id: str, - filename: str = 'open_clip_pytorch_model.bin', - revision=None, - cache_dir: Union[str, None] = None, -): - has_hf_hub(True) - cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir) - return cached_file - - -def download_pretrained( - cfg: Dict, - force_hf_hub: bool = False, - cache_dir: Union[str, None] = None, -): - target = '' - if not cfg: - return target - - download_url = cfg.get('url', '') - download_hf_hub = cfg.get('hf_hub', '') - if download_hf_hub and force_hf_hub: - # use HF hub even if url exists - download_url = '' - - if download_url: - target = download_pretrained_from_url(download_url, cache_dir=cache_dir) - elif download_hf_hub: - has_hf_hub(True) - # we assume the hf_hub entries in pretrained config combine model_id + filename in - # 'org/model_name/filename.pt' form. To specify just the model id w/o filename and - # use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'. - model_id, filename = os.path.split(download_hf_hub) - if filename: - target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir) - else: - target = download_pretrained_from_hf(model_id, cache_dir=cache_dir) - - return target diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/push_to_hf_hub.py b/diffsynth/extensions/ImageQualityMetric/open_clip/push_to_hf_hub.py deleted file mode 100644 index 23c0631c81dcb43829b7374fac09406ecefcb436..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/push_to_hf_hub.py +++ /dev/null @@ -1,243 +0,0 @@ -import argparse -import json -from pathlib import Path -from tempfile import TemporaryDirectory -from typing import Optional, Tuple - -import torch - -try: - from huggingface_hub import ( - create_repo, - get_hf_file_metadata, - hf_hub_download, - hf_hub_url, - repo_type_and_id_from_hf_id, - upload_folder, - ) - from huggingface_hub.utils import EntryNotFoundError - _has_hf_hub = True -except ImportError: - _has_hf_hub = False - -from .factory import create_model_from_pretrained, get_model_config, get_tokenizer -from .tokenizer import HFTokenizer - - -def save_config_for_hf( - model, - config_path: str, - model_config: Optional[dict] -): - preprocess_cfg = { - 'mean': model.visual.image_mean, - 'std': model.visual.image_std, - } - hf_config = { - 'model_cfg': model_config, - 'preprocess_cfg': preprocess_cfg, - } - - with config_path.open('w') as f: - json.dump(hf_config, f, indent=2) - - -def save_for_hf( - model, - tokenizer: HFTokenizer, - model_config: dict, - save_directory: str, - weights_filename='open_clip_pytorch_model.bin', - config_filename='open_clip_config.json', -): - save_directory = Path(save_directory) - save_directory.mkdir(exist_ok=True, parents=True) - - weights_path = save_directory / weights_filename - torch.save(model.state_dict(), weights_path) - - tokenizer.save_pretrained(save_directory) - - config_path = save_directory / config_filename - save_config_for_hf(model, config_path, model_config=model_config) - - -def push_to_hf_hub( - model, - tokenizer, - model_config: Optional[dict], - repo_id: str, - commit_message: str = 'Add model', - token: Optional[str] = None, - revision: Optional[str] = None, - private: bool = False, - create_pr: bool = False, - model_card: Optional[dict] = None, -): - if not isinstance(tokenizer, HFTokenizer): - # default CLIP tokenizers use https://huggingface.co/openai/clip-vit-large-patch14 - tokenizer = HFTokenizer('openai/clip-vit-large-patch14') - - # Create repo if it doesn't exist yet - repo_url = create_repo(repo_id, token=token, private=private, exist_ok=True) - - # Infer complete repo_id from repo_url - # Can be different from the input `repo_id` if repo_owner was implicit - _, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url) - repo_id = f"{repo_owner}/{repo_name}" - - # Check if README file already exist in repo - try: - get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision)) - has_readme = True - except EntryNotFoundError: - has_readme = False - - # Dump model and push to Hub - with TemporaryDirectory() as tmpdir: - # Save model weights and config. - save_for_hf( - model, - tokenizer=tokenizer, - model_config=model_config, - save_directory=tmpdir, - ) - - # Add readme if it does not exist - if not has_readme: - model_card = model_card or {} - model_name = repo_id.split('/')[-1] - readme_path = Path(tmpdir) / "README.md" - readme_text = generate_readme(model_card, model_name) - readme_path.write_text(readme_text) - - # Upload model and return - return upload_folder( - repo_id=repo_id, - folder_path=tmpdir, - revision=revision, - create_pr=create_pr, - commit_message=commit_message, - ) - - -def push_pretrained_to_hf_hub( - model_name, - pretrained: str, - repo_id: str, - image_mean: Optional[Tuple[float, ...]] = None, - image_std: Optional[Tuple[float, ...]] = None, - commit_message: str = 'Add model', - token: Optional[str] = None, - revision: Optional[str] = None, - private: bool = False, - create_pr: bool = False, - model_card: Optional[dict] = None, -): - model, preprocess_eval = create_model_from_pretrained( - model_name, - pretrained=pretrained, - image_mean=image_mean, - image_std=image_std, - ) - - model_config = get_model_config(model_name) - assert model_config - - tokenizer = get_tokenizer(model_name) - - push_to_hf_hub( - model=model, - tokenizer=tokenizer, - model_config=model_config, - repo_id=repo_id, - commit_message=commit_message, - token=token, - revision=revision, - private=private, - create_pr=create_pr, - model_card=model_card, - ) - - -def generate_readme(model_card: dict, model_name: str): - readme_text = "---\n" - readme_text += "tags:\n- zero-shot-image-classification\n- clip\n" - readme_text += "library_tag: open_clip\n" - readme_text += f"license: {model_card.get('license', 'mit')}\n" - if 'details' in model_card and 'Dataset' in model_card['details']: - readme_text += 'datasets:\n' - readme_text += f"- {model_card['details']['Dataset'].lower()}\n" - readme_text += "---\n" - readme_text += f"# Model card for {model_name}\n" - if 'description' in model_card: - readme_text += f"\n{model_card['description']}\n" - if 'details' in model_card: - readme_text += f"\n## Model Details\n" - for k, v in model_card['details'].items(): - if isinstance(v, (list, tuple)): - readme_text += f"- **{k}:**\n" - for vi in v: - readme_text += f" - {vi}\n" - elif isinstance(v, dict): - readme_text += f"- **{k}:**\n" - for ki, vi in v.items(): - readme_text += f" - {ki}: {vi}\n" - else: - readme_text += f"- **{k}:** {v}\n" - if 'usage' in model_card: - readme_text += f"\n## Model Usage\n" - readme_text += model_card['usage'] - readme_text += '\n' - - if 'comparison' in model_card: - readme_text += f"\n## Model Comparison\n" - readme_text += model_card['comparison'] - readme_text += '\n' - - if 'citation' in model_card: - readme_text += f"\n## Citation\n" - if not isinstance(model_card['citation'], (list, tuple)): - citations = [model_card['citation']] - else: - citations = model_card['citation'] - for c in citations: - readme_text += f"```bibtex\n{c}\n```\n" - - return readme_text - - -if __name__ == "__main__": - parser = argparse.ArgumentParser(description="Push to Hugging Face Hub") - parser.add_argument( - "--model", type=str, help="Name of the model to use.", - ) - parser.add_argument( - "--pretrained", type=str, - help="Use a pretrained CLIP model weights with the specified tag or file path.", - ) - parser.add_argument( - "--repo-id", type=str, - help="Destination HF Hub repo-id ie 'organization/model_id'.", - ) - parser.add_argument( - '--image-mean', type=float, nargs='+', default=None, metavar='MEAN', - help='Override default image mean value of dataset') - parser.add_argument( - '--image-std', type=float, nargs='+', default=None, metavar='STD', - help='Override default image std deviation of of dataset') - args = parser.parse_args() - - print(f'Saving model {args.model} with pretrained weights {args.pretrained} to Hugging Face Hub at {args.repo_id}') - - # FIXME add support to pass model_card json / template from file via cmd line - - push_pretrained_to_hf_hub( - args.model, - args.pretrained, - args.repo_id, - image_mean=args.image_mean, # override image mean/std if trained w/ non defaults - image_std=args.image_std, - ) - - print(f'{args.model} saved.') diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/timm_model.py b/diffsynth/extensions/ImageQualityMetric/open_clip/timm_model.py deleted file mode 100644 index dc71a693f9a42ec01fd88d307661bc382b4d05bc..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/timm_model.py +++ /dev/null @@ -1,127 +0,0 @@ -""" timm model adapter - -Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model. -""" -import logging -from collections import OrderedDict - -import torch -import torch.nn as nn - -try: - import timm - from timm.models.layers import Mlp, to_2tuple - try: - # old timm imports < 0.8.1 - from timm.models.layers.attention_pool2d import RotAttentionPool2d - from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d - except ImportError: - # new timm imports >= 0.8.1 - from timm.layers import RotAttentionPool2d - from timm.layers import AttentionPool2d as AbsAttentionPool2d -except ImportError: - timm = None - -from .utils import freeze_batch_norm_2d - - -class TimmModel(nn.Module): - """ timm model adapter - # FIXME this adapter is a work in progress, may change in ways that break weight compat - """ - - def __init__( - self, - model_name, - embed_dim, - image_size=224, - pool='avg', - proj='linear', - proj_bias=False, - drop=0., - drop_path=None, - pretrained=False, - ): - super().__init__() - if timm is None: - raise RuntimeError("Please `pip install timm` to use timm models.") - - self.image_size = to_2tuple(image_size) - timm_kwargs = {} - if drop_path is not None: - timm_kwargs['drop_path_rate'] = drop_path - self.trunk = timm.create_model(model_name, pretrained=pretrained, **timm_kwargs) - feat_size = self.trunk.default_cfg.get('pool_size', None) - feature_ndim = 1 if not feat_size else 2 - if pool in ('abs_attn', 'rot_attn'): - assert feature_ndim == 2 - # if attn pooling used, remove both classifier and default pool - self.trunk.reset_classifier(0, global_pool='') - else: - # reset global pool if pool config set, otherwise leave as network default - reset_kwargs = dict(global_pool=pool) if pool else {} - self.trunk.reset_classifier(0, **reset_kwargs) - prev_chs = self.trunk.num_features - - head_layers = OrderedDict() - if pool == 'abs_attn': - head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim) - prev_chs = embed_dim - elif pool == 'rot_attn': - head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim) - prev_chs = embed_dim - else: - assert proj, 'projection layer needed if non-attention pooling is used.' - - # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used - if proj == 'linear': - head_layers['drop'] = nn.Dropout(drop) - head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias) - elif proj == 'mlp': - head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=(drop, 0), bias=(True, proj_bias)) - - self.head = nn.Sequential(head_layers) - - def lock(self, unlocked_groups=0, freeze_bn_stats=False): - """ lock modules - Args: - unlocked_groups (int): leave last n layer groups unlocked (default: 0) - """ - if not unlocked_groups: - # lock full model - for param in self.trunk.parameters(): - param.requires_grad = False - if freeze_bn_stats: - freeze_batch_norm_2d(self.trunk) - else: - # NOTE: partial freeze requires latest timm (master) branch and is subject to change - try: - # FIXME import here until API stable and in an official release - from timm.models.helpers import group_parameters, group_modules - except ImportError: - raise RuntimeError( - 'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`') - matcher = self.trunk.group_matcher() - gparams = group_parameters(self.trunk, matcher) - max_layer_id = max(gparams.keys()) - max_layer_id = max_layer_id - unlocked_groups - for group_idx in range(max_layer_id + 1): - group = gparams[group_idx] - for param in group: - self.trunk.get_parameter(param).requires_grad = False - if freeze_bn_stats: - gmodules = group_modules(self.trunk, matcher, reverse=True) - gmodules = {k for k, v in gmodules.items() if v <= max_layer_id} - freeze_batch_norm_2d(self.trunk, gmodules) - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - try: - self.trunk.set_grad_checkpointing(enable) - except Exception as e: - logging.warning('grad checkpointing not supported for this timm image tower, continuing without...') - - def forward(self, x): - x = self.trunk(x) - x = self.head(x) - return x diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/tokenizer.py b/diffsynth/extensions/ImageQualityMetric/open_clip/tokenizer.py deleted file mode 100644 index 22ec4880b13ec73594d5c19b3d3be83aadb55aba..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/tokenizer.py +++ /dev/null @@ -1,211 +0,0 @@ -""" CLIP tokenizer - -Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. -""" -import gzip -import html -import os -from functools import lru_cache -from typing import Union, List - -import ftfy -import regex as re -import torch - -# https://stackoverflow.com/q/62691279 -import os -os.environ["TOKENIZERS_PARALLELISM"] = "false" - - -@lru_cache() -def default_bpe(): - current_dir = os.path.dirname(os.path.abspath(__file__)) - project_root = os.path.abspath(os.path.join(current_dir, '../../../../')) - quality_metric_path = os.path.join(project_root, 'models', 'QualityMetric') - return os.path.join(quality_metric_path, "bpe_simple_vocab_16e6.txt.gz") - - -@lru_cache() -def bytes_to_unicode(): - """ - Returns list of utf-8 byte and a corresponding list of unicode strings. - The reversible bpe codes work on unicode strings. - This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. - When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. - This is a significant percentage of your normal, say, 32K bpe vocab. - To avoid that, we want lookup tables between utf-8 bytes and unicode strings. - And avoids mapping to whitespace/control characters the bpe code barfs on. - """ - bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) - cs = bs[:] - n = 0 - for b in range(2**8): - if b not in bs: - bs.append(b) - cs.append(2**8+n) - n += 1 - cs = [chr(n) for n in cs] - return dict(zip(bs, cs)) - - -def get_pairs(word): - """Return set of symbol pairs in a word. - Word is represented as tuple of symbols (symbols being variable-length strings). - """ - pairs = set() - prev_char = word[0] - for char in word[1:]: - pairs.add((prev_char, char)) - prev_char = char - return pairs - - -def basic_clean(text): - text = ftfy.fix_text(text) - text = html.unescape(html.unescape(text)) - return text.strip() - - -def whitespace_clean(text): - text = re.sub(r'\s+', ' ', text) - text = text.strip() - return text - - -class SimpleTokenizer(object): - def __init__(self, bpe_path: str = default_bpe(), special_tokens=None): - self.byte_encoder = bytes_to_unicode() - self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} - merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') - merges = merges[1:49152-256-2+1] - merges = [tuple(merge.split()) for merge in merges] - vocab = list(bytes_to_unicode().values()) - vocab = vocab + [v+'' for v in vocab] - for merge in merges: - vocab.append(''.join(merge)) - if not special_tokens: - special_tokens = ['', ''] - else: - special_tokens = ['', ''] + special_tokens - vocab.extend(special_tokens) - self.encoder = dict(zip(vocab, range(len(vocab)))) - self.decoder = {v: k for k, v in self.encoder.items()} - self.bpe_ranks = dict(zip(merges, range(len(merges)))) - self.cache = {t:t for t in special_tokens} - special = "|".join(special_tokens) - self.pat = re.compile(special + r"""|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) - - self.vocab_size = len(self.encoder) - self.all_special_ids = [self.encoder[t] for t in special_tokens] - - def bpe(self, token): - if token in self.cache: - return self.cache[token] - word = tuple(token[:-1]) + ( token[-1] + '',) - pairs = get_pairs(word) - - if not pairs: - return token+'' - - while True: - bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf'))) - if bigram not in self.bpe_ranks: - break - first, second = bigram - new_word = [] - i = 0 - while i < len(word): - try: - j = word.index(first, i) - new_word.extend(word[i:j]) - i = j - except: - new_word.extend(word[i:]) - break - - if word[i] == first and i < len(word)-1 and word[i+1] == second: - new_word.append(first+second) - i += 2 - else: - new_word.append(word[i]) - i += 1 - new_word = tuple(new_word) - word = new_word - if len(word) == 1: - break - else: - pairs = get_pairs(word) - word = ' '.join(word) - self.cache[token] = word - return word - - def encode(self, text): - bpe_tokens = [] - text = whitespace_clean(basic_clean(text)).lower() - for token in re.findall(self.pat, text): - token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) - bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) - return bpe_tokens - - def decode(self, tokens): - text = ''.join([self.decoder[token] for token in tokens]) - text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('', ' ') - return text - - def __call__(self, texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor: - """ - Returns the tokenized representation of given input string(s) - - Parameters - ---------- - texts : Union[str, List[str]] - An input string or a list of input strings to tokenize - context_length : int - The context length to use; all CLIP models use 77 as the context length - - Returns - ------- - A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] - """ - if isinstance(texts, str): - texts = [texts] - - sot_token = self.encoder[""] - eot_token = self.encoder[""] - all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts] - result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) - - for i, tokens in enumerate(all_tokens): - if len(tokens) > context_length: - tokens = tokens[:context_length] # Truncate - tokens[-1] = eot_token - result[i, :len(tokens)] = torch.tensor(tokens) - - return result - - - -class HFTokenizer: - """HuggingFace tokenizer wrapper""" - - def __init__(self, tokenizer_name: str): - from transformers import AutoTokenizer - self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name) - - def save_pretrained(self, dest): - self.tokenizer.save_pretrained(dest) - - def __call__(self, texts: Union[str, List[str]], context_length: int = 77) -> torch.Tensor: - # same cleaning as for default tokenizer, except lowercasing - # adding lower (for case-sensitive tokenizers) will make it more robust but less sensitive to nuance - if isinstance(texts, str): - texts = [texts] - texts = [whitespace_clean(basic_clean(text)) for text in texts] - input_ids = self.tokenizer( - texts, - return_tensors='pt', - max_length=context_length, - padding='max_length', - truncation=True, - ).input_ids - return input_ids diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/transform.py b/diffsynth/extensions/ImageQualityMetric/open_clip/transform.py deleted file mode 100644 index fe4e21fa5b515f2412049f9274bd06fbe77fb9b9..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/transform.py +++ /dev/null @@ -1,216 +0,0 @@ -import warnings -from dataclasses import dataclass, asdict -from typing import Any, Dict, Optional, Sequence, Tuple, Union - -import torch -import torch.nn as nn -import torchvision.transforms.functional as F -from functools import partial -from torchvision.transforms import Normalize, Compose, RandomResizedCrop, InterpolationMode, ToTensor, Resize, \ - CenterCrop - -from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD - - -@dataclass -class AugmentationCfg: - scale: Tuple[float, float] = (0.9, 1.0) - ratio: Optional[Tuple[float, float]] = None - color_jitter: Optional[Union[float, Tuple[float, float, float]]] = None - interpolation: Optional[str] = None - re_prob: Optional[float] = None - re_count: Optional[int] = None - use_timm: bool = False - - -class ResizeMaxSize(nn.Module): - - def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0): - super().__init__() - if not isinstance(max_size, int): - raise TypeError(f"Size should be int. Got {type(max_size)}") - self.max_size = max_size - self.interpolation = interpolation - self.fn = min if fn == 'min' else min - self.fill = fill - - def forward(self, img): - if isinstance(img, torch.Tensor): - height, width = img.shape[1:] - else: - width, height = img.size - scale = self.max_size / float(max(height, width)) - if scale != 1.0: - new_size = tuple(round(dim * scale) for dim in (height, width)) - img = F.resize(img, new_size, self.interpolation) - pad_h = self.max_size - new_size[0] - pad_w = self.max_size - new_size[1] - img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill) - return img - - -def _convert_to_rgb_or_rgba(image): - if image.mode == 'RGBA': - return image - else: - return image.convert('RGB') - -# def transform_and_split(merged, transform_fn, normalize_fn): -# transformed = transform_fn(merged) -# crop_img, crop_label = torch.split(transformed, [3,1], dim=0) - -# # crop_img = _convert_to_rgb(crop_img) -# crop_img = normalize_fn(ToTensor()(crop_img)) -# return crop_img, crop_label - -class MaskAwareNormalize(nn.Module): - def __init__(self, mean, std): - super().__init__() - self.normalize = Normalize(mean=mean, std=std) - - def forward(self, tensor): - if tensor.shape[0] == 4: - return torch.cat([self.normalize(tensor[:3]), tensor[3:]], dim=0) - else: - return self.normalize(tensor) - -def image_transform( - image_size: int, - is_train: bool, - mean: Optional[Tuple[float, ...]] = None, - std: Optional[Tuple[float, ...]] = None, - resize_longest_max: bool = False, - fill_color: int = 0, - aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None, -): - mean = mean or OPENAI_DATASET_MEAN - if not isinstance(mean, (list, tuple)): - mean = (mean,) * 3 - - std = std or OPENAI_DATASET_STD - if not isinstance(std, (list, tuple)): - std = (std,) * 3 - - if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]: - # for square size, pass size as int so that Resize() uses aspect preserving shortest edge - image_size = image_size[0] - - if isinstance(aug_cfg, dict): - aug_cfg = AugmentationCfg(**aug_cfg) - else: - aug_cfg = aug_cfg or AugmentationCfg() - normalize = MaskAwareNormalize(mean=mean, std=std) - if is_train: - aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None} - use_timm = aug_cfg_dict.pop('use_timm', False) - if use_timm: - assert False, "not tested for augmentation with mask" - from timm.data import create_transform # timm can still be optional - if isinstance(image_size, (tuple, list)): - assert len(image_size) >= 2 - input_size = (3,) + image_size[-2:] - else: - input_size = (3, image_size, image_size) - # by default, timm aug randomly alternates bicubic & bilinear for better robustness at inference time - aug_cfg_dict.setdefault('interpolation', 'random') - aug_cfg_dict.setdefault('color_jitter', None) # disable by default - train_transform = create_transform( - input_size=input_size, - is_training=True, - hflip=0., - mean=mean, - std=std, - re_mode='pixel', - **aug_cfg_dict, - ) - else: - train_transform = Compose([ - _convert_to_rgb_or_rgba, - ToTensor(), - RandomResizedCrop( - image_size, - scale=aug_cfg_dict.pop('scale'), - interpolation=InterpolationMode.BICUBIC, - ), - normalize, - ]) - if aug_cfg_dict: - warnings.warn(f'Unused augmentation cfg items, specify `use_timm` to use ({list(aug_cfg_dict.keys())}).') - return train_transform - else: - transforms = [ - _convert_to_rgb_or_rgba, - ToTensor(), - ] - if resize_longest_max: - transforms.extend([ - ResizeMaxSize(image_size, fill=fill_color) - ]) - else: - transforms.extend([ - Resize(image_size, interpolation=InterpolationMode.BICUBIC), - CenterCrop(image_size), - ]) - transforms.extend([ - normalize, - ]) - return Compose(transforms) - - -# def image_transform_region( -# image_size: int, -# is_train: bool, -# mean: Optional[Tuple[float, ...]] = None, -# std: Optional[Tuple[float, ...]] = None, -# resize_longest_max: bool = False, -# fill_color: int = 0, -# aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None, -# ): -# mean = mean or OPENAI_DATASET_MEAN -# if not isinstance(mean, (list, tuple)): -# mean = (mean,) * 3 - -# std = std or OPENAI_DATASET_STD -# if not isinstance(std, (list, tuple)): -# std = (std,) * 3 - -# if isinstance(image_size, (list, tuple)) and image_size[0] == image_size[1]: -# # for square size, pass size as int so that Resize() uses aspect preserving shortest edge -# image_size = image_size[0] - -# if isinstance(aug_cfg, dict): -# aug_cfg = AugmentationCfg(**aug_cfg) -# else: -# aug_cfg = aug_cfg or AugmentationCfg() -# normalize = Normalize(mean=mean, std=std) -# if is_train: -# aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None} - -# transform = Compose([ -# RandomResizedCrop( -# image_size, -# scale=aug_cfg_dict.pop('scale'), -# interpolation=InterpolationMode.BICUBIC, -# ), -# ]) -# train_transform = Compose([ -# partial(transform_and_split, transform_fn=transform,normalize_fn=normalize) -# ]) -# return train_transform -# else: -# if resize_longest_max: -# transform = [ -# ResizeMaxSize(image_size, fill=fill_color) -# ] -# val_transform = Compose([ -# partial(transform_and_split, transform_fn=transform,normalize_fn=normalize), -# ]) -# else: -# transform = [ -# Resize(image_size, interpolation=InterpolationMode.BICUBIC), -# CenterCrop(image_size), -# ] -# val_transform = Compose([ -# partial(transform_and_split, transform_fn=transform,normalize_fn=normalize), -# ]) -# return val_transform \ No newline at end of file diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/transformer.py b/diffsynth/extensions/ImageQualityMetric/open_clip/transformer.py deleted file mode 100644 index 7465c1b20bf388a17e0f4f80f7b8eee3b564af92..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/transformer.py +++ /dev/null @@ -1,727 +0,0 @@ -from collections import OrderedDict -import math -from typing import Callable, Optional, Sequence, Tuple - -import torch -from torch import nn -from torch.nn import functional as F -from torch.utils.checkpoint import checkpoint - -from .utils import to_2tuple - - -class LayerNormFp32(nn.LayerNorm): - """Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back).""" - - def forward(self, x: torch.Tensor): - orig_type = x.dtype - x = F.layer_norm(x.to(torch.float32), self.normalized_shape, self.weight, self.bias, self.eps) - return x.to(orig_type) - - -class LayerNorm(nn.LayerNorm): - """Subclass torch's LayerNorm (with cast back to input dtype).""" - - def forward(self, x: torch.Tensor): - orig_type = x.dtype - x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) - return x.to(orig_type) - - -class QuickGELU(nn.Module): - # NOTE This is slower than nn.GELU or nn.SiLU and uses more GPU memory - def forward(self, x: torch.Tensor): - return x * torch.sigmoid(1.702 * x) - - -class LayerScale(nn.Module): - def __init__(self, dim, init_values=1e-5, inplace=False): - super().__init__() - self.inplace = inplace - self.gamma = nn.Parameter(init_values * torch.ones(dim)) - - def forward(self, x): - return x.mul_(self.gamma) if self.inplace else x * self.gamma - - -class PatchDropout(nn.Module): - """ - https://arxiv.org/abs/2212.00794 - """ - - def __init__(self, prob, exclude_first_token=True): - super().__init__() - assert 0 <= prob < 1. - self.prob = prob - self.exclude_first_token = exclude_first_token # exclude CLS token - - def forward(self, x): - if not self.training or self.prob == 0.: - return x - - if self.exclude_first_token: - cls_tokens, x = x[:, :1], x[:, 1:] - else: - cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) - - batch = x.size()[0] - num_tokens = x.size()[1] - - batch_indices = torch.arange(batch) - batch_indices = batch_indices[..., None] - - keep_prob = 1 - self.prob - num_patches_keep = max(1, int(num_tokens * keep_prob)) - - rand = torch.randn(batch, num_tokens) - patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices - - x = x[batch_indices, patch_indices_keep] - - if self.exclude_first_token: - x = torch.cat((cls_tokens, x), dim=1) - - return x - - -class Attention(nn.Module): - def __init__( - self, - dim, - num_heads=8, - qkv_bias=True, - scaled_cosine=False, - scale_heads=False, - logit_scale_max=math.log(1. / 0.01), - attn_drop=0., - proj_drop=0. - ): - super().__init__() - self.scaled_cosine = scaled_cosine - self.scale_heads = scale_heads - assert dim % num_heads == 0, 'dim should be divisible by num_heads' - self.num_heads = num_heads - self.head_dim = dim // num_heads - self.scale = self.head_dim ** -0.5 - self.logit_scale_max = logit_scale_max - - # keeping in_proj in this form (instead of nn.Linear) to match weight scheme of original - self.in_proj_weight = nn.Parameter(torch.randn((dim * 3, dim)) * self.scale) - if qkv_bias: - self.in_proj_bias = nn.Parameter(torch.zeros(dim * 3)) - else: - self.in_proj_bias = None - - if self.scaled_cosine: - self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1)))) - else: - self.logit_scale = None - self.attn_drop = nn.Dropout(attn_drop) - if self.scale_heads: - self.head_scale = nn.Parameter(torch.ones((num_heads, 1, 1))) - else: - self.head_scale = None - self.out_proj = nn.Linear(dim, dim) - self.out_drop = nn.Dropout(proj_drop) - - def forward(self, x, attn_mask: Optional[torch.Tensor] = None): - L, N, C = x.shape - q, k, v = F.linear(x, self.in_proj_weight, self.in_proj_bias).chunk(3, dim=-1) - q = q.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) - k = k.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) - v = v.contiguous().view(L, N * self.num_heads, -1).transpose(0, 1) - - if self.logit_scale is not None: - attn = torch.bmm(F.normalize(q, dim=-1), F.normalize(k, dim=-1).transpose(-1, -2)) - logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() - attn = attn.view(N, self.num_heads, L, L) * logit_scale - attn = attn.view(-1, L, L) - else: - q = q * self.scale - attn = torch.bmm(q, k.transpose(-1, -2)) - - if attn_mask is not None: - if attn_mask.dtype == torch.bool: - new_attn_mask = torch.zeros_like(attn_mask, dtype=q.dtype) - new_attn_mask.masked_fill_(attn_mask, float("-inf")) - attn_mask = new_attn_mask - attn += attn_mask - - attn = attn.softmax(dim=-1) - attn = self.attn_drop(attn) - - x = torch.bmm(attn, v) - if self.head_scale is not None: - x = x.view(N, self.num_heads, L, C) * self.head_scale - x = x.view(-1, L, C) - x = x.transpose(0, 1).reshape(L, N, C) - x = self.out_proj(x) - x = self.out_drop(x) - return x - - -class AttentionalPooler(nn.Module): - def __init__( - self, - d_model: int, - context_dim: int, - n_head: int = 8, - n_queries: int = 256, - norm_layer: Callable = LayerNorm - ): - super().__init__() - self.query = nn.Parameter(torch.randn(n_queries, d_model)) - self.attn = nn.MultiheadAttention(d_model, n_head, kdim=context_dim, vdim=context_dim) - self.ln_q = norm_layer(d_model) - self.ln_k = norm_layer(context_dim) - - def forward(self, x: torch.Tensor): - x = self.ln_k(x).permute(1, 0, 2) # NLD -> LND - N = x.shape[1] - q = self.ln_q(self.query) - out = self.attn(self._repeat(q, N), x, x, need_weights=False)[0] - return out.permute(1, 0, 2) # LND -> NLD - - def _repeat(self, query, N: int): - return query.unsqueeze(1).repeat(1, N, 1) - - -class ResidualAttentionBlock(nn.Module): - def __init__( - self, - d_model: int, - n_head: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - is_cross_attention: bool = False, - ): - super().__init__() - - self.ln_1 = norm_layer(d_model) - self.attn = nn.MultiheadAttention(d_model, n_head) - self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() - if is_cross_attention: - self.ln_1_kv = norm_layer(d_model) - - self.ln_2 = norm_layer(d_model) - mlp_width = int(d_model * mlp_ratio) - self.mlp = nn.Sequential(OrderedDict([ - ("c_fc", nn.Linear(d_model, mlp_width)), - ("gelu", act_layer()), - ("c_proj", nn.Linear(mlp_width, d_model)) - ])) - self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() - - def attention( - self, - q_x: torch.Tensor, - k_x: Optional[torch.Tensor] = None, - v_x: Optional[torch.Tensor] = None, - attn_mask: Optional[torch.Tensor] = None, - ): - k_x = k_x if k_x is not None else q_x - v_x = v_x if v_x is not None else q_x - - attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None - return self.attn( - q_x, k_x, v_x, need_weights=False, attn_mask=attn_mask - )[0] - - def forward( - self, - q_x: torch.Tensor, - k_x: Optional[torch.Tensor] = None, - v_x: Optional[torch.Tensor] = None, - attn_mask: Optional[torch.Tensor] = None, - ): - k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None - v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None - - x = q_x + self.ls_1(self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)) - x = x + self.ls_2(self.mlp(self.ln_2(x))) - return x - - -class CustomResidualAttentionBlock(nn.Module): - def __init__( - self, - d_model: int, - n_head: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - scale_cosine_attn: bool = False, - scale_heads: bool = False, - scale_attn: bool = False, - scale_fc: bool = False, - ): - super().__init__() - - self.ln_1 = norm_layer(d_model) - self.attn = Attention( - d_model, n_head, - scaled_cosine=scale_cosine_attn, - scale_heads=scale_heads, - ) - self.ln_attn = norm_layer(d_model) if scale_attn else nn.Identity() - self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() - - self.ln_2 = norm_layer(d_model) - mlp_width = int(d_model * mlp_ratio) - self.mlp = nn.Sequential(OrderedDict([ - ("c_fc", nn.Linear(d_model, mlp_width)), - ('ln', norm_layer(mlp_width) if scale_fc else nn.Identity()), - ("gelu", act_layer()), - ("c_proj", nn.Linear(mlp_width, d_model)) - ])) - self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity() - - def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): - x = x + self.ls_1(self.ln_attn(self.attn(self.ln_1(x), attn_mask=attn_mask))) - x = x + self.ls_2(self.mlp(self.ln_2(x))) - return x - - -class Transformer(nn.Module): - def __init__( - self, - width: int, - layers: int, - heads: int, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - ): - super().__init__() - self.width = width - self.layers = layers - self.grad_checkpointing = False - - self.resblocks = nn.ModuleList([ - ResidualAttentionBlock( - width, heads, mlp_ratio, ls_init_value=ls_init_value, act_layer=act_layer, norm_layer=norm_layer) - for _ in range(layers) - ]) - - def get_cast_dtype(self) -> torch.dtype: - return self.resblocks[0].mlp.c_fc.weight.dtype - - def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None): - for r in self.resblocks: - if self.grad_checkpointing and not torch.jit.is_scripting(): - # TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372 - x = checkpoint(r, x, None, None, attn_mask) - else: - x = r(x, attn_mask=attn_mask) - return x - - -class VisionTransformer(nn.Module): - output_tokens: torch.jit.Final[bool] - - def __init__( - self, - image_size: int, - patch_size: int, - width: int, - layers: int, - heads: int, - mlp_ratio: float, - ls_init_value: float = None, - global_average_pool: bool = False, - attentional_pool: bool = False, - n_queries: int = 256, - attn_pooler_heads: int = 8, - output_dim: int = 512, - patch_dropout: float = 0., - input_patchnorm: bool = False, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - output_tokens: bool = False - ): - super().__init__() - self.output_tokens = output_tokens - image_height, image_width = self.image_size = to_2tuple(image_size) - patch_height, patch_width = self.patch_size = to_2tuple(patch_size) - self.grid_size = (image_height // patch_height, image_width // patch_width) - self.output_dim = output_dim - - # whether to layernorm each patch, as done in dual patchnorm paper - https://arxiv.org/abs/2302.01327v1 - self.input_patchnorm = input_patchnorm - - if input_patchnorm: - patch_input_dim = patch_height * patch_width * 3 - self.patchnorm_pre_ln = LayerNorm(patch_input_dim) - self.conv1 = nn.Linear(patch_input_dim, width) - else: - self.patchnorm_pre_ln = nn.Identity() - self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) - - # class embeddings and positional embeddings - scale = width ** -0.5 - self.class_embedding = nn.Parameter(scale * torch.randn(width)) - self.positional_embedding = nn.Parameter(scale * torch.randn(self.grid_size[0] * self.grid_size[1] + 1, width)) - - # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn - self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() - - self.ln_pre = norm_layer(width) - self.transformer = Transformer( - width, - layers, - heads, - mlp_ratio, - ls_init_value=ls_init_value, - act_layer=act_layer, - norm_layer=norm_layer, - ) - - self.global_average_pool = global_average_pool - if attentional_pool: - self.attn_pool = AttentionalPooler(output_dim, width, n_head=attn_pooler_heads, n_queries=n_queries) - self.ln_post = norm_layer(output_dim) - self.proj = nn.Parameter(scale * torch.randn(output_dim, output_dim)) - else: - self.attn_pool = None - self.ln_post = norm_layer(width) - self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) - - self.init_parameters() - - def lock(self, unlocked_groups=0, freeze_bn_stats=False): - for param in self.parameters(): - param.requires_grad = False - - if unlocked_groups != 0: - groups = [ - [ - self.conv1, - self.class_embedding, - self.positional_embedding, - self.ln_pre, - ], - *self.transformer.resblocks[:-1], - [ - self.transformer.resblocks[-1], - self.ln_post, - ], - self.proj, - ] - - def _unlock(x): - if isinstance(x, Sequence): - for g in x: - _unlock(g) - else: - if isinstance(x, torch.nn.Parameter): - x.requires_grad = True - else: - for p in x.parameters(): - p.requires_grad = True - - _unlock(groups[-unlocked_groups:]) - - def init_parameters(self): - # FIXME OpenAI CLIP did not define an init for the VisualTransformer - # TODO experiment if default PyTorch init, below, or alternate init is best. - - # nn.init.normal_(self.class_embedding, std=self.scale) - # nn.init.normal_(self.positional_embedding, std=self.scale) - # - # proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) - # attn_std = self.transformer.width ** -0.5 - # fc_std = (2 * self.transformer.width) ** -0.5 - # for block in self.transformer.resblocks: - # nn.init.normal_(block.attn.in_proj_weight, std=attn_std) - # nn.init.normal_(block.attn.out_proj.weight, std=proj_std) - # nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) - # nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) - # - # if self.text_projection is not None: - # nn.init.normal_(self.text_projection, std=self.scale) - pass - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.transformer.grad_checkpointing = enable - - def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: - if self.global_average_pool: - return x.mean(dim=1), x - else: - return x[:, 0], x[:, 1:] - - def forward(self, x: torch.Tensor, skip_pool: bool = False): - - # to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1 - if self.input_patchnorm: - # einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)') - x = x.reshape(x.shape[0], x.shape[1], self.grid_size[0], self.patch_size[0], self.grid_size[1], self.patch_size[1]) - x = x.permute(0, 2, 4, 1, 3, 5) - x = x.reshape(x.shape[0], self.grid_size[0] * self.grid_size[1], -1) - x = self.patchnorm_pre_ln(x) - x = self.conv1(x) - else: - x = self.conv1(x) # shape = [*, width, grid, grid] - x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] - x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] - - # class embeddings and positional embeddings - x = torch.cat( - [self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), - x], dim=1) # shape = [*, grid ** 2 + 1, width] - x = x + self.positional_embedding.to(x.dtype) - - # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in - x = self.patch_dropout(x) - x = self.ln_pre(x) - - x = x.permute(1, 0, 2) # NLD -> LND - x = self.transformer(x) - x = x.permute(1, 0, 2) # LND -> NLD - - if skip_pool: - return x - - if self.attn_pool is not None: - x = self.attn_pool(x) - x = self.ln_post(x) - pooled, tokens = self._global_pool(x) - else: - pooled, tokens = self._global_pool(x) - pooled = self.ln_post(pooled) - - if self.proj is not None: - pooled = pooled @ self.proj - - if self.output_tokens: - return pooled, tokens - - return pooled - - -class TextTransformer(nn.Module): - output_tokens: torch.jit.Final[bool] - - def __init__( - self, - context_length: int = 77, - vocab_size: int = 49408, - width: int = 512, - heads: int = 8, - layers: int = 12, - ls_init_value: float = None, - output_dim: int = 512, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - embed_cls: bool = False, - pad_id: int = 0, - output_tokens: bool = False, - ): - super().__init__() - self.output_tokens = output_tokens - self.num_pos = self.context_length = context_length - self.vocab_size = vocab_size - self.width = width - self.output_dim = output_dim - self.heads = heads - self.pad_id = pad_id - - self.text_projection = nn.Parameter(torch.empty(width, output_dim)) - - if embed_cls: - self.cls_emb = nn.Parameter(torch.empty(width)) - self.num_pos += 1 - else: - self.cls_emb = None - - self.token_embedding = nn.Embedding(vocab_size, width) - self.positional_embedding = nn.Parameter(torch.empty(self.num_pos, width)) - self.transformer = Transformer( - width=width, - layers=layers, - heads=heads, - ls_init_value=ls_init_value, - act_layer=act_layer, - norm_layer=norm_layer, - ) - self.ln_final = norm_layer(width) - - self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False) - - self.init_parameters() - - def init_parameters(self): - nn.init.normal_(self.token_embedding.weight, std=0.02) - nn.init.normal_(self.positional_embedding, std=0.01) - if self.cls_emb is not None: - nn.init.normal_(self.cls_emb, std=0.01) - - proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) - attn_std = self.transformer.width ** -0.5 - fc_std = (2 * self.transformer.width) ** -0.5 - for block in self.transformer.resblocks: - nn.init.normal_(block.attn.in_proj_weight, std=attn_std) - nn.init.normal_(block.attn.out_proj.weight, std=proj_std) - nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) - nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) - - if self.text_projection is not None: - nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.transformer.grad_checkpointing = enable - - def build_attention_mask(self): - # lazily create causal attention mask, with full attention between the tokens - # pytorch uses additive attention mask; fill with -inf - mask = torch.empty(self.num_pos, self.num_pos) - mask.fill_(float("-inf")) - mask.triu_(1) # zero out the lower diagonal - return mask - - def build_cls_mask(self, text, cast_dtype: torch.dtype): - cls_mask = (text != self.pad_id).unsqueeze(1) - cls_mask = F.pad(cls_mask, (1, 0, cls_mask.shape[2], 0), value=1.0) - additive_mask = torch.empty(cls_mask.shape, dtype=cast_dtype, device=cls_mask.device) - additive_mask.fill_(0) - additive_mask.masked_fill_(~cls_mask, float("-inf")) - additive_mask = torch.repeat_interleave(additive_mask, self.heads, 0) - return additive_mask - - def _repeat(self, t, N: int): - return t.reshape(1, 1, -1).repeat(N, 1, 1) - - def forward(self, text): - cast_dtype = self.transformer.get_cast_dtype() - seq_len = text.shape[1] - - x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model] - attn_mask = self.attn_mask - if self.cls_emb is not None: - seq_len += 1 - x = torch.cat([x, self._repeat(self.cls_emb, x.shape[0])], dim=1) - cls_mask = self.build_cls_mask(text, cast_dtype) - attn_mask = attn_mask[None, :seq_len, :seq_len] + cls_mask[:, :seq_len, :seq_len] - - x = x + self.positional_embedding[:seq_len].to(cast_dtype) - x = x.permute(1, 0, 2) # NLD -> LND - x = self.transformer(x, attn_mask=attn_mask) - x = x.permute(1, 0, 2) # LND -> NLD - - # x.shape = [batch_size, n_ctx, transformer.width] - # take features from the eot embedding (eot_token is the highest number in each sequence) - if self.cls_emb is not None: - pooled, tokens = x[:, -1], x[:, :-1] - pooled = self.ln_final(pooled) - else: - x = self.ln_final(x) - pooled, tokens = x[torch.arange(x.shape[0]), text.argmax(dim=-1)], x - - if self.text_projection is not None: - pooled = pooled @ self.text_projection - - if self.output_tokens: - return pooled, tokens - - return pooled - - -class MultimodalTransformer(Transformer): - def __init__( - self, - width: int, - layers: int, - heads: int, - context_length: int = 77, - mlp_ratio: float = 4.0, - ls_init_value: float = None, - act_layer: Callable = nn.GELU, - norm_layer: Callable = LayerNorm, - output_dim: int = 512, - ): - - super().__init__( - width=width, - layers=layers, - heads=heads, - mlp_ratio=mlp_ratio, - ls_init_value=ls_init_value, - act_layer=act_layer, - norm_layer=norm_layer, - ) - self.context_length = context_length - self.cross_attn = nn.ModuleList([ - ResidualAttentionBlock( - width, - heads, - mlp_ratio, - ls_init_value=ls_init_value, - act_layer=act_layer, - norm_layer=norm_layer, - is_cross_attention=True, - ) - for _ in range(layers) - ]) - - self.register_buffer('attn_mask', self.build_attention_mask(), persistent=False) - - self.ln_final = norm_layer(width) - self.text_projection = nn.Parameter(torch.empty(width, output_dim)) - - def init_parameters(self): - proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) - attn_std = self.transformer.width ** -0.5 - fc_std = (2 * self.transformer.width) ** -0.5 - for block in self.transformer.resblocks: - nn.init.normal_(block.attn.in_proj_weight, std=attn_std) - nn.init.normal_(block.attn.out_proj.weight, std=proj_std) - nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) - nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) - for block in self.transformer.cross_attn: - nn.init.normal_(block.attn.in_proj_weight, std=attn_std) - nn.init.normal_(block.attn.out_proj.weight, std=proj_std) - nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) - nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) - - if self.text_projection is not None: - nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) - - def build_attention_mask(self): - # lazily create causal attention mask, with full attention between the tokens - # pytorch uses additive attention mask; fill with -inf - mask = torch.empty(self.context_length, self.context_length) - mask.fill_(float("-inf")) - mask.triu_(1) # zero out the lower diagonal - return mask - - def forward(self, image_embs, text_embs): - text_embs = text_embs.permute(1, 0, 2) # NLD -> LNDsq - image_embs = image_embs.permute(1, 0, 2) # NLD -> LND - seq_len = text_embs.shape[0] - - for resblock, cross_attn in zip(self.resblocks, self.cross_attn): - if self.grad_checkpointing and not torch.jit.is_scripting(): - # TODO: handle kwargs https://github.com/pytorch/pytorch/issues/79887#issuecomment-1161758372 - text_embs = checkpoint(resblock, text_embs, None, None, self.attn_mask[:seq_len, :seq_len]) - text_embs = checkpoint(cross_attn, text_embs, image_embs, image_embs, None) - else: - text_embs = resblock(text_embs, attn_mask=self.attn_mask[:seq_len, :seq_len]) - text_embs = cross_attn(text_embs, k_x=image_embs, v_x=image_embs) - - x = text_embs.permute(1, 0, 2) # LND -> NLD - x = self.ln_final(x) - - if self.text_projection is not None: - x = x @ self.text_projection - - return x - - @torch.jit.ignore - def set_grad_checkpointing(self, enable=True): - self.grad_checkpointing = enable diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/utils.py b/diffsynth/extensions/ImageQualityMetric/open_clip/utils.py deleted file mode 100644 index 51e80c5e296b24cae130ab0459baf268e0db7673..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/utils.py +++ /dev/null @@ -1,60 +0,0 @@ -from itertools import repeat -import collections.abc - -from torch import nn as nn -from torchvision.ops.misc import FrozenBatchNorm2d - - -def freeze_batch_norm_2d(module, module_match={}, name=''): - """ - Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is - itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and - returned. Otherwise, the module is walked recursively and submodules are converted in place. - - Args: - module (torch.nn.Module): Any PyTorch module. - module_match (dict): Dictionary of full module names to freeze (all if empty) - name (str): Full module name (prefix) - - Returns: - torch.nn.Module: Resulting module - - Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762 - """ - res = module - is_match = True - if module_match: - is_match = name in module_match - if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)): - res = FrozenBatchNorm2d(module.num_features) - res.num_features = module.num_features - res.affine = module.affine - if module.affine: - res.weight.data = module.weight.data.clone().detach() - res.bias.data = module.bias.data.clone().detach() - res.running_mean.data = module.running_mean.data - res.running_var.data = module.running_var.data - res.eps = module.eps - else: - for child_name, child in module.named_children(): - full_child_name = '.'.join([name, child_name]) if name else child_name - new_child = freeze_batch_norm_2d(child, module_match, full_child_name) - if new_child is not child: - res.add_module(child_name, new_child) - return res - - -# From PyTorch internals -def _ntuple(n): - def parse(x): - if isinstance(x, collections.abc.Iterable): - return x - return tuple(repeat(x, n)) - return parse - - -to_1tuple = _ntuple(1) -to_2tuple = _ntuple(2) -to_3tuple = _ntuple(3) -to_4tuple = _ntuple(4) -to_ntuple = lambda n, x: _ntuple(n)(x) diff --git a/diffsynth/extensions/ImageQualityMetric/open_clip/version.py b/diffsynth/extensions/ImageQualityMetric/open_clip/version.py deleted file mode 100644 index 48aa744fb053599044caf0253b889b5cfe5b78e7..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/open_clip/version.py +++ /dev/null @@ -1 +0,0 @@ -__version__ = '2.16.0' diff --git a/diffsynth/extensions/ImageQualityMetric/pickscore.py b/diffsynth/extensions/ImageQualityMetric/pickscore.py deleted file mode 100644 index 7370e099724997d98f1c4ad3fc5f14c861202665..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/pickscore.py +++ /dev/null @@ -1,112 +0,0 @@ -import torch -from PIL import Image -from transformers import AutoProcessor, AutoModel -from typing import List, Union -import os -from .config import MODEL_PATHS - -class PickScore(torch.nn.Module): - def __init__(self, device: Union[str, torch.device], path: str = MODEL_PATHS): - super().__init__() - """Initialize the Selector with a processor and model. - - Args: - device (Union[str, torch.device]): The device to load the model on. - """ - self.device = device if isinstance(device, torch.device) else torch.device(device) - processor_name_or_path = path.get("clip") - model_pretrained_name_or_path = path.get("pickscore") - self.processor = AutoProcessor.from_pretrained(processor_name_or_path) - self.model = AutoModel.from_pretrained(model_pretrained_name_or_path).eval().to(self.device) - - def _calculate_score(self, image: torch.Tensor, prompt: str, softmax: bool = False) -> float: - """Calculate the score for a single image and prompt. - - Args: - image (torch.Tensor): The processed image tensor. - prompt (str): The prompt text. - softmax (bool): Whether to apply softmax to the scores. - - Returns: - float: The score for the image. - """ - with torch.no_grad(): - # Prepare text inputs - text_inputs = self.processor( - text=prompt, - padding=True, - truncation=True, - max_length=77, - return_tensors="pt", - ).to(self.device) - - # Embed images and text - image_embs = self.model.get_image_features(pixel_values=image) - image_embs = image_embs / torch.norm(image_embs, dim=-1, keepdim=True) - text_embs = self.model.get_text_features(**text_inputs) - text_embs = text_embs / torch.norm(text_embs, dim=-1, keepdim=True) - - # Compute score - score = (text_embs @ image_embs.T)[0] - if softmax: - # Apply logit scale and softmax - score = torch.softmax(self.model.logit_scale.exp() * score, dim=-1) - - return score.cpu().item() - - @torch.no_grad() - def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str, softmax: bool = False) -> List[float]: - """Score the images based on the prompt. - - Args: - images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s). - prompt (str): The prompt text. - softmax (bool): Whether to apply softmax to the scores. - - Returns: - List[float]: List of scores for the images. - """ - try: - if isinstance(images, (str, Image.Image)): - # Single image - if isinstance(images, str): - pil_image = Image.open(images) - else: - pil_image = images - - # Prepare image inputs - image_inputs = self.processor( - images=pil_image, - padding=True, - truncation=True, - max_length=77, - return_tensors="pt", - ).to(self.device) - - return [self._calculate_score(image_inputs["pixel_values"], prompt, softmax)] - elif isinstance(images, list): - # Multiple images - scores = [] - for one_image in images: - if isinstance(one_image, str): - pil_image = Image.open(one_image) - elif isinstance(one_image, Image.Image): - pil_image = one_image - else: - raise TypeError("The type of parameter images is illegal.") - - # Prepare image inputs - image_inputs = self.processor( - images=pil_image, - padding=True, - truncation=True, - max_length=77, - return_tensors="pt", - ).to(self.device) - - scores.append(self._calculate_score(image_inputs["pixel_values"], prompt, softmax)) - return scores - else: - raise TypeError("The type of parameter images is illegal.") - except Exception as e: - raise RuntimeError(f"Error in scoring images: {e}") diff --git a/diffsynth/extensions/ImageQualityMetric/trainer/__init__.py b/diffsynth/extensions/ImageQualityMetric/trainer/__init__.py deleted file mode 100644 index cf4f59d6c0977e578ab67ec92c916c7e38842715..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/trainer/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .models import * \ No newline at end of file diff --git a/diffsynth/extensions/ImageQualityMetric/trainer/models/__init__.py b/diffsynth/extensions/ImageQualityMetric/trainer/models/__init__.py deleted file mode 100644 index c4e2b69d17f6f4603d115e79a6122318f059b385..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/trainer/models/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from .base_model import * -from .clip_model import * -from .cross_modeling import * \ No newline at end of file diff --git a/diffsynth/extensions/ImageQualityMetric/trainer/models/base_model.py b/diffsynth/extensions/ImageQualityMetric/trainer/models/base_model.py deleted file mode 100644 index 8f28caf67460a517bd9cb7cbdbd806d7b072541f..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/trainer/models/base_model.py +++ /dev/null @@ -1,7 +0,0 @@ -from dataclasses import dataclass - - - -@dataclass -class BaseModelConfig: - pass diff --git a/diffsynth/extensions/ImageQualityMetric/trainer/models/clip_model.py b/diffsynth/extensions/ImageQualityMetric/trainer/models/clip_model.py deleted file mode 100644 index 0a1b37095e6b70e4722856a65fbfb30277eab03a..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/trainer/models/clip_model.py +++ /dev/null @@ -1,146 +0,0 @@ -from dataclasses import dataclass -from transformers import CLIPModel as HFCLIPModel -from transformers import AutoTokenizer - -from torch import nn, einsum - -from .base_model import BaseModelConfig - -from transformers import CLIPConfig -from typing import Any, Optional, Tuple, Union -import torch - -from .cross_modeling import Cross_model - -import json, os - -class XCLIPModel(HFCLIPModel): - def __init__(self, config: CLIPConfig): - super().__init__(config) - - def get_text_features( - self, - input_ids: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.Tensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> torch.FloatTensor: - - # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - text_outputs = self.text_model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - # pooled_output = text_outputs[1] - # text_features = self.text_projection(pooled_output) - last_hidden_state = text_outputs[0] - text_features = self.text_projection(last_hidden_state) - - pooled_output = text_outputs[1] - text_features_EOS = self.text_projection(pooled_output) - - - # del last_hidden_state, text_outputs - # gc.collect() - - return text_features, text_features_EOS - - def get_image_features( - self, - pixel_values: Optional[torch.FloatTensor] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> torch.FloatTensor: - - # Use CLIP model's config for some fields (if specified) instead of those of vision & text components. - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - vision_outputs = self.vision_model( - pixel_values=pixel_values, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - # pooled_output = vision_outputs[1] # pooled_output - # image_features = self.visual_projection(pooled_output) - last_hidden_state = vision_outputs[0] - image_features = self.visual_projection(last_hidden_state) - - return image_features - - - -@dataclass -class ClipModelConfig(BaseModelConfig): - _target_: str = "diffsynth.extensions.QualityMetric.trainer.models.clip_model.CLIPModel" - pretrained_model_name_or_path: str ="checkpoints/clip-vit-base-patch32" - - -class CLIPModel(nn.Module): - def __init__(self, ckpt, config_file=False): - super().__init__() - if config_file is None: - self.model = XCLIPModel.from_pretrained(ckpt) - else: - with open(os.path.join(ckpt, "config.json"), "r", encoding="utf-8") as f: - config = json.load(f) - config = CLIPConfig(**config) - self.model = XCLIPModel._from_config(config) - self.cross_model = Cross_model(dim=1024, layer_num=4, heads=16) - - def get_text_features(self, *args, **kwargs): - return self.model.get_text_features(*args, **kwargs) - - def get_image_features(self, *args, **kwargs): - return self.model.get_image_features(*args, **kwargs) - - def forward(self, text_inputs=None, image_inputs=None, condition_inputs=None): - outputs = () - - text_f, text_EOS = self.model.get_text_features(text_inputs) # B*77*1024 - outputs += text_EOS, - - image_f = self.model.get_image_features(image_inputs.half()) # 2B*257*1024 - condition_f, _ = self.model.get_text_features(condition_inputs) # B*5*1024 - - sim_text_condition = einsum('b i d, b j d -> b j i', text_f, condition_f) - sim_text_condition = torch.max(sim_text_condition, dim=1, keepdim=True)[0] - sim_text_condition = sim_text_condition / sim_text_condition.max() - mask = torch.where(sim_text_condition > 0.01, 0, float('-inf')) # B*1*77 - - mask = mask.repeat(1,image_f.shape[1],1) # B*257*77 - bc = int(image_f.shape[0]/2) - - sim0 = self.cross_model(image_f[:bc,:,:], text_f,mask.half()) - sim1 = self.cross_model(image_f[bc:,:,:], text_f,mask.half()) - outputs += sim0[:,0,:], - outputs += sim1[:,0,:], - - return outputs - - @property - def logit_scale(self): - return self.model.logit_scale - - def save(self, path): - self.model.save_pretrained(path) - diff --git a/diffsynth/extensions/ImageQualityMetric/trainer/models/cross_modeling.py b/diffsynth/extensions/ImageQualityMetric/trainer/models/cross_modeling.py deleted file mode 100644 index 938f1b706e16aa0666210e91fb215304653df4cb..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/ImageQualityMetric/trainer/models/cross_modeling.py +++ /dev/null @@ -1,292 +0,0 @@ -import torch -from torch import einsum, nn -import torch.nn.functional as F -from einops import rearrange, repeat - -# helper functions - -def exists(val): - return val is not None - -def default(val, d): - return val if exists(val) else d - -# normalization -# they use layernorm without bias, something that pytorch does not offer - - -class LayerNorm(nn.Module): - def __init__(self, dim): - super().__init__() - self.weight = nn.Parameter(torch.ones(dim)) - self.register_buffer("bias", torch.zeros(dim)) - - def forward(self, x): - return F.layer_norm(x, x.shape[-1:], self.weight, self.bias) - -# residual - - -class Residual(nn.Module): - def __init__(self, fn): - super().__init__() - self.fn = fn - - def forward(self, x, *args, **kwargs): - return self.fn(x, *args, **kwargs) + x - - -# rotary positional embedding -# https://arxiv.org/abs/2104.09864 - - -class RotaryEmbedding(nn.Module): - def __init__(self, dim): - super().__init__() - inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) - self.register_buffer("inv_freq", inv_freq) - - def forward(self, max_seq_len, *, device): - seq = torch.arange(max_seq_len, device=device, dtype=self.inv_freq.dtype) - freqs = einsum("i , j -> i j", seq, self.inv_freq) - return torch.cat((freqs, freqs), dim=-1) - - -def rotate_half(x): - x = rearrange(x, "... (j d) -> ... j d", j=2) - x1, x2 = x.unbind(dim=-2) - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(pos, t): - return (t * pos.cos()) + (rotate_half(t) * pos.sin()) - - -# classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU for gating the feedforward -# https://arxiv.org/abs/2002.05202 - - -class SwiGLU(nn.Module): - def forward(self, x): - x, gate = x.chunk(2, dim=-1) - return F.silu(gate) * x - - -# parallel attention and feedforward with residual -# discovered by Wang et al + EleutherAI from GPT-J fame - -class ParallelTransformerBlock(nn.Module): - def __init__(self, dim, dim_head=64, heads=8, ff_mult=4): - super().__init__() - self.norm = LayerNorm(dim) - - attn_inner_dim = dim_head * heads - ff_inner_dim = dim * ff_mult - self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim * 2)) - - self.heads = heads - self.scale = dim_head**-0.5 - self.rotary_emb = RotaryEmbedding(dim_head) - - self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False) - self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False) - - self.ff_out = nn.Sequential( - SwiGLU(), - nn.Linear(ff_inner_dim, dim, bias=False) - ) - - self.register_buffer("pos_emb", None, persistent=False) - - - def get_rotary_embedding(self, n, device): - if self.pos_emb is not None and self.pos_emb.shape[-2] >= n: - return self.pos_emb[:n] - - pos_emb = self.rotary_emb(n, device=device) - self.register_buffer("pos_emb", pos_emb, persistent=False) - return pos_emb - - def forward(self, x, attn_mask=None): - """ - einstein notation - b - batch - h - heads - n, i, j - sequence length (base sequence length, source, target) - d - feature dimension - """ - - n, device, h = x.shape[1], x.device, self.heads - - # pre layernorm - - x = self.norm(x) - - # attention queries, keys, values, and feedforward inner - - q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1) - - # split heads - # they use multi-query single-key-value attention, yet another Noam Shazeer paper - # they found no performance loss past a certain scale, and more efficient decoding obviously - # https://arxiv.org/abs/1911.02150 - - q = rearrange(q, "b n (h d) -> b h n d", h=h) - - # rotary embeddings - - positions = self.get_rotary_embedding(n, device) - q, k = map(lambda t: apply_rotary_pos_emb(positions, t), (q, k)) - - # scale - - q = q * self.scale - - # similarity - - sim = einsum("b h i d, b j d -> b h i j", q, k) - - - # extra attention mask - for masking out attention from text CLS token to padding - - if exists(attn_mask): - attn_mask = rearrange(attn_mask, 'b i j -> b 1 i j') - sim = sim.masked_fill(~attn_mask, -torch.finfo(sim.dtype).max) - - # attention - - sim = sim - sim.amax(dim=-1, keepdim=True).detach() - attn = sim.softmax(dim=-1) - - # aggregate values - - out = einsum("b h i j, b j d -> b h i d", attn, v) - - # merge heads - - out = rearrange(out, "b h n d -> b n (h d)") - return self.attn_out(out) + self.ff_out(ff) - -# cross attention - using multi-query + one-headed key / values as in PaLM w/ optional parallel feedforward - -class CrossAttention(nn.Module): - def __init__( - self, - dim, - *, - context_dim=None, - dim_head=64, - heads=12, - parallel_ff=False, - ff_mult=4, - norm_context=False - ): - super().__init__() - self.heads = heads - self.scale = dim_head ** -0.5 - inner_dim = heads * dim_head - context_dim = default(context_dim, dim) - - self.norm = LayerNorm(dim) - self.context_norm = LayerNorm(context_dim) if norm_context else nn.Identity() - - self.to_q = nn.Linear(dim, inner_dim, bias=False) - self.to_kv = nn.Linear(context_dim, dim_head * 2, bias=False) - self.to_out = nn.Linear(inner_dim, dim, bias=False) - - # whether to have parallel feedforward - - ff_inner_dim = ff_mult * dim - - self.ff = nn.Sequential( - nn.Linear(dim, ff_inner_dim * 2, bias=False), - SwiGLU(), - nn.Linear(ff_inner_dim, dim, bias=False) - ) if parallel_ff else None - - def forward(self, x, context, mask): - """ - einstein notation - b - batch - h - heads - n, i, j - sequence length (base sequence length, source, target) - d - feature dimension - """ - - # pre-layernorm, for queries and context - - x = self.norm(x) - context = self.context_norm(context) - - # get queries - - q = self.to_q(x) - q = rearrange(q, 'b n (h d) -> b h n d', h = self.heads) - - # scale - - q = q * self.scale - - # get key / values - - k, v = self.to_kv(context).chunk(2, dim=-1) - - # query / key similarity - - sim = einsum('b h i d, b j d -> b h i j', q, k) - - # attention - mask = mask.unsqueeze(1).repeat(1,self.heads,1,1) - sim = sim + mask # context mask - sim = sim - sim.amax(dim=-1, keepdim=True) - attn = sim.softmax(dim=-1) - - # aggregate - - out = einsum('b h i j, b j d -> b h i d', attn, v) - - # merge and combine heads - - out = rearrange(out, 'b h n d -> b n (h d)') - out = self.to_out(out) - - # add parallel feedforward (for multimodal layers) - - if exists(self.ff): - out = out + self.ff(x) - - return out - - -class Cross_model(nn.Module): - def __init__( - self, - dim=512, - layer_num=4, - dim_head=64, - heads=8, - ff_mult=4 - ): - super().__init__() - - self.layers = nn.ModuleList([]) - - - for ind in range(layer_num): - self.layers.append(nn.ModuleList([ - Residual(CrossAttention(dim=dim, dim_head=dim_head, heads=heads, parallel_ff=True, ff_mult=ff_mult)), - Residual(ParallelTransformerBlock(dim=dim, dim_head=dim_head, heads=heads, ff_mult=ff_mult)) - ])) - - def forward( - self, - query_tokens, - context_tokens, - mask - ): - - for cross_attn, self_attn_ff in self.layers: - query_tokens = cross_attn(query_tokens, context_tokens,mask) - query_tokens = self_attn_ff(query_tokens) - - return query_tokens diff --git a/diffsynth/extensions/RIFE/__init__.py b/diffsynth/extensions/RIFE/__init__.py deleted file mode 100644 index e76c391f0b085b3628592990a868ac09f37cced7..0000000000000000000000000000000000000000 --- a/diffsynth/extensions/RIFE/__init__.py +++ /dev/null @@ -1,242 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -import numpy as np -from PIL import Image - - -def warp(tenInput, tenFlow, device): - backwarp_tenGrid = {} - k = (str(tenFlow.device), str(tenFlow.size())) - if k not in backwarp_tenGrid: - tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device).view( - 1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1) - tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device).view( - 1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3]) - backwarp_tenGrid[k] = torch.cat( - [tenHorizontal, tenVertical], 1).to(device) - - tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), - tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1) - - g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1) - return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True) - - -def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): - return nn.Sequential( - nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, - padding=padding, dilation=dilation, bias=True), - nn.PReLU(out_planes) - ) - - -class IFBlock(nn.Module): - def __init__(self, in_planes, c=64): - super(IFBlock, self).__init__() - self.conv0 = nn.Sequential(conv(in_planes, c//2, 3, 2, 1), conv(c//2, c, 3, 2, 1),) - self.convblock0 = nn.Sequential(conv(c, c), conv(c, c)) - self.convblock1 = nn.Sequential(conv(c, c), conv(c, c)) - self.convblock2 = nn.Sequential(conv(c, c), conv(c, c)) - self.convblock3 = nn.Sequential(conv(c, c), conv(c, c)) - self.conv1 = nn.Sequential(nn.ConvTranspose2d(c, c//2, 4, 2, 1), nn.PReLU(c//2), nn.ConvTranspose2d(c//2, 4, 4, 2, 1)) - self.conv2 = nn.Sequential(nn.ConvTranspose2d(c, c//2, 4, 2, 1), nn.PReLU(c//2), nn.ConvTranspose2d(c//2, 1, 4, 2, 1)) - - def forward(self, x, flow, scale=1): - x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) - flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 1. / scale - feat = self.conv0(torch.cat((x, flow), 1)) - feat = self.convblock0(feat) + feat - feat = self.convblock1(feat) + feat - feat = self.convblock2(feat) + feat - feat = self.convblock3(feat) + feat - flow = self.conv1(feat) - mask = self.conv2(feat) - flow = F.interpolate(flow, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * scale - mask = F.interpolate(mask, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) - return flow, mask - - -class IFNet(nn.Module): - def __init__(self, **kwargs): - super(IFNet, self).__init__() - self.block0 = IFBlock(7+4, c=90) - self.block1 = IFBlock(7+4, c=90) - self.block2 = IFBlock(7+4, c=90) - self.block_tea = IFBlock(10+4, c=90) - - def forward(self, x, scale_list=[4, 2, 1], training=False): - if training == False: - channel = x.shape[1] // 2 - img0 = x[:, :channel] - img1 = x[:, channel:] - flow_list = [] - merged = [] - mask_list = [] - warped_img0 = img0 - warped_img1 = img1 - flow = (x[:, :4]).detach() * 0 - mask = (x[:, :1]).detach() * 0 - block = [self.block0, self.block1, self.block2] - for i in range(3): - f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1), flow, scale=scale_list[i]) - f1, m1 = block[i](torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1), torch.cat((flow[:, 2:4], flow[:, :2]), 1), scale=scale_list[i]) - flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2 - mask = mask + (m0 + (-m1)) / 2 - mask_list.append(mask) - flow_list.append(flow) - warped_img0 = warp(img0, flow[:, :2], device=x.device) - warped_img1 = warp(img1, flow[:, 2:4], device=x.device) - merged.append((warped_img0, warped_img1)) - ''' - c0 = self.contextnet(img0, flow[:, :2]) - c1 = self.contextnet(img1, flow[:, 2:4]) - tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1) - res = tmp[:, 1:4] * 2 - 1 - ''' - for i in range(3): - mask_list[i] = torch.sigmoid(mask_list[i]) - merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i]) - return flow_list, mask_list[2], merged - - @staticmethod - def state_dict_converter(): - return IFNetStateDictConverter() - - -class IFNetStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - state_dict_ = {k.replace("module.", ""): v for k, v in state_dict.items()} - return state_dict_ - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict), {"upcast_to_float32": True} - - -class RIFEInterpolater: - def __init__(self, model, device="cuda"): - self.model = model - self.device = device - # IFNet only does not support float16 - self.torch_dtype = torch.float32 - - @staticmethod - def from_model_manager(model_manager): - return RIFEInterpolater(model_manager.fetch_model("rife"), device=model_manager.device) - - def process_image(self, image): - width, height = image.size - if width % 32 != 0 or height % 32 != 0: - width = (width + 31) // 32 - height = (height + 31) // 32 - image = image.resize((width, height)) - image = torch.Tensor(np.array(image, dtype=np.float32)[:, :, [2,1,0]] / 255).permute(2, 0, 1) - return image - - def process_images(self, images): - images = [self.process_image(image) for image in images] - images = torch.stack(images) - return images - - def decode_images(self, images): - images = (images[:, [2,1,0]].permute(0, 2, 3, 1) * 255).clip(0, 255).numpy().astype(np.uint8) - images = [Image.fromarray(image) for image in images] - return images - - def add_interpolated_images(self, images, interpolated_images): - output_images = [] - for image, interpolated_image in zip(images, interpolated_images): - output_images.append(image) - output_images.append(interpolated_image) - output_images.append(images[-1]) - return output_images - - - @torch.no_grad() - def interpolate_(self, images, scale=1.0): - input_tensor = self.process_images(images) - input_tensor = torch.cat((input_tensor[:-1], input_tensor[1:]), dim=1) - input_tensor = input_tensor.to(device=self.device, dtype=self.torch_dtype) - flow, mask, merged = self.model(input_tensor, [4/scale, 2/scale, 1/scale]) - output_images = self.decode_images(merged[2].cpu()) - if output_images[0].size != images[0].size: - output_images = [image.resize(images[0].size) for image in output_images] - return output_images - - - @torch.no_grad() - def interpolate(self, images, scale=1.0, batch_size=4, num_iter=1, progress_bar=lambda x:x): - # Preprocess - processed_images = self.process_images(images) - - for iter in range(num_iter): - # Input - input_tensor = torch.cat((processed_images[:-1], processed_images[1:]), dim=1) - - # Interpolate - output_tensor = [] - for batch_id in progress_bar(range(0, input_tensor.shape[0], batch_size)): - batch_id_ = min(batch_id + batch_size, input_tensor.shape[0]) - batch_input_tensor = input_tensor[batch_id: batch_id_] - batch_input_tensor = batch_input_tensor.to(device=self.device, dtype=self.torch_dtype) - flow, mask, merged = self.model(batch_input_tensor, [4/scale, 2/scale, 1/scale]) - output_tensor.append(merged[2].cpu()) - - # Output - output_tensor = torch.concat(output_tensor, dim=0).clip(0, 1) - processed_images = self.add_interpolated_images(processed_images, output_tensor) - processed_images = torch.stack(processed_images) - - # To images - output_images = self.decode_images(processed_images) - if output_images[0].size != images[0].size: - output_images = [image.resize(images[0].size) for image in output_images] - return output_images - - -class RIFESmoother(RIFEInterpolater): - def __init__(self, model, device="cuda"): - super(RIFESmoother, self).__init__(model, device=device) - - @staticmethod - def from_model_manager(model_manager): - return RIFEInterpolater(model_manager.fetch_model("rife"), device=model_manager.device) - - def process_tensors(self, input_tensor, scale=1.0, batch_size=4): - output_tensor = [] - for batch_id in range(0, input_tensor.shape[0], batch_size): - batch_id_ = min(batch_id + batch_size, input_tensor.shape[0]) - batch_input_tensor = input_tensor[batch_id: batch_id_] - batch_input_tensor = batch_input_tensor.to(device=self.device, dtype=self.torch_dtype) - flow, mask, merged = self.model(batch_input_tensor, [4/scale, 2/scale, 1/scale]) - output_tensor.append(merged[2].cpu()) - output_tensor = torch.concat(output_tensor, dim=0) - return output_tensor - - @torch.no_grad() - def __call__(self, rendered_frames, scale=1.0, batch_size=4, num_iter=1, **kwargs): - # Preprocess - processed_images = self.process_images(rendered_frames) - - for iter in range(num_iter): - # Input - input_tensor = torch.cat((processed_images[:-2], processed_images[2:]), dim=1) - - # Interpolate - output_tensor = self.process_tensors(input_tensor, scale=scale, batch_size=batch_size) - - # Blend - input_tensor = torch.cat((processed_images[1:-1], output_tensor), dim=1) - output_tensor = self.process_tensors(input_tensor, scale=scale, batch_size=batch_size) - - # Add to frames - processed_images[1:-1] = output_tensor - - # To images - output_images = self.decode_images(processed_images) - if output_images[0].size != rendered_frames[0].size: - output_images = [image.resize(rendered_frames[0].size) for image in output_images] - return output_images diff --git a/diffsynth/extensions/RIFE/__pycache__/__init__.cpython-310.pyc b/diffsynth/extensions/RIFE/__pycache__/__init__.cpython-310.pyc deleted file mode 100644 index 3780e00ffb71b6aba72cdef34a8c96675c6fcd09..0000000000000000000000000000000000000000 Binary files a/diffsynth/extensions/RIFE/__pycache__/__init__.cpython-310.pyc and /dev/null differ diff --git a/diffsynth/extensions/RIFE/__pycache__/__init__.cpython-311.pyc b/diffsynth/extensions/RIFE/__pycache__/__init__.cpython-311.pyc deleted file mode 100644 index d22ac3d33a5f8f95d9b48442972734d43fe4c85f..0000000000000000000000000000000000000000 Binary files a/diffsynth/extensions/RIFE/__pycache__/__init__.cpython-311.pyc and /dev/null differ diff --git a/diffsynth/extensions/RIFE/__pycache__/__init__.cpython-312.pyc b/diffsynth/extensions/RIFE/__pycache__/__init__.cpython-312.pyc deleted file mode 100644 index 842927809699f81e50e1e21b611fe91ee25ab854..0000000000000000000000000000000000000000 Binary files a/diffsynth/extensions/RIFE/__pycache__/__init__.cpython-312.pyc and /dev/null differ diff --git a/diffsynth/extensions/__init__.py b/diffsynth/extensions/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/diffsynth/models/__init__.py b/diffsynth/models/__init__.py deleted file mode 100644 index 96707b666371c39d4ba59a839d5ddfeafb5d1d43..0000000000000000000000000000000000000000 --- a/diffsynth/models/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .model_manager import * diff --git a/diffsynth/models/attention.py b/diffsynth/models/attention.py deleted file mode 100644 index eb90e1ed1a28a0541a8d9df8313997a7d3f14da7..0000000000000000000000000000000000000000 --- a/diffsynth/models/attention.py +++ /dev/null @@ -1,89 +0,0 @@ -import torch -from einops import rearrange - - -def low_version_attention(query, key, value, attn_bias=None): - scale = 1 / query.shape[-1] ** 0.5 - query = query * scale - attn = torch.matmul(query, key.transpose(-2, -1)) - if attn_bias is not None: - attn = attn + attn_bias - attn = attn.softmax(-1) - return attn @ value - - -class Attention(torch.nn.Module): - - def __init__(self, q_dim, num_heads, head_dim, kv_dim=None, bias_q=False, bias_kv=False, bias_out=False): - super().__init__() - dim_inner = head_dim * num_heads - kv_dim = kv_dim if kv_dim is not None else q_dim - self.num_heads = num_heads - self.head_dim = head_dim - - self.to_q = torch.nn.Linear(q_dim, dim_inner, bias=bias_q) - self.to_k = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv) - self.to_v = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv) - self.to_out = torch.nn.Linear(dim_inner, q_dim, bias=bias_out) - - def interact_with_ipadapter(self, hidden_states, q, ip_k, ip_v, scale=1.0): - batch_size = q.shape[0] - ip_k = ip_k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) - ip_v = ip_v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) - ip_hidden_states = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v) - hidden_states = hidden_states + scale * ip_hidden_states - return hidden_states - - def torch_forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None, ipadapter_kwargs=None, qkv_preprocessor=None): - if encoder_hidden_states is None: - encoder_hidden_states = hidden_states - - batch_size = encoder_hidden_states.shape[0] - - q = self.to_q(hidden_states) - k = self.to_k(encoder_hidden_states) - v = self.to_v(encoder_hidden_states) - - q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) - k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) - v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) - - if qkv_preprocessor is not None: - q, k, v = qkv_preprocessor(q, k, v) - - hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) - if ipadapter_kwargs is not None: - hidden_states = self.interact_with_ipadapter(hidden_states, q, **ipadapter_kwargs) - hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) - hidden_states = hidden_states.to(q.dtype) - - hidden_states = self.to_out(hidden_states) - - return hidden_states - - def xformers_forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None): - if encoder_hidden_states is None: - encoder_hidden_states = hidden_states - - q = self.to_q(hidden_states) - k = self.to_k(encoder_hidden_states) - v = self.to_v(encoder_hidden_states) - - q = rearrange(q, "b f (n d) -> (b n) f d", n=self.num_heads) - k = rearrange(k, "b f (n d) -> (b n) f d", n=self.num_heads) - v = rearrange(v, "b f (n d) -> (b n) f d", n=self.num_heads) - - if attn_mask is not None: - hidden_states = low_version_attention(q, k, v, attn_bias=attn_mask) - else: - import xformers.ops as xops - hidden_states = xops.memory_efficient_attention(q, k, v) - hidden_states = rearrange(hidden_states, "(b n) f d -> b f (n d)", n=self.num_heads) - - hidden_states = hidden_states.to(q.dtype) - hidden_states = self.to_out(hidden_states) - - return hidden_states - - def forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None, ipadapter_kwargs=None, qkv_preprocessor=None): - return self.torch_forward(hidden_states, encoder_hidden_states=encoder_hidden_states, attn_mask=attn_mask, ipadapter_kwargs=ipadapter_kwargs, qkv_preprocessor=qkv_preprocessor) \ No newline at end of file diff --git a/diffsynth/models/cog_dit.py b/diffsynth/models/cog_dit.py deleted file mode 100644 index e93c4c38684c6815c099774dd4e3c8291462cd78..0000000000000000000000000000000000000000 --- a/diffsynth/models/cog_dit.py +++ /dev/null @@ -1,408 +0,0 @@ -import torch -from einops import rearrange, repeat -from .sd3_dit import TimestepEmbeddings -from .attention import Attention -from .utils import load_state_dict_from_folder -from .tiler import TileWorker2Dto3D -import numpy as np - - - -class CogPatchify(torch.nn.Module): - def __init__(self, dim_in, dim_out, patch_size) -> None: - super().__init__() - self.proj = torch.nn.Conv3d(dim_in, dim_out, kernel_size=(1, patch_size, patch_size), stride=(1, patch_size, patch_size)) - - def forward(self, hidden_states): - hidden_states = self.proj(hidden_states) - hidden_states = rearrange(hidden_states, "B C T H W -> B (T H W) C") - return hidden_states - - - -class CogAdaLayerNorm(torch.nn.Module): - def __init__(self, dim, dim_cond, single=False): - super().__init__() - self.single = single - self.linear = torch.nn.Linear(dim_cond, dim * (2 if single else 6)) - self.norm = torch.nn.LayerNorm(dim, elementwise_affine=True, eps=1e-5) - - - def forward(self, hidden_states, prompt_emb, emb): - emb = self.linear(torch.nn.functional.silu(emb)) - if self.single: - shift, scale = emb.unsqueeze(1).chunk(2, dim=2) - hidden_states = self.norm(hidden_states) * (1 + scale) + shift - return hidden_states - else: - shift_a, scale_a, gate_a, shift_b, scale_b, gate_b = emb.unsqueeze(1).chunk(6, dim=2) - hidden_states = self.norm(hidden_states) * (1 + scale_a) + shift_a - prompt_emb = self.norm(prompt_emb) * (1 + scale_b) + shift_b - return hidden_states, prompt_emb, gate_a, gate_b - - - -class CogDiTBlock(torch.nn.Module): - def __init__(self, dim, dim_cond, num_heads): - super().__init__() - self.norm1 = CogAdaLayerNorm(dim, dim_cond) - self.attn1 = Attention(q_dim=dim, num_heads=48, head_dim=dim//num_heads, bias_q=True, bias_kv=True, bias_out=True) - self.norm_q = torch.nn.LayerNorm((dim//num_heads,), eps=1e-06, elementwise_affine=True) - self.norm_k = torch.nn.LayerNorm((dim//num_heads,), eps=1e-06, elementwise_affine=True) - - self.norm2 = CogAdaLayerNorm(dim, dim_cond) - self.ff = torch.nn.Sequential( - torch.nn.Linear(dim, dim*4), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(dim*4, dim) - ) - - - def apply_rotary_emb(self, x, freqs_cis): - cos, sin = freqs_cis # [S, D] - cos = cos[None, None] - sin = sin[None, None] - cos, sin = cos.to(x.device), sin.to(x.device) - x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] - x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) - out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) - return out - - - def process_qkv(self, q, k, v, image_rotary_emb, text_seq_length): - q = self.norm_q(q) - k = self.norm_k(k) - q[:, :, text_seq_length:] = self.apply_rotary_emb(q[:, :, text_seq_length:], image_rotary_emb) - k[:, :, text_seq_length:] = self.apply_rotary_emb(k[:, :, text_seq_length:], image_rotary_emb) - return q, k, v - - - def forward(self, hidden_states, prompt_emb, time_emb, image_rotary_emb): - # Attention - norm_hidden_states, norm_encoder_hidden_states, gate_a, gate_b = self.norm1( - hidden_states, prompt_emb, time_emb - ) - attention_io = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) - attention_io = self.attn1( - attention_io, - qkv_preprocessor=lambda q, k, v: self.process_qkv(q, k, v, image_rotary_emb, prompt_emb.shape[1]) - ) - - hidden_states = hidden_states + gate_a * attention_io[:, prompt_emb.shape[1]:] - prompt_emb = prompt_emb + gate_b * attention_io[:, :prompt_emb.shape[1]] - - # Feed forward - norm_hidden_states, norm_encoder_hidden_states, gate_a, gate_b = self.norm2( - hidden_states, prompt_emb, time_emb - ) - ff_io = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) - ff_io = self.ff(ff_io) - - hidden_states = hidden_states + gate_a * ff_io[:, prompt_emb.shape[1]:] - prompt_emb = prompt_emb + gate_b * ff_io[:, :prompt_emb.shape[1]] - - return hidden_states, prompt_emb - - - -class CogDiT(torch.nn.Module): - def __init__(self): - super().__init__() - self.patchify = CogPatchify(16, 3072, 2) - self.time_embedder = TimestepEmbeddings(3072, 512) - self.context_embedder = torch.nn.Linear(4096, 3072) - self.blocks = torch.nn.ModuleList([CogDiTBlock(3072, 512, 48) for _ in range(42)]) - self.norm_final = torch.nn.LayerNorm((3072,), eps=1e-05, elementwise_affine=True) - self.norm_out = CogAdaLayerNorm(3072, 512, single=True) - self.proj_out = torch.nn.Linear(3072, 64, bias=True) - - - def get_resize_crop_region_for_grid(self, src, tgt_width, tgt_height): - tw = tgt_width - th = tgt_height - h, w = src - r = h / w - if r > (th / tw): - resize_height = th - resize_width = int(round(th / h * w)) - else: - resize_width = tw - resize_height = int(round(tw / w * h)) - - crop_top = int(round((th - resize_height) / 2.0)) - crop_left = int(round((tw - resize_width) / 2.0)) - - return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) - - - def get_3d_rotary_pos_embed( - self, embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True - ): - start, stop = crops_coords - grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32) - grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32) - grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32) - - # Compute dimensions for each axis - dim_t = embed_dim // 4 - dim_h = embed_dim // 8 * 3 - dim_w = embed_dim // 8 * 3 - - # Temporal frequencies - freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t)) - grid_t = torch.from_numpy(grid_t).float() - freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t) - freqs_t = freqs_t.repeat_interleave(2, dim=-1) - - # Spatial frequencies for height and width - freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h)) - freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w)) - grid_h = torch.from_numpy(grid_h).float() - grid_w = torch.from_numpy(grid_w).float() - freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h) - freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w) - freqs_h = freqs_h.repeat_interleave(2, dim=-1) - freqs_w = freqs_w.repeat_interleave(2, dim=-1) - - # Broadcast and concatenate tensors along specified dimension - def broadcast(tensors, dim=-1): - num_tensors = len(tensors) - shape_lens = {len(t.shape) for t in tensors} - assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" - shape_len = list(shape_lens)[0] - dim = (dim + shape_len) if dim < 0 else dim - dims = list(zip(*(list(t.shape) for t in tensors))) - expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] - assert all( - [*(len(set(t[1])) <= 2 for t in expandable_dims)] - ), "invalid dimensions for broadcastable concatenation" - max_dims = [(t[0], max(t[1])) for t in expandable_dims] - expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims] - expanded_dims.insert(dim, (dim, dims[dim])) - expandable_shapes = list(zip(*(t[1] for t in expanded_dims))) - tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)] - return torch.cat(tensors, dim=dim) - - freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1) - - t, h, w, d = freqs.shape - freqs = freqs.view(t * h * w, d) - - # Generate sine and cosine components - sin = freqs.sin() - cos = freqs.cos() - - if use_real: - return cos, sin - else: - freqs_cis = torch.polar(torch.ones_like(freqs), freqs) - return freqs_cis - - - def prepare_rotary_positional_embeddings( - self, - height: int, - width: int, - num_frames: int, - device: torch.device, - ): - grid_height = height // 2 - grid_width = width // 2 - base_size_width = 720 // (8 * 2) - base_size_height = 480 // (8 * 2) - - grid_crops_coords = self.get_resize_crop_region_for_grid( - (grid_height, grid_width), base_size_width, base_size_height - ) - freqs_cos, freqs_sin = self.get_3d_rotary_pos_embed( - embed_dim=64, - crops_coords=grid_crops_coords, - grid_size=(grid_height, grid_width), - temporal_size=num_frames, - use_real=True, - ) - - freqs_cos = freqs_cos.to(device=device) - freqs_sin = freqs_sin.to(device=device) - return freqs_cos, freqs_sin - - - def unpatchify(self, hidden_states, height, width): - hidden_states = rearrange(hidden_states, "B (T H W) (C P Q) -> B C T (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2) - return hidden_states - - - def build_mask(self, T, H, W, dtype, device, is_bound): - t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W) - h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W) - w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W) - border_width = (H + W) // 4 - pad = torch.ones_like(h) * border_width - mask = torch.stack([ - pad if is_bound[0] else t + 1, - pad if is_bound[1] else T - t, - pad if is_bound[2] else h + 1, - pad if is_bound[3] else H - h, - pad if is_bound[4] else w + 1, - pad if is_bound[5] else W - w - ]).min(dim=0).values - mask = mask.clip(1, border_width) - mask = (mask / border_width).to(dtype=dtype, device=device) - mask = rearrange(mask, "T H W -> 1 1 T H W") - return mask - - - def tiled_forward(self, hidden_states, timestep, prompt_emb, tile_size=(60, 90), tile_stride=(30, 45)): - B, C, T, H, W = hidden_states.shape - value = torch.zeros((B, C, T, H, W), dtype=hidden_states.dtype, device=hidden_states.device) - weight = torch.zeros((B, C, T, H, W), dtype=hidden_states.dtype, device=hidden_states.device) - - # Split tasks - tasks = [] - for h in range(0, H, tile_stride): - for w in range(0, W, tile_stride): - if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W): - continue - h_, w_ = h + tile_size, w + tile_size - if h_ > H: h, h_ = max(H - tile_size, 0), H - if w_ > W: w, w_ = max(W - tile_size, 0), W - tasks.append((h, h_, w, w_)) - - # Run - for hl, hr, wl, wr in tasks: - mask = self.build_mask( - value.shape[2], (hr-hl), (wr-wl), - hidden_states.dtype, hidden_states.device, - is_bound=(True, True, hl==0, hr>=H, wl==0, wr>=W) - ) - model_output = self.forward(hidden_states[:, :, :, hl:hr, wl:wr], timestep, prompt_emb) - value[:, :, :, hl:hr, wl:wr] += model_output * mask - weight[:, :, :, hl:hr, wl:wr] += mask - value = value / weight - - return value - - - def forward(self, hidden_states, timestep, prompt_emb, image_rotary_emb=None, tiled=False, tile_size=90, tile_stride=30, use_gradient_checkpointing=False): - if tiled: - return TileWorker2Dto3D().tiled_forward( - forward_fn=lambda x: self.forward(x, timestep, prompt_emb), - model_input=hidden_states, - tile_size=tile_size, tile_stride=tile_stride, - tile_device=hidden_states.device, tile_dtype=hidden_states.dtype, - computation_device=self.context_embedder.weight.device, computation_dtype=self.context_embedder.weight.dtype - ) - num_frames, height, width = hidden_states.shape[-3:] - if image_rotary_emb is None: - image_rotary_emb = self.prepare_rotary_positional_embeddings(height, width, num_frames, device=self.context_embedder.weight.device) - hidden_states = self.patchify(hidden_states) - time_emb = self.time_embedder(timestep, dtype=hidden_states.dtype) - prompt_emb = self.context_embedder(prompt_emb) - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - return custom_forward - - for block in self.blocks: - if self.training and use_gradient_checkpointing: - hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - hidden_states, prompt_emb, time_emb, image_rotary_emb, - use_reentrant=False, - ) - else: - hidden_states, prompt_emb = block(hidden_states, prompt_emb, time_emb, image_rotary_emb) - - hidden_states = torch.cat([prompt_emb, hidden_states], dim=1) - hidden_states = self.norm_final(hidden_states) - hidden_states = hidden_states[:, prompt_emb.shape[1]:] - hidden_states = self.norm_out(hidden_states, prompt_emb, time_emb) - hidden_states = self.proj_out(hidden_states) - hidden_states = self.unpatchify(hidden_states, height, width) - - return hidden_states - - - @staticmethod - def state_dict_converter(): - return CogDiTStateDictConverter() - - - @staticmethod - def from_pretrained(file_path, torch_dtype=torch.bfloat16): - model = CogDiT().to(torch_dtype) - state_dict = load_state_dict_from_folder(file_path, torch_dtype=torch_dtype) - state_dict = CogDiT.state_dict_converter().from_diffusers(state_dict) - model.load_state_dict(state_dict) - return model - - - -class CogDiTStateDictConverter: - def __init__(self): - pass - - - def from_diffusers(self, state_dict): - rename_dict = { - "patch_embed.proj.weight": "patchify.proj.weight", - "patch_embed.proj.bias": "patchify.proj.bias", - "patch_embed.text_proj.weight": "context_embedder.weight", - "patch_embed.text_proj.bias": "context_embedder.bias", - "time_embedding.linear_1.weight": "time_embedder.timestep_embedder.0.weight", - "time_embedding.linear_1.bias": "time_embedder.timestep_embedder.0.bias", - "time_embedding.linear_2.weight": "time_embedder.timestep_embedder.2.weight", - "time_embedding.linear_2.bias": "time_embedder.timestep_embedder.2.bias", - - "norm_final.weight": "norm_final.weight", - "norm_final.bias": "norm_final.bias", - "norm_out.linear.weight": "norm_out.linear.weight", - "norm_out.linear.bias": "norm_out.linear.bias", - "norm_out.norm.weight": "norm_out.norm.weight", - "norm_out.norm.bias": "norm_out.norm.bias", - "proj_out.weight": "proj_out.weight", - "proj_out.bias": "proj_out.bias", - } - suffix_dict = { - "norm1.linear.weight": "norm1.linear.weight", - "norm1.linear.bias": "norm1.linear.bias", - "norm1.norm.weight": "norm1.norm.weight", - "norm1.norm.bias": "norm1.norm.bias", - "attn1.norm_q.weight": "norm_q.weight", - "attn1.norm_q.bias": "norm_q.bias", - "attn1.norm_k.weight": "norm_k.weight", - "attn1.norm_k.bias": "norm_k.bias", - "attn1.to_q.weight": "attn1.to_q.weight", - "attn1.to_q.bias": "attn1.to_q.bias", - "attn1.to_k.weight": "attn1.to_k.weight", - "attn1.to_k.bias": "attn1.to_k.bias", - "attn1.to_v.weight": "attn1.to_v.weight", - "attn1.to_v.bias": "attn1.to_v.bias", - "attn1.to_out.0.weight": "attn1.to_out.weight", - "attn1.to_out.0.bias": "attn1.to_out.bias", - "norm2.linear.weight": "norm2.linear.weight", - "norm2.linear.bias": "norm2.linear.bias", - "norm2.norm.weight": "norm2.norm.weight", - "norm2.norm.bias": "norm2.norm.bias", - "ff.net.0.proj.weight": "ff.0.weight", - "ff.net.0.proj.bias": "ff.0.bias", - "ff.net.2.weight": "ff.2.weight", - "ff.net.2.bias": "ff.2.bias", - } - state_dict_ = {} - for name, param in state_dict.items(): - if name in rename_dict: - if name == "patch_embed.proj.weight": - param = param.unsqueeze(2) - state_dict_[rename_dict[name]] = param - else: - names = name.split(".") - if names[0] == "transformer_blocks": - suffix = ".".join(names[2:]) - state_dict_[f"blocks.{names[1]}." + suffix_dict[suffix]] = param - return state_dict_ - - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) diff --git a/diffsynth/models/cog_vae.py b/diffsynth/models/cog_vae.py deleted file mode 100644 index 24ab3b3f37e111ffabf7d56c582637c6dc1c80b8..0000000000000000000000000000000000000000 --- a/diffsynth/models/cog_vae.py +++ /dev/null @@ -1,518 +0,0 @@ -import torch -from einops import rearrange, repeat -from .tiler import TileWorker2Dto3D - - - -class Downsample3D(torch.nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - kernel_size: int = 3, - stride: int = 2, - padding: int = 0, - compress_time: bool = False, - ): - super().__init__() - - self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) - self.compress_time = compress_time - - def forward(self, x: torch.Tensor, xq: torch.Tensor) -> torch.Tensor: - if self.compress_time: - batch_size, channels, frames, height, width = x.shape - - # (batch_size, channels, frames, height, width) -> (batch_size, height, width, channels, frames) -> (batch_size * height * width, channels, frames) - x = x.permute(0, 3, 4, 1, 2).reshape(batch_size * height * width, channels, frames) - - if x.shape[-1] % 2 == 1: - x_first, x_rest = x[..., 0], x[..., 1:] - if x_rest.shape[-1] > 0: - # (batch_size * height * width, channels, frames - 1) -> (batch_size * height * width, channels, (frames - 1) // 2) - x_rest = torch.nn.functional.avg_pool1d(x_rest, kernel_size=2, stride=2) - - x = torch.cat([x_first[..., None], x_rest], dim=-1) - # (batch_size * height * width, channels, (frames // 2) + 1) -> (batch_size, height, width, channels, (frames // 2) + 1) -> (batch_size, channels, (frames // 2) + 1, height, width) - x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2) - else: - # (batch_size * height * width, channels, frames) -> (batch_size * height * width, channels, frames // 2) - x = torch.nn.functional.avg_pool1d(x, kernel_size=2, stride=2) - # (batch_size * height * width, channels, frames // 2) -> (batch_size, height, width, channels, frames // 2) -> (batch_size, channels, frames // 2, height, width) - x = x.reshape(batch_size, height, width, channels, x.shape[-1]).permute(0, 3, 4, 1, 2) - - # Pad the tensor - pad = (0, 1, 0, 1) - x = torch.nn.functional.pad(x, pad, mode="constant", value=0) - batch_size, channels, frames, height, width = x.shape - # (batch_size, channels, frames, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size * frames, channels, height, width) - x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channels, height, width) - x = self.conv(x) - # (batch_size * frames, channels, height, width) -> (batch_size, frames, channels, height, width) -> (batch_size, channels, frames, height, width) - x = x.reshape(batch_size, frames, x.shape[1], x.shape[2], x.shape[3]).permute(0, 2, 1, 3, 4) - return x - - - -class Upsample3D(torch.nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - kernel_size: int = 3, - stride: int = 1, - padding: int = 1, - compress_time: bool = False, - ) -> None: - super().__init__() - self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) - self.compress_time = compress_time - - def forward(self, inputs: torch.Tensor, xq: torch.Tensor) -> torch.Tensor: - if self.compress_time: - if inputs.shape[2] > 1 and inputs.shape[2] % 2 == 1: - # split first frame - x_first, x_rest = inputs[:, :, 0], inputs[:, :, 1:] - - x_first = torch.nn.functional.interpolate(x_first, scale_factor=2.0) - x_rest = torch.nn.functional.interpolate(x_rest, scale_factor=2.0) - x_first = x_first[:, :, None, :, :] - inputs = torch.cat([x_first, x_rest], dim=2) - elif inputs.shape[2] > 1: - inputs = torch.nn.functional.interpolate(inputs, scale_factor=2.0) - else: - inputs = inputs.squeeze(2) - inputs = torch.nn.functional.interpolate(inputs, scale_factor=2.0) - inputs = inputs[:, :, None, :, :] - else: - # only interpolate 2D - b, c, t, h, w = inputs.shape - inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) - inputs = torch.nn.functional.interpolate(inputs, scale_factor=2.0) - inputs = inputs.reshape(b, t, c, *inputs.shape[2:]).permute(0, 2, 1, 3, 4) - - b, c, t, h, w = inputs.shape - inputs = inputs.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w) - inputs = self.conv(inputs) - inputs = inputs.reshape(b, t, *inputs.shape[1:]).permute(0, 2, 1, 3, 4) - - return inputs - - - -class CogVideoXSpatialNorm3D(torch.nn.Module): - def __init__(self, f_channels, zq_channels, groups): - super().__init__() - self.norm_layer = torch.nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True) - self.conv_y = torch.nn.Conv3d(zq_channels, f_channels, kernel_size=1, stride=1) - self.conv_b = torch.nn.Conv3d(zq_channels, f_channels, kernel_size=1, stride=1) - - - def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: - if f.shape[2] > 1 and f.shape[2] % 2 == 1: - f_first, f_rest = f[:, :, :1], f[:, :, 1:] - f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:] - z_first, z_rest = zq[:, :, :1], zq[:, :, 1:] - z_first = torch.nn.functional.interpolate(z_first, size=f_first_size) - z_rest = torch.nn.functional.interpolate(z_rest, size=f_rest_size) - zq = torch.cat([z_first, z_rest], dim=2) - else: - zq = torch.nn.functional.interpolate(zq, size=f.shape[-3:]) - - norm_f = self.norm_layer(f) - new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) - return new_f - - - -class Resnet3DBlock(torch.nn.Module): - def __init__(self, in_channels, out_channels, spatial_norm_dim, groups, eps=1e-6, use_conv_shortcut=False): - super().__init__() - self.nonlinearity = torch.nn.SiLU() - if spatial_norm_dim is None: - self.norm1 = torch.nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps) - self.norm2 = torch.nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps) - else: - self.norm1 = CogVideoXSpatialNorm3D(in_channels, spatial_norm_dim, groups) - self.norm2 = CogVideoXSpatialNorm3D(out_channels, spatial_norm_dim, groups) - - self.conv1 = CachedConv3d(in_channels, out_channels, kernel_size=3, padding=(0, 1, 1)) - - self.conv2 = CachedConv3d(out_channels, out_channels, kernel_size=3, padding=(0, 1, 1)) - - if in_channels != out_channels: - if use_conv_shortcut: - self.conv_shortcut = CachedConv3d(in_channels, out_channels, kernel_size=3, padding=(0, 1, 1)) - else: - self.conv_shortcut = torch.nn.Conv3d(in_channels, out_channels, kernel_size=1) - else: - self.conv_shortcut = lambda x: x - - - def forward(self, hidden_states, zq): - residual = hidden_states - - hidden_states = self.norm1(hidden_states, zq) if isinstance(self.norm1, CogVideoXSpatialNorm3D) else self.norm1(hidden_states) - hidden_states = self.nonlinearity(hidden_states) - hidden_states = self.conv1(hidden_states) - - hidden_states = self.norm2(hidden_states, zq) if isinstance(self.norm2, CogVideoXSpatialNorm3D) else self.norm2(hidden_states) - hidden_states = self.nonlinearity(hidden_states) - hidden_states = self.conv2(hidden_states) - - hidden_states = hidden_states + self.conv_shortcut(residual) - - return hidden_states - - - -class CachedConv3d(torch.nn.Conv3d): - def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0): - super().__init__(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding) - self.cached_tensor = None - - - def clear_cache(self): - self.cached_tensor = None - - - def forward(self, input: torch.Tensor, use_cache = True) -> torch.Tensor: - if use_cache: - if self.cached_tensor is None: - self.cached_tensor = torch.concat([input[:, :, :1]] * 2, dim=2) - input = torch.concat([self.cached_tensor, input], dim=2) - self.cached_tensor = input[:, :, -2:] - return super().forward(input) - - - -class CogVAEDecoder(torch.nn.Module): - def __init__(self): - super().__init__() - self.scaling_factor = 0.7 - self.conv_in = CachedConv3d(16, 512, kernel_size=3, stride=1, padding=(0, 1, 1)) - - self.blocks = torch.nn.ModuleList([ - Resnet3DBlock(512, 512, 16, 32), - Resnet3DBlock(512, 512, 16, 32), - Resnet3DBlock(512, 512, 16, 32), - Resnet3DBlock(512, 512, 16, 32), - Resnet3DBlock(512, 512, 16, 32), - Resnet3DBlock(512, 512, 16, 32), - Upsample3D(512, 512, compress_time=True), - Resnet3DBlock(512, 256, 16, 32), - Resnet3DBlock(256, 256, 16, 32), - Resnet3DBlock(256, 256, 16, 32), - Resnet3DBlock(256, 256, 16, 32), - Upsample3D(256, 256, compress_time=True), - Resnet3DBlock(256, 256, 16, 32), - Resnet3DBlock(256, 256, 16, 32), - Resnet3DBlock(256, 256, 16, 32), - Resnet3DBlock(256, 256, 16, 32), - Upsample3D(256, 256, compress_time=False), - Resnet3DBlock(256, 128, 16, 32), - Resnet3DBlock(128, 128, 16, 32), - Resnet3DBlock(128, 128, 16, 32), - Resnet3DBlock(128, 128, 16, 32), - ]) - - self.norm_out = CogVideoXSpatialNorm3D(128, 16, 32) - self.conv_act = torch.nn.SiLU() - self.conv_out = CachedConv3d(128, 3, kernel_size=3, stride=1, padding=(0, 1, 1)) - - - def forward(self, sample): - sample = sample / self.scaling_factor - hidden_states = self.conv_in(sample) - - for block in self.blocks: - hidden_states = block(hidden_states, sample) - - hidden_states = self.norm_out(hidden_states, sample) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - - return hidden_states - - - def decode_video(self, sample, tiled=True, tile_size=(60, 90), tile_stride=(30, 45), progress_bar=lambda x:x): - if tiled: - B, C, T, H, W = sample.shape - return TileWorker2Dto3D().tiled_forward( - forward_fn=lambda x: self.decode_small_video(x), - model_input=sample, - tile_size=tile_size, tile_stride=tile_stride, - tile_device=sample.device, tile_dtype=sample.dtype, - computation_device=sample.device, computation_dtype=sample.dtype, - scales=(3/16, (T//2*8+T%2)/T, 8, 8), - progress_bar=progress_bar - ) - else: - return self.decode_small_video(sample) - - - def decode_small_video(self, sample): - B, C, T, H, W = sample.shape - computation_device = self.conv_in.weight.device - computation_dtype = self.conv_in.weight.dtype - value = [] - for i in range(T//2): - tl = i*2 + T%2 - (T%2 and i==0) - tr = i*2 + 2 + T%2 - model_input = sample[:, :, tl: tr, :, :].to(dtype=computation_dtype, device=computation_device) - model_output = self.forward(model_input).to(dtype=sample.dtype, device=sample.device) - value.append(model_output) - value = torch.concat(value, dim=2) - for name, module in self.named_modules(): - if isinstance(module, CachedConv3d): - module.clear_cache() - return value - - - @staticmethod - def state_dict_converter(): - return CogVAEDecoderStateDictConverter() - - - -class CogVAEEncoder(torch.nn.Module): - def __init__(self): - super().__init__() - self.scaling_factor = 0.7 - self.conv_in = CachedConv3d(3, 128, kernel_size=3, stride=1, padding=(0, 1, 1)) - - self.blocks = torch.nn.ModuleList([ - Resnet3DBlock(128, 128, None, 32), - Resnet3DBlock(128, 128, None, 32), - Resnet3DBlock(128, 128, None, 32), - Downsample3D(128, 128, compress_time=True), - Resnet3DBlock(128, 256, None, 32), - Resnet3DBlock(256, 256, None, 32), - Resnet3DBlock(256, 256, None, 32), - Downsample3D(256, 256, compress_time=True), - Resnet3DBlock(256, 256, None, 32), - Resnet3DBlock(256, 256, None, 32), - Resnet3DBlock(256, 256, None, 32), - Downsample3D(256, 256, compress_time=False), - Resnet3DBlock(256, 512, None, 32), - Resnet3DBlock(512, 512, None, 32), - Resnet3DBlock(512, 512, None, 32), - Resnet3DBlock(512, 512, None, 32), - Resnet3DBlock(512, 512, None, 32), - ]) - - self.norm_out = torch.nn.GroupNorm(32, 512, eps=1e-06, affine=True) - self.conv_act = torch.nn.SiLU() - self.conv_out = CachedConv3d(512, 32, kernel_size=3, stride=1, padding=(0, 1, 1)) - - - def forward(self, sample): - hidden_states = self.conv_in(sample) - - for block in self.blocks: - hidden_states = block(hidden_states, sample) - - hidden_states = self.norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states)[:, :16] - hidden_states = hidden_states * self.scaling_factor - - return hidden_states - - - def encode_video(self, sample, tiled=True, tile_size=(60, 90), tile_stride=(30, 45), progress_bar=lambda x:x): - if tiled: - B, C, T, H, W = sample.shape - return TileWorker2Dto3D().tiled_forward( - forward_fn=lambda x: self.encode_small_video(x), - model_input=sample, - tile_size=(i * 8 for i in tile_size), tile_stride=(i * 8 for i in tile_stride), - tile_device=sample.device, tile_dtype=sample.dtype, - computation_device=sample.device, computation_dtype=sample.dtype, - scales=(16/3, (T//4+T%2)/T, 1/8, 1/8), - progress_bar=progress_bar - ) - else: - return self.encode_small_video(sample) - - - def encode_small_video(self, sample): - B, C, T, H, W = sample.shape - computation_device = self.conv_in.weight.device - computation_dtype = self.conv_in.weight.dtype - value = [] - for i in range(T//8): - t = i*8 + T%2 - (T%2 and i==0) - t_ = i*8 + 8 + T%2 - model_input = sample[:, :, t: t_, :, :].to(dtype=computation_dtype, device=computation_device) - model_output = self.forward(model_input).to(dtype=sample.dtype, device=sample.device) - value.append(model_output) - value = torch.concat(value, dim=2) - for name, module in self.named_modules(): - if isinstance(module, CachedConv3d): - module.clear_cache() - return value - - - @staticmethod - def state_dict_converter(): - return CogVAEEncoderStateDictConverter() - - - -class CogVAEEncoderStateDictConverter: - def __init__(self): - pass - - - def from_diffusers(self, state_dict): - rename_dict = { - "encoder.conv_in.conv.weight": "conv_in.weight", - "encoder.conv_in.conv.bias": "conv_in.bias", - "encoder.down_blocks.0.downsamplers.0.conv.weight": "blocks.3.conv.weight", - "encoder.down_blocks.0.downsamplers.0.conv.bias": "blocks.3.conv.bias", - "encoder.down_blocks.1.downsamplers.0.conv.weight": "blocks.7.conv.weight", - "encoder.down_blocks.1.downsamplers.0.conv.bias": "blocks.7.conv.bias", - "encoder.down_blocks.2.downsamplers.0.conv.weight": "blocks.11.conv.weight", - "encoder.down_blocks.2.downsamplers.0.conv.bias": "blocks.11.conv.bias", - "encoder.norm_out.weight": "norm_out.weight", - "encoder.norm_out.bias": "norm_out.bias", - "encoder.conv_out.conv.weight": "conv_out.weight", - "encoder.conv_out.conv.bias": "conv_out.bias", - } - prefix_dict = { - "encoder.down_blocks.0.resnets.0.": "blocks.0.", - "encoder.down_blocks.0.resnets.1.": "blocks.1.", - "encoder.down_blocks.0.resnets.2.": "blocks.2.", - "encoder.down_blocks.1.resnets.0.": "blocks.4.", - "encoder.down_blocks.1.resnets.1.": "blocks.5.", - "encoder.down_blocks.1.resnets.2.": "blocks.6.", - "encoder.down_blocks.2.resnets.0.": "blocks.8.", - "encoder.down_blocks.2.resnets.1.": "blocks.9.", - "encoder.down_blocks.2.resnets.2.": "blocks.10.", - "encoder.down_blocks.3.resnets.0.": "blocks.12.", - "encoder.down_blocks.3.resnets.1.": "blocks.13.", - "encoder.down_blocks.3.resnets.2.": "blocks.14.", - "encoder.mid_block.resnets.0.": "blocks.15.", - "encoder.mid_block.resnets.1.": "blocks.16.", - } - suffix_dict = { - "norm1.norm_layer.weight": "norm1.norm_layer.weight", - "norm1.norm_layer.bias": "norm1.norm_layer.bias", - "norm1.conv_y.conv.weight": "norm1.conv_y.weight", - "norm1.conv_y.conv.bias": "norm1.conv_y.bias", - "norm1.conv_b.conv.weight": "norm1.conv_b.weight", - "norm1.conv_b.conv.bias": "norm1.conv_b.bias", - "norm2.norm_layer.weight": "norm2.norm_layer.weight", - "norm2.norm_layer.bias": "norm2.norm_layer.bias", - "norm2.conv_y.conv.weight": "norm2.conv_y.weight", - "norm2.conv_y.conv.bias": "norm2.conv_y.bias", - "norm2.conv_b.conv.weight": "norm2.conv_b.weight", - "norm2.conv_b.conv.bias": "norm2.conv_b.bias", - "conv1.conv.weight": "conv1.weight", - "conv1.conv.bias": "conv1.bias", - "conv2.conv.weight": "conv2.weight", - "conv2.conv.bias": "conv2.bias", - "conv_shortcut.weight": "conv_shortcut.weight", - "conv_shortcut.bias": "conv_shortcut.bias", - "norm1.weight": "norm1.weight", - "norm1.bias": "norm1.bias", - "norm2.weight": "norm2.weight", - "norm2.bias": "norm2.bias", - } - state_dict_ = {} - for name, param in state_dict.items(): - if name in rename_dict: - state_dict_[rename_dict[name]] = param - else: - for prefix in prefix_dict: - if name.startswith(prefix): - suffix = name[len(prefix):] - state_dict_[prefix_dict[prefix] + suffix_dict[suffix]] = param - return state_dict_ - - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) - - - -class CogVAEDecoderStateDictConverter: - def __init__(self): - pass - - - def from_diffusers(self, state_dict): - rename_dict = { - "decoder.conv_in.conv.weight": "conv_in.weight", - "decoder.conv_in.conv.bias": "conv_in.bias", - "decoder.up_blocks.0.upsamplers.0.conv.weight": "blocks.6.conv.weight", - "decoder.up_blocks.0.upsamplers.0.conv.bias": "blocks.6.conv.bias", - "decoder.up_blocks.1.upsamplers.0.conv.weight": "blocks.11.conv.weight", - "decoder.up_blocks.1.upsamplers.0.conv.bias": "blocks.11.conv.bias", - "decoder.up_blocks.2.upsamplers.0.conv.weight": "blocks.16.conv.weight", - "decoder.up_blocks.2.upsamplers.0.conv.bias": "blocks.16.conv.bias", - "decoder.norm_out.norm_layer.weight": "norm_out.norm_layer.weight", - "decoder.norm_out.norm_layer.bias": "norm_out.norm_layer.bias", - "decoder.norm_out.conv_y.conv.weight": "norm_out.conv_y.weight", - "decoder.norm_out.conv_y.conv.bias": "norm_out.conv_y.bias", - "decoder.norm_out.conv_b.conv.weight": "norm_out.conv_b.weight", - "decoder.norm_out.conv_b.conv.bias": "norm_out.conv_b.bias", - "decoder.conv_out.conv.weight": "conv_out.weight", - "decoder.conv_out.conv.bias": "conv_out.bias" - } - prefix_dict = { - "decoder.mid_block.resnets.0.": "blocks.0.", - "decoder.mid_block.resnets.1.": "blocks.1.", - "decoder.up_blocks.0.resnets.0.": "blocks.2.", - "decoder.up_blocks.0.resnets.1.": "blocks.3.", - "decoder.up_blocks.0.resnets.2.": "blocks.4.", - "decoder.up_blocks.0.resnets.3.": "blocks.5.", - "decoder.up_blocks.1.resnets.0.": "blocks.7.", - "decoder.up_blocks.1.resnets.1.": "blocks.8.", - "decoder.up_blocks.1.resnets.2.": "blocks.9.", - "decoder.up_blocks.1.resnets.3.": "blocks.10.", - "decoder.up_blocks.2.resnets.0.": "blocks.12.", - "decoder.up_blocks.2.resnets.1.": "blocks.13.", - "decoder.up_blocks.2.resnets.2.": "blocks.14.", - "decoder.up_blocks.2.resnets.3.": "blocks.15.", - "decoder.up_blocks.3.resnets.0.": "blocks.17.", - "decoder.up_blocks.3.resnets.1.": "blocks.18.", - "decoder.up_blocks.3.resnets.2.": "blocks.19.", - "decoder.up_blocks.3.resnets.3.": "blocks.20.", - } - suffix_dict = { - "norm1.norm_layer.weight": "norm1.norm_layer.weight", - "norm1.norm_layer.bias": "norm1.norm_layer.bias", - "norm1.conv_y.conv.weight": "norm1.conv_y.weight", - "norm1.conv_y.conv.bias": "norm1.conv_y.bias", - "norm1.conv_b.conv.weight": "norm1.conv_b.weight", - "norm1.conv_b.conv.bias": "norm1.conv_b.bias", - "norm2.norm_layer.weight": "norm2.norm_layer.weight", - "norm2.norm_layer.bias": "norm2.norm_layer.bias", - "norm2.conv_y.conv.weight": "norm2.conv_y.weight", - "norm2.conv_y.conv.bias": "norm2.conv_y.bias", - "norm2.conv_b.conv.weight": "norm2.conv_b.weight", - "norm2.conv_b.conv.bias": "norm2.conv_b.bias", - "conv1.conv.weight": "conv1.weight", - "conv1.conv.bias": "conv1.bias", - "conv2.conv.weight": "conv2.weight", - "conv2.conv.bias": "conv2.bias", - "conv_shortcut.weight": "conv_shortcut.weight", - "conv_shortcut.bias": "conv_shortcut.bias", - } - state_dict_ = {} - for name, param in state_dict.items(): - if name in rename_dict: - state_dict_[rename_dict[name]] = param - else: - for prefix in prefix_dict: - if name.startswith(prefix): - suffix = name[len(prefix):] - state_dict_[prefix_dict[prefix] + suffix_dict[suffix]] = param - return state_dict_ - - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) - diff --git a/diffsynth/models/downloader.py b/diffsynth/models/downloader.py deleted file mode 100644 index 6c726f628fdbdac4cba79cb4c62475506df76b20..0000000000000000000000000000000000000000 --- a/diffsynth/models/downloader.py +++ /dev/null @@ -1,111 +0,0 @@ -from huggingface_hub import hf_hub_download -from modelscope import snapshot_download -import os, shutil -from typing_extensions import Literal, TypeAlias -from typing import List -from ..configs.model_config import preset_models_on_huggingface, preset_models_on_modelscope, Preset_model_id - - -def download_from_modelscope(model_id, origin_file_path, local_dir): - os.makedirs(local_dir, exist_ok=True) - file_name = os.path.basename(origin_file_path) - if file_name in os.listdir(local_dir): - print(f" {file_name} has been already in {local_dir}.") - else: - print(f" Start downloading {os.path.join(local_dir, file_name)}") - snapshot_download(model_id, allow_file_pattern=origin_file_path, local_dir=local_dir) - downloaded_file_path = os.path.join(local_dir, origin_file_path) - target_file_path = os.path.join(local_dir, os.path.split(origin_file_path)[-1]) - if downloaded_file_path != target_file_path: - shutil.move(downloaded_file_path, target_file_path) - shutil.rmtree(os.path.join(local_dir, origin_file_path.split("/")[0])) - - -def download_from_huggingface(model_id, origin_file_path, local_dir): - os.makedirs(local_dir, exist_ok=True) - file_name = os.path.basename(origin_file_path) - if file_name in os.listdir(local_dir): - print(f" {file_name} has been already in {local_dir}.") - else: - print(f" Start downloading {os.path.join(local_dir, file_name)}") - hf_hub_download(model_id, origin_file_path, local_dir=local_dir) - downloaded_file_path = os.path.join(local_dir, origin_file_path) - target_file_path = os.path.join(local_dir, file_name) - if downloaded_file_path != target_file_path: - shutil.move(downloaded_file_path, target_file_path) - shutil.rmtree(os.path.join(local_dir, origin_file_path.split("/")[0])) - - -Preset_model_website: TypeAlias = Literal[ - "HuggingFace", - "ModelScope", -] -website_to_preset_models = { - "HuggingFace": preset_models_on_huggingface, - "ModelScope": preset_models_on_modelscope, -} -website_to_download_fn = { - "HuggingFace": download_from_huggingface, - "ModelScope": download_from_modelscope, -} - - -def download_customized_models( - model_id, - origin_file_path, - local_dir, - downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"], -): - downloaded_files = [] - for website in downloading_priority: - # Check if the file is downloaded. - file_to_download = os.path.join(local_dir, os.path.basename(origin_file_path)) - if file_to_download in downloaded_files: - continue - # Download - website_to_download_fn[website](model_id, origin_file_path, local_dir) - if os.path.basename(origin_file_path) in os.listdir(local_dir): - downloaded_files.append(file_to_download) - return downloaded_files - - -def download_models( - model_id_list: List[Preset_model_id] = [], - downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"], -): - print(f"Downloading models: {model_id_list}") - downloaded_files = [] - load_files = [] - - for model_id in model_id_list: - for website in downloading_priority: - if model_id in website_to_preset_models[website]: - - # Parse model metadata - model_metadata = website_to_preset_models[website][model_id] - if isinstance(model_metadata, list): - file_data = model_metadata - else: - file_data = model_metadata.get("file_list", []) - - # Try downloading the model from this website. - model_files = [] - for model_id, origin_file_path, local_dir in file_data: - # Check if the file is downloaded. - file_to_download = os.path.join(local_dir, os.path.basename(origin_file_path)) - if file_to_download in downloaded_files: - continue - # Download - website_to_download_fn[website](model_id, origin_file_path, local_dir) - if os.path.basename(origin_file_path) in os.listdir(local_dir): - downloaded_files.append(file_to_download) - model_files.append(file_to_download) - - # If the model is successfully downloaded, break. - if len(model_files) > 0: - if isinstance(model_metadata, dict) and "load_path" in model_metadata: - model_files = model_metadata["load_path"] - load_files.extend(model_files) - break - - return load_files diff --git a/diffsynth/models/flux_controlnet.py b/diffsynth/models/flux_controlnet.py deleted file mode 100644 index 7bc3dc000066af351da775131f07214411c87b1a..0000000000000000000000000000000000000000 --- a/diffsynth/models/flux_controlnet.py +++ /dev/null @@ -1,329 +0,0 @@ -import torch -from einops import rearrange, repeat -from .flux_dit import RoPEEmbedding, TimestepEmbeddings, FluxJointTransformerBlock, FluxSingleTransformerBlock, RMSNorm -from .utils import hash_state_dict_keys, init_weights_on_device - - - -class FluxControlNet(torch.nn.Module): - def __init__(self, disable_guidance_embedder=False, num_joint_blocks=5, num_single_blocks=10, num_mode=0, mode_dict={}, additional_input_dim=0): - super().__init__() - self.pos_embedder = RoPEEmbedding(3072, 10000, [16, 56, 56]) - self.time_embedder = TimestepEmbeddings(256, 3072) - self.guidance_embedder = None if disable_guidance_embedder else TimestepEmbeddings(256, 3072) - self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(768, 3072), torch.nn.SiLU(), torch.nn.Linear(3072, 3072)) - self.context_embedder = torch.nn.Linear(4096, 3072) - self.x_embedder = torch.nn.Linear(64, 3072) - - self.blocks = torch.nn.ModuleList([FluxJointTransformerBlock(3072, 24) for _ in range(num_joint_blocks)]) - self.single_blocks = torch.nn.ModuleList([FluxSingleTransformerBlock(3072, 24) for _ in range(num_single_blocks)]) - - self.controlnet_blocks = torch.nn.ModuleList([torch.nn.Linear(3072, 3072) for _ in range(num_joint_blocks)]) - self.controlnet_single_blocks = torch.nn.ModuleList([torch.nn.Linear(3072, 3072) for _ in range(num_single_blocks)]) - - self.mode_dict = mode_dict - self.controlnet_mode_embedder = torch.nn.Embedding(num_mode, 3072) if len(mode_dict) > 0 else None - self.controlnet_x_embedder = torch.nn.Linear(64 + additional_input_dim, 3072) - - - def prepare_image_ids(self, latents): - batch_size, _, height, width = latents.shape - latent_image_ids = torch.zeros(height // 2, width // 2, 3) - latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] - latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] - - latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape - - latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) - latent_image_ids = latent_image_ids.reshape( - batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels - ) - latent_image_ids = latent_image_ids.to(device=latents.device, dtype=latents.dtype) - - return latent_image_ids - - - def patchify(self, hidden_states): - hidden_states = rearrange(hidden_states, "B C (H P) (W Q) -> B (H W) (C P Q)", P=2, Q=2) - return hidden_states - - - def align_res_stack_to_original_blocks(self, res_stack, num_blocks, hidden_states): - if len(res_stack) == 0: - return [torch.zeros_like(hidden_states)] * num_blocks - interval = (num_blocks + len(res_stack) - 1) // len(res_stack) - aligned_res_stack = [res_stack[block_id // interval] for block_id in range(num_blocks)] - return aligned_res_stack - - - def forward( - self, - hidden_states, - controlnet_conditioning, - timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None, - processor_id=None, - tiled=False, tile_size=128, tile_stride=64, - **kwargs - ): - if image_ids is None: - image_ids = self.prepare_image_ids(hidden_states) - - conditioning = self.time_embedder(timestep, hidden_states.dtype) + self.pooled_text_embedder(pooled_prompt_emb) - if self.guidance_embedder is not None: - guidance = guidance * 1000 - conditioning = conditioning + self.guidance_embedder(guidance, hidden_states.dtype) - prompt_emb = self.context_embedder(prompt_emb) - if self.controlnet_mode_embedder is not None: # Different from FluxDiT - processor_id = torch.tensor([self.mode_dict[processor_id]], dtype=torch.int) - processor_id = repeat(processor_id, "D -> B D", B=1).to(text_ids.device) - prompt_emb = torch.concat([self.controlnet_mode_embedder(processor_id), prompt_emb], dim=1) - text_ids = torch.cat([text_ids[:, :1], text_ids], dim=1) - image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1)) - - hidden_states = self.patchify(hidden_states) - hidden_states = self.x_embedder(hidden_states) - controlnet_conditioning = self.patchify(controlnet_conditioning) # Different from FluxDiT - hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_conditioning) # Different from FluxDiT - - controlnet_res_stack = [] - for block, controlnet_block in zip(self.blocks, self.controlnet_blocks): - hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb) - controlnet_res_stack.append(controlnet_block(hidden_states)) - - controlnet_single_res_stack = [] - hidden_states = torch.cat([prompt_emb, hidden_states], dim=1) - for block, controlnet_block in zip(self.single_blocks, self.controlnet_single_blocks): - hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb) - controlnet_single_res_stack.append(controlnet_block(hidden_states[:, prompt_emb.shape[1]:])) - - controlnet_res_stack = self.align_res_stack_to_original_blocks(controlnet_res_stack, 19, hidden_states[:, prompt_emb.shape[1]:]) - controlnet_single_res_stack = self.align_res_stack_to_original_blocks(controlnet_single_res_stack, 38, hidden_states[:, prompt_emb.shape[1]:]) - - return controlnet_res_stack, controlnet_single_res_stack - - - @staticmethod - def state_dict_converter(): - return FluxControlNetStateDictConverter() - - def quantize(self): - def cast_to(weight, dtype=None, device=None, copy=False): - if device is None or weight.device == device: - if not copy: - if dtype is None or weight.dtype == dtype: - return weight - return weight.to(dtype=dtype, copy=copy) - - r = torch.empty_like(weight, dtype=dtype, device=device) - r.copy_(weight) - return r - - def cast_weight(s, input=None, dtype=None, device=None): - if input is not None: - if dtype is None: - dtype = input.dtype - if device is None: - device = input.device - weight = cast_to(s.weight, dtype, device) - return weight - - def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): - if input is not None: - if dtype is None: - dtype = input.dtype - if bias_dtype is None: - bias_dtype = dtype - if device is None: - device = input.device - bias = None - weight = cast_to(s.weight, dtype, device) - bias = cast_to(s.bias, bias_dtype, device) - return weight, bias - - class quantized_layer: - class QLinear(torch.nn.Linear): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - def forward(self,input,**kwargs): - weight,bias= cast_bias_weight(self,input) - return torch.nn.functional.linear(input,weight,bias) - - class QRMSNorm(torch.nn.Module): - def __init__(self, module): - super().__init__() - self.module = module - - def forward(self,hidden_states,**kwargs): - weight= cast_weight(self.module,hidden_states) - input_dtype = hidden_states.dtype - variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps) - hidden_states = hidden_states.to(input_dtype) * weight - return hidden_states - - class QEmbedding(torch.nn.Embedding): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - def forward(self,input,**kwargs): - weight= cast_weight(self,input) - return torch.nn.functional.embedding( - input, weight, self.padding_idx, self.max_norm, - self.norm_type, self.scale_grad_by_freq, self.sparse) - - def replace_layer(model): - for name, module in model.named_children(): - if isinstance(module,quantized_layer.QRMSNorm): - continue - if isinstance(module, torch.nn.Linear): - with init_weights_on_device(): - new_layer = quantized_layer.QLinear(module.in_features,module.out_features) - new_layer.weight = module.weight - if module.bias is not None: - new_layer.bias = module.bias - setattr(model, name, new_layer) - elif isinstance(module, RMSNorm): - if hasattr(module,"quantized"): - continue - module.quantized= True - new_layer = quantized_layer.QRMSNorm(module) - setattr(model, name, new_layer) - elif isinstance(module,torch.nn.Embedding): - rows, cols = module.weight.shape - new_layer = quantized_layer.QEmbedding( - num_embeddings=rows, - embedding_dim=cols, - _weight=module.weight, - # _freeze=module.freeze, - padding_idx=module.padding_idx, - max_norm=module.max_norm, - norm_type=module.norm_type, - scale_grad_by_freq=module.scale_grad_by_freq, - sparse=module.sparse) - setattr(model, name, new_layer) - else: - replace_layer(module) - - replace_layer(self) - - - -class FluxControlNetStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - hash_value = hash_state_dict_keys(state_dict) - global_rename_dict = { - "context_embedder": "context_embedder", - "x_embedder": "x_embedder", - "time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0", - "time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2", - "time_text_embed.guidance_embedder.linear_1": "guidance_embedder.timestep_embedder.0", - "time_text_embed.guidance_embedder.linear_2": "guidance_embedder.timestep_embedder.2", - "time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0", - "time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2", - "norm_out.linear": "final_norm_out.linear", - "proj_out": "final_proj_out", - } - rename_dict = { - "proj_out": "proj_out", - "norm1.linear": "norm1_a.linear", - "norm1_context.linear": "norm1_b.linear", - "attn.to_q": "attn.a_to_q", - "attn.to_k": "attn.a_to_k", - "attn.to_v": "attn.a_to_v", - "attn.to_out.0": "attn.a_to_out", - "attn.add_q_proj": "attn.b_to_q", - "attn.add_k_proj": "attn.b_to_k", - "attn.add_v_proj": "attn.b_to_v", - "attn.to_add_out": "attn.b_to_out", - "ff.net.0.proj": "ff_a.0", - "ff.net.2": "ff_a.2", - "ff_context.net.0.proj": "ff_b.0", - "ff_context.net.2": "ff_b.2", - "attn.norm_q": "attn.norm_q_a", - "attn.norm_k": "attn.norm_k_a", - "attn.norm_added_q": "attn.norm_q_b", - "attn.norm_added_k": "attn.norm_k_b", - } - rename_dict_single = { - "attn.to_q": "a_to_q", - "attn.to_k": "a_to_k", - "attn.to_v": "a_to_v", - "attn.norm_q": "norm_q_a", - "attn.norm_k": "norm_k_a", - "norm.linear": "norm.linear", - "proj_mlp": "proj_in_besides_attn", - "proj_out": "proj_out", - } - state_dict_ = {} - for name, param in state_dict.items(): - if name.endswith(".weight") or name.endswith(".bias"): - suffix = ".weight" if name.endswith(".weight") else ".bias" - prefix = name[:-len(suffix)] - if prefix in global_rename_dict: - state_dict_[global_rename_dict[prefix] + suffix] = param - elif prefix.startswith("transformer_blocks."): - names = prefix.split(".") - names[0] = "blocks" - middle = ".".join(names[2:]) - if middle in rename_dict: - name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]]) - state_dict_[name_] = param - elif prefix.startswith("single_transformer_blocks."): - names = prefix.split(".") - names[0] = "single_blocks" - middle = ".".join(names[2:]) - if middle in rename_dict_single: - name_ = ".".join(names[:2] + [rename_dict_single[middle]] + [suffix[1:]]) - state_dict_[name_] = param - else: - state_dict_[name] = param - else: - state_dict_[name] = param - for name in list(state_dict_.keys()): - if ".proj_in_besides_attn." in name: - name_ = name.replace(".proj_in_besides_attn.", ".to_qkv_mlp.") - param = torch.concat([ - state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_q.")], - state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_k.")], - state_dict_[name.replace(".proj_in_besides_attn.", f".a_to_v.")], - state_dict_[name], - ], dim=0) - state_dict_[name_] = param - state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_q.")) - state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_k.")) - state_dict_.pop(name.replace(".proj_in_besides_attn.", f".a_to_v.")) - state_dict_.pop(name) - for name in list(state_dict_.keys()): - for component in ["a", "b"]: - if f".{component}_to_q." in name: - name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.") - param = torch.concat([ - state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")], - state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")], - state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")], - ], dim=0) - state_dict_[name_] = param - state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q.")) - state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k.")) - state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v.")) - if hash_value == "78d18b9101345ff695f312e7e62538c0": - extra_kwargs = {"num_mode": 10, "mode_dict": {"canny": 0, "tile": 1, "depth": 2, "blur": 3, "pose": 4, "gray": 5, "lq": 6}} - elif hash_value == "b001c89139b5f053c715fe772362dd2a": - extra_kwargs = {"num_single_blocks": 0} - elif hash_value == "52357cb26250681367488a8954c271e8": - extra_kwargs = {"num_joint_blocks": 6, "num_single_blocks": 0, "additional_input_dim": 4} - elif hash_value == "0cfd1740758423a2a854d67c136d1e8c": - extra_kwargs = {"num_joint_blocks": 4, "num_single_blocks": 1} - elif hash_value == "7f9583eb8ba86642abb9a21a4b2c9e16": - extra_kwargs = {"num_joint_blocks": 4, "num_single_blocks": 10} - else: - extra_kwargs = {} - return state_dict_, extra_kwargs - - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) diff --git a/diffsynth/models/flux_dit.py b/diffsynth/models/flux_dit.py deleted file mode 100644 index 6d3100d672da6b5e71b73409480a38c36600f0a9..0000000000000000000000000000000000000000 --- a/diffsynth/models/flux_dit.py +++ /dev/null @@ -1,742 +0,0 @@ -import torch -from .sd3_dit import TimestepEmbeddings, AdaLayerNorm, RMSNorm -from einops import rearrange -from .tiler import TileWorker -from .utils import init_weights_on_device - -def interact_with_ipadapter(hidden_states, q, ip_k, ip_v, scale=1.0): - batch_size, num_tokens = hidden_states.shape[0:2] - ip_hidden_states = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v) - ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, num_tokens, -1) - hidden_states = hidden_states + scale * ip_hidden_states - return hidden_states - - -class RoPEEmbedding(torch.nn.Module): - def __init__(self, dim, theta, axes_dim): - super().__init__() - self.dim = dim - self.theta = theta - self.axes_dim = axes_dim - - - def rope(self, pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: - assert dim % 2 == 0, "The dimension must be even." - - scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim - omega = 1.0 / (theta**scale) - - batch_size, seq_length = pos.shape - out = torch.einsum("...n,d->...nd", pos, omega) - cos_out = torch.cos(out) - sin_out = torch.sin(out) - - stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) - out = stacked_out.view(batch_size, -1, dim // 2, 2, 2) - return out.float() - - - def forward(self, ids): - n_axes = ids.shape[-1] - emb = torch.cat([self.rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3) - return emb.unsqueeze(1) - - - -class FluxJointAttention(torch.nn.Module): - def __init__(self, dim_a, dim_b, num_heads, head_dim, only_out_a=False): - super().__init__() - self.num_heads = num_heads - self.head_dim = head_dim - self.only_out_a = only_out_a - - self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3) - self.b_to_qkv = torch.nn.Linear(dim_b, dim_b * 3) - - self.norm_q_a = RMSNorm(head_dim, eps=1e-6) - self.norm_k_a = RMSNorm(head_dim, eps=1e-6) - self.norm_q_b = RMSNorm(head_dim, eps=1e-6) - self.norm_k_b = RMSNorm(head_dim, eps=1e-6) - - self.a_to_out = torch.nn.Linear(dim_a, dim_a) - if not only_out_a: - self.b_to_out = torch.nn.Linear(dim_b, dim_b) - - - def apply_rope(self, xq, xk, freqs_cis): - xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) - xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) - xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] - xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] - return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) - - def forward(self, hidden_states_a, hidden_states_b, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None): - batch_size = hidden_states_a.shape[0] - - # Part A - qkv_a = self.a_to_qkv(hidden_states_a) - qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2) - q_a, k_a, v_a = qkv_a.chunk(3, dim=1) - q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a) - - # Part B - qkv_b = self.b_to_qkv(hidden_states_b) - qkv_b = qkv_b.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2) - q_b, k_b, v_b = qkv_b.chunk(3, dim=1) - q_b, k_b = self.norm_q_b(q_b), self.norm_k_b(k_b) - - q = torch.concat([q_b, q_a], dim=2) - k = torch.concat([k_b, k_a], dim=2) - v = torch.concat([v_b, v_a], dim=2) - - q, k = self.apply_rope(q, k, image_rotary_emb) - - hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) - hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) - hidden_states = hidden_states.to(q.dtype) - hidden_states_b, hidden_states_a = hidden_states[:, :hidden_states_b.shape[1]], hidden_states[:, hidden_states_b.shape[1]:] - if ipadapter_kwargs_list is not None: - hidden_states_a = interact_with_ipadapter(hidden_states_a, q_a, **ipadapter_kwargs_list) - hidden_states_a = self.a_to_out(hidden_states_a) - if self.only_out_a: - return hidden_states_a - else: - hidden_states_b = self.b_to_out(hidden_states_b) - return hidden_states_a, hidden_states_b - - - -class FluxJointTransformerBlock(torch.nn.Module): - def __init__(self, dim, num_attention_heads): - super().__init__() - self.norm1_a = AdaLayerNorm(dim) - self.norm1_b = AdaLayerNorm(dim) - - self.attn = FluxJointAttention(dim, dim, num_attention_heads, dim // num_attention_heads) - - self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) - self.ff_a = torch.nn.Sequential( - torch.nn.Linear(dim, dim*4), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(dim*4, dim) - ) - - self.norm2_b = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) - self.ff_b = torch.nn.Sequential( - torch.nn.Linear(dim, dim*4), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(dim*4, dim) - ) - - - def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None): - norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a = self.norm1_a(hidden_states_a, emb=temb) - norm_hidden_states_b, gate_msa_b, shift_mlp_b, scale_mlp_b, gate_mlp_b = self.norm1_b(hidden_states_b, emb=temb) - - # Attention - attn_output_a, attn_output_b = self.attn(norm_hidden_states_a, norm_hidden_states_b, image_rotary_emb, attn_mask, ipadapter_kwargs_list) - - # Part A - hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a - norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a - hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a) - - # Part B - hidden_states_b = hidden_states_b + gate_msa_b * attn_output_b - norm_hidden_states_b = self.norm2_b(hidden_states_b) * (1 + scale_mlp_b) + shift_mlp_b - hidden_states_b = hidden_states_b + gate_mlp_b * self.ff_b(norm_hidden_states_b) - - return hidden_states_a, hidden_states_b - - - -class FluxSingleAttention(torch.nn.Module): - def __init__(self, dim_a, dim_b, num_heads, head_dim): - super().__init__() - self.num_heads = num_heads - self.head_dim = head_dim - - self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3) - - self.norm_q_a = RMSNorm(head_dim, eps=1e-6) - self.norm_k_a = RMSNorm(head_dim, eps=1e-6) - - - def apply_rope(self, xq, xk, freqs_cis): - xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) - xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) - xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] - xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] - return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) - - - def forward(self, hidden_states, image_rotary_emb): - batch_size = hidden_states.shape[0] - - qkv_a = self.a_to_qkv(hidden_states) - qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2) - q_a, k_a, v = qkv_a.chunk(3, dim=1) - q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a) - - q, k = self.apply_rope(q_a, k_a, image_rotary_emb) - - hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v) - hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) - hidden_states = hidden_states.to(q.dtype) - return hidden_states - - - -class AdaLayerNormSingle(torch.nn.Module): - def __init__(self, dim): - super().__init__() - self.silu = torch.nn.SiLU() - self.linear = torch.nn.Linear(dim, 3 * dim, bias=True) - self.norm = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) - - - def forward(self, x, emb): - emb = self.linear(self.silu(emb)) - shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1) - x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] - return x, gate_msa - - - -class FluxSingleTransformerBlock(torch.nn.Module): - def __init__(self, dim, num_attention_heads): - super().__init__() - self.num_heads = num_attention_heads - self.head_dim = dim // num_attention_heads - self.dim = dim - - self.norm = AdaLayerNormSingle(dim) - self.to_qkv_mlp = torch.nn.Linear(dim, dim * (3 + 4)) - self.norm_q_a = RMSNorm(self.head_dim, eps=1e-6) - self.norm_k_a = RMSNorm(self.head_dim, eps=1e-6) - - self.proj_out = torch.nn.Linear(dim * 5, dim) - - - def apply_rope(self, xq, xk, freqs_cis): - xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) - xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) - xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] - xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] - return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) - - - def process_attention(self, hidden_states, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None): - batch_size = hidden_states.shape[0] - - qkv = hidden_states.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2) - q, k, v = qkv.chunk(3, dim=1) - q, k = self.norm_q_a(q), self.norm_k_a(k) - - q, k = self.apply_rope(q, k, image_rotary_emb) - - hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) - hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) - hidden_states = hidden_states.to(q.dtype) - if ipadapter_kwargs_list is not None: - hidden_states = interact_with_ipadapter(hidden_states, q, **ipadapter_kwargs_list) - return hidden_states - - - def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None): - residual = hidden_states_a - norm_hidden_states, gate = self.norm(hidden_states_a, emb=temb) - hidden_states_a = self.to_qkv_mlp(norm_hidden_states) - attn_output, mlp_hidden_states = hidden_states_a[:, :, :self.dim * 3], hidden_states_a[:, :, self.dim * 3:] - - attn_output = self.process_attention(attn_output, image_rotary_emb, attn_mask, ipadapter_kwargs_list) - mlp_hidden_states = torch.nn.functional.gelu(mlp_hidden_states, approximate="tanh") - - hidden_states_a = torch.cat([attn_output, mlp_hidden_states], dim=2) - hidden_states_a = gate.unsqueeze(1) * self.proj_out(hidden_states_a) - hidden_states_a = residual + hidden_states_a - - return hidden_states_a, hidden_states_b - - - -class AdaLayerNormContinuous(torch.nn.Module): - def __init__(self, dim): - super().__init__() - self.silu = torch.nn.SiLU() - self.linear = torch.nn.Linear(dim, dim * 2, bias=True) - self.norm = torch.nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False) - - def forward(self, x, conditioning): - emb = self.linear(self.silu(conditioning)) - scale, shift = torch.chunk(emb, 2, dim=1) - x = self.norm(x) * (1 + scale)[:, None] + shift[:, None] - return x - - - -class FluxDiT(torch.nn.Module): - def __init__(self, disable_guidance_embedder=False): - super().__init__() - self.pos_embedder = RoPEEmbedding(3072, 10000, [16, 56, 56]) - self.time_embedder = TimestepEmbeddings(256, 3072) - self.guidance_embedder = None if disable_guidance_embedder else TimestepEmbeddings(256, 3072) - self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(768, 3072), torch.nn.SiLU(), torch.nn.Linear(3072, 3072)) - self.context_embedder = torch.nn.Linear(4096, 3072) - self.x_embedder = torch.nn.Linear(64, 3072) - - self.blocks = torch.nn.ModuleList([FluxJointTransformerBlock(3072, 24) for _ in range(19)]) - self.single_blocks = torch.nn.ModuleList([FluxSingleTransformerBlock(3072, 24) for _ in range(38)]) - - self.final_norm_out = AdaLayerNormContinuous(3072) - self.final_proj_out = torch.nn.Linear(3072, 64) - - - def patchify(self, hidden_states): - hidden_states = rearrange(hidden_states, "B C (H P) (W Q) -> B (H W) (C P Q)", P=2, Q=2) - return hidden_states - - - def unpatchify(self, hidden_states, height, width): - hidden_states = rearrange(hidden_states, "B (H W) (C P Q) -> B C (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2) - return hidden_states - - - def prepare_image_ids(self, latents): - batch_size, _, height, width = latents.shape - latent_image_ids = torch.zeros(height // 2, width // 2, 3) - latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] - latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] - - latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape - - latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) - latent_image_ids = latent_image_ids.reshape( - batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels - ) - latent_image_ids = latent_image_ids.to(device=latents.device, dtype=latents.dtype) - - return latent_image_ids - - - def tiled_forward( - self, - hidden_states, - timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, - tile_size=128, tile_stride=64, - **kwargs - ): - # Due to the global positional embedding, we cannot implement layer-wise tiled forward. - hidden_states = TileWorker().tiled_forward( - lambda x: self.forward(x, timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None), - hidden_states, - tile_size, - tile_stride, - tile_device=hidden_states.device, - tile_dtype=hidden_states.dtype - ) - return hidden_states - - - def construct_mask(self, entity_masks, prompt_seq_len, image_seq_len): - N = len(entity_masks) - batch_size = entity_masks[0].shape[0] - total_seq_len = N * prompt_seq_len + image_seq_len - patched_masks = [self.patchify(entity_masks[i]) for i in range(N)] - attention_mask = torch.ones((batch_size, total_seq_len, total_seq_len), dtype=torch.bool).to(device=entity_masks[0].device) - - image_start = N * prompt_seq_len - image_end = N * prompt_seq_len + image_seq_len - # prompt-image mask - for i in range(N): - prompt_start = i * prompt_seq_len - prompt_end = (i + 1) * prompt_seq_len - image_mask = torch.sum(patched_masks[i], dim=-1) > 0 - image_mask = image_mask.unsqueeze(1).repeat(1, prompt_seq_len, 1) - # prompt update with image - attention_mask[:, prompt_start:prompt_end, image_start:image_end] = image_mask - # image update with prompt - attention_mask[:, image_start:image_end, prompt_start:prompt_end] = image_mask.transpose(1, 2) - # prompt-prompt mask - for i in range(N): - for j in range(N): - if i != j: - prompt_start_i = i * prompt_seq_len - prompt_end_i = (i + 1) * prompt_seq_len - prompt_start_j = j * prompt_seq_len - prompt_end_j = (j + 1) * prompt_seq_len - attention_mask[:, prompt_start_i:prompt_end_i, prompt_start_j:prompt_end_j] = False - - attention_mask = attention_mask.float() - attention_mask[attention_mask == 0] = float('-inf') - attention_mask[attention_mask == 1] = 0 - return attention_mask - - - def process_entity_masks(self, hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids): - repeat_dim = hidden_states.shape[1] - max_masks = 0 - attention_mask = None - prompt_embs = [prompt_emb] - if entity_masks is not None: - # entity_masks - batch_size, max_masks = entity_masks.shape[0], entity_masks.shape[1] - entity_masks = entity_masks.repeat(1, 1, repeat_dim, 1, 1) - entity_masks = [entity_masks[:, i, None].squeeze(1) for i in range(max_masks)] - # global mask - global_mask = torch.ones_like(entity_masks[0]).to(device=hidden_states.device, dtype=hidden_states.dtype) - entity_masks = entity_masks + [global_mask] # append global to last - # attention mask - attention_mask = self.construct_mask(entity_masks, prompt_emb.shape[1], hidden_states.shape[1]) - attention_mask = attention_mask.to(device=hidden_states.device, dtype=hidden_states.dtype) - attention_mask = attention_mask.unsqueeze(1) - # embds: n_masks * b * seq * d - local_embs = [entity_prompt_emb[:, i, None].squeeze(1) for i in range(max_masks)] - prompt_embs = local_embs + prompt_embs # append global to last - prompt_embs = [self.context_embedder(prompt_emb) for prompt_emb in prompt_embs] - prompt_emb = torch.cat(prompt_embs, dim=1) - - # positional embedding - text_ids = torch.cat([text_ids] * (max_masks + 1), dim=1) - image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1)) - return prompt_emb, image_rotary_emb, attention_mask - - - def forward( - self, - hidden_states, - timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None, - tiled=False, tile_size=128, tile_stride=64, entity_prompt_emb=None, entity_masks=None, - use_gradient_checkpointing=False, - **kwargs - ): - if tiled: - return self.tiled_forward( - hidden_states, - timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, - tile_size=tile_size, tile_stride=tile_stride, - **kwargs - ) - - if image_ids is None: - image_ids = self.prepare_image_ids(hidden_states) - - conditioning = self.time_embedder(timestep, hidden_states.dtype) + self.pooled_text_embedder(pooled_prompt_emb) - if self.guidance_embedder is not None: - guidance = guidance * 1000 - conditioning = conditioning + self.guidance_embedder(guidance, hidden_states.dtype) - - height, width = hidden_states.shape[-2:] - hidden_states = self.patchify(hidden_states) - hidden_states = self.x_embedder(hidden_states) - - if entity_prompt_emb is not None and entity_masks is not None: - prompt_emb, image_rotary_emb, attention_mask = self.process_entity_masks(hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids) - else: - prompt_emb = self.context_embedder(prompt_emb) - image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1)) - attention_mask = None - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - return custom_forward - - for block in self.blocks: - if self.training and use_gradient_checkpointing: - hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask, - use_reentrant=False, - ) - else: - hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask) - - hidden_states = torch.cat([prompt_emb, hidden_states], dim=1) - for block in self.single_blocks: - if self.training and use_gradient_checkpointing: - hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask, - use_reentrant=False, - ) - else: - hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask) - hidden_states = hidden_states[:, prompt_emb.shape[1]:] - - hidden_states = self.final_norm_out(hidden_states, conditioning) - hidden_states = self.final_proj_out(hidden_states) - hidden_states = self.unpatchify(hidden_states, height, width) - - return hidden_states - - - def quantize(self): - def cast_to(weight, dtype=None, device=None, copy=False): - if device is None or weight.device == device: - if not copy: - if dtype is None or weight.dtype == dtype: - return weight - return weight.to(dtype=dtype, copy=copy) - - r = torch.empty_like(weight, dtype=dtype, device=device) - r.copy_(weight) - return r - - def cast_weight(s, input=None, dtype=None, device=None): - if input is not None: - if dtype is None: - dtype = input.dtype - if device is None: - device = input.device - weight = cast_to(s.weight, dtype, device) - return weight - - def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): - if input is not None: - if dtype is None: - dtype = input.dtype - if bias_dtype is None: - bias_dtype = dtype - if device is None: - device = input.device - bias = None - weight = cast_to(s.weight, dtype, device) - bias = cast_to(s.bias, bias_dtype, device) - return weight, bias - - class quantized_layer: - class Linear(torch.nn.Linear): - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - def forward(self,input,**kwargs): - weight,bias= cast_bias_weight(self,input) - return torch.nn.functional.linear(input,weight,bias) - - class RMSNorm(torch.nn.Module): - def __init__(self, module): - super().__init__() - self.module = module - - def forward(self,hidden_states,**kwargs): - weight= cast_weight(self.module,hidden_states) - input_dtype = hidden_states.dtype - variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps) - hidden_states = hidden_states.to(input_dtype) * weight - return hidden_states - - def replace_layer(model): - for name, module in model.named_children(): - if isinstance(module, torch.nn.Linear): - with init_weights_on_device(): - new_layer = quantized_layer.Linear(module.in_features,module.out_features) - new_layer.weight = module.weight - if module.bias is not None: - new_layer.bias = module.bias - # del module - setattr(model, name, new_layer) - elif isinstance(module, RMSNorm): - if hasattr(module,"quantized"): - continue - module.quantized= True - new_layer = quantized_layer.RMSNorm(module) - setattr(model, name, new_layer) - else: - replace_layer(module) - - replace_layer(self) - - - @staticmethod - def state_dict_converter(): - return FluxDiTStateDictConverter() - - -class FluxDiTStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - global_rename_dict = { - "context_embedder": "context_embedder", - "x_embedder": "x_embedder", - "time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0", - "time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2", - "time_text_embed.guidance_embedder.linear_1": "guidance_embedder.timestep_embedder.0", - "time_text_embed.guidance_embedder.linear_2": "guidance_embedder.timestep_embedder.2", - "time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0", - "time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2", - "norm_out.linear": "final_norm_out.linear", - "proj_out": "final_proj_out", - } - rename_dict = { - "proj_out": "proj_out", - "norm1.linear": "norm1_a.linear", - "norm1_context.linear": "norm1_b.linear", - "attn.to_q": "attn.a_to_q", - "attn.to_k": "attn.a_to_k", - "attn.to_v": "attn.a_to_v", - "attn.to_out.0": "attn.a_to_out", - "attn.add_q_proj": "attn.b_to_q", - "attn.add_k_proj": "attn.b_to_k", - "attn.add_v_proj": "attn.b_to_v", - "attn.to_add_out": "attn.b_to_out", - "ff.net.0.proj": "ff_a.0", - "ff.net.2": "ff_a.2", - "ff_context.net.0.proj": "ff_b.0", - "ff_context.net.2": "ff_b.2", - "attn.norm_q": "attn.norm_q_a", - "attn.norm_k": "attn.norm_k_a", - "attn.norm_added_q": "attn.norm_q_b", - "attn.norm_added_k": "attn.norm_k_b", - } - rename_dict_single = { - "attn.to_q": "a_to_q", - "attn.to_k": "a_to_k", - "attn.to_v": "a_to_v", - "attn.norm_q": "norm_q_a", - "attn.norm_k": "norm_k_a", - "norm.linear": "norm.linear", - "proj_mlp": "proj_in_besides_attn", - "proj_out": "proj_out", - } - state_dict_ = {} - for name, param in state_dict.items(): - if name.endswith(".weight") or name.endswith(".bias"): - suffix = ".weight" if name.endswith(".weight") else ".bias" - prefix = name[:-len(suffix)] - if prefix in global_rename_dict: - state_dict_[global_rename_dict[prefix] + suffix] = param - elif prefix.startswith("transformer_blocks."): - names = prefix.split(".") - names[0] = "blocks" - middle = ".".join(names[2:]) - if middle in rename_dict: - name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]]) - state_dict_[name_] = param - elif prefix.startswith("single_transformer_blocks."): - names = prefix.split(".") - names[0] = "single_blocks" - middle = ".".join(names[2:]) - if middle in rename_dict_single: - name_ = ".".join(names[:2] + [rename_dict_single[middle]] + [suffix[1:]]) - state_dict_[name_] = param - else: - pass - else: - pass - for name in list(state_dict_.keys()): - if "single_blocks." in name and ".a_to_q." in name: - mlp = state_dict_.get(name.replace(".a_to_q.", ".proj_in_besides_attn."), None) - if mlp is None: - mlp = torch.zeros(4 * state_dict_[name].shape[0], - *state_dict_[name].shape[1:], - dtype=state_dict_[name].dtype) - else: - state_dict_.pop(name.replace(".a_to_q.", ".proj_in_besides_attn.")) - param = torch.concat([ - state_dict_.pop(name), - state_dict_.pop(name.replace(".a_to_q.", ".a_to_k.")), - state_dict_.pop(name.replace(".a_to_q.", ".a_to_v.")), - mlp, - ], dim=0) - name_ = name.replace(".a_to_q.", ".to_qkv_mlp.") - state_dict_[name_] = param - for name in list(state_dict_.keys()): - for component in ["a", "b"]: - if f".{component}_to_q." in name: - name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.") - param = torch.concat([ - state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")], - state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")], - state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")], - ], dim=0) - state_dict_[name_] = param - state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q.")) - state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k.")) - state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v.")) - return state_dict_ - - def from_civitai(self, state_dict): - rename_dict = { - "time_in.in_layer.bias": "time_embedder.timestep_embedder.0.bias", - "time_in.in_layer.weight": "time_embedder.timestep_embedder.0.weight", - "time_in.out_layer.bias": "time_embedder.timestep_embedder.2.bias", - "time_in.out_layer.weight": "time_embedder.timestep_embedder.2.weight", - "txt_in.bias": "context_embedder.bias", - "txt_in.weight": "context_embedder.weight", - "vector_in.in_layer.bias": "pooled_text_embedder.0.bias", - "vector_in.in_layer.weight": "pooled_text_embedder.0.weight", - "vector_in.out_layer.bias": "pooled_text_embedder.2.bias", - "vector_in.out_layer.weight": "pooled_text_embedder.2.weight", - "final_layer.linear.bias": "final_proj_out.bias", - "final_layer.linear.weight": "final_proj_out.weight", - "guidance_in.in_layer.bias": "guidance_embedder.timestep_embedder.0.bias", - "guidance_in.in_layer.weight": "guidance_embedder.timestep_embedder.0.weight", - "guidance_in.out_layer.bias": "guidance_embedder.timestep_embedder.2.bias", - "guidance_in.out_layer.weight": "guidance_embedder.timestep_embedder.2.weight", - "img_in.bias": "x_embedder.bias", - "img_in.weight": "x_embedder.weight", - "final_layer.adaLN_modulation.1.weight": "final_norm_out.linear.weight", - "final_layer.adaLN_modulation.1.bias": "final_norm_out.linear.bias", - } - suffix_rename_dict = { - "img_attn.norm.key_norm.scale": "attn.norm_k_a.weight", - "img_attn.norm.query_norm.scale": "attn.norm_q_a.weight", - "img_attn.proj.bias": "attn.a_to_out.bias", - "img_attn.proj.weight": "attn.a_to_out.weight", - "img_attn.qkv.bias": "attn.a_to_qkv.bias", - "img_attn.qkv.weight": "attn.a_to_qkv.weight", - "img_mlp.0.bias": "ff_a.0.bias", - "img_mlp.0.weight": "ff_a.0.weight", - "img_mlp.2.bias": "ff_a.2.bias", - "img_mlp.2.weight": "ff_a.2.weight", - "img_mod.lin.bias": "norm1_a.linear.bias", - "img_mod.lin.weight": "norm1_a.linear.weight", - "txt_attn.norm.key_norm.scale": "attn.norm_k_b.weight", - "txt_attn.norm.query_norm.scale": "attn.norm_q_b.weight", - "txt_attn.proj.bias": "attn.b_to_out.bias", - "txt_attn.proj.weight": "attn.b_to_out.weight", - "txt_attn.qkv.bias": "attn.b_to_qkv.bias", - "txt_attn.qkv.weight": "attn.b_to_qkv.weight", - "txt_mlp.0.bias": "ff_b.0.bias", - "txt_mlp.0.weight": "ff_b.0.weight", - "txt_mlp.2.bias": "ff_b.2.bias", - "txt_mlp.2.weight": "ff_b.2.weight", - "txt_mod.lin.bias": "norm1_b.linear.bias", - "txt_mod.lin.weight": "norm1_b.linear.weight", - - "linear1.bias": "to_qkv_mlp.bias", - "linear1.weight": "to_qkv_mlp.weight", - "linear2.bias": "proj_out.bias", - "linear2.weight": "proj_out.weight", - "modulation.lin.bias": "norm.linear.bias", - "modulation.lin.weight": "norm.linear.weight", - "norm.key_norm.scale": "norm_k_a.weight", - "norm.query_norm.scale": "norm_q_a.weight", - } - state_dict_ = {} - for name, param in state_dict.items(): - if name.startswith("model.diffusion_model."): - name = name[len("model.diffusion_model."):] - names = name.split(".") - if name in rename_dict: - rename = rename_dict[name] - if name.startswith("final_layer.adaLN_modulation.1."): - param = torch.concat([param[3072:], param[:3072]], dim=0) - state_dict_[rename] = param - elif names[0] == "double_blocks": - rename = f"blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])] - state_dict_[rename] = param - elif names[0] == "single_blocks": - if ".".join(names[2:]) in suffix_rename_dict: - rename = f"single_blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])] - state_dict_[rename] = param - else: - pass - if "guidance_embedder.timestep_embedder.0.weight" not in state_dict_: - return state_dict_, {"disable_guidance_embedder": True} - else: - return state_dict_ diff --git a/diffsynth/models/flux_infiniteyou.py b/diffsynth/models/flux_infiniteyou.py deleted file mode 100644 index 2015de4a6c6ccae0922136622a973e3cc0e39652..0000000000000000000000000000000000000000 --- a/diffsynth/models/flux_infiniteyou.py +++ /dev/null @@ -1,128 +0,0 @@ -import math -import torch -import torch.nn as nn - - -# FFN -def FeedForward(dim, mult=4): - inner_dim = int(dim * mult) - return nn.Sequential( - nn.LayerNorm(dim), - nn.Linear(dim, inner_dim, bias=False), - nn.GELU(), - nn.Linear(inner_dim, dim, bias=False), - ) - - -def reshape_tensor(x, heads): - bs, length, width = x.shape - #(bs, length, width) --> (bs, length, n_heads, dim_per_head) - x = x.view(bs, length, heads, -1) - # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head) - x = x.transpose(1, 2) - # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head) - x = x.reshape(bs, heads, length, -1) - return x - - -class PerceiverAttention(nn.Module): - - def __init__(self, *, dim, dim_head=64, heads=8): - super().__init__() - self.scale = dim_head**-0.5 - self.dim_head = dim_head - self.heads = heads - inner_dim = dim_head * heads - - self.norm1 = nn.LayerNorm(dim) - self.norm2 = nn.LayerNorm(dim) - - self.to_q = nn.Linear(dim, inner_dim, bias=False) - self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) - self.to_out = nn.Linear(inner_dim, dim, bias=False) - - def forward(self, x, latents): - """ - Args: - x (torch.Tensor): image features - shape (b, n1, D) - latent (torch.Tensor): latent features - shape (b, n2, D) - """ - x = self.norm1(x) - latents = self.norm2(latents) - - b, l, _ = latents.shape - - q = self.to_q(latents) - kv_input = torch.cat((x, latents), dim=-2) - k, v = self.to_kv(kv_input).chunk(2, dim=-1) - - q = reshape_tensor(q, self.heads) - k = reshape_tensor(k, self.heads) - v = reshape_tensor(v, self.heads) - - # attention - scale = 1 / math.sqrt(math.sqrt(self.dim_head)) - weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards - weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) - out = weight @ v - - out = out.permute(0, 2, 1, 3).reshape(b, l, -1) - - return self.to_out(out) - - -class InfiniteYouImageProjector(nn.Module): - - def __init__( - self, - dim=1280, - depth=4, - dim_head=64, - heads=20, - num_queries=8, - embedding_dim=512, - output_dim=4096, - ff_mult=4, - ): - super().__init__() - self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5) - self.proj_in = nn.Linear(embedding_dim, dim) - - self.proj_out = nn.Linear(dim, output_dim) - self.norm_out = nn.LayerNorm(output_dim) - - self.layers = nn.ModuleList([]) - for _ in range(depth): - self.layers.append( - nn.ModuleList([ - PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads), - FeedForward(dim=dim, mult=ff_mult), - ])) - - def forward(self, x): - - latents = self.latents.repeat(x.size(0), 1, 1) - - x = self.proj_in(x) - - for attn, ff in self.layers: - latents = attn(x, latents) + latents - latents = ff(latents) + latents - - latents = self.proj_out(latents) - return self.norm_out(latents) - - @staticmethod - def state_dict_converter(): - return FluxInfiniteYouImageProjectorStateDictConverter() - - -class FluxInfiniteYouImageProjectorStateDictConverter: - - def __init__(self): - pass - - def from_diffusers(self, state_dict): - return state_dict['image_proj'] diff --git a/diffsynth/models/flux_ipadapter.py b/diffsynth/models/flux_ipadapter.py deleted file mode 100644 index 575c75268c30f9c1d6e6b35d11b93bc57d80cb3f..0000000000000000000000000000000000000000 --- a/diffsynth/models/flux_ipadapter.py +++ /dev/null @@ -1,94 +0,0 @@ -from .svd_image_encoder import SVDImageEncoder -from .sd3_dit import RMSNorm -from transformers import CLIPImageProcessor -import torch - - -class MLPProjModel(torch.nn.Module): - def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4): - super().__init__() - - self.cross_attention_dim = cross_attention_dim - self.num_tokens = num_tokens - - self.proj = torch.nn.Sequential( - torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2), - torch.nn.GELU(), - torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens), - ) - self.norm = torch.nn.LayerNorm(cross_attention_dim) - - def forward(self, id_embeds): - x = self.proj(id_embeds) - x = x.reshape(-1, self.num_tokens, self.cross_attention_dim) - x = self.norm(x) - return x - -class IpAdapterModule(torch.nn.Module): - def __init__(self, num_attention_heads, attention_head_dim, input_dim): - super().__init__() - self.num_heads = num_attention_heads - self.head_dim = attention_head_dim - output_dim = num_attention_heads * attention_head_dim - self.to_k_ip = torch.nn.Linear(input_dim, output_dim, bias=False) - self.to_v_ip = torch.nn.Linear(input_dim, output_dim, bias=False) - self.norm_added_k = RMSNorm(attention_head_dim, eps=1e-5, elementwise_affine=False) - - - def forward(self, hidden_states): - batch_size = hidden_states.shape[0] - # ip_k - ip_k = self.to_k_ip(hidden_states) - ip_k = ip_k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) - ip_k = self.norm_added_k(ip_k) - # ip_v - ip_v = self.to_v_ip(hidden_states) - ip_v = ip_v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) - return ip_k, ip_v - - -class FluxIpAdapter(torch.nn.Module): - def __init__(self, num_attention_heads=24, attention_head_dim=128, cross_attention_dim=4096, num_tokens=128, num_blocks=57): - super().__init__() - self.ipadapter_modules = torch.nn.ModuleList([IpAdapterModule(num_attention_heads, attention_head_dim, cross_attention_dim) for _ in range(num_blocks)]) - self.image_proj = MLPProjModel(cross_attention_dim=cross_attention_dim, id_embeddings_dim=1152, num_tokens=num_tokens) - self.set_adapter() - - def set_adapter(self): - self.call_block_id = {i:i for i in range(len(self.ipadapter_modules))} - - def forward(self, hidden_states, scale=1.0): - hidden_states = self.image_proj(hidden_states) - hidden_states = hidden_states.view(1, -1, hidden_states.shape[-1]) - ip_kv_dict = {} - for block_id in self.call_block_id: - ipadapter_id = self.call_block_id[block_id] - ip_k, ip_v = self.ipadapter_modules[ipadapter_id](hidden_states) - ip_kv_dict[block_id] = { - "ip_k": ip_k, - "ip_v": ip_v, - "scale": scale - } - return ip_kv_dict - - @staticmethod - def state_dict_converter(): - return FluxIpAdapterStateDictConverter() - - -class FluxIpAdapterStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - state_dict_ = {} - for name in state_dict["ip_adapter"]: - name_ = 'ipadapter_modules.' + name - state_dict_[name_] = state_dict["ip_adapter"][name] - for name in state_dict["image_proj"]: - name_ = "image_proj." + name - state_dict_[name_] = state_dict["image_proj"][name] - return state_dict_ - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) diff --git a/diffsynth/models/flux_text_encoder.py b/diffsynth/models/flux_text_encoder.py deleted file mode 100644 index bff9d2944e50e42ef9136269b3e0b1c1ea508a79..0000000000000000000000000000000000000000 --- a/diffsynth/models/flux_text_encoder.py +++ /dev/null @@ -1,32 +0,0 @@ -import torch -from transformers import T5EncoderModel, T5Config -from .sd_text_encoder import SDTextEncoder - - - -class FluxTextEncoder2(T5EncoderModel): - def __init__(self, config): - super().__init__(config) - self.eval() - - def forward(self, input_ids): - outputs = super().forward(input_ids=input_ids) - prompt_emb = outputs.last_hidden_state - return prompt_emb - - @staticmethod - def state_dict_converter(): - return FluxTextEncoder2StateDictConverter() - - - -class FluxTextEncoder2StateDictConverter(): - def __init__(self): - pass - - def from_diffusers(self, state_dict): - state_dict_ = state_dict - return state_dict_ - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) diff --git a/diffsynth/models/flux_vae.py b/diffsynth/models/flux_vae.py deleted file mode 100644 index c99c65522c4d0339adcc9aa734445377b9fdd5b5..0000000000000000000000000000000000000000 --- a/diffsynth/models/flux_vae.py +++ /dev/null @@ -1,303 +0,0 @@ -from .sd3_vae_encoder import SD3VAEEncoder, SDVAEEncoderStateDictConverter -from .sd3_vae_decoder import SD3VAEDecoder, SDVAEDecoderStateDictConverter - - -class FluxVAEEncoder(SD3VAEEncoder): - def __init__(self): - super().__init__() - self.scaling_factor = 0.3611 - self.shift_factor = 0.1159 - - @staticmethod - def state_dict_converter(): - return FluxVAEEncoderStateDictConverter() - - -class FluxVAEDecoder(SD3VAEDecoder): - def __init__(self): - super().__init__() - self.scaling_factor = 0.3611 - self.shift_factor = 0.1159 - - @staticmethod - def state_dict_converter(): - return FluxVAEDecoderStateDictConverter() - - -class FluxVAEEncoderStateDictConverter(SDVAEEncoderStateDictConverter): - def __init__(self): - pass - - def from_civitai(self, state_dict): - rename_dict = { - "encoder.conv_in.bias": "conv_in.bias", - "encoder.conv_in.weight": "conv_in.weight", - "encoder.conv_out.bias": "conv_out.bias", - "encoder.conv_out.weight": "conv_out.weight", - "encoder.down.0.block.0.conv1.bias": "blocks.0.conv1.bias", - "encoder.down.0.block.0.conv1.weight": "blocks.0.conv1.weight", - "encoder.down.0.block.0.conv2.bias": "blocks.0.conv2.bias", - "encoder.down.0.block.0.conv2.weight": "blocks.0.conv2.weight", - "encoder.down.0.block.0.norm1.bias": "blocks.0.norm1.bias", - "encoder.down.0.block.0.norm1.weight": "blocks.0.norm1.weight", - "encoder.down.0.block.0.norm2.bias": "blocks.0.norm2.bias", - "encoder.down.0.block.0.norm2.weight": "blocks.0.norm2.weight", - "encoder.down.0.block.1.conv1.bias": "blocks.1.conv1.bias", - "encoder.down.0.block.1.conv1.weight": "blocks.1.conv1.weight", - "encoder.down.0.block.1.conv2.bias": "blocks.1.conv2.bias", - "encoder.down.0.block.1.conv2.weight": "blocks.1.conv2.weight", - "encoder.down.0.block.1.norm1.bias": "blocks.1.norm1.bias", - "encoder.down.0.block.1.norm1.weight": "blocks.1.norm1.weight", - "encoder.down.0.block.1.norm2.bias": "blocks.1.norm2.bias", - "encoder.down.0.block.1.norm2.weight": "blocks.1.norm2.weight", - "encoder.down.0.downsample.conv.bias": "blocks.2.conv.bias", - "encoder.down.0.downsample.conv.weight": "blocks.2.conv.weight", - "encoder.down.1.block.0.conv1.bias": "blocks.3.conv1.bias", - "encoder.down.1.block.0.conv1.weight": "blocks.3.conv1.weight", - "encoder.down.1.block.0.conv2.bias": "blocks.3.conv2.bias", - "encoder.down.1.block.0.conv2.weight": "blocks.3.conv2.weight", - "encoder.down.1.block.0.nin_shortcut.bias": "blocks.3.conv_shortcut.bias", - "encoder.down.1.block.0.nin_shortcut.weight": "blocks.3.conv_shortcut.weight", - "encoder.down.1.block.0.norm1.bias": "blocks.3.norm1.bias", - "encoder.down.1.block.0.norm1.weight": "blocks.3.norm1.weight", - "encoder.down.1.block.0.norm2.bias": "blocks.3.norm2.bias", - "encoder.down.1.block.0.norm2.weight": "blocks.3.norm2.weight", - "encoder.down.1.block.1.conv1.bias": "blocks.4.conv1.bias", - "encoder.down.1.block.1.conv1.weight": "blocks.4.conv1.weight", - "encoder.down.1.block.1.conv2.bias": "blocks.4.conv2.bias", - "encoder.down.1.block.1.conv2.weight": "blocks.4.conv2.weight", - "encoder.down.1.block.1.norm1.bias": "blocks.4.norm1.bias", - "encoder.down.1.block.1.norm1.weight": "blocks.4.norm1.weight", - "encoder.down.1.block.1.norm2.bias": "blocks.4.norm2.bias", - "encoder.down.1.block.1.norm2.weight": "blocks.4.norm2.weight", - "encoder.down.1.downsample.conv.bias": "blocks.5.conv.bias", - "encoder.down.1.downsample.conv.weight": "blocks.5.conv.weight", - "encoder.down.2.block.0.conv1.bias": "blocks.6.conv1.bias", - "encoder.down.2.block.0.conv1.weight": "blocks.6.conv1.weight", - "encoder.down.2.block.0.conv2.bias": "blocks.6.conv2.bias", - "encoder.down.2.block.0.conv2.weight": "blocks.6.conv2.weight", - "encoder.down.2.block.0.nin_shortcut.bias": "blocks.6.conv_shortcut.bias", - "encoder.down.2.block.0.nin_shortcut.weight": "blocks.6.conv_shortcut.weight", - "encoder.down.2.block.0.norm1.bias": "blocks.6.norm1.bias", - "encoder.down.2.block.0.norm1.weight": "blocks.6.norm1.weight", - "encoder.down.2.block.0.norm2.bias": "blocks.6.norm2.bias", - "encoder.down.2.block.0.norm2.weight": "blocks.6.norm2.weight", - "encoder.down.2.block.1.conv1.bias": "blocks.7.conv1.bias", - "encoder.down.2.block.1.conv1.weight": "blocks.7.conv1.weight", - "encoder.down.2.block.1.conv2.bias": "blocks.7.conv2.bias", - "encoder.down.2.block.1.conv2.weight": "blocks.7.conv2.weight", - "encoder.down.2.block.1.norm1.bias": "blocks.7.norm1.bias", - "encoder.down.2.block.1.norm1.weight": "blocks.7.norm1.weight", - "encoder.down.2.block.1.norm2.bias": "blocks.7.norm2.bias", - "encoder.down.2.block.1.norm2.weight": "blocks.7.norm2.weight", - "encoder.down.2.downsample.conv.bias": "blocks.8.conv.bias", - "encoder.down.2.downsample.conv.weight": "blocks.8.conv.weight", - "encoder.down.3.block.0.conv1.bias": "blocks.9.conv1.bias", - "encoder.down.3.block.0.conv1.weight": "blocks.9.conv1.weight", - "encoder.down.3.block.0.conv2.bias": "blocks.9.conv2.bias", - "encoder.down.3.block.0.conv2.weight": "blocks.9.conv2.weight", - "encoder.down.3.block.0.norm1.bias": "blocks.9.norm1.bias", - "encoder.down.3.block.0.norm1.weight": "blocks.9.norm1.weight", - "encoder.down.3.block.0.norm2.bias": "blocks.9.norm2.bias", - "encoder.down.3.block.0.norm2.weight": "blocks.9.norm2.weight", - "encoder.down.3.block.1.conv1.bias": "blocks.10.conv1.bias", - "encoder.down.3.block.1.conv1.weight": "blocks.10.conv1.weight", - "encoder.down.3.block.1.conv2.bias": "blocks.10.conv2.bias", - "encoder.down.3.block.1.conv2.weight": "blocks.10.conv2.weight", - "encoder.down.3.block.1.norm1.bias": "blocks.10.norm1.bias", - "encoder.down.3.block.1.norm1.weight": "blocks.10.norm1.weight", - "encoder.down.3.block.1.norm2.bias": "blocks.10.norm2.bias", - "encoder.down.3.block.1.norm2.weight": "blocks.10.norm2.weight", - "encoder.mid.attn_1.k.bias": "blocks.12.transformer_blocks.0.to_k.bias", - "encoder.mid.attn_1.k.weight": "blocks.12.transformer_blocks.0.to_k.weight", - "encoder.mid.attn_1.norm.bias": "blocks.12.norm.bias", - "encoder.mid.attn_1.norm.weight": "blocks.12.norm.weight", - "encoder.mid.attn_1.proj_out.bias": "blocks.12.transformer_blocks.0.to_out.bias", - "encoder.mid.attn_1.proj_out.weight": "blocks.12.transformer_blocks.0.to_out.weight", - "encoder.mid.attn_1.q.bias": "blocks.12.transformer_blocks.0.to_q.bias", - "encoder.mid.attn_1.q.weight": "blocks.12.transformer_blocks.0.to_q.weight", - "encoder.mid.attn_1.v.bias": "blocks.12.transformer_blocks.0.to_v.bias", - "encoder.mid.attn_1.v.weight": "blocks.12.transformer_blocks.0.to_v.weight", - "encoder.mid.block_1.conv1.bias": "blocks.11.conv1.bias", - "encoder.mid.block_1.conv1.weight": "blocks.11.conv1.weight", - "encoder.mid.block_1.conv2.bias": "blocks.11.conv2.bias", - "encoder.mid.block_1.conv2.weight": "blocks.11.conv2.weight", - "encoder.mid.block_1.norm1.bias": "blocks.11.norm1.bias", - "encoder.mid.block_1.norm1.weight": "blocks.11.norm1.weight", - "encoder.mid.block_1.norm2.bias": "blocks.11.norm2.bias", - "encoder.mid.block_1.norm2.weight": "blocks.11.norm2.weight", - "encoder.mid.block_2.conv1.bias": "blocks.13.conv1.bias", - "encoder.mid.block_2.conv1.weight": "blocks.13.conv1.weight", - "encoder.mid.block_2.conv2.bias": "blocks.13.conv2.bias", - "encoder.mid.block_2.conv2.weight": "blocks.13.conv2.weight", - "encoder.mid.block_2.norm1.bias": "blocks.13.norm1.bias", - "encoder.mid.block_2.norm1.weight": "blocks.13.norm1.weight", - "encoder.mid.block_2.norm2.bias": "blocks.13.norm2.bias", - "encoder.mid.block_2.norm2.weight": "blocks.13.norm2.weight", - "encoder.norm_out.bias": "conv_norm_out.bias", - "encoder.norm_out.weight": "conv_norm_out.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if "transformer_blocks" in rename_dict[name]: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - return state_dict_ - - - -class FluxVAEDecoderStateDictConverter(SDVAEDecoderStateDictConverter): - def __init__(self): - pass - - def from_civitai(self, state_dict): - rename_dict = { - "decoder.conv_in.bias": "conv_in.bias", - "decoder.conv_in.weight": "conv_in.weight", - "decoder.conv_out.bias": "conv_out.bias", - "decoder.conv_out.weight": "conv_out.weight", - "decoder.mid.attn_1.k.bias": "blocks.1.transformer_blocks.0.to_k.bias", - "decoder.mid.attn_1.k.weight": "blocks.1.transformer_blocks.0.to_k.weight", - "decoder.mid.attn_1.norm.bias": "blocks.1.norm.bias", - "decoder.mid.attn_1.norm.weight": "blocks.1.norm.weight", - "decoder.mid.attn_1.proj_out.bias": "blocks.1.transformer_blocks.0.to_out.bias", - "decoder.mid.attn_1.proj_out.weight": "blocks.1.transformer_blocks.0.to_out.weight", - "decoder.mid.attn_1.q.bias": "blocks.1.transformer_blocks.0.to_q.bias", - "decoder.mid.attn_1.q.weight": "blocks.1.transformer_blocks.0.to_q.weight", - "decoder.mid.attn_1.v.bias": "blocks.1.transformer_blocks.0.to_v.bias", - "decoder.mid.attn_1.v.weight": "blocks.1.transformer_blocks.0.to_v.weight", - "decoder.mid.block_1.conv1.bias": "blocks.0.conv1.bias", - "decoder.mid.block_1.conv1.weight": "blocks.0.conv1.weight", - "decoder.mid.block_1.conv2.bias": "blocks.0.conv2.bias", - "decoder.mid.block_1.conv2.weight": "blocks.0.conv2.weight", - "decoder.mid.block_1.norm1.bias": "blocks.0.norm1.bias", - "decoder.mid.block_1.norm1.weight": "blocks.0.norm1.weight", - "decoder.mid.block_1.norm2.bias": "blocks.0.norm2.bias", - "decoder.mid.block_1.norm2.weight": "blocks.0.norm2.weight", - "decoder.mid.block_2.conv1.bias": "blocks.2.conv1.bias", - "decoder.mid.block_2.conv1.weight": "blocks.2.conv1.weight", - "decoder.mid.block_2.conv2.bias": "blocks.2.conv2.bias", - "decoder.mid.block_2.conv2.weight": "blocks.2.conv2.weight", - "decoder.mid.block_2.norm1.bias": "blocks.2.norm1.bias", - "decoder.mid.block_2.norm1.weight": "blocks.2.norm1.weight", - "decoder.mid.block_2.norm2.bias": "blocks.2.norm2.bias", - "decoder.mid.block_2.norm2.weight": "blocks.2.norm2.weight", - "decoder.norm_out.bias": "conv_norm_out.bias", - "decoder.norm_out.weight": "conv_norm_out.weight", - "decoder.up.0.block.0.conv1.bias": "blocks.15.conv1.bias", - "decoder.up.0.block.0.conv1.weight": "blocks.15.conv1.weight", - "decoder.up.0.block.0.conv2.bias": "blocks.15.conv2.bias", - "decoder.up.0.block.0.conv2.weight": "blocks.15.conv2.weight", - "decoder.up.0.block.0.nin_shortcut.bias": "blocks.15.conv_shortcut.bias", - "decoder.up.0.block.0.nin_shortcut.weight": "blocks.15.conv_shortcut.weight", - "decoder.up.0.block.0.norm1.bias": "blocks.15.norm1.bias", - "decoder.up.0.block.0.norm1.weight": "blocks.15.norm1.weight", - "decoder.up.0.block.0.norm2.bias": "blocks.15.norm2.bias", - "decoder.up.0.block.0.norm2.weight": "blocks.15.norm2.weight", - "decoder.up.0.block.1.conv1.bias": "blocks.16.conv1.bias", - "decoder.up.0.block.1.conv1.weight": "blocks.16.conv1.weight", - "decoder.up.0.block.1.conv2.bias": "blocks.16.conv2.bias", - "decoder.up.0.block.1.conv2.weight": "blocks.16.conv2.weight", - "decoder.up.0.block.1.norm1.bias": "blocks.16.norm1.bias", - "decoder.up.0.block.1.norm1.weight": "blocks.16.norm1.weight", - "decoder.up.0.block.1.norm2.bias": "blocks.16.norm2.bias", - "decoder.up.0.block.1.norm2.weight": "blocks.16.norm2.weight", - "decoder.up.0.block.2.conv1.bias": "blocks.17.conv1.bias", - "decoder.up.0.block.2.conv1.weight": "blocks.17.conv1.weight", - "decoder.up.0.block.2.conv2.bias": "blocks.17.conv2.bias", - "decoder.up.0.block.2.conv2.weight": "blocks.17.conv2.weight", - "decoder.up.0.block.2.norm1.bias": "blocks.17.norm1.bias", - "decoder.up.0.block.2.norm1.weight": "blocks.17.norm1.weight", - "decoder.up.0.block.2.norm2.bias": "blocks.17.norm2.bias", - "decoder.up.0.block.2.norm2.weight": "blocks.17.norm2.weight", - "decoder.up.1.block.0.conv1.bias": "blocks.11.conv1.bias", - "decoder.up.1.block.0.conv1.weight": "blocks.11.conv1.weight", - "decoder.up.1.block.0.conv2.bias": "blocks.11.conv2.bias", - "decoder.up.1.block.0.conv2.weight": "blocks.11.conv2.weight", - "decoder.up.1.block.0.nin_shortcut.bias": "blocks.11.conv_shortcut.bias", - "decoder.up.1.block.0.nin_shortcut.weight": "blocks.11.conv_shortcut.weight", - "decoder.up.1.block.0.norm1.bias": "blocks.11.norm1.bias", - "decoder.up.1.block.0.norm1.weight": "blocks.11.norm1.weight", - "decoder.up.1.block.0.norm2.bias": "blocks.11.norm2.bias", - "decoder.up.1.block.0.norm2.weight": "blocks.11.norm2.weight", - "decoder.up.1.block.1.conv1.bias": "blocks.12.conv1.bias", - "decoder.up.1.block.1.conv1.weight": "blocks.12.conv1.weight", - "decoder.up.1.block.1.conv2.bias": "blocks.12.conv2.bias", - "decoder.up.1.block.1.conv2.weight": "blocks.12.conv2.weight", - "decoder.up.1.block.1.norm1.bias": "blocks.12.norm1.bias", - "decoder.up.1.block.1.norm1.weight": "blocks.12.norm1.weight", - "decoder.up.1.block.1.norm2.bias": "blocks.12.norm2.bias", - "decoder.up.1.block.1.norm2.weight": "blocks.12.norm2.weight", - "decoder.up.1.block.2.conv1.bias": "blocks.13.conv1.bias", - "decoder.up.1.block.2.conv1.weight": "blocks.13.conv1.weight", - "decoder.up.1.block.2.conv2.bias": "blocks.13.conv2.bias", - "decoder.up.1.block.2.conv2.weight": "blocks.13.conv2.weight", - "decoder.up.1.block.2.norm1.bias": "blocks.13.norm1.bias", - "decoder.up.1.block.2.norm1.weight": "blocks.13.norm1.weight", - "decoder.up.1.block.2.norm2.bias": "blocks.13.norm2.bias", - "decoder.up.1.block.2.norm2.weight": "blocks.13.norm2.weight", - "decoder.up.1.upsample.conv.bias": "blocks.14.conv.bias", - "decoder.up.1.upsample.conv.weight": "blocks.14.conv.weight", - "decoder.up.2.block.0.conv1.bias": "blocks.7.conv1.bias", - "decoder.up.2.block.0.conv1.weight": "blocks.7.conv1.weight", - "decoder.up.2.block.0.conv2.bias": "blocks.7.conv2.bias", - "decoder.up.2.block.0.conv2.weight": "blocks.7.conv2.weight", - "decoder.up.2.block.0.norm1.bias": "blocks.7.norm1.bias", - "decoder.up.2.block.0.norm1.weight": "blocks.7.norm1.weight", - "decoder.up.2.block.0.norm2.bias": "blocks.7.norm2.bias", - "decoder.up.2.block.0.norm2.weight": "blocks.7.norm2.weight", - "decoder.up.2.block.1.conv1.bias": "blocks.8.conv1.bias", - "decoder.up.2.block.1.conv1.weight": "blocks.8.conv1.weight", - "decoder.up.2.block.1.conv2.bias": "blocks.8.conv2.bias", - "decoder.up.2.block.1.conv2.weight": "blocks.8.conv2.weight", - "decoder.up.2.block.1.norm1.bias": "blocks.8.norm1.bias", - "decoder.up.2.block.1.norm1.weight": "blocks.8.norm1.weight", - "decoder.up.2.block.1.norm2.bias": "blocks.8.norm2.bias", - "decoder.up.2.block.1.norm2.weight": "blocks.8.norm2.weight", - "decoder.up.2.block.2.conv1.bias": "blocks.9.conv1.bias", - "decoder.up.2.block.2.conv1.weight": "blocks.9.conv1.weight", - "decoder.up.2.block.2.conv2.bias": "blocks.9.conv2.bias", - "decoder.up.2.block.2.conv2.weight": "blocks.9.conv2.weight", - "decoder.up.2.block.2.norm1.bias": "blocks.9.norm1.bias", - "decoder.up.2.block.2.norm1.weight": "blocks.9.norm1.weight", - "decoder.up.2.block.2.norm2.bias": "blocks.9.norm2.bias", - "decoder.up.2.block.2.norm2.weight": "blocks.9.norm2.weight", - "decoder.up.2.upsample.conv.bias": "blocks.10.conv.bias", - "decoder.up.2.upsample.conv.weight": "blocks.10.conv.weight", - "decoder.up.3.block.0.conv1.bias": "blocks.3.conv1.bias", - "decoder.up.3.block.0.conv1.weight": "blocks.3.conv1.weight", - "decoder.up.3.block.0.conv2.bias": "blocks.3.conv2.bias", - "decoder.up.3.block.0.conv2.weight": "blocks.3.conv2.weight", - "decoder.up.3.block.0.norm1.bias": "blocks.3.norm1.bias", - "decoder.up.3.block.0.norm1.weight": "blocks.3.norm1.weight", - "decoder.up.3.block.0.norm2.bias": "blocks.3.norm2.bias", - "decoder.up.3.block.0.norm2.weight": "blocks.3.norm2.weight", - "decoder.up.3.block.1.conv1.bias": "blocks.4.conv1.bias", - "decoder.up.3.block.1.conv1.weight": "blocks.4.conv1.weight", - "decoder.up.3.block.1.conv2.bias": "blocks.4.conv2.bias", - "decoder.up.3.block.1.conv2.weight": "blocks.4.conv2.weight", - "decoder.up.3.block.1.norm1.bias": "blocks.4.norm1.bias", - "decoder.up.3.block.1.norm1.weight": "blocks.4.norm1.weight", - "decoder.up.3.block.1.norm2.bias": "blocks.4.norm2.bias", - "decoder.up.3.block.1.norm2.weight": "blocks.4.norm2.weight", - "decoder.up.3.block.2.conv1.bias": "blocks.5.conv1.bias", - "decoder.up.3.block.2.conv1.weight": "blocks.5.conv1.weight", - "decoder.up.3.block.2.conv2.bias": "blocks.5.conv2.bias", - "decoder.up.3.block.2.conv2.weight": "blocks.5.conv2.weight", - "decoder.up.3.block.2.norm1.bias": "blocks.5.norm1.bias", - "decoder.up.3.block.2.norm1.weight": "blocks.5.norm1.weight", - "decoder.up.3.block.2.norm2.bias": "blocks.5.norm2.bias", - "decoder.up.3.block.2.norm2.weight": "blocks.5.norm2.weight", - "decoder.up.3.upsample.conv.bias": "blocks.6.conv.bias", - "decoder.up.3.upsample.conv.weight": "blocks.6.conv.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if "transformer_blocks" in rename_dict[name]: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - return state_dict_ \ No newline at end of file diff --git a/diffsynth/models/hunyuan_dit.py b/diffsynth/models/hunyuan_dit.py deleted file mode 100644 index 8e27183d6993e7f64eee6b9b231dcb4d8d1a6bc0..0000000000000000000000000000000000000000 --- a/diffsynth/models/hunyuan_dit.py +++ /dev/null @@ -1,451 +0,0 @@ -from .attention import Attention -from einops import repeat, rearrange -import math -import torch - - -class HunyuanDiTRotaryEmbedding(torch.nn.Module): - - def __init__(self, q_norm_shape=88, k_norm_shape=88, rotary_emb_on_k=True): - super().__init__() - self.q_norm = torch.nn.LayerNorm((q_norm_shape,), elementwise_affine=True, eps=1e-06) - self.k_norm = torch.nn.LayerNorm((k_norm_shape,), elementwise_affine=True, eps=1e-06) - self.rotary_emb_on_k = rotary_emb_on_k - self.k_cache, self.v_cache = [], [] - - def reshape_for_broadcast(self, freqs_cis, x): - ndim = x.ndim - shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] - return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape) - - def rotate_half(self, x): - x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1) - return torch.stack([-x_imag, x_real], dim=-1).flatten(3) - - def apply_rotary_emb(self, xq, xk, freqs_cis): - xk_out = None - cos, sin = self.reshape_for_broadcast(freqs_cis, xq) - cos, sin = cos.to(xq.device), sin.to(xq.device) - xq_out = (xq.float() * cos + self.rotate_half(xq.float()) * sin).type_as(xq) - if xk is not None: - xk_out = (xk.float() * cos + self.rotate_half(xk.float()) * sin).type_as(xk) - return xq_out, xk_out - - def forward(self, q, k, v, freqs_cis_img, to_cache=False): - # norm - q = self.q_norm(q) - k = self.k_norm(k) - - # RoPE - if self.rotary_emb_on_k: - q, k = self.apply_rotary_emb(q, k, freqs_cis_img) - else: - q, _ = self.apply_rotary_emb(q, None, freqs_cis_img) - - if to_cache: - self.k_cache.append(k) - self.v_cache.append(v) - elif len(self.k_cache) > 0 and len(self.v_cache) > 0: - k = torch.concat([k] + self.k_cache, dim=2) - v = torch.concat([v] + self.v_cache, dim=2) - self.k_cache, self.v_cache = [], [] - return q, k, v - - -class FP32_Layernorm(torch.nn.LayerNorm): - def forward(self, inputs): - origin_dtype = inputs.dtype - return torch.nn.functional.layer_norm(inputs.float(), self.normalized_shape, self.weight.float(), self.bias.float(), self.eps).to(origin_dtype) - - -class FP32_SiLU(torch.nn.SiLU): - def forward(self, inputs): - origin_dtype = inputs.dtype - return torch.nn.functional.silu(inputs.float(), inplace=False).to(origin_dtype) - - -class HunyuanDiTFinalLayer(torch.nn.Module): - def __init__(self, final_hidden_size=1408, condition_dim=1408, patch_size=2, out_channels=8): - super().__init__() - self.norm_final = torch.nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6) - self.linear = torch.nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True) - self.adaLN_modulation = torch.nn.Sequential( - FP32_SiLU(), - torch.nn.Linear(condition_dim, 2 * final_hidden_size, bias=True) - ) - - def modulate(self, x, shift, scale): - return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) - - def forward(self, hidden_states, condition_emb): - shift, scale = self.adaLN_modulation(condition_emb).chunk(2, dim=1) - hidden_states = self.modulate(self.norm_final(hidden_states), shift, scale) - hidden_states = self.linear(hidden_states) - return hidden_states - - -class HunyuanDiTBlock(torch.nn.Module): - - def __init__( - self, - hidden_dim=1408, - condition_dim=1408, - num_heads=16, - mlp_ratio=4.3637, - text_dim=1024, - skip_connection=False - ): - super().__init__() - self.norm1 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True) - self.rota1 = HunyuanDiTRotaryEmbedding(hidden_dim//num_heads, hidden_dim//num_heads) - self.attn1 = Attention(hidden_dim, num_heads, hidden_dim//num_heads, bias_q=True, bias_kv=True, bias_out=True) - self.norm2 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True) - self.rota2 = HunyuanDiTRotaryEmbedding(hidden_dim//num_heads, hidden_dim//num_heads, rotary_emb_on_k=False) - self.attn2 = Attention(hidden_dim, num_heads, hidden_dim//num_heads, kv_dim=text_dim, bias_q=True, bias_kv=True, bias_out=True) - self.norm3 = FP32_Layernorm((hidden_dim,), eps=1e-6, elementwise_affine=True) - self.modulation = torch.nn.Sequential(FP32_SiLU(), torch.nn.Linear(condition_dim, hidden_dim, bias=True)) - self.mlp = torch.nn.Sequential( - torch.nn.Linear(hidden_dim, int(hidden_dim*mlp_ratio), bias=True), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(int(hidden_dim*mlp_ratio), hidden_dim, bias=True) - ) - if skip_connection: - self.skip_norm = FP32_Layernorm((hidden_dim * 2,), eps=1e-6, elementwise_affine=True) - self.skip_linear = torch.nn.Linear(hidden_dim * 2, hidden_dim, bias=True) - else: - self.skip_norm, self.skip_linear = None, None - - def forward(self, hidden_states, condition_emb, text_emb, freq_cis_img, residual=None, to_cache=False): - # Long Skip Connection - if self.skip_norm is not None and self.skip_linear is not None: - hidden_states = torch.cat([hidden_states, residual], dim=-1) - hidden_states = self.skip_norm(hidden_states) - hidden_states = self.skip_linear(hidden_states) - - # Self-Attention - shift_msa = self.modulation(condition_emb).unsqueeze(dim=1) - attn_input = self.norm1(hidden_states) + shift_msa - hidden_states = hidden_states + self.attn1(attn_input, qkv_preprocessor=lambda q, k, v: self.rota1(q, k, v, freq_cis_img, to_cache=to_cache)) - - # Cross-Attention - attn_input = self.norm3(hidden_states) - hidden_states = hidden_states + self.attn2(attn_input, text_emb, qkv_preprocessor=lambda q, k, v: self.rota2(q, k, v, freq_cis_img)) - - # FFN Layer - mlp_input = self.norm2(hidden_states) - hidden_states = hidden_states + self.mlp(mlp_input) - return hidden_states - - -class AttentionPool(torch.nn.Module): - def __init__(self, spacial_dim, embed_dim, num_heads, output_dim = None): - super().__init__() - self.positional_embedding = torch.nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim ** 0.5) - self.k_proj = torch.nn.Linear(embed_dim, embed_dim) - self.q_proj = torch.nn.Linear(embed_dim, embed_dim) - self.v_proj = torch.nn.Linear(embed_dim, embed_dim) - self.c_proj = torch.nn.Linear(embed_dim, output_dim or embed_dim) - self.num_heads = num_heads - - def forward(self, x): - x = x.permute(1, 0, 2) # NLC -> LNC - x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC - x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC - x, _ = torch.nn.functional.multi_head_attention_forward( - query=x[:1], key=x, value=x, - embed_dim_to_check=x.shape[-1], - num_heads=self.num_heads, - q_proj_weight=self.q_proj.weight, - k_proj_weight=self.k_proj.weight, - v_proj_weight=self.v_proj.weight, - in_proj_weight=None, - in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), - bias_k=None, - bias_v=None, - add_zero_attn=False, - dropout_p=0, - out_proj_weight=self.c_proj.weight, - out_proj_bias=self.c_proj.bias, - use_separate_proj_weight=True, - training=self.training, - need_weights=False - ) - return x.squeeze(0) - - -class PatchEmbed(torch.nn.Module): - def __init__( - self, - patch_size=(2, 2), - in_chans=4, - embed_dim=1408, - bias=True, - ): - super().__init__() - self.proj = torch.nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) - - def forward(self, x): - x = self.proj(x) - x = x.flatten(2).transpose(1, 2) # BCHW -> BNC - return x - - -def timestep_embedding(t, dim, max_period=10000, repeat_only=False): - # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py - if not repeat_only: - half = dim // 2 - freqs = torch.exp( - -math.log(max_period) - * torch.arange(start=0, end=half, dtype=torch.float32) - / half - ).to(device=t.device) # size: [dim/2], 一个指数衰减的曲线 - args = t[:, None].float() * freqs[None] - embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) - if dim % 2: - embedding = torch.cat( - [embedding, torch.zeros_like(embedding[:, :1])], dim=-1 - ) - else: - embedding = repeat(t, "b -> b d", d=dim) - return embedding - - -class TimestepEmbedder(torch.nn.Module): - def __init__(self, hidden_size=1408, frequency_embedding_size=256): - super().__init__() - self.mlp = torch.nn.Sequential( - torch.nn.Linear(frequency_embedding_size, hidden_size, bias=True), - torch.nn.SiLU(), - torch.nn.Linear(hidden_size, hidden_size, bias=True), - ) - self.frequency_embedding_size = frequency_embedding_size - - def forward(self, t): - t_freq = timestep_embedding(t, self.frequency_embedding_size).type(self.mlp[0].weight.dtype) - t_emb = self.mlp(t_freq) - return t_emb - - -class HunyuanDiT(torch.nn.Module): - def __init__(self, num_layers_down=21, num_layers_up=19, in_channels=4, out_channels=8, hidden_dim=1408, text_dim=1024, t5_dim=2048, text_length=77, t5_length=256): - super().__init__() - - # Embedders - self.text_emb_padding = torch.nn.Parameter(torch.randn(text_length + t5_length, text_dim, dtype=torch.float32)) - self.t5_embedder = torch.nn.Sequential( - torch.nn.Linear(t5_dim, t5_dim * 4, bias=True), - FP32_SiLU(), - torch.nn.Linear(t5_dim * 4, text_dim, bias=True), - ) - self.t5_pooler = AttentionPool(t5_length, t5_dim, num_heads=8, output_dim=1024) - self.style_embedder = torch.nn.Parameter(torch.randn(hidden_dim)) - self.patch_embedder = PatchEmbed(in_chans=in_channels) - self.timestep_embedder = TimestepEmbedder() - self.extra_embedder = torch.nn.Sequential( - torch.nn.Linear(256 * 6 + 1024 + hidden_dim, hidden_dim * 4), - FP32_SiLU(), - torch.nn.Linear(hidden_dim * 4, hidden_dim), - ) - - # Transformer blocks - self.num_layers_down = num_layers_down - self.num_layers_up = num_layers_up - self.blocks = torch.nn.ModuleList( - [HunyuanDiTBlock(skip_connection=False) for _ in range(num_layers_down)] + \ - [HunyuanDiTBlock(skip_connection=True) for _ in range(num_layers_up)] - ) - - # Output layers - self.final_layer = HunyuanDiTFinalLayer() - self.out_channels = out_channels - - def prepare_text_emb(self, text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5): - text_emb_mask = text_emb_mask.bool() - text_emb_mask_t5 = text_emb_mask_t5.bool() - text_emb_t5 = self.t5_embedder(text_emb_t5) - text_emb = torch.cat([text_emb, text_emb_t5], dim=1) - text_emb_mask = torch.cat([text_emb_mask, text_emb_mask_t5], dim=-1) - text_emb = torch.where(text_emb_mask.unsqueeze(2), text_emb, self.text_emb_padding.to(text_emb)) - return text_emb - - def prepare_extra_emb(self, text_emb_t5, timestep, size_emb, dtype, batch_size): - # Text embedding - pooled_text_emb_t5 = self.t5_pooler(text_emb_t5) - - # Timestep embedding - timestep_emb = self.timestep_embedder(timestep) - - # Size embedding - size_emb = timestep_embedding(size_emb.view(-1), 256).to(dtype) - size_emb = size_emb.view(-1, 6 * 256) - - # Style embedding - style_emb = repeat(self.style_embedder, "D -> B D", B=batch_size) - - # Concatenate all extra vectors - extra_emb = torch.cat([pooled_text_emb_t5, size_emb, style_emb], dim=1) - condition_emb = timestep_emb + self.extra_embedder(extra_emb) - - return condition_emb - - def unpatchify(self, x, h, w): - return rearrange(x, "B (H W) (P Q C) -> B C (H P) (W Q)", H=h, W=w, P=2, Q=2) - - def build_mask(self, data, is_bound): - _, _, H, W = data.shape - h = repeat(torch.arange(H), "H -> H W", H=H, W=W) - w = repeat(torch.arange(W), "W -> H W", H=H, W=W) - border_width = (H + W) // 4 - pad = torch.ones_like(h) * border_width - mask = torch.stack([ - pad if is_bound[0] else h + 1, - pad if is_bound[1] else H - h, - pad if is_bound[2] else w + 1, - pad if is_bound[3] else W - w - ]).min(dim=0).values - mask = mask.clip(1, border_width) - mask = (mask / border_width).to(dtype=data.dtype, device=data.device) - mask = rearrange(mask, "H W -> 1 H W") - return mask - - def tiled_block_forward(self, block, hidden_states, condition_emb, text_emb, freq_cis_img, residual, torch_dtype, data_device, computation_device, tile_size, tile_stride): - B, C, H, W = hidden_states.shape - - weight = torch.zeros((1, 1, H, W), dtype=torch_dtype, device=data_device) - values = torch.zeros((B, C, H, W), dtype=torch_dtype, device=data_device) - - # Split tasks - tasks = [] - for h in range(0, H, tile_stride): - for w in range(0, W, tile_stride): - if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W): - continue - h_, w_ = h + tile_size, w + tile_size - if h_ > H: h, h_ = H - tile_size, H - if w_ > W: w, w_ = W - tile_size, W - tasks.append((h, h_, w, w_)) - - # Run - for hl, hr, wl, wr in tasks: - hidden_states_batch = hidden_states[:, :, hl:hr, wl:wr].to(computation_device) - hidden_states_batch = rearrange(hidden_states_batch, "B C H W -> B (H W) C") - if residual is not None: - residual_batch = residual[:, :, hl:hr, wl:wr].to(computation_device) - residual_batch = rearrange(residual_batch, "B C H W -> B (H W) C") - else: - residual_batch = None - - # Forward - hidden_states_batch = block(hidden_states_batch, condition_emb, text_emb, freq_cis_img, residual_batch).to(data_device) - hidden_states_batch = rearrange(hidden_states_batch, "B (H W) C -> B C H W", H=hr-hl) - - mask = self.build_mask(hidden_states_batch, is_bound=(hl==0, hr>=H, wl==0, wr>=W)) - values[:, :, hl:hr, wl:wr] += hidden_states_batch * mask - weight[:, :, hl:hr, wl:wr] += mask - values /= weight - return values - - def forward( - self, hidden_states, text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5, timestep, size_emb, freq_cis_img, - tiled=False, tile_size=64, tile_stride=32, - to_cache=False, - use_gradient_checkpointing=False, - ): - # Embeddings - text_emb = self.prepare_text_emb(text_emb, text_emb_t5, text_emb_mask, text_emb_mask_t5) - condition_emb = self.prepare_extra_emb(text_emb_t5, timestep, size_emb, hidden_states.dtype, hidden_states.shape[0]) - - # Input - height, width = hidden_states.shape[-2], hidden_states.shape[-1] - hidden_states = self.patch_embedder(hidden_states) - - # Blocks - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - return custom_forward - if tiled: - hidden_states = rearrange(hidden_states, "B (H W) C -> B C H W", H=height//2) - residuals = [] - for block_id, block in enumerate(self.blocks): - residual = residuals.pop() if block_id >= self.num_layers_down else None - hidden_states = self.tiled_block_forward( - block, hidden_states, condition_emb, text_emb, freq_cis_img, residual, - torch_dtype=hidden_states.dtype, data_device=hidden_states.device, computation_device=hidden_states.device, - tile_size=tile_size, tile_stride=tile_stride - ) - if block_id < self.num_layers_down - 2: - residuals.append(hidden_states) - hidden_states = rearrange(hidden_states, "B C H W -> B (H W) C") - else: - residuals = [] - for block_id, block in enumerate(self.blocks): - residual = residuals.pop() if block_id >= self.num_layers_down else None - if self.training and use_gradient_checkpointing: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - hidden_states, condition_emb, text_emb, freq_cis_img, residual, - use_reentrant=False, - ) - else: - hidden_states = block(hidden_states, condition_emb, text_emb, freq_cis_img, residual, to_cache=to_cache) - if block_id < self.num_layers_down - 2: - residuals.append(hidden_states) - - # Output - hidden_states = self.final_layer(hidden_states, condition_emb) - hidden_states = self.unpatchify(hidden_states, height//2, width//2) - hidden_states, _ = hidden_states.chunk(2, dim=1) - return hidden_states - - @staticmethod - def state_dict_converter(): - return HunyuanDiTStateDictConverter() - - - -class HunyuanDiTStateDictConverter(): - def __init__(self): - pass - - def from_diffusers(self, state_dict): - state_dict_ = {} - for name, param in state_dict.items(): - name_ = name - name_ = name_.replace(".default_modulation.", ".modulation.") - name_ = name_.replace(".mlp.fc1.", ".mlp.0.") - name_ = name_.replace(".mlp.fc2.", ".mlp.2.") - name_ = name_.replace(".attn1.q_norm.", ".rota1.q_norm.") - name_ = name_.replace(".attn2.q_norm.", ".rota2.q_norm.") - name_ = name_.replace(".attn1.k_norm.", ".rota1.k_norm.") - name_ = name_.replace(".attn2.k_norm.", ".rota2.k_norm.") - name_ = name_.replace(".q_proj.", ".to_q.") - name_ = name_.replace(".out_proj.", ".to_out.") - name_ = name_.replace("text_embedding_padding", "text_emb_padding") - name_ = name_.replace("mlp_t5.0.", "t5_embedder.0.") - name_ = name_.replace("mlp_t5.2.", "t5_embedder.2.") - name_ = name_.replace("pooler.", "t5_pooler.") - name_ = name_.replace("x_embedder.", "patch_embedder.") - name_ = name_.replace("t_embedder.", "timestep_embedder.") - name_ = name_.replace("t5_pooler.to_q.", "t5_pooler.q_proj.") - name_ = name_.replace("style_embedder.weight", "style_embedder") - if ".kv_proj." in name_: - param_k = param[:param.shape[0]//2] - param_v = param[param.shape[0]//2:] - state_dict_[name_.replace(".kv_proj.", ".to_k.")] = param_k - state_dict_[name_.replace(".kv_proj.", ".to_v.")] = param_v - elif ".Wqkv." in name_: - param_q = param[:param.shape[0]//3] - param_k = param[param.shape[0]//3:param.shape[0]//3*2] - param_v = param[param.shape[0]//3*2:] - state_dict_[name_.replace(".Wqkv.", ".to_q.")] = param_q - state_dict_[name_.replace(".Wqkv.", ".to_k.")] = param_k - state_dict_[name_.replace(".Wqkv.", ".to_v.")] = param_v - elif "style_embedder" in name_: - state_dict_[name_] = param.squeeze() - else: - state_dict_[name_] = param - return state_dict_ - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) diff --git a/diffsynth/models/hunyuan_dit_text_encoder.py b/diffsynth/models/hunyuan_dit_text_encoder.py deleted file mode 100644 index 33999a8b10a319b736981dd8f3a911bbe9568e8d..0000000000000000000000000000000000000000 --- a/diffsynth/models/hunyuan_dit_text_encoder.py +++ /dev/null @@ -1,163 +0,0 @@ -from transformers import BertModel, BertConfig, T5EncoderModel, T5Config -import torch - - - -class HunyuanDiTCLIPTextEncoder(BertModel): - def __init__(self): - config = BertConfig( - _name_or_path = "", - architectures = ["BertModel"], - attention_probs_dropout_prob = 0.1, - bos_token_id = 0, - classifier_dropout = None, - directionality = "bidi", - eos_token_id = 2, - hidden_act = "gelu", - hidden_dropout_prob = 0.1, - hidden_size = 1024, - initializer_range = 0.02, - intermediate_size = 4096, - layer_norm_eps = 1e-12, - max_position_embeddings = 512, - model_type = "bert", - num_attention_heads = 16, - num_hidden_layers = 24, - output_past = True, - pad_token_id = 0, - pooler_fc_size = 768, - pooler_num_attention_heads = 12, - pooler_num_fc_layers = 3, - pooler_size_per_head = 128, - pooler_type = "first_token_transform", - position_embedding_type = "absolute", - torch_dtype = "float32", - transformers_version = "4.37.2", - type_vocab_size = 2, - use_cache = True, - vocab_size = 47020 - ) - super().__init__(config, add_pooling_layer=False) - self.eval() - - def forward(self, input_ids, attention_mask, clip_skip=1): - input_shape = input_ids.size() - - batch_size, seq_length = input_shape - device = input_ids.device - - past_key_values_length = 0 - - if attention_mask is None: - attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) - - extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) - - embedding_output = self.embeddings( - input_ids=input_ids, - position_ids=None, - token_type_ids=None, - inputs_embeds=None, - past_key_values_length=0, - ) - encoder_outputs = self.encoder( - embedding_output, - attention_mask=extended_attention_mask, - head_mask=None, - encoder_hidden_states=None, - encoder_attention_mask=None, - past_key_values=None, - use_cache=False, - output_attentions=False, - output_hidden_states=True, - return_dict=True, - ) - all_hidden_states = encoder_outputs.hidden_states - prompt_emb = all_hidden_states[-clip_skip] - if clip_skip > 1: - mean, std = all_hidden_states[-1].mean(), all_hidden_states[-1].std() - prompt_emb = (prompt_emb - prompt_emb.mean()) / prompt_emb.std() * std + mean - return prompt_emb - - @staticmethod - def state_dict_converter(): - return HunyuanDiTCLIPTextEncoderStateDictConverter() - - - -class HunyuanDiTT5TextEncoder(T5EncoderModel): - def __init__(self): - config = T5Config( - _name_or_path = "../HunyuanDiT/t2i/mt5", - architectures = ["MT5ForConditionalGeneration"], - classifier_dropout = 0.0, - d_ff = 5120, - d_kv = 64, - d_model = 2048, - decoder_start_token_id = 0, - dense_act_fn = "gelu_new", - dropout_rate = 0.1, - eos_token_id = 1, - feed_forward_proj = "gated-gelu", - initializer_factor = 1.0, - is_encoder_decoder = True, - is_gated_act = True, - layer_norm_epsilon = 1e-06, - model_type = "t5", - num_decoder_layers = 24, - num_heads = 32, - num_layers = 24, - output_past = True, - pad_token_id = 0, - relative_attention_max_distance = 128, - relative_attention_num_buckets = 32, - tie_word_embeddings = False, - tokenizer_class = "T5Tokenizer", - transformers_version = "4.37.2", - use_cache = True, - vocab_size = 250112 - ) - super().__init__(config) - self.eval() - - def forward(self, input_ids, attention_mask, clip_skip=1): - outputs = super().forward( - input_ids=input_ids, - attention_mask=attention_mask, - output_hidden_states=True, - ) - prompt_emb = outputs.hidden_states[-clip_skip] - if clip_skip > 1: - mean, std = outputs.hidden_states[-1].mean(), outputs.hidden_states[-1].std() - prompt_emb = (prompt_emb - prompt_emb.mean()) / prompt_emb.std() * std + mean - return prompt_emb - - @staticmethod - def state_dict_converter(): - return HunyuanDiTT5TextEncoderStateDictConverter() - - - -class HunyuanDiTCLIPTextEncoderStateDictConverter(): - def __init__(self): - pass - - def from_diffusers(self, state_dict): - state_dict_ = {name[5:]: param for name, param in state_dict.items() if name.startswith("bert.")} - return state_dict_ - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) - - -class HunyuanDiTT5TextEncoderStateDictConverter(): - def __init__(self): - pass - - def from_diffusers(self, state_dict): - state_dict_ = {name: param for name, param in state_dict.items() if name.startswith("encoder.")} - state_dict_["shared.weight"] = state_dict["shared.weight"] - return state_dict_ - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) diff --git a/diffsynth/models/hunyuan_video_dit.py b/diffsynth/models/hunyuan_video_dit.py deleted file mode 100644 index 13155361734f8ec4cb7947941a1824f5064f1642..0000000000000000000000000000000000000000 --- a/diffsynth/models/hunyuan_video_dit.py +++ /dev/null @@ -1,920 +0,0 @@ -import torch -from .sd3_dit import TimestepEmbeddings, RMSNorm -from .utils import init_weights_on_device -from einops import rearrange, repeat -from tqdm import tqdm -from typing import Union, Tuple, List -from .utils import hash_state_dict_keys - - -def HunyuanVideoRope(latents): - def _to_tuple(x, dim=2): - if isinstance(x, int): - return (x,) * dim - elif len(x) == dim: - return x - else: - raise ValueError(f"Expected length {dim} or int, but got {x}") - - - def get_meshgrid_nd(start, *args, dim=2): - """ - Get n-D meshgrid with start, stop and num. - - Args: - start (int or tuple): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop, - step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. For n-dim, start/stop/num - should be int or n-tuple. If n-tuple is provided, the meshgrid will be stacked following the dim order in - n-tuples. - *args: See above. - dim (int): Dimension of the meshgrid. Defaults to 2. - - Returns: - grid (np.ndarray): [dim, ...] - """ - if len(args) == 0: - # start is grid_size - num = _to_tuple(start, dim=dim) - start = (0,) * dim - stop = num - elif len(args) == 1: - # start is start, args[0] is stop, step is 1 - start = _to_tuple(start, dim=dim) - stop = _to_tuple(args[0], dim=dim) - num = [stop[i] - start[i] for i in range(dim)] - elif len(args) == 2: - # start is start, args[0] is stop, args[1] is num - start = _to_tuple(start, dim=dim) # Left-Top eg: 12,0 - stop = _to_tuple(args[0], dim=dim) # Right-Bottom eg: 20,32 - num = _to_tuple(args[1], dim=dim) # Target Size eg: 32,124 - else: - raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}") - - # PyTorch implement of np.linspace(start[i], stop[i], num[i], endpoint=False) - axis_grid = [] - for i in range(dim): - a, b, n = start[i], stop[i], num[i] - g = torch.linspace(a, b, n + 1, dtype=torch.float32)[:n] - axis_grid.append(g) - grid = torch.meshgrid(*axis_grid, indexing="ij") # dim x [W, H, D] - grid = torch.stack(grid, dim=0) # [dim, W, H, D] - - return grid - - - def get_1d_rotary_pos_embed( - dim: int, - pos: Union[torch.FloatTensor, int], - theta: float = 10000.0, - use_real: bool = False, - theta_rescale_factor: float = 1.0, - interpolation_factor: float = 1.0, - ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: - """ - Precompute the frequency tensor for complex exponential (cis) with given dimensions. - (Note: `cis` means `cos + i * sin`, where i is the imaginary unit.) - - This function calculates a frequency tensor with complex exponential using the given dimension 'dim' - and the end index 'end'. The 'theta' parameter scales the frequencies. - The returned tensor contains complex values in complex64 data type. - - Args: - dim (int): Dimension of the frequency tensor. - pos (int or torch.FloatTensor): Position indices for the frequency tensor. [S] or scalar - theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0. - use_real (bool, optional): If True, return real part and imaginary part separately. - Otherwise, return complex numbers. - theta_rescale_factor (float, optional): Rescale factor for theta. Defaults to 1.0. - - Returns: - freqs_cis: Precomputed frequency tensor with complex exponential. [S, D/2] - freqs_cos, freqs_sin: Precomputed frequency tensor with real and imaginary parts separately. [S, D] - """ - if isinstance(pos, int): - pos = torch.arange(pos).float() - - # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning - # has some connection to NTK literature - if theta_rescale_factor != 1.0: - theta *= theta_rescale_factor ** (dim / (dim - 2)) - - freqs = 1.0 / ( - theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) - ) # [D/2] - # assert interpolation_factor == 1.0, f"interpolation_factor: {interpolation_factor}" - freqs = torch.outer(pos * interpolation_factor, freqs) # [S, D/2] - if use_real: - freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D] - freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D] - return freqs_cos, freqs_sin - else: - freqs_cis = torch.polar( - torch.ones_like(freqs), freqs - ) # complex64 # [S, D/2] - return freqs_cis - - - def get_nd_rotary_pos_embed( - rope_dim_list, - start, - *args, - theta=10000.0, - use_real=False, - theta_rescale_factor: Union[float, List[float]] = 1.0, - interpolation_factor: Union[float, List[float]] = 1.0, - ): - """ - This is a n-d version of precompute_freqs_cis, which is a RoPE for tokens with n-d structure. - - Args: - rope_dim_list (list of int): Dimension of each rope. len(rope_dim_list) should equal to n. - sum(rope_dim_list) should equal to head_dim of attention layer. - start (int | tuple of int | list of int): If len(args) == 0, start is num; If len(args) == 1, start is start, - args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. - *args: See above. - theta (float): Scaling factor for frequency computation. Defaults to 10000.0. - use_real (bool): If True, return real part and imaginary part separately. Otherwise, return complex numbers. - Some libraries such as TensorRT does not support complex64 data type. So it is useful to provide a real - part and an imaginary part separately. - theta_rescale_factor (float): Rescale factor for theta. Defaults to 1.0. - - Returns: - pos_embed (torch.Tensor): [HW, D/2] - """ - - grid = get_meshgrid_nd( - start, *args, dim=len(rope_dim_list) - ) # [3, W, H, D] / [2, W, H] - - if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float): - theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list) - elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1: - theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list) - assert len(theta_rescale_factor) == len( - rope_dim_list - ), "len(theta_rescale_factor) should equal to len(rope_dim_list)" - - if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float): - interpolation_factor = [interpolation_factor] * len(rope_dim_list) - elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1: - interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list) - assert len(interpolation_factor) == len( - rope_dim_list - ), "len(interpolation_factor) should equal to len(rope_dim_list)" - - # use 1/ndim of dimensions to encode grid_axis - embs = [] - for i in range(len(rope_dim_list)): - emb = get_1d_rotary_pos_embed( - rope_dim_list[i], - grid[i].reshape(-1), - theta, - use_real=use_real, - theta_rescale_factor=theta_rescale_factor[i], - interpolation_factor=interpolation_factor[i], - ) # 2 x [WHD, rope_dim_list[i]] - embs.append(emb) - - if use_real: - cos = torch.cat([emb[0] for emb in embs], dim=1) # (WHD, D/2) - sin = torch.cat([emb[1] for emb in embs], dim=1) # (WHD, D/2) - return cos, sin - else: - emb = torch.cat(embs, dim=1) # (WHD, D/2) - return emb - - freqs_cos, freqs_sin = get_nd_rotary_pos_embed( - [16, 56, 56], - [latents.shape[2], latents.shape[3] // 2, latents.shape[4] // 2], - theta=256, - use_real=True, - theta_rescale_factor=1, - ) - return freqs_cos, freqs_sin - - -class PatchEmbed(torch.nn.Module): - def __init__(self, patch_size=(1, 2, 2), in_channels=16, embed_dim=3072): - super().__init__() - self.proj = torch.nn.Conv3d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size) - - def forward(self, x): - x = self.proj(x) - x = x.flatten(2).transpose(1, 2) - return x - - -class IndividualTokenRefinerBlock(torch.nn.Module): - def __init__(self, hidden_size=3072, num_heads=24): - super().__init__() - self.num_heads = num_heads - self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) - self.self_attn_qkv = torch.nn.Linear(hidden_size, hidden_size * 3) - self.self_attn_proj = torch.nn.Linear(hidden_size, hidden_size) - - self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) - self.mlp = torch.nn.Sequential( - torch.nn.Linear(hidden_size, hidden_size * 4), - torch.nn.SiLU(), - torch.nn.Linear(hidden_size * 4, hidden_size) - ) - self.adaLN_modulation = torch.nn.Sequential( - torch.nn.SiLU(), - torch.nn.Linear(hidden_size, hidden_size * 2, device="cuda", dtype=torch.bfloat16), - ) - - def forward(self, x, c, attn_mask=None): - gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1) - - norm_x = self.norm1(x) - qkv = self.self_attn_qkv(norm_x) - q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) - - attn = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) - attn = rearrange(attn, "B H L D -> B L (H D)") - - x = x + self.self_attn_proj(attn) * gate_msa.unsqueeze(1) - x = x + self.mlp(self.norm2(x)) * gate_mlp.unsqueeze(1) - - return x - - -class SingleTokenRefiner(torch.nn.Module): - def __init__(self, in_channels=4096, hidden_size=3072, depth=2): - super().__init__() - self.input_embedder = torch.nn.Linear(in_channels, hidden_size, bias=True) - self.t_embedder = TimestepEmbeddings(256, hidden_size, computation_device="cpu") - self.c_embedder = torch.nn.Sequential( - torch.nn.Linear(in_channels, hidden_size), - torch.nn.SiLU(), - torch.nn.Linear(hidden_size, hidden_size) - ) - self.blocks = torch.nn.ModuleList([IndividualTokenRefinerBlock(hidden_size=hidden_size) for _ in range(depth)]) - - def forward(self, x, t, mask=None): - timestep_aware_representations = self.t_embedder(t, dtype=torch.float32) - - mask_float = mask.float().unsqueeze(-1) - context_aware_representations = (x * mask_float).sum(dim=1) / mask_float.sum(dim=1) - context_aware_representations = self.c_embedder(context_aware_representations) - c = timestep_aware_representations + context_aware_representations - - x = self.input_embedder(x) - - mask = mask.to(device=x.device, dtype=torch.bool) - mask = repeat(mask, "B L -> B 1 D L", D=mask.shape[-1]) - mask = mask & mask.transpose(2, 3) - mask[:, :, :, 0] = True - - for block in self.blocks: - x = block(x, c, mask) - - return x - - -class ModulateDiT(torch.nn.Module): - def __init__(self, hidden_size, factor=6): - super().__init__() - self.act = torch.nn.SiLU() - self.linear = torch.nn.Linear(hidden_size, factor * hidden_size) - - def forward(self, x): - return self.linear(self.act(x)) - - -def modulate(x, shift=None, scale=None, tr_shift=None, tr_scale=None, tr_token=None): - if tr_shift is not None: - x_zero = x[:, :tr_token] * (1 + tr_scale.unsqueeze(1)) + tr_shift.unsqueeze(1) - x_orig = x[:, tr_token:] * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) - x = torch.concat((x_zero, x_orig), dim=1) - return x - if scale is None and shift is None: - return x - elif shift is None: - return x * (1 + scale.unsqueeze(1)) - elif scale is None: - return x + shift.unsqueeze(1) - else: - return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) - - -def reshape_for_broadcast( - freqs_cis, - x: torch.Tensor, - head_first=False, -): - ndim = x.ndim - assert 0 <= 1 < ndim - - if isinstance(freqs_cis, tuple): - # freqs_cis: (cos, sin) in real space - if head_first: - assert freqs_cis[0].shape == ( - x.shape[-2], - x.shape[-1], - ), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}" - shape = [ - d if i == ndim - 2 or i == ndim - 1 else 1 - for i, d in enumerate(x.shape) - ] - else: - assert freqs_cis[0].shape == ( - x.shape[1], - x.shape[-1], - ), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}" - shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] - return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape) - else: - # freqs_cis: values in complex space - if head_first: - assert freqs_cis.shape == ( - x.shape[-2], - x.shape[-1], - ), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}" - shape = [ - d if i == ndim - 2 or i == ndim - 1 else 1 - for i, d in enumerate(x.shape) - ] - else: - assert freqs_cis.shape == ( - x.shape[1], - x.shape[-1], - ), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}" - shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] - return freqs_cis.view(*shape) - - -def rotate_half(x): - x_real, x_imag = ( - x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1) - ) # [B, S, H, D//2] - return torch.stack([-x_imag, x_real], dim=-1).flatten(3) - - -def apply_rotary_emb( - xq: torch.Tensor, - xk: torch.Tensor, - freqs_cis, - head_first: bool = False, -): - xk_out = None - if isinstance(freqs_cis, tuple): - cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D] - cos, sin = cos.to(xq.device), sin.to(xq.device) - # real * cos - imag * sin - # imag * cos + real * sin - xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq) - xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk) - else: - # view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex) - xq_ = torch.view_as_complex( - xq.float().reshape(*xq.shape[:-1], -1, 2) - ) # [B, S, H, D//2] - freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to( - xq.device - ) # [S, D//2] --> [1, S, 1, D//2] - # (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin) - # view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real) - xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq) - xk_ = torch.view_as_complex( - xk.float().reshape(*xk.shape[:-1], -1, 2) - ) # [B, S, H, D//2] - xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk) - - return xq_out, xk_out - - -def attention(q, k, v): - q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) - x = torch.nn.functional.scaled_dot_product_attention(q, k, v) - x = x.transpose(1, 2).flatten(2, 3) - return x - - -def apply_gate(x, gate, tr_gate=None, tr_token=None): - if tr_gate is not None: - x_zero = x[:, :tr_token] * tr_gate.unsqueeze(1) - x_orig = x[:, tr_token:] * gate.unsqueeze(1) - return torch.concat((x_zero, x_orig), dim=1) - else: - return x * gate.unsqueeze(1) - - -class MMDoubleStreamBlockComponent(torch.nn.Module): - def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): - super().__init__() - self.heads_num = heads_num - - self.mod = ModulateDiT(hidden_size) - self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) - - self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3) - self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) - self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) - self.to_out = torch.nn.Linear(hidden_size, hidden_size) - - self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) - self.ff = torch.nn.Sequential( - torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size) - ) - - def forward(self, hidden_states, conditioning, freqs_cis=None, token_replace_vec=None, tr_token=None): - mod1_shift, mod1_scale, mod1_gate, mod2_shift, mod2_scale, mod2_gate = self.mod(conditioning).chunk(6, dim=-1) - if token_replace_vec is not None: - assert tr_token is not None - tr_mod1_shift, tr_mod1_scale, tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = self.mod(token_replace_vec).chunk(6, dim=-1) - else: - tr_mod1_shift, tr_mod1_scale, tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = None, None, None, None, None, None - - norm_hidden_states = self.norm1(hidden_states) - norm_hidden_states = modulate(norm_hidden_states, shift=mod1_shift, scale=mod1_scale, - tr_shift=tr_mod1_shift, tr_scale=tr_mod1_scale, tr_token=tr_token) - qkv = self.to_qkv(norm_hidden_states) - q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) - - q = self.norm_q(q) - k = self.norm_k(k) - - if freqs_cis is not None: - q, k = apply_rotary_emb(q, k, freqs_cis, head_first=False) - return (q, k, v), (mod1_gate, mod2_shift, mod2_scale, mod2_gate), (tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate) - - def process_ff(self, hidden_states, attn_output, mod, mod_tr=None, tr_token=None): - mod1_gate, mod2_shift, mod2_scale, mod2_gate = mod - if mod_tr is not None: - tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = mod_tr - else: - tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = None, None, None, None - hidden_states = hidden_states + apply_gate(self.to_out(attn_output), mod1_gate, tr_mod1_gate, tr_token) - x = self.ff(modulate(self.norm2(hidden_states), shift=mod2_shift, scale=mod2_scale, tr_shift=tr_mod2_shift, tr_scale=tr_mod2_scale, tr_token=tr_token)) - hidden_states = hidden_states + apply_gate(x, mod2_gate, tr_mod2_gate, tr_token) - return hidden_states - - -class MMDoubleStreamBlock(torch.nn.Module): - def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): - super().__init__() - self.component_a = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio) - self.component_b = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio) - - def forward(self, hidden_states_a, hidden_states_b, conditioning, freqs_cis, token_replace_vec=None, tr_token=None, split_token=71): - (q_a, k_a, v_a), mod_a, mod_tr = self.component_a(hidden_states_a, conditioning, freqs_cis, token_replace_vec, tr_token) - (q_b, k_b, v_b), mod_b, _ = self.component_b(hidden_states_b, conditioning, freqs_cis=None) - - q_a, q_b = torch.concat([q_a, q_b[:, :split_token]], dim=1), q_b[:, split_token:].contiguous() - k_a, k_b = torch.concat([k_a, k_b[:, :split_token]], dim=1), k_b[:, split_token:].contiguous() - v_a, v_b = torch.concat([v_a, v_b[:, :split_token]], dim=1), v_b[:, split_token:].contiguous() - attn_output_a = attention(q_a, k_a, v_a) - attn_output_b = attention(q_b, k_b, v_b) - attn_output_a, attn_output_b = attn_output_a[:, :-split_token].contiguous(), torch.concat([attn_output_a[:, -split_token:], attn_output_b], dim=1) - - hidden_states_a = self.component_a.process_ff(hidden_states_a, attn_output_a, mod_a, mod_tr, tr_token) - hidden_states_b = self.component_b.process_ff(hidden_states_b, attn_output_b, mod_b) - return hidden_states_a, hidden_states_b - - -class MMSingleStreamBlockOriginal(torch.nn.Module): - def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): - super().__init__() - self.hidden_size = hidden_size - self.heads_num = heads_num - self.mlp_hidden_dim = hidden_size * mlp_width_ratio - - self.linear1 = torch.nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) - self.linear2 = torch.nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) - - self.q_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) - self.k_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) - - self.pre_norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) - - self.mlp_act = torch.nn.GELU(approximate="tanh") - self.modulation = ModulateDiT(hidden_size, factor=3) - - def forward(self, x, vec, freqs_cis=None, txt_len=256): - mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1) - x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale) - qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) - q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) - q = self.q_norm(q) - k = self.k_norm(k) - - q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :] - k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :] - q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False) - q = torch.cat((q_a, q_b), dim=1) - k = torch.cat((k_a, k_b), dim=1) - - attn_output_a = attention(q[:, :-185].contiguous(), k[:, :-185].contiguous(), v[:, :-185].contiguous()) - attn_output_b = attention(q[:, -185:].contiguous(), k[:, -185:].contiguous(), v[:, -185:].contiguous()) - attn_output = torch.concat([attn_output_a, attn_output_b], dim=1) - - output = self.linear2(torch.cat((attn_output, self.mlp_act(mlp)), 2)) - return x + output * mod_gate.unsqueeze(1) - - -class MMSingleStreamBlock(torch.nn.Module): - def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4): - super().__init__() - self.heads_num = heads_num - - self.mod = ModulateDiT(hidden_size, factor=3) - self.norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) - - self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3) - self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) - self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6) - self.to_out = torch.nn.Linear(hidden_size, hidden_size) - - self.ff = torch.nn.Sequential( - torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size, bias=False) - ) - - def forward(self, hidden_states, conditioning, freqs_cis=None, txt_len=256, token_replace_vec=None, tr_token=None, split_token=71): - mod_shift, mod_scale, mod_gate = self.mod(conditioning).chunk(3, dim=-1) - if token_replace_vec is not None: - assert tr_token is not None - tr_mod_shift, tr_mod_scale, tr_mod_gate = self.mod(token_replace_vec).chunk(3, dim=-1) - else: - tr_mod_shift, tr_mod_scale, tr_mod_gate = None, None, None - - norm_hidden_states = self.norm(hidden_states) - norm_hidden_states = modulate(norm_hidden_states, shift=mod_shift, scale=mod_scale, - tr_shift=tr_mod_shift, tr_scale=tr_mod_scale, tr_token=tr_token) - qkv = self.to_qkv(norm_hidden_states) - - q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) - - q = self.norm_q(q) - k = self.norm_k(k) - - q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :] - k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :] - q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False) - - v_len = txt_len - split_token - q_a, q_b = torch.concat([q_a, q_b[:, :split_token]], dim=1), q_b[:, split_token:].contiguous() - k_a, k_b = torch.concat([k_a, k_b[:, :split_token]], dim=1), k_b[:, split_token:].contiguous() - v_a, v_b = v[:, :-v_len].contiguous(), v[:, -v_len:].contiguous() - - attn_output_a = attention(q_a, k_a, v_a) - attn_output_b = attention(q_b, k_b, v_b) - attn_output = torch.concat([attn_output_a, attn_output_b], dim=1) - - hidden_states = hidden_states + apply_gate(self.to_out(attn_output), mod_gate, tr_mod_gate, tr_token) - hidden_states = hidden_states + apply_gate(self.ff(norm_hidden_states), mod_gate, tr_mod_gate, tr_token) - return hidden_states - - -class FinalLayer(torch.nn.Module): - def __init__(self, hidden_size=3072, patch_size=(1, 2, 2), out_channels=16): - super().__init__() - - self.norm_final = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) - self.linear = torch.nn.Linear(hidden_size, patch_size[0] * patch_size[1] * patch_size[2] * out_channels) - - self.adaLN_modulation = torch.nn.Sequential(torch.nn.SiLU(), torch.nn.Linear(hidden_size, 2 * hidden_size)) - - def forward(self, x, c): - shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) - x = modulate(self.norm_final(x), shift=shift, scale=scale) - x = self.linear(x) - return x - - -class HunyuanVideoDiT(torch.nn.Module): - def __init__(self, in_channels=16, hidden_size=3072, text_dim=4096, num_double_blocks=20, num_single_blocks=40, guidance_embed=True): - super().__init__() - self.img_in = PatchEmbed(in_channels=in_channels, embed_dim=hidden_size) - self.txt_in = SingleTokenRefiner(in_channels=text_dim, hidden_size=hidden_size) - self.time_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu") - self.vector_in = torch.nn.Sequential( - torch.nn.Linear(768, hidden_size), - torch.nn.SiLU(), - torch.nn.Linear(hidden_size, hidden_size) - ) - self.guidance_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu") if guidance_embed else None - self.double_blocks = torch.nn.ModuleList([MMDoubleStreamBlock(hidden_size) for _ in range(num_double_blocks)]) - self.single_blocks = torch.nn.ModuleList([MMSingleStreamBlock(hidden_size) for _ in range(num_single_blocks)]) - self.final_layer = FinalLayer(hidden_size) - - # TODO: remove these parameters - self.dtype = torch.bfloat16 - self.patch_size = [1, 2, 2] - self.hidden_size = 3072 - self.heads_num = 24 - self.rope_dim_list = [16, 56, 56] - - def unpatchify(self, x, T, H, W): - x = rearrange(x, "B (T H W) (C pT pH pW) -> B C (T pT) (H pH) (W pW)", H=H, W=W, pT=1, pH=2, pW=2) - return x - - def enable_block_wise_offload(self, warm_device="cuda", cold_device="cpu"): - self.warm_device = warm_device - self.cold_device = cold_device - self.to(self.cold_device) - - def load_models_to_device(self, loadmodel_names=[], device="cpu"): - for model_name in loadmodel_names: - model = getattr(self, model_name) - if model is not None: - model.to(device) - torch.cuda.empty_cache() - - def prepare_freqs(self, latents): - return HunyuanVideoRope(latents) - - def forward( - self, - x: torch.Tensor, - t: torch.Tensor, - prompt_emb: torch.Tensor = None, - text_mask: torch.Tensor = None, - pooled_prompt_emb: torch.Tensor = None, - freqs_cos: torch.Tensor = None, - freqs_sin: torch.Tensor = None, - guidance: torch.Tensor = None, - **kwargs - ): - B, C, T, H, W = x.shape - - vec = self.time_in(t, dtype=torch.float32) + self.vector_in(pooled_prompt_emb) - if self.guidance_in is not None: - vec += self.guidance_in(guidance * 1000, dtype=torch.float32) - img = self.img_in(x) - txt = self.txt_in(prompt_emb, t, text_mask) - - for block in tqdm(self.double_blocks, desc="Double stream blocks"): - img, txt = block(img, txt, vec, (freqs_cos, freqs_sin)) - - x = torch.concat([img, txt], dim=1) - for block in tqdm(self.single_blocks, desc="Single stream blocks"): - x = block(x, vec, (freqs_cos, freqs_sin)) - - img = x[:, :-256] - img = self.final_layer(img, vec) - img = self.unpatchify(img, T=T//1, H=H//2, W=W//2) - return img - - - def enable_auto_offload(self, dtype=torch.bfloat16, device="cuda"): - def cast_to(weight, dtype=None, device=None, copy=False): - if device is None or weight.device == device: - if not copy: - if dtype is None or weight.dtype == dtype: - return weight - return weight.to(dtype=dtype, copy=copy) - - r = torch.empty_like(weight, dtype=dtype, device=device) - r.copy_(weight) - return r - - def cast_weight(s, input=None, dtype=None, device=None): - if input is not None: - if dtype is None: - dtype = input.dtype - if device is None: - device = input.device - weight = cast_to(s.weight, dtype, device) - return weight - - def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None): - if input is not None: - if dtype is None: - dtype = input.dtype - if bias_dtype is None: - bias_dtype = dtype - if device is None: - device = input.device - weight = cast_to(s.weight, dtype, device) - bias = cast_to(s.bias, bias_dtype, device) if s.bias is not None else None - return weight, bias - - class quantized_layer: - class Linear(torch.nn.Linear): - def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs): - super().__init__(*args, **kwargs) - self.dtype = dtype - self.device = device - - def block_forward_(self, x, i, j, dtype, device): - weight_ = cast_to( - self.weight[j * self.block_size: (j + 1) * self.block_size, i * self.block_size: (i + 1) * self.block_size], - dtype=dtype, device=device - ) - if self.bias is None or i > 0: - bias_ = None - else: - bias_ = cast_to(self.bias[j * self.block_size: (j + 1) * self.block_size], dtype=dtype, device=device) - x_ = x[..., i * self.block_size: (i + 1) * self.block_size] - y_ = torch.nn.functional.linear(x_, weight_, bias_) - del x_, weight_, bias_ - torch.cuda.empty_cache() - return y_ - - def block_forward(self, x, **kwargs): - # This feature can only reduce 2GB VRAM, so we disable it. - y = torch.zeros(x.shape[:-1] + (self.out_features,), dtype=x.dtype, device=x.device) - for i in range((self.in_features + self.block_size - 1) // self.block_size): - for j in range((self.out_features + self.block_size - 1) // self.block_size): - y[..., j * self.block_size: (j + 1) * self.block_size] += self.block_forward_(x, i, j, dtype=x.dtype, device=x.device) - return y - - def forward(self, x, **kwargs): - weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device) - return torch.nn.functional.linear(x, weight, bias) - - - class RMSNorm(torch.nn.Module): - def __init__(self, module, dtype=torch.bfloat16, device="cuda"): - super().__init__() - self.module = module - self.dtype = dtype - self.device = device - - def forward(self, hidden_states, **kwargs): - input_dtype = hidden_states.dtype - variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps) - hidden_states = hidden_states.to(input_dtype) - if self.module.weight is not None: - weight = cast_weight(self.module, hidden_states, dtype=torch.bfloat16, device="cuda") - hidden_states = hidden_states * weight - return hidden_states - - class Conv3d(torch.nn.Conv3d): - def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs): - super().__init__(*args, **kwargs) - self.dtype = dtype - self.device = device - - def forward(self, x): - weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device) - return torch.nn.functional.conv3d(x, weight, bias, self.stride, self.padding, self.dilation, self.groups) - - class LayerNorm(torch.nn.LayerNorm): - def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs): - super().__init__(*args, **kwargs) - self.dtype = dtype - self.device = device - - def forward(self, x): - if self.weight is not None and self.bias is not None: - weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device) - return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps) - else: - return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) - - def replace_layer(model, dtype=torch.bfloat16, device="cuda"): - for name, module in model.named_children(): - if isinstance(module, torch.nn.Linear): - with init_weights_on_device(): - new_layer = quantized_layer.Linear( - module.in_features, module.out_features, bias=module.bias is not None, - dtype=dtype, device=device - ) - new_layer.load_state_dict(module.state_dict(), assign=True) - setattr(model, name, new_layer) - elif isinstance(module, torch.nn.Conv3d): - with init_weights_on_device(): - new_layer = quantized_layer.Conv3d( - module.in_channels, module.out_channels, kernel_size=module.kernel_size, stride=module.stride, - dtype=dtype, device=device - ) - new_layer.load_state_dict(module.state_dict(), assign=True) - setattr(model, name, new_layer) - elif isinstance(module, RMSNorm): - new_layer = quantized_layer.RMSNorm( - module, - dtype=dtype, device=device - ) - setattr(model, name, new_layer) - elif isinstance(module, torch.nn.LayerNorm): - with init_weights_on_device(): - new_layer = quantized_layer.LayerNorm( - module.normalized_shape, elementwise_affine=module.elementwise_affine, eps=module.eps, - dtype=dtype, device=device - ) - new_layer.load_state_dict(module.state_dict(), assign=True) - setattr(model, name, new_layer) - else: - replace_layer(module, dtype=dtype, device=device) - - replace_layer(self, dtype=dtype, device=device) - - @staticmethod - def state_dict_converter(): - return HunyuanVideoDiTStateDictConverter() - - -class HunyuanVideoDiTStateDictConverter: - def __init__(self): - pass - - def from_civitai(self, state_dict): - origin_hash_key = hash_state_dict_keys(state_dict, with_shape=True) - if "module" in state_dict: - state_dict = state_dict["module"] - direct_dict = { - "img_in.proj": "img_in.proj", - "time_in.mlp.0": "time_in.timestep_embedder.0", - "time_in.mlp.2": "time_in.timestep_embedder.2", - "vector_in.in_layer": "vector_in.0", - "vector_in.out_layer": "vector_in.2", - "guidance_in.mlp.0": "guidance_in.timestep_embedder.0", - "guidance_in.mlp.2": "guidance_in.timestep_embedder.2", - "txt_in.input_embedder": "txt_in.input_embedder", - "txt_in.t_embedder.mlp.0": "txt_in.t_embedder.timestep_embedder.0", - "txt_in.t_embedder.mlp.2": "txt_in.t_embedder.timestep_embedder.2", - "txt_in.c_embedder.linear_1": "txt_in.c_embedder.0", - "txt_in.c_embedder.linear_2": "txt_in.c_embedder.2", - "final_layer.linear": "final_layer.linear", - "final_layer.adaLN_modulation.1": "final_layer.adaLN_modulation.1", - } - txt_suffix_dict = { - "norm1": "norm1", - "self_attn_qkv": "self_attn_qkv", - "self_attn_proj": "self_attn_proj", - "norm2": "norm2", - "mlp.fc1": "mlp.0", - "mlp.fc2": "mlp.2", - "adaLN_modulation.1": "adaLN_modulation.1", - } - double_suffix_dict = { - "img_mod.linear": "component_a.mod.linear", - "img_attn_qkv": "component_a.to_qkv", - "img_attn_q_norm": "component_a.norm_q", - "img_attn_k_norm": "component_a.norm_k", - "img_attn_proj": "component_a.to_out", - "img_mlp.fc1": "component_a.ff.0", - "img_mlp.fc2": "component_a.ff.2", - "txt_mod.linear": "component_b.mod.linear", - "txt_attn_qkv": "component_b.to_qkv", - "txt_attn_q_norm": "component_b.norm_q", - "txt_attn_k_norm": "component_b.norm_k", - "txt_attn_proj": "component_b.to_out", - "txt_mlp.fc1": "component_b.ff.0", - "txt_mlp.fc2": "component_b.ff.2", - } - single_suffix_dict = { - "linear1": ["to_qkv", "ff.0"], - "linear2": ["to_out", "ff.2"], - "q_norm": "norm_q", - "k_norm": "norm_k", - "modulation.linear": "mod.linear", - } - # single_suffix_dict = { - # "linear1": "linear1", - # "linear2": "linear2", - # "q_norm": "q_norm", - # "k_norm": "k_norm", - # "modulation.linear": "modulation.linear", - # } - state_dict_ = {} - for name, param in state_dict.items(): - names = name.split(".") - direct_name = ".".join(names[:-1]) - if direct_name in direct_dict: - name_ = direct_dict[direct_name] + "." + names[-1] - state_dict_[name_] = param - elif names[0] == "double_blocks": - prefix = ".".join(names[:2]) - suffix = ".".join(names[2:-1]) - name_ = prefix + "." + double_suffix_dict[suffix] + "." + names[-1] - state_dict_[name_] = param - elif names[0] == "single_blocks": - prefix = ".".join(names[:2]) - suffix = ".".join(names[2:-1]) - if isinstance(single_suffix_dict[suffix], list): - if suffix == "linear1": - name_a, name_b = single_suffix_dict[suffix] - param_a, param_b = torch.split(param, (3072*3, 3072*4), dim=0) - state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a - state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b - elif suffix == "linear2": - if names[-1] == "weight": - name_a, name_b = single_suffix_dict[suffix] - param_a, param_b = torch.split(param, (3072*1, 3072*4), dim=-1) - state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a - state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b - else: - name_a, name_b = single_suffix_dict[suffix] - state_dict_[prefix + "." + name_a + "." + names[-1]] = param - else: - pass - else: - name_ = prefix + "." + single_suffix_dict[suffix] + "." + names[-1] - state_dict_[name_] = param - elif names[0] == "txt_in": - prefix = ".".join(names[:4]).replace(".individual_token_refiner.", ".") - suffix = ".".join(names[4:-1]) - name_ = prefix + "." + txt_suffix_dict[suffix] + "." + names[-1] - state_dict_[name_] = param - else: - pass - - return state_dict_ diff --git a/diffsynth/models/hunyuan_video_text_encoder.py b/diffsynth/models/hunyuan_video_text_encoder.py deleted file mode 100644 index ce7a6805a163c709a4f3de82784538b300541119..0000000000000000000000000000000000000000 --- a/diffsynth/models/hunyuan_video_text_encoder.py +++ /dev/null @@ -1,68 +0,0 @@ -from transformers import LlamaModel, LlamaConfig, DynamicCache, LlavaForConditionalGeneration -from copy import deepcopy -import torch - - -class HunyuanVideoLLMEncoder(LlamaModel): - - def __init__(self, config: LlamaConfig): - super().__init__(config) - self.auto_offload = False - - def enable_auto_offload(self, **kwargs): - self.auto_offload = True - - def forward(self, input_ids, attention_mask, hidden_state_skip_layer=2): - embed_tokens = deepcopy(self.embed_tokens).to(input_ids.device) if self.auto_offload else self.embed_tokens - inputs_embeds = embed_tokens(input_ids) - - past_key_values = DynamicCache() - - cache_position = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device) - position_ids = cache_position.unsqueeze(0) - - causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, None, False) - hidden_states = inputs_embeds - - # create position embeddings to be shared across the decoder layers - rotary_emb = deepcopy(self.rotary_emb).to(input_ids.device) if self.auto_offload else self.rotary_emb - position_embeddings = rotary_emb(hidden_states, position_ids) - - # decoder layers - for layer_id, decoder_layer in enumerate(self.layers): - if self.auto_offload: - decoder_layer = deepcopy(decoder_layer).to(hidden_states.device) - layer_outputs = decoder_layer( - hidden_states, - attention_mask=causal_mask, - position_ids=position_ids, - past_key_value=past_key_values, - output_attentions=False, - use_cache=True, - cache_position=cache_position, - position_embeddings=position_embeddings, - ) - hidden_states = layer_outputs[0] - if layer_id + hidden_state_skip_layer + 1 >= len(self.layers): - break - - return hidden_states - - -class HunyuanVideoMLLMEncoder(LlavaForConditionalGeneration): - - def __init__(self, config): - super().__init__(config) - self.auto_offload = False - - def enable_auto_offload(self, **kwargs): - self.auto_offload = True - - # TODO: implement the low VRAM inference for MLLM. - def forward(self, input_ids, pixel_values, attention_mask, hidden_state_skip_layer=2): - outputs = super().forward(input_ids=input_ids, - attention_mask=attention_mask, - output_hidden_states=True, - pixel_values=pixel_values) - hidden_state = outputs.hidden_states[-(hidden_state_skip_layer + 1)] - return hidden_state diff --git a/diffsynth/models/hunyuan_video_vae_decoder.py b/diffsynth/models/hunyuan_video_vae_decoder.py deleted file mode 100644 index ae09ff85a9149edd46a36e7bfeb29a372a81e12c..0000000000000000000000000000000000000000 --- a/diffsynth/models/hunyuan_video_vae_decoder.py +++ /dev/null @@ -1,507 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from einops import rearrange -import numpy as np -from tqdm import tqdm -from einops import repeat - - -class CausalConv3d(nn.Module): - - def __init__(self, in_channel, out_channel, kernel_size, stride=1, dilation=1, pad_mode='replicate', **kwargs): - super().__init__() - self.pad_mode = pad_mode - self.time_causal_padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0 - ) # W, H, T - self.conv = nn.Conv3d(in_channel, out_channel, kernel_size, stride=stride, dilation=dilation, **kwargs) - - def forward(self, x): - x = F.pad(x, self.time_causal_padding, mode=self.pad_mode) - return self.conv(x) - - -class UpsampleCausal3D(nn.Module): - - def __init__(self, channels, use_conv=False, out_channels=None, kernel_size=None, bias=True, upsample_factor=(2, 2, 2)): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.upsample_factor = upsample_factor - self.conv = None - if use_conv: - kernel_size = 3 if kernel_size is None else kernel_size - self.conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias) - - def forward(self, hidden_states): - # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 - dtype = hidden_states.dtype - if dtype == torch.bfloat16: - hidden_states = hidden_states.to(torch.float32) - - # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 - if hidden_states.shape[0] >= 64: - hidden_states = hidden_states.contiguous() - - # interpolate - B, C, T, H, W = hidden_states.shape - first_h, other_h = hidden_states.split((1, T - 1), dim=2) - if T > 1: - other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest") - first_h = F.interpolate(first_h.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest").unsqueeze(2) - hidden_states = torch.cat((first_h, other_h), dim=2) if T > 1 else first_h - - # If the input is bfloat16, we cast back to bfloat16 - if dtype == torch.bfloat16: - hidden_states = hidden_states.to(dtype) - - if self.conv: - hidden_states = self.conv(hidden_states) - - return hidden_states - - -class ResnetBlockCausal3D(nn.Module): - - def __init__(self, in_channels, out_channels=None, dropout=0.0, groups=32, eps=1e-6, conv_shortcut_bias=True): - super().__init__() - self.pre_norm = True - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - - self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) - self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1) - - self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True) - self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3, stride=1) - - self.dropout = nn.Dropout(dropout) - self.nonlinearity = nn.SiLU() - - self.conv_shortcut = None - if in_channels != out_channels: - self.conv_shortcut = CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, bias=conv_shortcut_bias) - - def forward(self, input_tensor): - hidden_states = input_tensor - # conv1 - hidden_states = self.norm1(hidden_states) - hidden_states = self.nonlinearity(hidden_states) - hidden_states = self.conv1(hidden_states) - - # conv2 - hidden_states = self.norm2(hidden_states) - hidden_states = self.nonlinearity(hidden_states) - hidden_states = self.dropout(hidden_states) - hidden_states = self.conv2(hidden_states) - # shortcut - if self.conv_shortcut is not None: - input_tensor = (self.conv_shortcut(input_tensor)) - # shortcut and scale - output_tensor = input_tensor + hidden_states - - return output_tensor - - -def prepare_causal_attention_mask(n_frame, n_hw, dtype, device, batch_size=None): - seq_len = n_frame * n_hw - mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device) - for i in range(seq_len): - i_frame = i // n_hw - mask[i, :(i_frame + 1) * n_hw] = 0 - if batch_size is not None: - mask = mask.unsqueeze(0).expand(batch_size, -1, -1) - return mask - - -class Attention(nn.Module): - - def __init__(self, - in_channels, - num_heads, - head_dim, - num_groups=32, - dropout=0.0, - eps=1e-6, - bias=True, - residual_connection=True): - super().__init__() - self.num_heads = num_heads - self.head_dim = head_dim - self.residual_connection = residual_connection - dim_inner = head_dim * num_heads - self.group_norm = nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True) - self.to_q = nn.Linear(in_channels, dim_inner, bias=bias) - self.to_k = nn.Linear(in_channels, dim_inner, bias=bias) - self.to_v = nn.Linear(in_channels, dim_inner, bias=bias) - self.to_out = nn.Sequential(nn.Linear(dim_inner, in_channels, bias=bias), nn.Dropout(dropout)) - - def forward(self, input_tensor, attn_mask=None): - hidden_states = self.group_norm(input_tensor.transpose(1, 2)).transpose(1, 2) - batch_size = hidden_states.shape[0] - - q = self.to_q(hidden_states) - k = self.to_k(hidden_states) - v = self.to_v(hidden_states) - - q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) - k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) - v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) - - if attn_mask is not None: - attn_mask = attn_mask.view(batch_size, self.num_heads, -1, attn_mask.shape[-1]) - hidden_states = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) - hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) - hidden_states = self.to_out(hidden_states) - if self.residual_connection: - output_tensor = input_tensor + hidden_states - return output_tensor - - -class UNetMidBlockCausal3D(nn.Module): - - def __init__(self, in_channels, dropout=0.0, num_layers=1, eps=1e-6, num_groups=32, attention_head_dim=None): - super().__init__() - resnets = [ - ResnetBlockCausal3D( - in_channels=in_channels, - out_channels=in_channels, - dropout=dropout, - groups=num_groups, - eps=eps, - ) - ] - attentions = [] - attention_head_dim = attention_head_dim or in_channels - - for _ in range(num_layers): - attentions.append( - Attention( - in_channels, - num_heads=in_channels // attention_head_dim, - head_dim=attention_head_dim, - num_groups=num_groups, - dropout=dropout, - eps=eps, - bias=True, - residual_connection=True, - )) - - resnets.append( - ResnetBlockCausal3D( - in_channels=in_channels, - out_channels=in_channels, - dropout=dropout, - groups=num_groups, - eps=eps, - )) - - self.attentions = nn.ModuleList(attentions) - self.resnets = nn.ModuleList(resnets) - - def forward(self, hidden_states): - hidden_states = self.resnets[0](hidden_states) - for attn, resnet in zip(self.attentions, self.resnets[1:]): - B, C, T, H, W = hidden_states.shape - hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c") - attn_mask = prepare_causal_attention_mask(T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B) - hidden_states = attn(hidden_states, attn_mask=attn_mask) - hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W) - hidden_states = resnet(hidden_states) - - return hidden_states - - -class UpDecoderBlockCausal3D(nn.Module): - - def __init__( - self, - in_channels, - out_channels, - dropout=0.0, - num_layers=1, - eps=1e-6, - num_groups=32, - add_upsample=True, - upsample_scale_factor=(2, 2, 2), - ): - super().__init__() - resnets = [] - for i in range(num_layers): - cur_in_channel = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlockCausal3D( - in_channels=cur_in_channel, - out_channels=out_channels, - groups=num_groups, - dropout=dropout, - eps=eps, - )) - self.resnets = nn.ModuleList(resnets) - - self.upsamplers = None - if add_upsample: - self.upsamplers = nn.ModuleList([ - UpsampleCausal3D( - out_channels, - use_conv=True, - out_channels=out_channels, - upsample_factor=upsample_scale_factor, - ) - ]) - - def forward(self, hidden_states): - for resnet in self.resnets: - hidden_states = resnet(hidden_states) - if self.upsamplers is not None: - for upsampler in self.upsamplers: - hidden_states = upsampler(hidden_states) - return hidden_states - - -class DecoderCausal3D(nn.Module): - - def __init__( - self, - in_channels=16, - out_channels=3, - eps=1e-6, - dropout=0.0, - block_out_channels=[128, 256, 512, 512], - layers_per_block=2, - num_groups=32, - time_compression_ratio=4, - spatial_compression_ratio=8, - gradient_checkpointing=False, - ): - super().__init__() - self.layers_per_block = layers_per_block - - self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1) - self.up_blocks = nn.ModuleList([]) - - # mid - self.mid_block = UNetMidBlockCausal3D( - in_channels=block_out_channels[-1], - dropout=dropout, - eps=eps, - num_groups=num_groups, - attention_head_dim=block_out_channels[-1], - ) - - # up - reversed_block_out_channels = list(reversed(block_out_channels)) - output_channel = reversed_block_out_channels[0] - for i in range(len(block_out_channels)): - prev_output_channel = output_channel - output_channel = reversed_block_out_channels[i] - is_final_block = i == len(block_out_channels) - 1 - num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio)) - num_time_upsample_layers = int(np.log2(time_compression_ratio)) - - add_spatial_upsample = bool(i < num_spatial_upsample_layers) - add_time_upsample = bool(i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block) - - upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1) - upsample_scale_factor_T = (2,) if add_time_upsample else (1,) - upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW) - - up_block = UpDecoderBlockCausal3D( - in_channels=prev_output_channel, - out_channels=output_channel, - dropout=dropout, - num_layers=layers_per_block + 1, - eps=eps, - num_groups=num_groups, - add_upsample=bool(add_spatial_upsample or add_time_upsample), - upsample_scale_factor=upsample_scale_factor, - ) - - self.up_blocks.append(up_block) - prev_output_channel = output_channel - - # out - self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups, eps=eps) - self.conv_act = nn.SiLU() - self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3) - - self.gradient_checkpointing = gradient_checkpointing - - def forward(self, hidden_states): - hidden_states = self.conv_in(hidden_states) - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - # middle - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(self.mid_block), - hidden_states, - use_reentrant=False, - ) - # up - for up_block in self.up_blocks: - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(up_block), - hidden_states, - use_reentrant=False, - ) - else: - # middle - hidden_states = self.mid_block(hidden_states) - # up - for up_block in self.up_blocks: - hidden_states = up_block(hidden_states) - # post-process - hidden_states = self.conv_norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - - return hidden_states - - -class HunyuanVideoVAEDecoder(nn.Module): - - def __init__( - self, - in_channels=16, - out_channels=3, - eps=1e-6, - dropout=0.0, - block_out_channels=[128, 256, 512, 512], - layers_per_block=2, - num_groups=32, - time_compression_ratio=4, - spatial_compression_ratio=8, - gradient_checkpointing=False, - ): - super().__init__() - self.decoder = DecoderCausal3D( - in_channels=in_channels, - out_channels=out_channels, - eps=eps, - dropout=dropout, - block_out_channels=block_out_channels, - layers_per_block=layers_per_block, - num_groups=num_groups, - time_compression_ratio=time_compression_ratio, - spatial_compression_ratio=spatial_compression_ratio, - gradient_checkpointing=gradient_checkpointing, - ) - self.post_quant_conv = nn.Conv3d(in_channels, in_channels, kernel_size=1) - self.scaling_factor = 0.476986 - - - def forward(self, latents): - latents = latents / self.scaling_factor - latents = self.post_quant_conv(latents) - dec = self.decoder(latents) - return dec - - - def build_1d_mask(self, length, left_bound, right_bound, border_width): - x = torch.ones((length,)) - if not left_bound: - x[:border_width] = (torch.arange(border_width) + 1) / border_width - if not right_bound: - x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,)) - return x - - - def build_mask(self, data, is_bound, border_width): - _, _, T, H, W = data.shape - t = self.build_1d_mask(T, is_bound[0], is_bound[1], border_width[0]) - h = self.build_1d_mask(H, is_bound[2], is_bound[3], border_width[1]) - w = self.build_1d_mask(W, is_bound[4], is_bound[5], border_width[2]) - - t = repeat(t, "T -> T H W", T=T, H=H, W=W) - h = repeat(h, "H -> T H W", T=T, H=H, W=W) - w = repeat(w, "W -> T H W", T=T, H=H, W=W) - - mask = torch.stack([t, h, w]).min(dim=0).values - mask = rearrange(mask, "T H W -> 1 1 T H W") - return mask - - - def tile_forward(self, hidden_states, tile_size, tile_stride): - B, C, T, H, W = hidden_states.shape - size_t, size_h, size_w = tile_size - stride_t, stride_h, stride_w = tile_stride - - # Split tasks - tasks = [] - for t in range(0, T, stride_t): - if (t-stride_t >= 0 and t-stride_t+size_t >= T): continue - for h in range(0, H, stride_h): - if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue - for w in range(0, W, stride_w): - if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue - t_, h_, w_ = t + size_t, h + size_h, w + size_w - tasks.append((t, t_, h, h_, w, w_)) - - # Run - torch_dtype = self.post_quant_conv.weight.dtype - data_device = hidden_states.device - computation_device = self.post_quant_conv.weight.device - - weight = torch.zeros((1, 1, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device) - values = torch.zeros((B, 3, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device) - - for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"): - hidden_states_batch = hidden_states[:, :, t:t_, h:h_, w:w_].to(computation_device) - hidden_states_batch = self.forward(hidden_states_batch).to(data_device) - if t > 0: - hidden_states_batch = hidden_states_batch[:, :, 1:] - - mask = self.build_mask( - hidden_states_batch, - is_bound=(t==0, t_>=T, h==0, h_>=H, w==0, w_>=W), - border_width=((size_t - stride_t) * 4, (size_h - stride_h) * 8, (size_w - stride_w) * 8) - ).to(dtype=torch_dtype, device=data_device) - - target_t = 0 if t==0 else t * 4 + 1 - target_h = h * 8 - target_w = w * 8 - values[ - :, - :, - target_t: target_t + hidden_states_batch.shape[2], - target_h: target_h + hidden_states_batch.shape[3], - target_w: target_w + hidden_states_batch.shape[4], - ] += hidden_states_batch * mask - weight[ - :, - :, - target_t: target_t + hidden_states_batch.shape[2], - target_h: target_h + hidden_states_batch.shape[3], - target_w: target_w + hidden_states_batch.shape[4], - ] += mask - return values / weight - - - def decode_video(self, latents, tile_size=(17, 32, 32), tile_stride=(12, 24, 24)): - latents = latents.to(self.post_quant_conv.weight.dtype) - return self.tile_forward(latents, tile_size=tile_size, tile_stride=tile_stride) - - @staticmethod - def state_dict_converter(): - return HunyuanVideoVAEDecoderStateDictConverter() - - -class HunyuanVideoVAEDecoderStateDictConverter: - - def __init__(self): - pass - - def from_diffusers(self, state_dict): - state_dict_ = {} - for name in state_dict: - if name.startswith('decoder.') or name.startswith('post_quant_conv.'): - state_dict_[name] = state_dict[name] - return state_dict_ diff --git a/diffsynth/models/hunyuan_video_vae_encoder.py b/diffsynth/models/hunyuan_video_vae_encoder.py deleted file mode 100644 index faaaeb95f7d688d57fb61a707c7658a89bb2c92a..0000000000000000000000000000000000000000 --- a/diffsynth/models/hunyuan_video_vae_encoder.py +++ /dev/null @@ -1,307 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -from einops import rearrange, repeat -import numpy as np -from tqdm import tqdm -from .hunyuan_video_vae_decoder import CausalConv3d, ResnetBlockCausal3D, UNetMidBlockCausal3D - - -class DownsampleCausal3D(nn.Module): - - def __init__(self, channels, out_channels, kernel_size=3, bias=True, stride=2): - super().__init__() - self.conv = CausalConv3d(channels, out_channels, kernel_size, stride=stride, bias=bias) - - def forward(self, hidden_states): - hidden_states = self.conv(hidden_states) - return hidden_states - - -class DownEncoderBlockCausal3D(nn.Module): - - def __init__( - self, - in_channels, - out_channels, - dropout=0.0, - num_layers=1, - eps=1e-6, - num_groups=32, - add_downsample=True, - downsample_stride=2, - ): - - super().__init__() - resnets = [] - for i in range(num_layers): - cur_in_channel = in_channels if i == 0 else out_channels - resnets.append( - ResnetBlockCausal3D( - in_channels=cur_in_channel, - out_channels=out_channels, - groups=num_groups, - dropout=dropout, - eps=eps, - )) - self.resnets = nn.ModuleList(resnets) - - self.downsamplers = None - if add_downsample: - self.downsamplers = nn.ModuleList([DownsampleCausal3D( - out_channels, - out_channels, - stride=downsample_stride, - )]) - - def forward(self, hidden_states): - for resnet in self.resnets: - hidden_states = resnet(hidden_states) - - if self.downsamplers is not None: - for downsampler in self.downsamplers: - hidden_states = downsampler(hidden_states) - - return hidden_states - - -class EncoderCausal3D(nn.Module): - - def __init__( - self, - in_channels: int = 3, - out_channels: int = 16, - eps=1e-6, - dropout=0.0, - block_out_channels=[128, 256, 512, 512], - layers_per_block=2, - num_groups=32, - time_compression_ratio: int = 4, - spatial_compression_ratio: int = 8, - gradient_checkpointing=False, - ): - super().__init__() - self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1) - self.down_blocks = nn.ModuleList([]) - - # down - output_channel = block_out_channels[0] - for i in range(len(block_out_channels)): - input_channel = output_channel - output_channel = block_out_channels[i] - is_final_block = i == len(block_out_channels) - 1 - num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio)) - num_time_downsample_layers = int(np.log2(time_compression_ratio)) - - add_spatial_downsample = bool(i < num_spatial_downsample_layers) - add_time_downsample = bool(i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block) - - downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1) - downsample_stride_T = (2,) if add_time_downsample else (1,) - downsample_stride = tuple(downsample_stride_T + downsample_stride_HW) - down_block = DownEncoderBlockCausal3D( - in_channels=input_channel, - out_channels=output_channel, - dropout=dropout, - num_layers=layers_per_block, - eps=eps, - num_groups=num_groups, - add_downsample=bool(add_spatial_downsample or add_time_downsample), - downsample_stride=downsample_stride, - ) - self.down_blocks.append(down_block) - - # mid - self.mid_block = UNetMidBlockCausal3D( - in_channels=block_out_channels[-1], - dropout=dropout, - eps=eps, - num_groups=num_groups, - attention_head_dim=block_out_channels[-1], - ) - # out - self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=num_groups, eps=eps) - self.conv_act = nn.SiLU() - self.conv_out = CausalConv3d(block_out_channels[-1], 2 * out_channels, kernel_size=3) - - self.gradient_checkpointing = gradient_checkpointing - - def forward(self, hidden_states): - hidden_states = self.conv_in(hidden_states) - if self.training and self.gradient_checkpointing: - - def create_custom_forward(module): - - def custom_forward(*inputs): - return module(*inputs) - - return custom_forward - - # down - for down_block in self.down_blocks: - torch.utils.checkpoint.checkpoint( - create_custom_forward(down_block), - hidden_states, - use_reentrant=False, - ) - # middle - hidden_states = torch.utils.checkpoint.checkpoint( - create_custom_forward(self.mid_block), - hidden_states, - use_reentrant=False, - ) - else: - # down - for down_block in self.down_blocks: - hidden_states = down_block(hidden_states) - # middle - hidden_states = self.mid_block(hidden_states) - # post-process - hidden_states = self.conv_norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - - return hidden_states - - -class HunyuanVideoVAEEncoder(nn.Module): - - def __init__( - self, - in_channels=3, - out_channels=16, - eps=1e-6, - dropout=0.0, - block_out_channels=[128, 256, 512, 512], - layers_per_block=2, - num_groups=32, - time_compression_ratio=4, - spatial_compression_ratio=8, - gradient_checkpointing=False, - ): - super().__init__() - self.encoder = EncoderCausal3D( - in_channels=in_channels, - out_channels=out_channels, - eps=eps, - dropout=dropout, - block_out_channels=block_out_channels, - layers_per_block=layers_per_block, - num_groups=num_groups, - time_compression_ratio=time_compression_ratio, - spatial_compression_ratio=spatial_compression_ratio, - gradient_checkpointing=gradient_checkpointing, - ) - self.quant_conv = nn.Conv3d(2 * out_channels, 2 * out_channels, kernel_size=1) - self.scaling_factor = 0.476986 - - - def forward(self, images): - latents = self.encoder(images) - latents = self.quant_conv(latents) - latents = latents[:, :16] - latents = latents * self.scaling_factor - return latents - - - def build_1d_mask(self, length, left_bound, right_bound, border_width): - x = torch.ones((length,)) - if not left_bound: - x[:border_width] = (torch.arange(border_width) + 1) / border_width - if not right_bound: - x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,)) - return x - - - def build_mask(self, data, is_bound, border_width): - _, _, T, H, W = data.shape - t = self.build_1d_mask(T, is_bound[0], is_bound[1], border_width[0]) - h = self.build_1d_mask(H, is_bound[2], is_bound[3], border_width[1]) - w = self.build_1d_mask(W, is_bound[4], is_bound[5], border_width[2]) - - t = repeat(t, "T -> T H W", T=T, H=H, W=W) - h = repeat(h, "H -> T H W", T=T, H=H, W=W) - w = repeat(w, "W -> T H W", T=T, H=H, W=W) - - mask = torch.stack([t, h, w]).min(dim=0).values - mask = rearrange(mask, "T H W -> 1 1 T H W") - return mask - - - def tile_forward(self, hidden_states, tile_size, tile_stride): - B, C, T, H, W = hidden_states.shape - size_t, size_h, size_w = tile_size - stride_t, stride_h, stride_w = tile_stride - - # Split tasks - tasks = [] - for t in range(0, T, stride_t): - if (t-stride_t >= 0 and t-stride_t+size_t >= T): continue - for h in range(0, H, stride_h): - if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue - for w in range(0, W, stride_w): - if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue - t_, h_, w_ = t + size_t, h + size_h, w + size_w - tasks.append((t, t_, h, h_, w, w_)) - - # Run - torch_dtype = self.quant_conv.weight.dtype - data_device = hidden_states.device - computation_device = self.quant_conv.weight.device - - weight = torch.zeros((1, 1, (T - 1) // 4 + 1, H // 8, W // 8), dtype=torch_dtype, device=data_device) - values = torch.zeros((B, 16, (T - 1) // 4 + 1, H // 8, W // 8), dtype=torch_dtype, device=data_device) - - for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE encoding"): - hidden_states_batch = hidden_states[:, :, t:t_, h:h_, w:w_].to(computation_device) - hidden_states_batch = self.forward(hidden_states_batch).to(data_device) - if t > 0: - hidden_states_batch = hidden_states_batch[:, :, 1:] - - mask = self.build_mask( - hidden_states_batch, - is_bound=(t==0, t_>=T, h==0, h_>=H, w==0, w_>=W), - border_width=((size_t - stride_t) // 4, (size_h - stride_h) // 8, (size_w - stride_w) // 8) - ).to(dtype=torch_dtype, device=data_device) - - target_t = 0 if t==0 else t // 4 + 1 - target_h = h // 8 - target_w = w // 8 - values[ - :, - :, - target_t: target_t + hidden_states_batch.shape[2], - target_h: target_h + hidden_states_batch.shape[3], - target_w: target_w + hidden_states_batch.shape[4], - ] += hidden_states_batch * mask - weight[ - :, - :, - target_t: target_t + hidden_states_batch.shape[2], - target_h: target_h + hidden_states_batch.shape[3], - target_w: target_w + hidden_states_batch.shape[4], - ] += mask - return values / weight - - - def encode_video(self, latents, tile_size=(65, 256, 256), tile_stride=(48, 192, 192)): - latents = latents.to(self.quant_conv.weight.dtype) - return self.tile_forward(latents, tile_size=tile_size, tile_stride=tile_stride) - - - @staticmethod - def state_dict_converter(): - return HunyuanVideoVAEEncoderStateDictConverter() - - -class HunyuanVideoVAEEncoderStateDictConverter: - - def __init__(self): - pass - - def from_diffusers(self, state_dict): - state_dict_ = {} - for name in state_dict: - if name.startswith('encoder.') or name.startswith('quant_conv.'): - state_dict_[name] = state_dict[name] - return state_dict_ diff --git a/diffsynth/models/kolors_text_encoder.py b/diffsynth/models/kolors_text_encoder.py deleted file mode 100644 index ee785e373567734d0a9ff413c72b67f45c7d6b1d..0000000000000000000000000000000000000000 --- a/diffsynth/models/kolors_text_encoder.py +++ /dev/null @@ -1,1551 +0,0 @@ -""" -This model is copied from https://github.com/Kwai-Kolors/Kolors/tree/master/kolors/models. -We didn't modify this model. -The tensor operation is performed in the prompter. -""" - - -""" PyTorch ChatGLM model. """ - -import math -import copy -import warnings -import re -import sys - -import torch -import torch.utils.checkpoint -import torch.nn.functional as F -from torch import nn -from torch.nn import CrossEntropyLoss, LayerNorm -from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss -from torch.nn.utils import skip_init -from typing import Optional, Tuple, Union, List, Callable, Dict, Any -from copy import deepcopy - -from transformers.modeling_outputs import ( - BaseModelOutputWithPast, - CausalLMOutputWithPast, - SequenceClassifierOutputWithPast, -) -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import logging -from transformers.generation.logits_process import LogitsProcessor -from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput -from transformers import PretrainedConfig -from torch.nn.parameter import Parameter -import bz2 -import torch -import base64 -import ctypes -from transformers.utils import logging -from typing import List - - - -logger = logging.get_logger(__name__) - -try: - from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up - - - class Kernel: - def __init__(self, code: bytes, function_names: List[str]): - self.code = code - self._function_names = function_names - self._cmodule = LazyKernelCModule(self.code) - - for name in self._function_names: - setattr(self, name, KernelFunction(self._cmodule, name)) - - - quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ" - - kernels = Kernel( - bz2.decompress(base64.b64decode(quantization_code)), - [ - "int4WeightCompression", - "int4WeightExtractionFloat", - "int4WeightExtractionHalf", - "int8WeightExtractionFloat", - "int8WeightExtractionHalf", - ], - ) -except Exception as exception: - kernels = None - - -class W8A16Linear(torch.autograd.Function): - @staticmethod - def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width): - ctx.inp_shape = inp.size() - ctx.weight_bit_width = weight_bit_width - out_features = quant_w.size(0) - inp = inp.contiguous().view(-1, inp.size(-1)) - weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width) - ctx.weight_shape = weight.size() - output = inp.mm(weight.t()) - ctx.save_for_backward(inp, quant_w, scale_w) - return output.view(*(ctx.inp_shape[:-1] + (out_features,))) - - @staticmethod - def backward(ctx, grad_output: torch.Tensor): - inp, quant_w, scale_w = ctx.saved_tensors - weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width) - grad_output = grad_output.contiguous().view(-1, weight.size(0)) - grad_input = grad_output.mm(weight) - grad_weight = grad_output.t().mm(inp) - return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None - - -def compress_int4_weight(weight: torch.Tensor): # (n, m) - with torch.cuda.device(weight.device): - n, m = weight.size(0), weight.size(1) - assert m % 2 == 0 - m = m // 2 - out = torch.empty(n, m, dtype=torch.int8, device="cuda") - stream = torch.cuda.current_stream() - - gridDim = (n, 1, 1) - blockDim = (min(round_up(m, 32), 1024), 1, 1) - - kernels.int4WeightCompression( - gridDim, - blockDim, - 0, - stream, - [ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)], - ) - return out - - -def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int): - assert scale_list.dtype in [torch.half, torch.bfloat16] - assert weight.dtype in [torch.int8] - if source_bit_width == 8: - return weight.to(scale_list.dtype) * scale_list[:, None] - elif source_bit_width == 4: - func = ( - kernels.int4WeightExtractionHalf if scale_list.dtype == torch.half else kernels.int4WeightExtractionBFloat16 - ) - else: - assert False, "Unsupported bit-width" - - with torch.cuda.device(weight.device): - n, m = weight.size(0), weight.size(1) - out = torch.empty(n, m * (8 // source_bit_width), dtype=scale_list.dtype, device="cuda") - stream = torch.cuda.current_stream() - - gridDim = (n, 1, 1) - blockDim = (min(round_up(m, 32), 1024), 1, 1) - - func( - gridDim, - blockDim, - 0, - stream, - [ - ctypes.c_void_p(weight.data_ptr()), - ctypes.c_void_p(scale_list.data_ptr()), - ctypes.c_void_p(out.data_ptr()), - ctypes.c_int32(n), - ctypes.c_int32(m), - ], - ) - return out - - -class QuantizedLinear(torch.nn.Module): - def __init__(self, weight_bit_width: int, weight, bias=None, device="cuda", dtype=None, empty_init=False): - super().__init__() - weight = weight.to(device) # ensure the weight is on the cuda device - assert str(weight.device).startswith( - 'cuda'), 'The weights that need to be quantified should be on the CUDA device' - self.weight_bit_width = weight_bit_width - shape = weight.shape - - if weight is None or empty_init: - self.weight = torch.empty(shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=device) - self.weight_scale = torch.empty(shape[0], dtype=dtype, device=device) - else: - self.weight_scale = weight.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1) - self.weight = torch.round(weight / self.weight_scale[:, None]).to(torch.int8) - if weight_bit_width == 4: - self.weight = compress_int4_weight(self.weight) - - self.weight = Parameter(self.weight.to(device), requires_grad=False) - self.weight_scale = Parameter(self.weight_scale.to(device), requires_grad=False) - self.bias = Parameter(bias.to(device), requires_grad=False) if bias is not None else None - - def forward(self, input): - output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width) - if self.bias is not None: - output = output + self.bias - return output - - -def quantize(model, weight_bit_width, empty_init=False, device=None): - """Replace fp16 linear with quantized linear""" - for layer in model.layers: - layer.self_attention.query_key_value = QuantizedLinear( - weight_bit_width=weight_bit_width, - weight=layer.self_attention.query_key_value.weight, - bias=layer.self_attention.query_key_value.bias, - dtype=layer.self_attention.query_key_value.weight.dtype, - device=layer.self_attention.query_key_value.weight.device if device is None else device, - empty_init=empty_init - ) - layer.self_attention.dense = QuantizedLinear( - weight_bit_width=weight_bit_width, - weight=layer.self_attention.dense.weight, - bias=layer.self_attention.dense.bias, - dtype=layer.self_attention.dense.weight.dtype, - device=layer.self_attention.dense.weight.device if device is None else device, - empty_init=empty_init - ) - layer.mlp.dense_h_to_4h = QuantizedLinear( - weight_bit_width=weight_bit_width, - weight=layer.mlp.dense_h_to_4h.weight, - bias=layer.mlp.dense_h_to_4h.bias, - dtype=layer.mlp.dense_h_to_4h.weight.dtype, - device=layer.mlp.dense_h_to_4h.weight.device if device is None else device, - empty_init=empty_init - ) - layer.mlp.dense_4h_to_h = QuantizedLinear( - weight_bit_width=weight_bit_width, - weight=layer.mlp.dense_4h_to_h.weight, - bias=layer.mlp.dense_4h_to_h.bias, - dtype=layer.mlp.dense_4h_to_h.weight.dtype, - device=layer.mlp.dense_4h_to_h.weight.device if device is None else device, - empty_init=empty_init - ) - - return model - - - -class ChatGLMConfig(PretrainedConfig): - model_type = "chatglm" - def __init__( - self, - num_layers=28, - padded_vocab_size=65024, - hidden_size=4096, - ffn_hidden_size=13696, - kv_channels=128, - num_attention_heads=32, - seq_length=2048, - hidden_dropout=0.0, - classifier_dropout=None, - attention_dropout=0.0, - layernorm_epsilon=1e-5, - rmsnorm=True, - apply_residual_connection_post_layernorm=False, - post_layer_norm=True, - add_bias_linear=False, - add_qkv_bias=False, - bias_dropout_fusion=True, - multi_query_attention=False, - multi_query_group_num=1, - apply_query_key_layer_scaling=True, - attention_softmax_in_fp32=True, - fp32_residual_connection=False, - quantization_bit=0, - pre_seq_len=None, - prefix_projection=False, - **kwargs - ): - self.num_layers = num_layers - self.vocab_size = padded_vocab_size - self.padded_vocab_size = padded_vocab_size - self.hidden_size = hidden_size - self.ffn_hidden_size = ffn_hidden_size - self.kv_channels = kv_channels - self.num_attention_heads = num_attention_heads - self.seq_length = seq_length - self.hidden_dropout = hidden_dropout - self.classifier_dropout = classifier_dropout - self.attention_dropout = attention_dropout - self.layernorm_epsilon = layernorm_epsilon - self.rmsnorm = rmsnorm - self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm - self.post_layer_norm = post_layer_norm - self.add_bias_linear = add_bias_linear - self.add_qkv_bias = add_qkv_bias - self.bias_dropout_fusion = bias_dropout_fusion - self.multi_query_attention = multi_query_attention - self.multi_query_group_num = multi_query_group_num - self.apply_query_key_layer_scaling = apply_query_key_layer_scaling - self.attention_softmax_in_fp32 = attention_softmax_in_fp32 - self.fp32_residual_connection = fp32_residual_connection - self.quantization_bit = quantization_bit - self.pre_seq_len = pre_seq_len - self.prefix_projection = prefix_projection - super().__init__(**kwargs) - - - -# flags required to enable jit fusion kernels - -if sys.platform != 'darwin': - torch._C._jit_set_profiling_mode(False) - torch._C._jit_set_profiling_executor(False) - torch._C._jit_override_can_fuse_on_cpu(True) - torch._C._jit_override_can_fuse_on_gpu(True) - -logger = logging.get_logger(__name__) - -_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM" -_CONFIG_FOR_DOC = "ChatGLM6BConfig" - -CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [ - "THUDM/chatglm3-6b-base", - # See all ChatGLM models at https://huggingface.co/models?filter=chatglm -] - - -def default_init(cls, *args, **kwargs): - return cls(*args, **kwargs) - - -class InvalidScoreLogitsProcessor(LogitsProcessor): - def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: - if torch.isnan(scores).any() or torch.isinf(scores).any(): - scores.zero_() - scores[..., 5] = 5e4 - return scores - - -class PrefixEncoder(torch.nn.Module): - """ - The torch.nn model to encode the prefix - Input shape: (batch-size, prefix-length) - Output shape: (batch-size, prefix-length, 2*layers*hidden) - """ - - def __init__(self, config: ChatGLMConfig): - super().__init__() - self.prefix_projection = config.prefix_projection - if self.prefix_projection: - # Use a two-layer MLP to encode the prefix - kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2 - self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size) - self.trans = torch.nn.Sequential( - torch.nn.Linear(kv_size, config.hidden_size), - torch.nn.Tanh(), - torch.nn.Linear(config.hidden_size, kv_size) - ) - else: - self.embedding = torch.nn.Embedding(config.pre_seq_len, - config.num_layers * config.kv_channels * config.multi_query_group_num * 2) - - def forward(self, prefix: torch.Tensor): - if self.prefix_projection: - prefix_tokens = self.embedding(prefix) - past_key_values = self.trans(prefix_tokens) - else: - past_key_values = self.embedding(prefix) - return past_key_values - - -def split_tensor_along_last_dim( - tensor: torch.Tensor, - num_partitions: int, - contiguous_split_chunks: bool = False, -) -> List[torch.Tensor]: - """Split a tensor along its last dimension. - - Arguments: - tensor: input tensor. - num_partitions: number of partitions to split the tensor - contiguous_split_chunks: If True, make each chunk contiguous - in memory. - - Returns: - A list of Tensors - """ - # Get the size and dimension. - last_dim = tensor.dim() - 1 - last_dim_size = tensor.size()[last_dim] // num_partitions - # Split. - tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) - # Note: torch.split does not create contiguous tensors by default. - if contiguous_split_chunks: - return tuple(chunk.contiguous() for chunk in tensor_list) - - return tensor_list - - -class RotaryEmbedding(nn.Module): - def __init__(self, dim, original_impl=False, device=None, dtype=None): - super().__init__() - inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim)) - self.register_buffer("inv_freq", inv_freq) - self.dim = dim - self.original_impl = original_impl - - def forward_impl( - self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000 - ): - """Enhanced Transformer with Rotary Position Embedding. - - Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ - transformers/rope/__init__.py. MIT License: - https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. - """ - # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ - theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem)) - - # Create position indexes `[0, 1, ..., seq_len - 1]` - seq_idx = torch.arange(seq_len, dtype=torch.float, device=device) - - # Calculate the product of position index and $\theta_i$ - idx_theta = torch.outer(seq_idx, theta).float() - - cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1) - - # this is to mimic the behaviour of complex32, else we will get different results - if dtype in (torch.float16, torch.bfloat16, torch.int8): - cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half() - return cache - - def forward(self, max_seq_len, offset=0): - return self.forward_impl( - max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device - ) - - -@torch.jit.script -def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: - # x: [sq, b, np, hn] - sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3) - rot_dim = rope_cache.shape[-2] * 2 - x, x_pass = x[..., :rot_dim], x[..., rot_dim:] - # truncate to support variable sizes - rope_cache = rope_cache[:sq] - xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2) - rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2) - x_out2 = torch.stack( - [ - xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1], - xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1], - ], - -1, - ) - x_out2 = x_out2.flatten(3) - return torch.cat((x_out2, x_pass), dim=-1) - - -class RMSNorm(torch.nn.Module): - def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs): - super().__init__() - self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype)) - self.eps = eps - - def forward(self, hidden_states: torch.Tensor): - input_dtype = hidden_states.dtype - variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.eps) - - return (self.weight * hidden_states).to(input_dtype) - - -class CoreAttention(torch.nn.Module): - def __init__(self, config: ChatGLMConfig, layer_number): - super(CoreAttention, self).__init__() - - self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling - self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 - if self.apply_query_key_layer_scaling: - self.attention_softmax_in_fp32 = True - self.layer_number = max(1, layer_number) - - projection_size = config.kv_channels * config.num_attention_heads - - # Per attention head and per partition values. - self.hidden_size_per_partition = projection_size - self.hidden_size_per_attention_head = projection_size // config.num_attention_heads - self.num_attention_heads_per_partition = config.num_attention_heads - - coeff = None - self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) - if self.apply_query_key_layer_scaling: - coeff = self.layer_number - self.norm_factor *= coeff - self.coeff = coeff - - self.attention_dropout = torch.nn.Dropout(config.attention_dropout) - - def forward(self, query_layer, key_layer, value_layer, attention_mask): - pytorch_major_version = int(torch.__version__.split('.')[0]) - if pytorch_major_version >= 2: - query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]] - if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: - context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, - is_causal=True) - else: - if attention_mask is not None: - attention_mask = ~attention_mask - context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, - attention_mask) - context_layer = context_layer.permute(2, 0, 1, 3) - new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) - context_layer = context_layer.reshape(*new_context_layer_shape) - else: - # Raw attention scores - - # [b, np, sq, sk] - output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0)) - - # [sq, b, np, hn] -> [sq, b * np, hn] - query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) - # [sk, b, np, hn] -> [sk, b * np, hn] - key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) - - # preallocting input tensor: [b * np, sq, sk] - matmul_input_buffer = torch.empty( - output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype, - device=query_layer.device - ) - - # Raw attention scores. [b * np, sq, sk] - matmul_result = torch.baddbmm( - matmul_input_buffer, - query_layer.transpose(0, 1), # [b * np, sq, hn] - key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk] - beta=0.0, - alpha=(1.0 / self.norm_factor), - ) - - # change view to [b, np, sq, sk] - attention_scores = matmul_result.view(*output_size) - - # =========================== - # Attention probs and dropout - # =========================== - - # attention scores and attention mask [b, np, sq, sk] - if self.attention_softmax_in_fp32: - attention_scores = attention_scores.float() - if self.coeff is not None: - attention_scores = attention_scores * self.coeff - if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]: - attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3], - device=attention_scores.device, dtype=torch.bool) - attention_mask.tril_() - attention_mask = ~attention_mask - if attention_mask is not None: - attention_scores = attention_scores.masked_fill(attention_mask, float("-inf")) - attention_probs = F.softmax(attention_scores, dim=-1) - attention_probs = attention_probs.type_as(value_layer) - - # This is actually dropping out entire tokens to attend to, which might - # seem a bit unusual, but is taken from the original Transformer paper. - attention_probs = self.attention_dropout(attention_probs) - # ========================= - # Context layer. [sq, b, hp] - # ========================= - - # value_layer -> context layer. - # [sk, b, np, hn] --> [b, np, sq, hn] - - # context layer shape: [b, np, sq, hn] - output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) - # change view [sk, b * np, hn] - value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1) - # change view [b * np, sq, sk] - attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) - # matmul: [b * np, sq, hn] - context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) - # change view [b, np, sq, hn] - context_layer = context_layer.view(*output_size) - # [b, np, sq, hn] --> [sq, b, np, hn] - context_layer = context_layer.permute(2, 0, 1, 3).contiguous() - # [sq, b, np, hn] --> [sq, b, hp] - new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,) - context_layer = context_layer.view(*new_context_layer_shape) - - return context_layer - - -class SelfAttention(torch.nn.Module): - """Parallel self-attention layer abstract class. - - Self-attention layer takes input with size [s, b, h] - and returns output of the same size. - """ - - def __init__(self, config: ChatGLMConfig, layer_number, device=None): - super(SelfAttention, self).__init__() - self.layer_number = max(1, layer_number) - - self.projection_size = config.kv_channels * config.num_attention_heads - - # Per attention head and per partition values. - self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads - self.num_attention_heads_per_partition = config.num_attention_heads - - self.multi_query_attention = config.multi_query_attention - self.qkv_hidden_size = 3 * self.projection_size - if self.multi_query_attention: - self.num_multi_query_groups_per_partition = config.multi_query_group_num - self.qkv_hidden_size = ( - self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num - ) - self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size, - bias=config.add_bias_linear or config.add_qkv_bias, - device=device, **_config_to_kwargs(config) - ) - - self.core_attention = CoreAttention(config, self.layer_number) - - # Output. - self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear, - device=device, **_config_to_kwargs(config) - ) - - def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None): - if self.multi_query_attention: - num_attention_heads = self.num_multi_query_groups_per_partition - else: - num_attention_heads = self.num_attention_heads_per_partition - return torch.empty( - inference_max_sequence_len, - batch_size, - num_attention_heads, - self.hidden_size_per_attention_head, - dtype=dtype, - device=device, - ) - - def forward( - self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True - ): - # hidden_states: [sq, b, h] - - # ================================================= - # Pre-allocate memory for key-values for inference. - # ================================================= - # ===================== - # Query, Key, and Value - # ===================== - - # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)] - mixed_x_layer = self.query_key_value(hidden_states) - - if self.multi_query_attention: - (query_layer, key_layer, value_layer) = mixed_x_layer.split( - [ - self.num_attention_heads_per_partition * self.hidden_size_per_attention_head, - self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, - self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, - ], - dim=-1, - ) - query_layer = query_layer.view( - query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) - ) - key_layer = key_layer.view( - key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) - ) - value_layer = value_layer.view( - value_layer.size()[:-1] - + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head) - ) - else: - new_tensor_shape = mixed_x_layer.size()[:-1] + \ - (self.num_attention_heads_per_partition, - 3 * self.hidden_size_per_attention_head) - mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) - - # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn] - (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) - - # apply relative positional encoding (rotary embedding) - if rotary_pos_emb is not None: - query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) - key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) - - # adjust key and value for inference - if kv_cache is not None: - cache_k, cache_v = kv_cache - key_layer = torch.cat((cache_k, key_layer), dim=0) - value_layer = torch.cat((cache_v, value_layer), dim=0) - if use_cache: - kv_cache = (key_layer, value_layer) - else: - kv_cache = None - - if self.multi_query_attention: - key_layer = key_layer.unsqueeze(-2) - key_layer = key_layer.expand( - -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1 - ) - key_layer = key_layer.contiguous().view( - key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) - ) - value_layer = value_layer.unsqueeze(-2) - value_layer = value_layer.expand( - -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1 - ) - value_layer = value_layer.contiguous().view( - value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) - ) - - # ================================== - # core attention computation - # ================================== - - context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask) - - # ================= - # Output. [sq, b, h] - # ================= - - output = self.dense(context_layer) - - return output, kv_cache - - -def _config_to_kwargs(args): - common_kwargs = { - "dtype": args.torch_dtype, - } - return common_kwargs - - -class MLP(torch.nn.Module): - """MLP. - - MLP will take the input with h hidden state, project it to 4*h - hidden dimension, perform nonlinear transformation, and project the - state back into h hidden dimension. - """ - - def __init__(self, config: ChatGLMConfig, device=None): - super(MLP, self).__init__() - - self.add_bias = config.add_bias_linear - - # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf - self.dense_h_to_4h = nn.Linear( - config.hidden_size, - config.ffn_hidden_size * 2, - bias=self.add_bias, - device=device, - **_config_to_kwargs(config) - ) - - def swiglu(x): - x = torch.chunk(x, 2, dim=-1) - return F.silu(x[0]) * x[1] - - self.activation_func = swiglu - - # Project back to h. - self.dense_4h_to_h = nn.Linear( - config.ffn_hidden_size, - config.hidden_size, - bias=self.add_bias, - device=device, - **_config_to_kwargs(config) - ) - - def forward(self, hidden_states): - # [s, b, 4hp] - intermediate_parallel = self.dense_h_to_4h(hidden_states) - intermediate_parallel = self.activation_func(intermediate_parallel) - # [s, b, h] - output = self.dense_4h_to_h(intermediate_parallel) - return output - - -class GLMBlock(torch.nn.Module): - """A single transformer layer. - - Transformer layer takes input with size [s, b, h] and returns an - output of the same size. - """ - - def __init__(self, config: ChatGLMConfig, layer_number, device=None): - super(GLMBlock, self).__init__() - self.layer_number = layer_number - - self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm - - self.fp32_residual_connection = config.fp32_residual_connection - - LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm - # Layernorm on the input data. - self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, - dtype=config.torch_dtype) - - # Self attention. - self.self_attention = SelfAttention(config, layer_number, device=device) - self.hidden_dropout = config.hidden_dropout - - # Layernorm on the attention output - self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, - dtype=config.torch_dtype) - - # MLP - self.mlp = MLP(config, device=device) - - def forward( - self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True, - ): - # hidden_states: [s, b, h] - - # Layer norm at the beginning of the transformer layer. - layernorm_output = self.input_layernorm(hidden_states) - # Self attention. - attention_output, kv_cache = self.self_attention( - layernorm_output, - attention_mask, - rotary_pos_emb, - kv_cache=kv_cache, - use_cache=use_cache - ) - - # Residual connection. - if self.apply_residual_connection_post_layernorm: - residual = layernorm_output - else: - residual = hidden_states - - layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training) - layernorm_input = residual + layernorm_input - - # Layer norm post the self attention. - layernorm_output = self.post_attention_layernorm(layernorm_input) - - # MLP. - mlp_output = self.mlp(layernorm_output) - - # Second residual connection. - if self.apply_residual_connection_post_layernorm: - residual = layernorm_output - else: - residual = layernorm_input - - output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training) - output = residual + output - - return output, kv_cache - - -class GLMTransformer(torch.nn.Module): - """Transformer class.""" - - def __init__(self, config: ChatGLMConfig, device=None): - super(GLMTransformer, self).__init__() - - self.fp32_residual_connection = config.fp32_residual_connection - self.post_layer_norm = config.post_layer_norm - - # Number of layers. - self.num_layers = config.num_layers - - # Transformer layers. - def build_layer(layer_number): - return GLMBlock(config, layer_number, device=device) - - self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)]) - - if self.post_layer_norm: - LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm - # Final layer norm before output. - self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device, - dtype=config.torch_dtype) - - self.gradient_checkpointing = False - - def _get_layer(self, layer_number): - return self.layers[layer_number] - - def forward( - self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None, - use_cache: Optional[bool] = True, - output_hidden_states: Optional[bool] = False, - ): - if not kv_caches: - kv_caches = [None for _ in range(self.num_layers)] - presents = () if use_cache else None - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - all_self_attentions = None - all_hidden_states = () if output_hidden_states else None - for index in range(self.num_layers): - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - layer = self._get_layer(index) - if self.gradient_checkpointing and self.training: - layer_ret = torch.utils.checkpoint.checkpoint( - layer, - hidden_states, - attention_mask, - rotary_pos_emb, - kv_caches[index], - use_cache - ) - else: - layer_ret = layer( - hidden_states, - attention_mask, - rotary_pos_emb, - kv_cache=kv_caches[index], - use_cache=use_cache - ) - hidden_states, kv_cache = layer_ret - if use_cache: - presents = presents + (kv_cache,) - - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - # Final layer norm. - if self.post_layer_norm: - hidden_states = self.final_layernorm(hidden_states) - - return hidden_states, presents, all_hidden_states, all_self_attentions - - -class ChatGLMPreTrainedModel(PreTrainedModel): - """ - An abstract class to handle weights initialization and - a simple interface for downloading and loading pretrained models. - """ - - is_parallelizable = False - supports_gradient_checkpointing = True - config_class = ChatGLMConfig - base_model_prefix = "transformer" - _no_split_modules = ["GLMBlock"] - - def _init_weights(self, module: nn.Module): - """Initialize the weights.""" - return - - def get_masks(self, input_ids, past_key_values, padding_mask=None): - batch_size, seq_length = input_ids.shape - full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device) - full_attention_mask.tril_() - past_length = 0 - if past_key_values: - past_length = past_key_values[0][0].shape[0] - if past_length: - full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length, - device=input_ids.device), full_attention_mask), dim=-1) - if padding_mask is not None: - full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) - if not past_length and padding_mask is not None: - full_attention_mask -= padding_mask.unsqueeze(-1) - 1 - full_attention_mask = (full_attention_mask < 0.5).bool() - full_attention_mask.unsqueeze_(1) - return full_attention_mask - - def get_position_ids(self, input_ids, device): - batch_size, seq_length = input_ids.shape - position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) - return position_ids - - def _set_gradient_checkpointing(self, module, value=False): - if isinstance(module, GLMTransformer): - module.gradient_checkpointing = value - - -class Embedding(torch.nn.Module): - """Language model embeddings.""" - - def __init__(self, config: ChatGLMConfig, device=None): - super(Embedding, self).__init__() - - self.hidden_size = config.hidden_size - # Word embeddings (parallel). - self.word_embeddings = nn.Embedding( - config.padded_vocab_size, - self.hidden_size, - dtype=config.torch_dtype, - device=device - ) - self.fp32_residual_connection = config.fp32_residual_connection - - def forward(self, input_ids): - # Embeddings. - words_embeddings = self.word_embeddings(input_ids) - embeddings = words_embeddings - # Data format change to avoid explicit transposes : [b s h] --> [s b h]. - embeddings = embeddings.transpose(0, 1).contiguous() - # If the input flag for fp32 residual connection is set, convert for float. - if self.fp32_residual_connection: - embeddings = embeddings.float() - return embeddings - - -class ChatGLMModel(ChatGLMPreTrainedModel): - def __init__(self, config: ChatGLMConfig, device=None, empty_init=True): - super().__init__(config) - if empty_init: - init_method = skip_init - else: - init_method = default_init - init_kwargs = {} - if device is not None: - init_kwargs["device"] = device - self.embedding = init_method(Embedding, config, **init_kwargs) - self.num_layers = config.num_layers - self.multi_query_group_num = config.multi_query_group_num - self.kv_channels = config.kv_channels - - # Rotary positional embeddings - self.seq_length = config.seq_length - rotary_dim = ( - config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels - ) - - self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device, - dtype=config.torch_dtype) - self.encoder = init_method(GLMTransformer, config, **init_kwargs) - self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False, - dtype=config.torch_dtype, **init_kwargs) - self.pre_seq_len = config.pre_seq_len - self.prefix_projection = config.prefix_projection - if self.pre_seq_len is not None: - for param in self.parameters(): - param.requires_grad = False - self.prefix_tokens = torch.arange(self.pre_seq_len).long() - self.prefix_encoder = PrefixEncoder(config) - self.dropout = torch.nn.Dropout(0.1) - - def get_input_embeddings(self): - return self.embedding.word_embeddings - - def get_prompt(self, batch_size, device, dtype=torch.half): - prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device) - past_key_values = self.prefix_encoder(prefix_tokens).type(dtype) - past_key_values = past_key_values.view( - batch_size, - self.pre_seq_len, - self.num_layers * 2, - self.multi_query_group_num, - self.kv_channels - ) - # seq_len, b, nh, hidden_size - past_key_values = self.dropout(past_key_values) - past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2) - return past_key_values - - def forward( - self, - input_ids, - position_ids: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.BoolTensor] = None, - full_attention_mask: Optional[torch.BoolTensor] = None, - past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, - inputs_embeds: Optional[torch.Tensor] = None, - use_cache: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ): - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - batch_size, seq_length = input_ids.shape - - if inputs_embeds is None: - inputs_embeds = self.embedding(input_ids) - - if self.pre_seq_len is not None: - if past_key_values is None: - past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device, - dtype=inputs_embeds.dtype) - if attention_mask is not None: - attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)), - attention_mask], dim=-1) - - if full_attention_mask is None: - if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1): - full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) - - # Rotary positional embeddings - rotary_pos_emb = self.rotary_pos_emb(self.seq_length) - if position_ids is not None: - rotary_pos_emb = rotary_pos_emb[position_ids] - else: - rotary_pos_emb = rotary_pos_emb[None, :seq_length] - rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous() - - # Run encoder. - hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( - inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb, - kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states - ) - - if not return_dict: - return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) - - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=presents, - hidden_states=all_hidden_states, - attentions=all_self_attentions, - ) - - def quantize(self, weight_bit_width: int): - # from .quantization import quantize - quantize(self.encoder, weight_bit_width) - return self - - -class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel): - def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): - super().__init__(config) - - self.max_sequence_length = config.max_length - self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device) - self.config = config - self.quantized = False - - if self.config.quantization_bit: - self.quantize(self.config.quantization_bit, empty_init=True) - - def _update_model_kwargs_for_generation( - self, - outputs: ModelOutput, - model_kwargs: Dict[str, Any], - is_encoder_decoder: bool = False, - standardize_cache_format: bool = False, - ) -> Dict[str, Any]: - # update past_key_values - model_kwargs["past_key_values"] = self._extract_past_from_model_output( - outputs, standardize_cache_format=standardize_cache_format - ) - - # update attention mask - if "attention_mask" in model_kwargs: - attention_mask = model_kwargs["attention_mask"] - model_kwargs["attention_mask"] = torch.cat( - [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1 - ) - - # update position ids - if "position_ids" in model_kwargs: - position_ids = model_kwargs["position_ids"] - new_position_id = position_ids[..., -1:].clone() - new_position_id += 1 - model_kwargs["position_ids"] = torch.cat( - [position_ids, new_position_id], dim=-1 - ) - - model_kwargs["is_first_forward"] = False - return model_kwargs - - def prepare_inputs_for_generation( - self, - input_ids: torch.LongTensor, - past_key_values: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.Tensor] = None, - use_cache: Optional[bool] = None, - is_first_forward: bool = True, - **kwargs - ) -> dict: - # only last token for input_ids if past is not None - if position_ids is None: - position_ids = self.get_position_ids(input_ids, device=input_ids.device) - if not is_first_forward: - if past_key_values is not None: - position_ids = position_ids[..., -1:] - input_ids = input_ids[:, -1:] - return { - "input_ids": input_ids, - "past_key_values": past_key_values, - "position_ids": position_ids, - "attention_mask": attention_mask, - "return_last_logit": True, - "use_cache": use_cache - } - - def forward( - self, - input_ids: Optional[torch.Tensor] = None, - position_ids: Optional[torch.Tensor] = None, - attention_mask: Optional[torch.Tensor] = None, - past_key_values: Optional[Tuple[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.Tensor] = None, - labels: Optional[torch.Tensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - return_last_logit: Optional[bool] = False, - ): - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - transformer_outputs = self.transformer( - input_ids=input_ids, - position_ids=position_ids, - attention_mask=attention_mask, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - hidden_states = transformer_outputs[0] - if return_last_logit: - hidden_states = hidden_states[-1:] - lm_logits = self.transformer.output_layer(hidden_states) - lm_logits = lm_logits.transpose(0, 1).contiguous() - - loss = None - if labels is not None: - lm_logits = lm_logits.to(torch.float32) - - # Shift so that tokens < n predict n - shift_logits = lm_logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - loss_fct = CrossEntropyLoss(ignore_index=-100) - loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) - - lm_logits = lm_logits.to(hidden_states.dtype) - loss = loss.to(hidden_states.dtype) - - if not return_dict: - output = (lm_logits,) + transformer_outputs[1:] - return ((loss,) + output) if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=lm_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) - - @staticmethod - def _reorder_cache( - past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor - ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: - """ - This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or - [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct - beam_idx at every generation step. - - Output shares the same memory storage as `past`. - """ - return tuple( - ( - layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)), - layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)), - ) - for layer_past in past - ) - - def process_response(self, output, history): - content = "" - history = deepcopy(history) - for response in output.split("<|assistant|>"): - metadata, content = response.split("\n", maxsplit=1) - if not metadata.strip(): - content = content.strip() - history.append({"role": "assistant", "metadata": metadata, "content": content}) - content = content.replace("[[训练时间]]", "2023年") - else: - history.append({"role": "assistant", "metadata": metadata, "content": content}) - if history[0]["role"] == "system" and "tools" in history[0]: - content = "\n".join(content.split("\n")[1:-1]) - def tool_call(**kwargs): - return kwargs - parameters = eval(content) - content = {"name": metadata.strip(), "parameters": parameters} - else: - content = {"name": metadata.strip(), "content": content} - return content, history - - @torch.inference_mode() - def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user", - max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, - **kwargs): - if history is None: - history = [] - if logits_processor is None: - logits_processor = LogitsProcessorList() - logits_processor.append(InvalidScoreLogitsProcessor()) - gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, - "temperature": temperature, "logits_processor": logits_processor, **kwargs} - inputs = tokenizer.build_chat_input(query, history=history, role=role) - inputs = inputs.to(self.device) - eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), - tokenizer.get_command("<|observation|>")] - outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id) - outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1] - response = tokenizer.decode(outputs) - history.append({"role": role, "content": query}) - response, history = self.process_response(response, history) - return response, history - - @torch.inference_mode() - def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user", - past_key_values=None,max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, - logits_processor=None, return_past_key_values=False, **kwargs): - if history is None: - history = [] - if logits_processor is None: - logits_processor = LogitsProcessorList() - logits_processor.append(InvalidScoreLogitsProcessor()) - eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), - tokenizer.get_command("<|observation|>")] - gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p, - "temperature": temperature, "logits_processor": logits_processor, **kwargs} - if past_key_values is None: - inputs = tokenizer.build_chat_input(query, history=history, role=role) - else: - inputs = tokenizer.build_chat_input(query, role=role) - inputs = inputs.to(self.device) - if past_key_values is not None: - past_length = past_key_values[0][0].shape[0] - if self.transformer.pre_seq_len is not None: - past_length -= self.transformer.pre_seq_len - inputs.position_ids += past_length - attention_mask = inputs.attention_mask - attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1) - inputs['attention_mask'] = attention_mask - history.append({"role": role, "content": query}) - for outputs in self.stream_generate(**inputs, past_key_values=past_key_values, - eos_token_id=eos_token_id, return_past_key_values=return_past_key_values, - **gen_kwargs): - if return_past_key_values: - outputs, past_key_values = outputs - outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1] - response = tokenizer.decode(outputs) - if response and response[-1] != "�": - response, new_history = self.process_response(response, history) - if return_past_key_values: - yield response, new_history, past_key_values - else: - yield response, new_history - - @torch.inference_mode() - def stream_generate( - self, - input_ids, - generation_config: Optional[GenerationConfig] = None, - logits_processor: Optional[LogitsProcessorList] = None, - stopping_criteria: Optional[StoppingCriteriaList] = None, - prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, - return_past_key_values=False, - **kwargs, - ): - batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] - - if generation_config is None: - generation_config = self.generation_config - generation_config = copy.deepcopy(generation_config) - model_kwargs = generation_config.update(**kwargs) - model_kwargs["use_cache"] = generation_config.use_cache - bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id - - if isinstance(eos_token_id, int): - eos_token_id = [eos_token_id] - eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None - - has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None - if has_default_max_length and generation_config.max_new_tokens is None: - warnings.warn( - f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. " - "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we" - " recommend using `max_new_tokens` to control the maximum length of the generation.", - UserWarning, - ) - elif generation_config.max_new_tokens is not None: - generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length - if not has_default_max_length: - logger.warn( - f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" - f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " - "Please refer to the documentation for more information. " - "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)", - UserWarning, - ) - - if input_ids_seq_length >= generation_config.max_length: - input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" - logger.warning( - f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" - f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" - " increasing `max_new_tokens`." - ) - - # 2. Set generation parameters if not already defined - logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() - stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() - - logits_processor = self._get_logits_processor( - generation_config=generation_config, - input_ids_seq_length=input_ids_seq_length, - encoder_input_ids=input_ids, - prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, - logits_processor=logits_processor, - ) - - stopping_criteria = self._get_stopping_criteria( - generation_config=generation_config, stopping_criteria=stopping_criteria - ) - logits_warper = self._get_logits_warper(generation_config) - - unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) - scores = None - while True: - model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) - # forward pass to get next token - outputs = self( - **model_inputs, - return_dict=True, - output_attentions=False, - output_hidden_states=False, - ) - - next_token_logits = outputs.logits[:, -1, :] - - # pre-process distribution - next_token_scores = logits_processor(input_ids, next_token_logits) - next_token_scores = logits_warper(input_ids, next_token_scores) - - # sample - probs = nn.functional.softmax(next_token_scores, dim=-1) - if generation_config.do_sample: - next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) - else: - next_tokens = torch.argmax(probs, dim=-1) - # update generated ids, model inputs, and length for next step - input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) - model_kwargs = self._update_model_kwargs_for_generation( - outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder - ) - unfinished_sequences = unfinished_sequences.mul( - next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0) - ) - if return_past_key_values: - yield input_ids, outputs.past_key_values - else: - yield input_ids - # stop when each sentence is finished, or if we exceed the maximum length - if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores): - break - - def quantize(self, bits: int, empty_init=False, device=None, **kwargs): - if bits == 0: - return - - # from .quantization import quantize - - if self.quantized: - logger.info("Already quantized.") - return self - - self.quantized = True - - self.config.quantization_bit = bits - - self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device, - **kwargs) - return self - - -class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel): - def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): - super().__init__(config) - - self.num_labels = config.num_labels - self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device) - - self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half) - if config.classifier_dropout is not None: - self.dropout = nn.Dropout(config.classifier_dropout) - else: - self.dropout = None - self.config = config - - if self.config.quantization_bit: - self.quantize(self.config.quantization_bit, empty_init=True) - - def forward( - self, - input_ids: Optional[torch.LongTensor] = None, - position_ids: Optional[torch.LongTensor] = None, - attention_mask: Optional[torch.Tensor] = None, - full_attention_mask: Optional[torch.Tensor] = None, - past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, - inputs_embeds: Optional[torch.LongTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]: - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - transformer_outputs = self.transformer( - input_ids=input_ids, - position_ids=position_ids, - attention_mask=attention_mask, - full_attention_mask=full_attention_mask, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - hidden_states = transformer_outputs[0] - pooled_hidden_states = hidden_states[-1] - if self.dropout is not None: - pooled_hidden_states = self.dropout(pooled_hidden_states) - logits = self.classifier_head(pooled_hidden_states) - - loss = None - if labels is not None: - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = "regression" - elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): - self.config.problem_type = "single_label_classification" - else: - self.config.problem_type = "multi_label_classification" - - if self.config.problem_type == "regression": - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(logits.squeeze().float(), labels.squeeze()) - else: - loss = loss_fct(logits.float(), labels) - elif self.config.problem_type == "single_label_classification": - loss_fct = CrossEntropyLoss() - loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1)) - elif self.config.problem_type == "multi_label_classification": - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(logits.float(), labels.view(-1, self.num_labels)) - - if not return_dict: - output = (logits,) + transformer_outputs[1:] - return ((loss,) + output) if loss is not None else output - - return SequenceClassifierOutputWithPast( - loss=loss, - logits=logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) diff --git a/diffsynth/models/lora.py b/diffsynth/models/lora.py deleted file mode 100644 index 88435d977509505b6331357e3937ce8a722e467f..0000000000000000000000000000000000000000 --- a/diffsynth/models/lora.py +++ /dev/null @@ -1,394 +0,0 @@ -import torch -from .sd_unet import SDUNet -from .sdxl_unet import SDXLUNet -from .sd_text_encoder import SDTextEncoder -from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2 -from .sd3_dit import SD3DiT -from .flux_dit import FluxDiT -from .hunyuan_dit import HunyuanDiT -from .cog_dit import CogDiT -from .hunyuan_video_dit import HunyuanVideoDiT -from .wan_video_dit import WanModel - - - -class LoRAFromCivitai: - def __init__(self): - self.supported_model_classes = [] - self.lora_prefix = [] - self.renamed_lora_prefix = {} - self.special_keys = {} - - - def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0): - for key in state_dict: - if ".lora_up" in key: - return self.convert_state_dict_up_down(state_dict, lora_prefix, alpha) - return self.convert_state_dict_AB(state_dict, lora_prefix, alpha) - - - def convert_state_dict_up_down(self, state_dict, lora_prefix="lora_unet_", alpha=1.0): - renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "") - state_dict_ = {} - for key in state_dict: - if ".lora_up" not in key: - continue - if not key.startswith(lora_prefix): - continue - weight_up = state_dict[key].to(device="cuda", dtype=torch.float16) - weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16) - if len(weight_up.shape) == 4: - weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32) - weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32) - lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) - else: - lora_weight = alpha * torch.mm(weight_up, weight_down) - target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight" - for special_key in self.special_keys: - target_name = target_name.replace(special_key, self.special_keys[special_key]) - state_dict_[target_name] = lora_weight.cpu() - return state_dict_ - - - def convert_state_dict_AB(self, state_dict, lora_prefix="", alpha=1.0, device="cuda", torch_dtype=torch.float16): - state_dict_ = {} - for key in state_dict: - if ".lora_B." not in key: - continue - if not key.startswith(lora_prefix): - continue - weight_up = state_dict[key].to(device=device, dtype=torch_dtype) - weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype) - if len(weight_up.shape) == 4: - weight_up = weight_up.squeeze(3).squeeze(2) - weight_down = weight_down.squeeze(3).squeeze(2) - lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) - else: - lora_weight = alpha * torch.mm(weight_up, weight_down) - keys = key.split(".") - keys.pop(keys.index("lora_B")) - target_name = ".".join(keys) - target_name = target_name[len(lora_prefix):] - state_dict_[target_name] = lora_weight.cpu() - return state_dict_ - - - def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None): - state_dict_model = model.state_dict() - state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha) - if model_resource == "diffusers": - state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora) - elif model_resource == "civitai": - state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora) - if isinstance(state_dict_lora, tuple): - state_dict_lora = state_dict_lora[0] - if len(state_dict_lora) > 0: - print(f" {len(state_dict_lora)} tensors are updated.") - for name in state_dict_lora: - fp8=False - if state_dict_model[name].dtype == torch.float8_e4m3fn: - state_dict_model[name]= state_dict_model[name].to(state_dict_lora[name].dtype) - fp8=True - state_dict_model[name] += state_dict_lora[name].to( - dtype=state_dict_model[name].dtype, device=state_dict_model[name].device) - if fp8: - state_dict_model[name] = state_dict_model[name].to(torch.float8_e4m3fn) - model.load_state_dict(state_dict_model) - - - def match(self, model, state_dict_lora): - for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes): - if not isinstance(model, model_class): - continue - state_dict_model = model.state_dict() - for model_resource in ["diffusers", "civitai"]: - try: - state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0) - converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \ - else model.__class__.state_dict_converter().from_civitai - state_dict_lora_ = converter_fn(state_dict_lora_) - if isinstance(state_dict_lora_, tuple): - state_dict_lora_ = state_dict_lora_[0] - if len(state_dict_lora_) == 0: - continue - for name in state_dict_lora_: - if name not in state_dict_model: - break - else: - return lora_prefix, model_resource - except: - pass - return None - - - -class SDLoRAFromCivitai(LoRAFromCivitai): - def __init__(self): - super().__init__() - self.supported_model_classes = [SDUNet, SDTextEncoder] - self.lora_prefix = ["lora_unet_", "lora_te_"] - self.special_keys = { - "down.blocks": "down_blocks", - "up.blocks": "up_blocks", - "mid.block": "mid_block", - "proj.in": "proj_in", - "proj.out": "proj_out", - "transformer.blocks": "transformer_blocks", - "to.q": "to_q", - "to.k": "to_k", - "to.v": "to_v", - "to.out": "to_out", - "text.model": "text_model", - "self.attn.q.proj": "self_attn.q_proj", - "self.attn.k.proj": "self_attn.k_proj", - "self.attn.v.proj": "self_attn.v_proj", - "self.attn.out.proj": "self_attn.out_proj", - "input.blocks": "model.diffusion_model.input_blocks", - "middle.block": "model.diffusion_model.middle_block", - "output.blocks": "model.diffusion_model.output_blocks", - } - - -class SDXLLoRAFromCivitai(LoRAFromCivitai): - def __init__(self): - super().__init__() - self.supported_model_classes = [SDXLUNet, SDXLTextEncoder, SDXLTextEncoder2] - self.lora_prefix = ["lora_unet_", "lora_te1_", "lora_te2_"] - self.renamed_lora_prefix = {"lora_te2_": "2"} - self.special_keys = { - "down.blocks": "down_blocks", - "up.blocks": "up_blocks", - "mid.block": "mid_block", - "proj.in": "proj_in", - "proj.out": "proj_out", - "transformer.blocks": "transformer_blocks", - "to.q": "to_q", - "to.k": "to_k", - "to.v": "to_v", - "to.out": "to_out", - "text.model": "conditioner.embedders.0.transformer.text_model", - "self.attn.q.proj": "self_attn.q_proj", - "self.attn.k.proj": "self_attn.k_proj", - "self.attn.v.proj": "self_attn.v_proj", - "self.attn.out.proj": "self_attn.out_proj", - "input.blocks": "model.diffusion_model.input_blocks", - "middle.block": "model.diffusion_model.middle_block", - "output.blocks": "model.diffusion_model.output_blocks", - "2conditioner.embedders.0.transformer.text_model.encoder.layers": "text_model.encoder.layers" - } - - -class FluxLoRAFromCivitai(LoRAFromCivitai): - def __init__(self): - super().__init__() - self.supported_model_classes = [FluxDiT, FluxDiT] - self.lora_prefix = ["lora_unet_", "transformer."] - self.renamed_lora_prefix = {} - self.special_keys = { - "single.blocks": "single_blocks", - "double.blocks": "double_blocks", - "img.attn": "img_attn", - "img.mlp": "img_mlp", - "img.mod": "img_mod", - "txt.attn": "txt_attn", - "txt.mlp": "txt_mlp", - "txt.mod": "txt_mod", - } - - - -class GeneralLoRAFromPeft: - def __init__(self): - self.supported_model_classes = [SDUNet, SDXLUNet, SD3DiT, HunyuanDiT, FluxDiT, CogDiT, WanModel] - - - def get_name_dict(self, lora_state_dict): - lora_name_dict = {} - for key in lora_state_dict: - if ".lora_B." not in key: - continue - keys = key.split(".") - if len(keys) > keys.index("lora_B") + 2: - keys.pop(keys.index("lora_B") + 1) - keys.pop(keys.index("lora_B")) - if keys[0] == "diffusion_model": - keys.pop(0) - target_name = ".".join(keys) - lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A.")) - return lora_name_dict - - - def match(self, model: torch.nn.Module, state_dict_lora): - lora_name_dict = self.get_name_dict(state_dict_lora) - model_name_dict = {name: None for name, _ in model.named_parameters()} - matched_num = sum([i in model_name_dict for i in lora_name_dict]) - if matched_num == len(lora_name_dict): - return "", "" - else: - return None - - - def fetch_device_and_dtype(self, state_dict): - device, dtype = None, None - for name, param in state_dict.items(): - device, dtype = param.device, param.dtype - break - computation_device = device - computation_dtype = dtype - if computation_device == torch.device("cpu"): - if torch.cuda.is_available(): - computation_device = torch.device("cuda") - if computation_dtype == torch.float8_e4m3fn: - computation_dtype = torch.float32 - return device, dtype, computation_device, computation_dtype - - - def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""): - state_dict_model = model.state_dict() - device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model) - lora_name_dict = self.get_name_dict(state_dict_lora) - for name in lora_name_dict: - weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype) - weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype) - # print(name, weight_up.shape, weight_down.shape, flush=True) - if len(weight_up.shape) == 4: - weight_up = weight_up.squeeze(3).squeeze(2) - weight_down = weight_down.squeeze(3).squeeze(2) - weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3) - elif len(weight_up.shape) == 5: - weight_up = weight_up.squeeze(4).squeeze(3).squeeze(2) - _, down_1, down_2, down_3, down_4 = weight_down.shape - weight_down = weight_down.view(weight_down.shape[0], -1) - weight_lora = alpha * torch.mm(weight_up, weight_down) - weight_lora = weight_lora.view(weight_lora.shape[0], down_1, down_2, down_3, down_4) - else: - # print(name, alpha, weight_up.shape, weight_down.shape) - weight_lora = alpha * torch.mm(weight_up, weight_down) - weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype) - weight_patched = weight_model + weight_lora - state_dict_model[name] = weight_patched.to(device=device, dtype=dtype) - print(f" {len(lora_name_dict)} tensors are updated.") - model.load_state_dict(state_dict_model) - - - -class HunyuanVideoLoRAFromCivitai(LoRAFromCivitai): - def __init__(self): - super().__init__() - self.supported_model_classes = [HunyuanVideoDiT, HunyuanVideoDiT] - self.lora_prefix = ["diffusion_model.", "transformer."] - self.special_keys = {} - - -class FluxLoRAConverter: - def __init__(self): - pass - - @staticmethod - def align_to_opensource_format(state_dict, alpha=1.0): - prefix_rename_dict = { - "single_blocks": "lora_unet_single_blocks", - "blocks": "lora_unet_double_blocks", - } - middle_rename_dict = { - "norm.linear": "modulation_lin", - "to_qkv_mlp": "linear1", - "proj_out": "linear2", - - "norm1_a.linear": "img_mod_lin", - "norm1_b.linear": "txt_mod_lin", - "attn.a_to_qkv": "img_attn_qkv", - "attn.b_to_qkv": "txt_attn_qkv", - "attn.a_to_out": "img_attn_proj", - "attn.b_to_out": "txt_attn_proj", - "ff_a.0": "img_mlp_0", - "ff_a.2": "img_mlp_2", - "ff_b.0": "txt_mlp_0", - "ff_b.2": "txt_mlp_2", - } - suffix_rename_dict = { - "lora_B.weight": "lora_up.weight", - "lora_A.weight": "lora_down.weight", - } - state_dict_ = {} - for name, param in state_dict.items(): - names = name.split(".") - if names[-2] != "lora_A" and names[-2] != "lora_B": - names.pop(-2) - prefix = names[0] - middle = ".".join(names[2:-2]) - suffix = ".".join(names[-2:]) - block_id = names[1] - if middle not in middle_rename_dict: - continue - rename = prefix_rename_dict[prefix] + "_" + block_id + "_" + middle_rename_dict[middle] + "." + suffix_rename_dict[suffix] - state_dict_[rename] = param - if rename.endswith("lora_up.weight"): - state_dict_[rename.replace("lora_up.weight", "alpha")] = torch.tensor((alpha,))[0] - return state_dict_ - - @staticmethod - def align_to_diffsynth_format(state_dict): - rename_dict = { - "lora_unet_double_blocks_blockid_img_mod_lin.lora_down.weight": "blocks.blockid.norm1_a.linear.lora_A.default.weight", - "lora_unet_double_blocks_blockid_img_mod_lin.lora_up.weight": "blocks.blockid.norm1_a.linear.lora_B.default.weight", - "lora_unet_double_blocks_blockid_txt_mod_lin.lora_down.weight": "blocks.blockid.norm1_b.linear.lora_A.default.weight", - "lora_unet_double_blocks_blockid_txt_mod_lin.lora_up.weight": "blocks.blockid.norm1_b.linear.lora_B.default.weight", - "lora_unet_double_blocks_blockid_img_attn_qkv.lora_down.weight": "blocks.blockid.attn.a_to_qkv.lora_A.default.weight", - "lora_unet_double_blocks_blockid_img_attn_qkv.lora_up.weight": "blocks.blockid.attn.a_to_qkv.lora_B.default.weight", - "lora_unet_double_blocks_blockid_txt_attn_qkv.lora_down.weight": "blocks.blockid.attn.b_to_qkv.lora_A.default.weight", - "lora_unet_double_blocks_blockid_txt_attn_qkv.lora_up.weight": "blocks.blockid.attn.b_to_qkv.lora_B.default.weight", - "lora_unet_double_blocks_blockid_img_attn_proj.lora_down.weight": "blocks.blockid.attn.a_to_out.lora_A.default.weight", - "lora_unet_double_blocks_blockid_img_attn_proj.lora_up.weight": "blocks.blockid.attn.a_to_out.lora_B.default.weight", - "lora_unet_double_blocks_blockid_txt_attn_proj.lora_down.weight": "blocks.blockid.attn.b_to_out.lora_A.default.weight", - "lora_unet_double_blocks_blockid_txt_attn_proj.lora_up.weight": "blocks.blockid.attn.b_to_out.lora_B.default.weight", - "lora_unet_double_blocks_blockid_img_mlp_0.lora_down.weight": "blocks.blockid.ff_a.0.lora_A.default.weight", - "lora_unet_double_blocks_blockid_img_mlp_0.lora_up.weight": "blocks.blockid.ff_a.0.lora_B.default.weight", - "lora_unet_double_blocks_blockid_img_mlp_2.lora_down.weight": "blocks.blockid.ff_a.2.lora_A.default.weight", - "lora_unet_double_blocks_blockid_img_mlp_2.lora_up.weight": "blocks.blockid.ff_a.2.lora_B.default.weight", - "lora_unet_double_blocks_blockid_txt_mlp_0.lora_down.weight": "blocks.blockid.ff_b.0.lora_A.default.weight", - "lora_unet_double_blocks_blockid_txt_mlp_0.lora_up.weight": "blocks.blockid.ff_b.0.lora_B.default.weight", - "lora_unet_double_blocks_blockid_txt_mlp_2.lora_down.weight": "blocks.blockid.ff_b.2.lora_A.default.weight", - "lora_unet_double_blocks_blockid_txt_mlp_2.lora_up.weight": "blocks.blockid.ff_b.2.lora_B.default.weight", - "lora_unet_single_blocks_blockid_modulation_lin.lora_down.weight": "single_blocks.blockid.norm.linear.lora_A.default.weight", - "lora_unet_single_blocks_blockid_modulation_lin.lora_up.weight": "single_blocks.blockid.norm.linear.lora_B.default.weight", - "lora_unet_single_blocks_blockid_linear1.lora_down.weight": "single_blocks.blockid.to_qkv_mlp.lora_A.default.weight", - "lora_unet_single_blocks_blockid_linear1.lora_up.weight": "single_blocks.blockid.to_qkv_mlp.lora_B.default.weight", - "lora_unet_single_blocks_blockid_linear2.lora_down.weight": "single_blocks.blockid.proj_out.lora_A.default.weight", - "lora_unet_single_blocks_blockid_linear2.lora_up.weight": "single_blocks.blockid.proj_out.lora_B.default.weight", - } - def guess_block_id(name): - names = name.split("_") - for i in names: - if i.isdigit(): - return i, name.replace(f"_{i}_", "_blockid_") - return None, None - state_dict_ = {} - for name, param in state_dict.items(): - block_id, source_name = guess_block_id(name) - if source_name in rename_dict: - target_name = rename_dict[source_name] - target_name = target_name.replace(".blockid.", f".{block_id}.") - state_dict_[target_name] = param - else: - state_dict_[name] = param - return state_dict_ - - -class WanLoRAConverter: - def __init__(self): - pass - - @staticmethod - def align_to_opensource_format(state_dict, **kwargs): - state_dict = {"diffusion_model." + name.replace(".default.", "."): param for name, param in state_dict.items()} - return state_dict - - @staticmethod - def align_to_diffsynth_format(state_dict, **kwargs): - state_dict = {name.replace("diffusion_model.", "").replace(".lora_A.weight", ".lora_A.default.weight").replace(".lora_B.weight", ".lora_B.default.weight"): param for name, param in state_dict.items()} - return state_dict - - -def get_lora_loaders(): - return [SDLoRAFromCivitai(), SDXLLoRAFromCivitai(), FluxLoRAFromCivitai(), HunyuanVideoLoRAFromCivitai(), GeneralLoRAFromPeft()] diff --git a/diffsynth/models/model_manager.py b/diffsynth/models/model_manager.py deleted file mode 100644 index ce8c913e5d38f0a5d52eb0c0914cdc778b162367..0000000000000000000000000000000000000000 --- a/diffsynth/models/model_manager.py +++ /dev/null @@ -1,455 +0,0 @@ -import os, torch, json, importlib -from typing import List - -from .downloader import download_models, download_customized_models, Preset_model_id, Preset_model_website - -from .sd_text_encoder import SDTextEncoder -from .sd_unet import SDUNet -from .sd_vae_encoder import SDVAEEncoder -from .sd_vae_decoder import SDVAEDecoder -from .lora import get_lora_loaders - -from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2 -from .sdxl_unet import SDXLUNet -from .sdxl_vae_decoder import SDXLVAEDecoder -from .sdxl_vae_encoder import SDXLVAEEncoder - -from .sd3_text_encoder import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3 -from .sd3_dit import SD3DiT -from .sd3_vae_decoder import SD3VAEDecoder -from .sd3_vae_encoder import SD3VAEEncoder - -from .sd_controlnet import SDControlNet -from .sdxl_controlnet import SDXLControlNetUnion - -from .sd_motion import SDMotionModel -from .sdxl_motion import SDXLMotionModel - -from .svd_image_encoder import SVDImageEncoder -from .svd_unet import SVDUNet -from .svd_vae_decoder import SVDVAEDecoder -from .svd_vae_encoder import SVDVAEEncoder - -from .sd_ipadapter import SDIpAdapter, IpAdapterCLIPImageEmbedder -from .sdxl_ipadapter import SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder - -from .hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder -from .hunyuan_dit import HunyuanDiT -from .hunyuan_video_vae_decoder import HunyuanVideoVAEDecoder -from .hunyuan_video_vae_encoder import HunyuanVideoVAEEncoder - -from .flux_dit import FluxDiT -from .flux_text_encoder import FluxTextEncoder2 -from .flux_vae import FluxVAEEncoder, FluxVAEDecoder -from .flux_ipadapter import FluxIpAdapter - -from .cog_vae import CogVAEEncoder, CogVAEDecoder -from .cog_dit import CogDiT - -from ..extensions.RIFE import IFNet -from ..extensions.ESRGAN import RRDBNet - -from ..configs.model_config import model_loader_configs, huggingface_model_loader_configs, patch_model_loader_configs -from .utils import load_state_dict, init_weights_on_device, hash_state_dict_keys, split_state_dict_with_prefix - - -def load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device): - loaded_model_names, loaded_models = [], [] - for model_name, model_class in zip(model_names, model_classes): - print(f" model_name: {model_name} model_class: {model_class.__name__}") - state_dict_converter = model_class.state_dict_converter() - if model_resource == "civitai": - state_dict_results = state_dict_converter.from_civitai(state_dict) - elif model_resource == "diffusers": - state_dict_results = state_dict_converter.from_diffusers(state_dict) - if isinstance(state_dict_results, tuple): - model_state_dict, extra_kwargs = state_dict_results - print(f" This model is initialized with extra kwargs: {extra_kwargs}") - else: - model_state_dict, extra_kwargs = state_dict_results, {} - torch_dtype = torch.float32 if extra_kwargs.get("upcast_to_float32", False) else torch_dtype - with init_weights_on_device(): - model = model_class(**extra_kwargs) - if hasattr(model, "eval"): - model = model.eval() - model.load_state_dict(model_state_dict, assign=True) - model = model.to(dtype=torch_dtype, device=device) - loaded_model_names.append(model_name) - loaded_models.append(model) - return loaded_model_names, loaded_models - - -def load_model_from_huggingface_folder(file_path, model_names, model_classes, torch_dtype, device): - loaded_model_names, loaded_models = [], [] - for model_name, model_class in zip(model_names, model_classes): - if torch_dtype in [torch.float32, torch.float16, torch.bfloat16]: - model = model_class.from_pretrained(file_path, torch_dtype=torch_dtype).eval() - else: - model = model_class.from_pretrained(file_path).eval().to(dtype=torch_dtype) - if torch_dtype == torch.float16 and hasattr(model, "half"): - model = model.half() - try: - model = model.to(device=device) - except: - pass - loaded_model_names.append(model_name) - loaded_models.append(model) - return loaded_model_names, loaded_models - - -def load_single_patch_model_from_single_file(state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device): - print(f" model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}") - base_state_dict = base_model.state_dict() - base_model.to("cpu") - del base_model - model = model_class(**extra_kwargs) - model.load_state_dict(base_state_dict, strict=False) - model.load_state_dict(state_dict, strict=False) - model.to(dtype=torch_dtype, device=device) - return model - - -def load_patch_model_from_single_file(state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device): - loaded_model_names, loaded_models = [], [] - for model_name, model_class in zip(model_names, model_classes): - while True: - for model_id in range(len(model_manager.model)): - base_model_name = model_manager.model_name[model_id] - if base_model_name == model_name: - base_model_path = model_manager.model_path[model_id] - base_model = model_manager.model[model_id] - print(f" Adding patch model to {base_model_name} ({base_model_path})") - patched_model = load_single_patch_model_from_single_file( - state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device) - loaded_model_names.append(base_model_name) - loaded_models.append(patched_model) - model_manager.model.pop(model_id) - model_manager.model_path.pop(model_id) - model_manager.model_name.pop(model_id) - break - else: - break - return loaded_model_names, loaded_models - - - -class ModelDetectorTemplate: - def __init__(self): - pass - - def match(self, file_path="", state_dict={}): - return False - - def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): - return [], [] - - - -class ModelDetectorFromSingleFile: - def __init__(self, model_loader_configs=[]): - self.keys_hash_with_shape_dict = {} - self.keys_hash_dict = {} - for metadata in model_loader_configs: - self.add_model_metadata(*metadata) - - - def add_model_metadata(self, keys_hash, keys_hash_with_shape, model_names, model_classes, model_resource): - self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_names, model_classes, model_resource) - if keys_hash is not None: - self.keys_hash_dict[keys_hash] = (model_names, model_classes, model_resource) - - - def match(self, file_path="", state_dict={}): - if isinstance(file_path, str) and os.path.isdir(file_path): - return False - if len(state_dict) == 0: - state_dict = load_state_dict(file_path) - keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) - if keys_hash_with_shape in self.keys_hash_with_shape_dict: - return True - keys_hash = hash_state_dict_keys(state_dict, with_shape=False) - if keys_hash in self.keys_hash_dict: - return True - return False - - - def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): - if len(state_dict) == 0: - state_dict = load_state_dict(file_path) - - # Load models with strict matching - keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) - if keys_hash_with_shape in self.keys_hash_with_shape_dict: - model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[keys_hash_with_shape] - loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device) - return loaded_model_names, loaded_models - - # Load models without strict matching - # (the shape of parameters may be inconsistent, and the state_dict_converter will modify the model architecture) - keys_hash = hash_state_dict_keys(state_dict, with_shape=False) - if keys_hash in self.keys_hash_dict: - model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash] - loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device) - return loaded_model_names, loaded_models - - return loaded_model_names, loaded_models - - - -class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile): - def __init__(self, model_loader_configs=[]): - super().__init__(model_loader_configs) - - - def match(self, file_path="", state_dict={}): - if isinstance(file_path, str) and os.path.isdir(file_path): - return False - if len(state_dict) == 0: - state_dict = load_state_dict(file_path) - splited_state_dict = split_state_dict_with_prefix(state_dict) - for sub_state_dict in splited_state_dict: - if super().match(file_path, sub_state_dict): - return True - return False - - - def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): - # Split the state_dict and load from each component - splited_state_dict = split_state_dict_with_prefix(state_dict) - valid_state_dict = {} - for sub_state_dict in splited_state_dict: - if super().match(file_path, sub_state_dict): - valid_state_dict.update(sub_state_dict) - if super().match(file_path, valid_state_dict): - loaded_model_names, loaded_models = super().load(file_path, valid_state_dict, device, torch_dtype) - else: - loaded_model_names, loaded_models = [], [] - for sub_state_dict in splited_state_dict: - if super().match(file_path, sub_state_dict): - loaded_model_names_, loaded_models_ = super().load(file_path, valid_state_dict, device, torch_dtype) - loaded_model_names += loaded_model_names_ - loaded_models += loaded_models_ - return loaded_model_names, loaded_models - - - -class ModelDetectorFromHuggingfaceFolder: - def __init__(self, model_loader_configs=[]): - self.architecture_dict = {} - for metadata in model_loader_configs: - self.add_model_metadata(*metadata) - - - def add_model_metadata(self, architecture, huggingface_lib, model_name, redirected_architecture): - self.architecture_dict[architecture] = (huggingface_lib, model_name, redirected_architecture) - - - def match(self, file_path="", state_dict={}): - if not isinstance(file_path, str) or os.path.isfile(file_path): - return False - file_list = os.listdir(file_path) - if "config.json" not in file_list: - return False - with open(os.path.join(file_path, "config.json"), "r") as f: - config = json.load(f) - if "architectures" not in config and "_class_name" not in config: - return False - return True - - - def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs): - with open(os.path.join(file_path, "config.json"), "r") as f: - config = json.load(f) - loaded_model_names, loaded_models = [], [] - architectures = config["architectures"] if "architectures" in config else [config["_class_name"]] - for architecture in architectures: - huggingface_lib, model_name, redirected_architecture = self.architecture_dict[architecture] - if redirected_architecture is not None: - architecture = redirected_architecture - model_class = importlib.import_module(huggingface_lib).__getattribute__(architecture) - loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder(file_path, [model_name], [model_class], torch_dtype, device) - loaded_model_names += loaded_model_names_ - loaded_models += loaded_models_ - return loaded_model_names, loaded_models - - - -class ModelDetectorFromPatchedSingleFile: - def __init__(self, model_loader_configs=[]): - self.keys_hash_with_shape_dict = {} - for metadata in model_loader_configs: - self.add_model_metadata(*metadata) - - - def add_model_metadata(self, keys_hash_with_shape, model_name, model_class, extra_kwargs): - self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_name, model_class, extra_kwargs) - - - def match(self, file_path="", state_dict={}): - if not isinstance(file_path, str) or os.path.isdir(file_path): - return False - if len(state_dict) == 0: - state_dict = load_state_dict(file_path) - keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) - if keys_hash_with_shape in self.keys_hash_with_shape_dict: - return True - return False - - - def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, model_manager=None, **kwargs): - if len(state_dict) == 0: - state_dict = load_state_dict(file_path) - - # Load models with strict matching - loaded_model_names, loaded_models = [], [] - keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True) - if keys_hash_with_shape in self.keys_hash_with_shape_dict: - model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[keys_hash_with_shape] - loaded_model_names_, loaded_models_ = load_patch_model_from_single_file( - state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device) - loaded_model_names += loaded_model_names_ - loaded_models += loaded_models_ - return loaded_model_names, loaded_models - - - -class ModelManager: - def __init__( - self, - torch_dtype=torch.float16, - device="cuda", - model_id_list: List[Preset_model_id] = [], - downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"], - file_path_list: List[str] = [], - ): - self.torch_dtype = torch_dtype - self.device = device - self.model = [] - self.model_path = [] - self.model_name = [] - downloaded_files = download_models(model_id_list, downloading_priority) if len(model_id_list) > 0 else [] - self.model_detector = [ - ModelDetectorFromSingleFile(model_loader_configs), - ModelDetectorFromSplitedSingleFile(model_loader_configs), - ModelDetectorFromHuggingfaceFolder(huggingface_model_loader_configs), - ModelDetectorFromPatchedSingleFile(patch_model_loader_configs), - ] - self.load_models(downloaded_files + file_path_list) - - - def load_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], model_resource=None): - print(f"Loading models from file: {file_path}") - if len(state_dict) == 0: - state_dict = load_state_dict(file_path) - model_names, models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, self.torch_dtype, self.device) - for model_name, model in zip(model_names, models): - self.model.append(model) - self.model_path.append(file_path) - self.model_name.append(model_name) - print(f" The following models are loaded: {model_names}.") - - - def load_model_from_huggingface_folder(self, file_path="", model_names=[], model_classes=[]): - print(f"Loading models from folder: {file_path}") - model_names, models = load_model_from_huggingface_folder(file_path, model_names, model_classes, self.torch_dtype, self.device) - for model_name, model in zip(model_names, models): - self.model.append(model) - self.model_path.append(file_path) - self.model_name.append(model_name) - print(f" The following models are loaded: {model_names}.") - - - def load_patch_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], extra_kwargs={}): - print(f"Loading patch models from file: {file_path}") - model_names, models = load_patch_model_from_single_file( - state_dict, model_names, model_classes, extra_kwargs, self, self.torch_dtype, self.device) - for model_name, model in zip(model_names, models): - self.model.append(model) - self.model_path.append(file_path) - self.model_name.append(model_name) - print(f" The following patched models are loaded: {model_names}.") - - - def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0): - if isinstance(file_path, list): - for file_path_ in file_path: - self.load_lora(file_path_, state_dict=state_dict, lora_alpha=lora_alpha) - else: - print(f"Loading LoRA models from file: {file_path}") - is_loaded = False - if len(state_dict) == 0: - state_dict = load_state_dict(file_path) - for model_name, model, model_path in zip(self.model_name, self.model, self.model_path): - for lora in get_lora_loaders(): - match_results = lora.match(model, state_dict) - if match_results is not None: - print(f" Adding LoRA to {model_name} ({model_path}).") - lora_prefix, model_resource = match_results - lora.load(model, state_dict, lora_prefix, alpha=lora_alpha, model_resource=model_resource) - is_loaded = True - break - if not is_loaded: - print(f" Cannot load LoRA: {file_path}") - - - def load_model(self, file_path, model_names=None, device=None, torch_dtype=None): - print(f"Loading models from: {file_path}") - if device is None: device = self.device - if torch_dtype is None: torch_dtype = self.torch_dtype - if isinstance(file_path, list): - state_dict = {} - for path in file_path: - state_dict.update(load_state_dict(path)) - elif os.path.isfile(file_path): - state_dict = load_state_dict(file_path) - else: - state_dict = None - for model_detector in self.model_detector: - if model_detector.match(file_path, state_dict): - model_names, models = model_detector.load( - file_path, state_dict, - device=device, torch_dtype=torch_dtype, - allowed_model_names=model_names, model_manager=self - ) - for model_name, model in zip(model_names, models): - self.model.append(model) - self.model_path.append(file_path) - self.model_name.append(model_name) - print(f" The following models are loaded: {model_names}.") - break - else: - print(f" We cannot detect the model type. No models are loaded.") - - - def load_models(self, file_path_list, model_names=None, device=None, torch_dtype=None): - for file_path in file_path_list: - print('>>>>', file_path) - self.load_model(file_path, model_names, device=device, torch_dtype=torch_dtype) - - - def fetch_model(self, model_name, file_path=None, require_model_path=False): - fetched_models = [] - fetched_model_paths = [] - for model, model_path, model_name_ in zip(self.model, self.model_path, self.model_name): - if file_path is not None and file_path != model_path: - continue - if model_name == model_name_: - fetched_models.append(model) - fetched_model_paths.append(model_path) - if len(fetched_models) == 0: - print(f"No {model_name} models available.") - return None - if len(fetched_models) == 1: - print(f"Using {model_name} from {fetched_model_paths[0]}.") - else: - print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}.") - if require_model_path: - return fetched_models[0], fetched_model_paths[0] - else: - return fetched_models[0] - - - def to(self, device): - for model in self.model: - model.to(device) - diff --git a/diffsynth/models/omnigen.py b/diffsynth/models/omnigen.py deleted file mode 100644 index 571d6c0e71e5bb28cd0c4e56a2d0437dd82be4c0..0000000000000000000000000000000000000000 --- a/diffsynth/models/omnigen.py +++ /dev/null @@ -1,803 +0,0 @@ -# The code is revised from DiT -import os -import torch -import torch.nn as nn -import numpy as np -import math -from safetensors.torch import load_file -from typing import List, Optional, Tuple, Union -import torch.utils.checkpoint -from huggingface_hub import snapshot_download -from transformers.modeling_outputs import BaseModelOutputWithPast -from transformers import Phi3Config, Phi3Model -from transformers.cache_utils import Cache, DynamicCache -from transformers.utils import logging - - -logger = logging.get_logger(__name__) - - -class Phi3Transformer(Phi3Model): - """ - Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`] - We only modified the attention mask - Args: - config: Phi3Config - """ - def prefetch_layer(self, layer_idx: int, device: torch.device): - "Starts prefetching the next layer cache" - with torch.cuda.stream(self.prefetch_stream): - # Prefetch next layer tensors to GPU - for name, param in self.layers[layer_idx].named_parameters(): - param.data = param.data.to(device, non_blocking=True) - - def evict_previous_layer(self, layer_idx: int): - "Moves the previous layer cache to the CPU" - prev_layer_idx = layer_idx - 1 - for name, param in self.layers[prev_layer_idx].named_parameters(): - param.data = param.data.to("cpu", non_blocking=True) - - def get_offlaod_layer(self, layer_idx: int, device: torch.device): - # init stream - if not hasattr(self, "prefetch_stream"): - self.prefetch_stream = torch.cuda.Stream() - - # delete previous layer - torch.cuda.current_stream().synchronize() - self.evict_previous_layer(layer_idx) - - # make sure the current layer is ready - torch.cuda.synchronize(self.prefetch_stream) - - # load next layer - self.prefetch_layer((layer_idx + 1) % len(self.layers), device) - - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - cache_position: Optional[torch.LongTensor] = None, - offload_model: Optional[bool] = False, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if (input_ids is None) ^ (inputs_embeds is not None): - raise ValueError("You must specify exactly one of input_ids or inputs_embeds") - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - # kept for BC (non `Cache` `past_key_values` inputs) - return_legacy_cache = False - if use_cache and not isinstance(past_key_values, Cache): - return_legacy_cache = True - if past_key_values is None: - past_key_values = DynamicCache() - else: - past_key_values = DynamicCache.from_legacy_cache(past_key_values) - logger.warning_once( - "We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and " - "will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class " - "(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)" - ) - - # if inputs_embeds is None: - # inputs_embeds = self.embed_tokens(input_ids) - - # if cache_position is None: - # past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 - # cache_position = torch.arange( - # past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device - # ) - # if position_ids is None: - # position_ids = cache_position.unsqueeze(0) - - if attention_mask is not None and attention_mask.dim() == 3: - dtype = inputs_embeds.dtype - min_dtype = torch.finfo(dtype).min - attention_mask = (1 - attention_mask) * min_dtype - attention_mask = attention_mask.unsqueeze(1).to(inputs_embeds.dtype) - else: - raise Exception("attention_mask parameter was unavailable or invalid") - # causal_mask = self._update_causal_mask( - # attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions - # ) - - hidden_states = inputs_embeds - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = None - - layer_idx = -1 - for decoder_layer in self.layers: - layer_idx += 1 - - if output_hidden_states: - all_hidden_states += (hidden_states,) - - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - decoder_layer.__call__, - hidden_states, - attention_mask, - position_ids, - past_key_values, - output_attentions, - use_cache, - cache_position, - ) - else: - if offload_model and not self.training: - self.get_offlaod_layer(layer_idx, device=inputs_embeds.device) - layer_outputs = decoder_layer( - hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_values, - output_attentions=output_attentions, - use_cache=use_cache, - cache_position=cache_position, - ) - - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache = layer_outputs[2 if output_attentions else 1] - - if output_attentions: - all_self_attns += (layer_outputs[1],) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - print('************') - all_hidden_states += (hidden_states,) - - next_cache = next_decoder_cache if use_cache else None - if return_legacy_cache: - next_cache = next_cache.to_legacy_cache() - - if not return_dict: - return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - - -def modulate(x, shift, scale): - return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) - - -class TimestepEmbedder(nn.Module): - """ - Embeds scalar timesteps into vector representations. - """ - def __init__(self, hidden_size, frequency_embedding_size=256): - super().__init__() - self.mlp = nn.Sequential( - nn.Linear(frequency_embedding_size, hidden_size, bias=True), - nn.SiLU(), - nn.Linear(hidden_size, hidden_size, bias=True), - ) - self.frequency_embedding_size = frequency_embedding_size - - @staticmethod - def timestep_embedding(t, dim, max_period=10000): - """ - Create sinusoidal timestep embeddings. - :param t: a 1-D Tensor of N indices, one per batch element. - These may be fractional. - :param dim: the dimension of the output. - :param max_period: controls the minimum frequency of the embeddings. - :return: an (N, D) Tensor of positional embeddings. - """ - # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py - half = dim // 2 - freqs = torch.exp( - -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half - ).to(device=t.device) - args = t[:, None].float() * freqs[None] - embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) - if dim % 2: - embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) - return embedding - - def forward(self, t, dtype=torch.float32): - t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype) - t_emb = self.mlp(t_freq) - return t_emb - - -class FinalLayer(nn.Module): - """ - The final layer of DiT. - """ - def __init__(self, hidden_size, patch_size, out_channels): - super().__init__() - self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) - self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) - self.adaLN_modulation = nn.Sequential( - nn.SiLU(), - nn.Linear(hidden_size, 2 * hidden_size, bias=True) - ) - - def forward(self, x, c): - shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) - x = modulate(self.norm_final(x), shift, scale) - x = self.linear(x) - return x - - -def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=1): - """ - grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or - [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) - """ - if isinstance(grid_size, int): - grid_size = (grid_size, grid_size) - - grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale - grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale - grid = np.meshgrid(grid_w, grid_h) # here w goes first - grid = np.stack(grid, axis=0) - - grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) - pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) - if cls_token and extra_tokens > 0: - pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) - return pos_embed - - -def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): - assert embed_dim % 2 == 0 - - # use half of dimensions to encode grid_h - emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) - emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) - - emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) - return emb - - -def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): - """ - embed_dim: output dimension for each position - pos: a list of positions to be encoded: size (M,) - out: (M, D) - """ - assert embed_dim % 2 == 0 - omega = np.arange(embed_dim // 2, dtype=np.float64) - omega /= embed_dim / 2. - omega = 1. / 10000**omega # (D/2,) - - pos = pos.reshape(-1) # (M,) - out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product - - emb_sin = np.sin(out) # (M, D/2) - emb_cos = np.cos(out) # (M, D/2) - - emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) - return emb - - -class PatchEmbedMR(nn.Module): - """ 2D Image to Patch Embedding - """ - def __init__( - self, - patch_size: int = 2, - in_chans: int = 4, - embed_dim: int = 768, - bias: bool = True, - ): - super().__init__() - self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias) - - def forward(self, x): - x = self.proj(x) - x = x.flatten(2).transpose(1, 2) # NCHW -> NLC - return x - - -class OmniGenOriginalModel(nn.Module): - """ - Diffusion model with a Transformer backbone. - """ - def __init__( - self, - transformer_config: Phi3Config, - patch_size=2, - in_channels=4, - pe_interpolation: float = 1.0, - pos_embed_max_size: int = 192, - ): - super().__init__() - self.in_channels = in_channels - self.out_channels = in_channels - self.patch_size = patch_size - self.pos_embed_max_size = pos_embed_max_size - - hidden_size = transformer_config.hidden_size - - self.x_embedder = PatchEmbedMR(patch_size, in_channels, hidden_size, bias=True) - self.input_x_embedder = PatchEmbedMR(patch_size, in_channels, hidden_size, bias=True) - - self.time_token = TimestepEmbedder(hidden_size) - self.t_embedder = TimestepEmbedder(hidden_size) - - self.pe_interpolation = pe_interpolation - pos_embed = get_2d_sincos_pos_embed(hidden_size, pos_embed_max_size, interpolation_scale=self.pe_interpolation, base_size=64) - self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=True) - - self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) - - self.initialize_weights() - - self.llm = Phi3Transformer(config=transformer_config) - self.llm.config.use_cache = False - - @classmethod - def from_pretrained(cls, model_name): - if not os.path.exists(model_name): - cache_folder = os.getenv('HF_HUB_CACHE') - model_name = snapshot_download(repo_id=model_name, - cache_dir=cache_folder, - ignore_patterns=['flax_model.msgpack', 'rust_model.ot', 'tf_model.h5']) - config = Phi3Config.from_pretrained(model_name) - model = cls(config) - if os.path.exists(os.path.join(model_name, 'model.safetensors')): - print("Loading safetensors") - ckpt = load_file(os.path.join(model_name, 'model.safetensors')) - else: - ckpt = torch.load(os.path.join(model_name, 'model.pt'), map_location='cpu') - model.load_state_dict(ckpt) - return model - - def initialize_weights(self): - assert not hasattr(self, "llama") - - # Initialize transformer layers: - def _basic_init(module): - if isinstance(module, nn.Linear): - torch.nn.init.xavier_uniform_(module.weight) - if module.bias is not None: - nn.init.constant_(module.bias, 0) - self.apply(_basic_init) - - # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): - w = self.x_embedder.proj.weight.data - nn.init.xavier_uniform_(w.view([w.shape[0], -1])) - nn.init.constant_(self.x_embedder.proj.bias, 0) - - w = self.input_x_embedder.proj.weight.data - nn.init.xavier_uniform_(w.view([w.shape[0], -1])) - nn.init.constant_(self.x_embedder.proj.bias, 0) - - - # Initialize timestep embedding MLP: - nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) - nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) - nn.init.normal_(self.time_token.mlp[0].weight, std=0.02) - nn.init.normal_(self.time_token.mlp[2].weight, std=0.02) - - # Zero-out output layers: - nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) - nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) - nn.init.constant_(self.final_layer.linear.weight, 0) - nn.init.constant_(self.final_layer.linear.bias, 0) - - def unpatchify(self, x, h, w): - """ - x: (N, T, patch_size**2 * C) - imgs: (N, H, W, C) - """ - c = self.out_channels - - x = x.reshape(shape=(x.shape[0], h//self.patch_size, w//self.patch_size, self.patch_size, self.patch_size, c)) - x = torch.einsum('nhwpqc->nchpwq', x) - imgs = x.reshape(shape=(x.shape[0], c, h, w)) - return imgs - - - def cropped_pos_embed(self, height, width): - """Crops positional embeddings for SD3 compatibility.""" - if self.pos_embed_max_size is None: - raise ValueError("`pos_embed_max_size` must be set for cropping.") - - height = height // self.patch_size - width = width // self.patch_size - if height > self.pos_embed_max_size: - raise ValueError( - f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}." - ) - if width > self.pos_embed_max_size: - raise ValueError( - f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}." - ) - - top = (self.pos_embed_max_size - height) // 2 - left = (self.pos_embed_max_size - width) // 2 - spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1) - spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :] - # print(top, top + height, left, left + width, spatial_pos_embed.size()) - spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1]) - return spatial_pos_embed - - - def patch_multiple_resolutions(self, latents, padding_latent=None, is_input_images:bool=False): - if isinstance(latents, list): - return_list = False - if padding_latent is None: - padding_latent = [None] * len(latents) - return_list = True - patched_latents, num_tokens, shapes = [], [], [] - for latent, padding in zip(latents, padding_latent): - height, width = latent.shape[-2:] - if is_input_images: - latent = self.input_x_embedder(latent) - else: - latent = self.x_embedder(latent) - pos_embed = self.cropped_pos_embed(height, width) - latent = latent + pos_embed - if padding is not None: - latent = torch.cat([latent, padding], dim=-2) - patched_latents.append(latent) - - num_tokens.append(pos_embed.size(1)) - shapes.append([height, width]) - if not return_list: - latents = torch.cat(patched_latents, dim=0) - else: - latents = patched_latents - else: - height, width = latents.shape[-2:] - if is_input_images: - latents = self.input_x_embedder(latents) - else: - latents = self.x_embedder(latents) - pos_embed = self.cropped_pos_embed(height, width) - latents = latents + pos_embed - num_tokens = latents.size(1) - shapes = [height, width] - return latents, num_tokens, shapes - - - def forward(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, padding_latent=None, past_key_values=None, return_past_key_values=True, offload_model:bool=False): - """ - - """ - input_is_list = isinstance(x, list) - x, num_tokens, shapes = self.patch_multiple_resolutions(x, padding_latent) - time_token = self.time_token(timestep, dtype=x[0].dtype).unsqueeze(1) - - if input_img_latents is not None: - input_latents, _, _ = self.patch_multiple_resolutions(input_img_latents, is_input_images=True) - if input_ids is not None: - condition_embeds = self.llm.embed_tokens(input_ids).clone() - input_img_inx = 0 - for b_inx in input_image_sizes.keys(): - for start_inx, end_inx in input_image_sizes[b_inx]: - condition_embeds[b_inx, start_inx: end_inx] = input_latents[input_img_inx] - input_img_inx += 1 - if input_img_latents is not None: - assert input_img_inx == len(input_latents) - - input_emb = torch.cat([condition_embeds, time_token, x], dim=1) - else: - input_emb = torch.cat([time_token, x], dim=1) - output = self.llm(inputs_embeds=input_emb, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, offload_model=offload_model) - output, past_key_values = output.last_hidden_state, output.past_key_values - if input_is_list: - image_embedding = output[:, -max(num_tokens):] - time_emb = self.t_embedder(timestep, dtype=x.dtype) - x = self.final_layer(image_embedding, time_emb) - latents = [] - for i in range(x.size(0)): - latent = x[i:i+1, :num_tokens[i]] - latent = self.unpatchify(latent, shapes[i][0], shapes[i][1]) - latents.append(latent) - else: - image_embedding = output[:, -num_tokens:] - time_emb = self.t_embedder(timestep, dtype=x.dtype) - x = self.final_layer(image_embedding, time_emb) - latents = self.unpatchify(x, shapes[0], shapes[1]) - - if return_past_key_values: - return latents, past_key_values - return latents - - @torch.no_grad() - def forward_with_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache, offload_model): - self.llm.config.use_cache = use_kv_cache - model_out, past_key_values = self.forward(x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, past_key_values=past_key_values, return_past_key_values=True, offload_model=offload_model) - if use_img_cfg: - cond, uncond, img_cond = torch.split(model_out, len(model_out) // 3, dim=0) - cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond) - model_out = [cond, cond, cond] - else: - cond, uncond = torch.split(model_out, len(model_out) // 2, dim=0) - cond = uncond + cfg_scale * (cond - uncond) - model_out = [cond, cond] - - return torch.cat(model_out, dim=0), past_key_values - - - @torch.no_grad() - def forward_with_separate_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache, offload_model): - self.llm.config.use_cache = use_kv_cache - if past_key_values is None: - past_key_values = [None] * len(attention_mask) - - x = torch.split(x, len(x) // len(attention_mask), dim=0) - timestep = timestep.to(x[0].dtype) - timestep = torch.split(timestep, len(timestep) // len(input_ids), dim=0) - - model_out, pask_key_values = [], [] - for i in range(len(input_ids)): - temp_out, temp_pask_key_values = self.forward(x[i], timestep[i], input_ids[i], input_img_latents[i], input_image_sizes[i], attention_mask[i], position_ids[i], past_key_values=past_key_values[i], return_past_key_values=True, offload_model=offload_model) - model_out.append(temp_out) - pask_key_values.append(temp_pask_key_values) - - if len(model_out) == 3: - cond, uncond, img_cond = model_out - cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond) - model_out = [cond, cond, cond] - elif len(model_out) == 2: - cond, uncond = model_out - cond = uncond + cfg_scale * (cond - uncond) - model_out = [cond, cond] - else: - return model_out[0] - - return torch.cat(model_out, dim=0), pask_key_values - - - -class OmniGenTransformer(OmniGenOriginalModel): - def __init__(self): - config = { - "_name_or_path": "Phi-3-vision-128k-instruct", - "architectures": [ - "Phi3ForCausalLM" - ], - "attention_dropout": 0.0, - "bos_token_id": 1, - "eos_token_id": 2, - "hidden_act": "silu", - "hidden_size": 3072, - "initializer_range": 0.02, - "intermediate_size": 8192, - "max_position_embeddings": 131072, - "model_type": "phi3", - "num_attention_heads": 32, - "num_hidden_layers": 32, - "num_key_value_heads": 32, - "original_max_position_embeddings": 4096, - "rms_norm_eps": 1e-05, - "rope_scaling": { - "long_factor": [ - 1.0299999713897705, - 1.0499999523162842, - 1.0499999523162842, - 1.0799999237060547, - 1.2299998998641968, - 1.2299998998641968, - 1.2999999523162842, - 1.4499999284744263, - 1.5999999046325684, - 1.6499998569488525, - 1.8999998569488525, - 2.859999895095825, - 3.68999981880188, - 5.419999599456787, - 5.489999771118164, - 5.489999771118164, - 9.09000015258789, - 11.579999923706055, - 15.65999984741211, - 15.769999504089355, - 15.789999961853027, - 18.360000610351562, - 21.989999771118164, - 23.079999923706055, - 30.009998321533203, - 32.35000228881836, - 32.590003967285156, - 35.56000518798828, - 39.95000457763672, - 53.840003967285156, - 56.20000457763672, - 57.95000457763672, - 59.29000473022461, - 59.77000427246094, - 59.920005798339844, - 61.190006256103516, - 61.96000671386719, - 62.50000762939453, - 63.3700065612793, - 63.48000717163086, - 63.48000717163086, - 63.66000747680664, - 63.850006103515625, - 64.08000946044922, - 64.760009765625, - 64.80001068115234, - 64.81001281738281, - 64.81001281738281 - ], - "short_factor": [ - 1.05, - 1.05, - 1.05, - 1.1, - 1.1, - 1.1, - 1.2500000000000002, - 1.2500000000000002, - 1.4000000000000004, - 1.4500000000000004, - 1.5500000000000005, - 1.8500000000000008, - 1.9000000000000008, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.000000000000001, - 2.1000000000000005, - 2.1000000000000005, - 2.2, - 2.3499999999999996, - 2.3499999999999996, - 2.3499999999999996, - 2.3499999999999996, - 2.3999999999999995, - 2.3999999999999995, - 2.6499999999999986, - 2.6999999999999984, - 2.8999999999999977, - 2.9499999999999975, - 3.049999999999997, - 3.049999999999997, - 3.049999999999997 - ], - "type": "su" - }, - "rope_theta": 10000.0, - "sliding_window": 131072, - "tie_word_embeddings": False, - "torch_dtype": "bfloat16", - "transformers_version": "4.38.1", - "use_cache": True, - "vocab_size": 32064, - "_attn_implementation": "sdpa" - } - config = Phi3Config(**config) - super().__init__(config) - - - def forward(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, padding_latent=None, past_key_values=None, return_past_key_values=True, offload_model:bool=False): - input_is_list = isinstance(x, list) - x, num_tokens, shapes = self.patch_multiple_resolutions(x, padding_latent) - time_token = self.time_token(timestep, dtype=x[0].dtype).unsqueeze(1) - - if input_img_latents is not None: - input_latents, _, _ = self.patch_multiple_resolutions(input_img_latents, is_input_images=True) - if input_ids is not None: - condition_embeds = self.llm.embed_tokens(input_ids).clone() - input_img_inx = 0 - for b_inx in input_image_sizes.keys(): - for start_inx, end_inx in input_image_sizes[b_inx]: - condition_embeds[b_inx, start_inx: end_inx] = input_latents[input_img_inx] - input_img_inx += 1 - if input_img_latents is not None: - assert input_img_inx == len(input_latents) - - input_emb = torch.cat([condition_embeds, time_token, x], dim=1) - else: - input_emb = torch.cat([time_token, x], dim=1) - output = self.llm(inputs_embeds=input_emb, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, offload_model=offload_model) - output, past_key_values = output.last_hidden_state, output.past_key_values - if input_is_list: - image_embedding = output[:, -max(num_tokens):] - time_emb = self.t_embedder(timestep, dtype=x.dtype) - x = self.final_layer(image_embedding, time_emb) - latents = [] - for i in range(x.size(0)): - latent = x[i:i+1, :num_tokens[i]] - latent = self.unpatchify(latent, shapes[i][0], shapes[i][1]) - latents.append(latent) - else: - image_embedding = output[:, -num_tokens:] - time_emb = self.t_embedder(timestep, dtype=x.dtype) - x = self.final_layer(image_embedding, time_emb) - latents = self.unpatchify(x, shapes[0], shapes[1]) - - if return_past_key_values: - return latents, past_key_values - return latents - - - @torch.no_grad() - def forward_with_separate_cfg(self, x, timestep, input_ids, input_img_latents, input_image_sizes, attention_mask, position_ids, cfg_scale, use_img_cfg, img_cfg_scale, past_key_values, use_kv_cache, offload_model): - self.llm.config.use_cache = use_kv_cache - if past_key_values is None: - past_key_values = [None] * len(attention_mask) - - x = torch.split(x, len(x) // len(attention_mask), dim=0) - timestep = timestep.to(x[0].dtype) - timestep = torch.split(timestep, len(timestep) // len(input_ids), dim=0) - - model_out, pask_key_values = [], [] - for i in range(len(input_ids)): - temp_out, temp_pask_key_values = self.forward(x[i], timestep[i], input_ids[i], input_img_latents[i], input_image_sizes[i], attention_mask[i], position_ids[i], past_key_values=past_key_values[i], return_past_key_values=True, offload_model=offload_model) - model_out.append(temp_out) - pask_key_values.append(temp_pask_key_values) - - if len(model_out) == 3: - cond, uncond, img_cond = model_out - cond = uncond + img_cfg_scale * (img_cond - uncond) + cfg_scale * (cond - img_cond) - model_out = [cond, cond, cond] - elif len(model_out) == 2: - cond, uncond = model_out - cond = uncond + cfg_scale * (cond - uncond) - model_out = [cond, cond] - else: - return model_out[0] - - return torch.cat(model_out, dim=0), pask_key_values - - - @staticmethod - def state_dict_converter(): - return OmniGenTransformerStateDictConverter() - - - -class OmniGenTransformerStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - return state_dict - - def from_civitai(self, state_dict): - return state_dict diff --git a/diffsynth/models/sd3_dit.py b/diffsynth/models/sd3_dit.py deleted file mode 100644 index 60e6be4a805f29c9d501fdece10a805c75e4662d..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd3_dit.py +++ /dev/null @@ -1,551 +0,0 @@ -import torch -from einops import rearrange -from .svd_unet import TemporalTimesteps -from .tiler import TileWorker - - - -class RMSNorm(torch.nn.Module): - def __init__(self, dim, eps, elementwise_affine=True): - super().__init__() - self.eps = eps - if elementwise_affine: - self.weight = torch.nn.Parameter(torch.ones((dim,))) - else: - self.weight = None - - def forward(self, hidden_states): - input_dtype = hidden_states.dtype - variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.eps) - hidden_states = hidden_states.to(input_dtype) - if self.weight is not None: - hidden_states = hidden_states * self.weight - return hidden_states - - - -class PatchEmbed(torch.nn.Module): - def __init__(self, patch_size=2, in_channels=16, embed_dim=1536, pos_embed_max_size=192): - super().__init__() - self.pos_embed_max_size = pos_embed_max_size - self.patch_size = patch_size - - self.proj = torch.nn.Conv2d(in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size) - self.pos_embed = torch.nn.Parameter(torch.zeros(1, self.pos_embed_max_size, self.pos_embed_max_size, embed_dim)) - - def cropped_pos_embed(self, height, width): - height = height // self.patch_size - width = width // self.patch_size - top = (self.pos_embed_max_size - height) // 2 - left = (self.pos_embed_max_size - width) // 2 - spatial_pos_embed = self.pos_embed[:, top : top + height, left : left + width, :].flatten(1, 2) - return spatial_pos_embed - - def forward(self, latent): - height, width = latent.shape[-2:] - latent = self.proj(latent) - latent = latent.flatten(2).transpose(1, 2) - pos_embed = self.cropped_pos_embed(height, width) - return latent + pos_embed - - - -class TimestepEmbeddings(torch.nn.Module): - def __init__(self, dim_in, dim_out, computation_device=None): - super().__init__() - self.time_proj = TemporalTimesteps(num_channels=dim_in, flip_sin_to_cos=True, downscale_freq_shift=0, computation_device=computation_device) - self.timestep_embedder = torch.nn.Sequential( - torch.nn.Linear(dim_in, dim_out), torch.nn.SiLU(), torch.nn.Linear(dim_out, dim_out) - ) - - def forward(self, timestep, dtype): - time_emb = self.time_proj(timestep).to(dtype) - time_emb = self.timestep_embedder(time_emb) - return time_emb - - - -class AdaLayerNorm(torch.nn.Module): - def __init__(self, dim, single=False, dual=False): - super().__init__() - self.single = single - self.dual = dual - self.linear = torch.nn.Linear(dim, dim * [[6, 2][single], 9][dual]) - self.norm = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) - - def forward(self, x, emb): - emb = self.linear(torch.nn.functional.silu(emb)) - if self.single: - scale, shift = emb.unsqueeze(1).chunk(2, dim=2) - x = self.norm(x) * (1 + scale) + shift - return x - elif self.dual: - shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp, shift_msa2, scale_msa2, gate_msa2 = emb.unsqueeze(1).chunk(9, dim=2) - norm_x = self.norm(x) - x = norm_x * (1 + scale_msa) + shift_msa - norm_x2 = norm_x * (1 + scale_msa2) + shift_msa2 - return x, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_x2, gate_msa2 - else: - shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.unsqueeze(1).chunk(6, dim=2) - x = self.norm(x) * (1 + scale_msa) + shift_msa - return x, gate_msa, shift_mlp, scale_mlp, gate_mlp - - - -class JointAttention(torch.nn.Module): - def __init__(self, dim_a, dim_b, num_heads, head_dim, only_out_a=False, use_rms_norm=False): - super().__init__() - self.num_heads = num_heads - self.head_dim = head_dim - self.only_out_a = only_out_a - - self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3) - self.b_to_qkv = torch.nn.Linear(dim_b, dim_b * 3) - - self.a_to_out = torch.nn.Linear(dim_a, dim_a) - if not only_out_a: - self.b_to_out = torch.nn.Linear(dim_b, dim_b) - - if use_rms_norm: - self.norm_q_a = RMSNorm(head_dim, eps=1e-6) - self.norm_k_a = RMSNorm(head_dim, eps=1e-6) - self.norm_q_b = RMSNorm(head_dim, eps=1e-6) - self.norm_k_b = RMSNorm(head_dim, eps=1e-6) - else: - self.norm_q_a = None - self.norm_k_a = None - self.norm_q_b = None - self.norm_k_b = None - - - def process_qkv(self, hidden_states, to_qkv, norm_q, norm_k): - batch_size = hidden_states.shape[0] - qkv = to_qkv(hidden_states) - qkv = qkv.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2) - q, k, v = qkv.chunk(3, dim=1) - if norm_q is not None: - q = norm_q(q) - if norm_k is not None: - k = norm_k(k) - return q, k, v - - - def forward(self, hidden_states_a, hidden_states_b): - batch_size = hidden_states_a.shape[0] - - qa, ka, va = self.process_qkv(hidden_states_a, self.a_to_qkv, self.norm_q_a, self.norm_k_a) - qb, kb, vb = self.process_qkv(hidden_states_b, self.b_to_qkv, self.norm_q_b, self.norm_k_b) - q = torch.concat([qa, qb], dim=2) - k = torch.concat([ka, kb], dim=2) - v = torch.concat([va, vb], dim=2) - - hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v) - hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) - hidden_states = hidden_states.to(q.dtype) - hidden_states_a, hidden_states_b = hidden_states[:, :hidden_states_a.shape[1]], hidden_states[:, hidden_states_a.shape[1]:] - hidden_states_a = self.a_to_out(hidden_states_a) - if self.only_out_a: - return hidden_states_a - else: - hidden_states_b = self.b_to_out(hidden_states_b) - return hidden_states_a, hidden_states_b - - - -class SingleAttention(torch.nn.Module): - def __init__(self, dim_a, num_heads, head_dim, use_rms_norm=False): - super().__init__() - self.num_heads = num_heads - self.head_dim = head_dim - - self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3) - self.a_to_out = torch.nn.Linear(dim_a, dim_a) - - if use_rms_norm: - self.norm_q_a = RMSNorm(head_dim, eps=1e-6) - self.norm_k_a = RMSNorm(head_dim, eps=1e-6) - else: - self.norm_q_a = None - self.norm_k_a = None - - - def process_qkv(self, hidden_states, to_qkv, norm_q, norm_k): - batch_size = hidden_states.shape[0] - qkv = to_qkv(hidden_states) - qkv = qkv.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2) - q, k, v = qkv.chunk(3, dim=1) - if norm_q is not None: - q = norm_q(q) - if norm_k is not None: - k = norm_k(k) - return q, k, v - - - def forward(self, hidden_states_a): - batch_size = hidden_states_a.shape[0] - q, k, v = self.process_qkv(hidden_states_a, self.a_to_qkv, self.norm_q_a, self.norm_k_a) - - hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v) - hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) - hidden_states = hidden_states.to(q.dtype) - hidden_states = self.a_to_out(hidden_states) - return hidden_states - - - -class DualTransformerBlock(torch.nn.Module): - def __init__(self, dim, num_attention_heads, use_rms_norm=False): - super().__init__() - self.norm1_a = AdaLayerNorm(dim, dual=True) - self.norm1_b = AdaLayerNorm(dim) - - self.attn = JointAttention(dim, dim, num_attention_heads, dim // num_attention_heads, use_rms_norm=use_rms_norm) - self.attn2 = JointAttention(dim, dim, num_attention_heads, dim // num_attention_heads, use_rms_norm=use_rms_norm) - - self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) - self.ff_a = torch.nn.Sequential( - torch.nn.Linear(dim, dim*4), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(dim*4, dim) - ) - - self.norm2_b = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) - self.ff_b = torch.nn.Sequential( - torch.nn.Linear(dim, dim*4), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(dim*4, dim) - ) - - - def forward(self, hidden_states_a, hidden_states_b, temb): - norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a, norm_hidden_states_a_2, gate_msa_a_2 = self.norm1_a(hidden_states_a, emb=temb) - norm_hidden_states_b, gate_msa_b, shift_mlp_b, scale_mlp_b, gate_mlp_b = self.norm1_b(hidden_states_b, emb=temb) - - # Attention - attn_output_a, attn_output_b = self.attn(norm_hidden_states_a, norm_hidden_states_b) - - # Part A - hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a - hidden_states_a = hidden_states_a + gate_msa_a_2 * self.attn2(norm_hidden_states_a_2) - norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a - hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a) - - # Part B - hidden_states_b = hidden_states_b + gate_msa_b * attn_output_b - norm_hidden_states_b = self.norm2_b(hidden_states_b) * (1 + scale_mlp_b) + shift_mlp_b - hidden_states_b = hidden_states_b + gate_mlp_b * self.ff_b(norm_hidden_states_b) - - return hidden_states_a, hidden_states_b - - - -class JointTransformerBlock(torch.nn.Module): - def __init__(self, dim, num_attention_heads, use_rms_norm=False, dual=False): - super().__init__() - self.norm1_a = AdaLayerNorm(dim, dual=dual) - self.norm1_b = AdaLayerNorm(dim) - - self.attn = JointAttention(dim, dim, num_attention_heads, dim // num_attention_heads, use_rms_norm=use_rms_norm) - if dual: - self.attn2 = SingleAttention(dim, num_attention_heads, dim // num_attention_heads, use_rms_norm=use_rms_norm) - - self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) - self.ff_a = torch.nn.Sequential( - torch.nn.Linear(dim, dim*4), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(dim*4, dim) - ) - - self.norm2_b = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) - self.ff_b = torch.nn.Sequential( - torch.nn.Linear(dim, dim*4), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(dim*4, dim) - ) - - - def forward(self, hidden_states_a, hidden_states_b, temb): - if self.norm1_a.dual: - norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a, norm_hidden_states_a_2, gate_msa_a_2 = self.norm1_a(hidden_states_a, emb=temb) - else: - norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a = self.norm1_a(hidden_states_a, emb=temb) - norm_hidden_states_b, gate_msa_b, shift_mlp_b, scale_mlp_b, gate_mlp_b = self.norm1_b(hidden_states_b, emb=temb) - - # Attention - attn_output_a, attn_output_b = self.attn(norm_hidden_states_a, norm_hidden_states_b) - - # Part A - hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a - if self.norm1_a.dual: - hidden_states_a = hidden_states_a + gate_msa_a_2 * self.attn2(norm_hidden_states_a_2) - norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a - hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a) - - # Part B - hidden_states_b = hidden_states_b + gate_msa_b * attn_output_b - norm_hidden_states_b = self.norm2_b(hidden_states_b) * (1 + scale_mlp_b) + shift_mlp_b - hidden_states_b = hidden_states_b + gate_mlp_b * self.ff_b(norm_hidden_states_b) - - return hidden_states_a, hidden_states_b - - - -class JointTransformerFinalBlock(torch.nn.Module): - def __init__(self, dim, num_attention_heads, use_rms_norm=False): - super().__init__() - self.norm1_a = AdaLayerNorm(dim) - self.norm1_b = AdaLayerNorm(dim, single=True) - - self.attn = JointAttention(dim, dim, num_attention_heads, dim // num_attention_heads, only_out_a=True, use_rms_norm=use_rms_norm) - - self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) - self.ff_a = torch.nn.Sequential( - torch.nn.Linear(dim, dim*4), - torch.nn.GELU(approximate="tanh"), - torch.nn.Linear(dim*4, dim) - ) - - - def forward(self, hidden_states_a, hidden_states_b, temb): - norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a = self.norm1_a(hidden_states_a, emb=temb) - norm_hidden_states_b = self.norm1_b(hidden_states_b, emb=temb) - - # Attention - attn_output_a = self.attn(norm_hidden_states_a, norm_hidden_states_b) - - # Part A - hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a - norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a - hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a) - - return hidden_states_a, hidden_states_b - - - -class SD3DiT(torch.nn.Module): - def __init__(self, embed_dim=1536, num_layers=24, use_rms_norm=False, num_dual_blocks=0, pos_embed_max_size=192): - super().__init__() - self.pos_embedder = PatchEmbed(patch_size=2, in_channels=16, embed_dim=embed_dim, pos_embed_max_size=pos_embed_max_size) - self.time_embedder = TimestepEmbeddings(256, embed_dim) - self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(2048, embed_dim), torch.nn.SiLU(), torch.nn.Linear(embed_dim, embed_dim)) - self.context_embedder = torch.nn.Linear(4096, embed_dim) - self.blocks = torch.nn.ModuleList([JointTransformerBlock(embed_dim, embed_dim//64, use_rms_norm=use_rms_norm, dual=True) for _ in range(num_dual_blocks)] - + [JointTransformerBlock(embed_dim, embed_dim//64, use_rms_norm=use_rms_norm) for _ in range(num_layers-1-num_dual_blocks)] - + [JointTransformerFinalBlock(embed_dim, embed_dim//64, use_rms_norm=use_rms_norm)]) - self.norm_out = AdaLayerNorm(embed_dim, single=True) - self.proj_out = torch.nn.Linear(embed_dim, 64) - - def tiled_forward(self, hidden_states, timestep, prompt_emb, pooled_prompt_emb, tile_size=128, tile_stride=64): - # Due to the global positional embedding, we cannot implement layer-wise tiled forward. - hidden_states = TileWorker().tiled_forward( - lambda x: self.forward(x, timestep, prompt_emb, pooled_prompt_emb), - hidden_states, - tile_size, - tile_stride, - tile_device=hidden_states.device, - tile_dtype=hidden_states.dtype - ) - return hidden_states - - def forward(self, hidden_states, timestep, prompt_emb, pooled_prompt_emb, tiled=False, tile_size=128, tile_stride=64, use_gradient_checkpointing=False): - if tiled: - return self.tiled_forward(hidden_states, timestep, prompt_emb, pooled_prompt_emb, tile_size, tile_stride) - conditioning = self.time_embedder(timestep, hidden_states.dtype) + self.pooled_text_embedder(pooled_prompt_emb) - prompt_emb = self.context_embedder(prompt_emb) - - height, width = hidden_states.shape[-2:] - hidden_states = self.pos_embedder(hidden_states) - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - return custom_forward - - for block in self.blocks: - if self.training and use_gradient_checkpointing: - hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - hidden_states, prompt_emb, conditioning, - use_reentrant=False, - ) - else: - hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning) - - hidden_states = self.norm_out(hidden_states, conditioning) - hidden_states = self.proj_out(hidden_states) - hidden_states = rearrange(hidden_states, "B (H W) (P Q C) -> B C (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2) - return hidden_states - - @staticmethod - def state_dict_converter(): - return SD3DiTStateDictConverter() - - - -class SD3DiTStateDictConverter: - def __init__(self): - pass - - def infer_architecture(self, state_dict): - embed_dim = state_dict["blocks.0.ff_a.0.weight"].shape[1] - num_layers = 100 - while num_layers > 0 and f"blocks.{num_layers-1}.ff_a.0.bias" not in state_dict: - num_layers -= 1 - use_rms_norm = "blocks.0.attn.norm_q_a.weight" in state_dict - num_dual_blocks = 0 - while f"blocks.{num_dual_blocks}.attn2.a_to_out.bias" in state_dict: - num_dual_blocks += 1 - pos_embed_max_size = state_dict["pos_embedder.pos_embed"].shape[1] - return { - "embed_dim": embed_dim, - "num_layers": num_layers, - "use_rms_norm": use_rms_norm, - "num_dual_blocks": num_dual_blocks, - "pos_embed_max_size": pos_embed_max_size - } - - def from_diffusers(self, state_dict): - rename_dict = { - "context_embedder": "context_embedder", - "pos_embed.pos_embed": "pos_embedder.pos_embed", - "pos_embed.proj": "pos_embedder.proj", - "time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0", - "time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2", - "time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0", - "time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2", - "norm_out.linear": "norm_out.linear", - "proj_out": "proj_out", - - "norm1.linear": "norm1_a.linear", - "norm1_context.linear": "norm1_b.linear", - "attn.to_q": "attn.a_to_q", - "attn.to_k": "attn.a_to_k", - "attn.to_v": "attn.a_to_v", - "attn.to_out.0": "attn.a_to_out", - "attn.add_q_proj": "attn.b_to_q", - "attn.add_k_proj": "attn.b_to_k", - "attn.add_v_proj": "attn.b_to_v", - "attn.to_add_out": "attn.b_to_out", - "ff.net.0.proj": "ff_a.0", - "ff.net.2": "ff_a.2", - "ff_context.net.0.proj": "ff_b.0", - "ff_context.net.2": "ff_b.2", - - "attn.norm_q": "attn.norm_q_a", - "attn.norm_k": "attn.norm_k_a", - "attn.norm_added_q": "attn.norm_q_b", - "attn.norm_added_k": "attn.norm_k_b", - } - state_dict_ = {} - for name, param in state_dict.items(): - if name in rename_dict: - if name == "pos_embed.pos_embed": - param = param.reshape((1, 192, 192, param.shape[-1])) - state_dict_[rename_dict[name]] = param - elif name.endswith(".weight") or name.endswith(".bias"): - suffix = ".weight" if name.endswith(".weight") else ".bias" - prefix = name[:-len(suffix)] - if prefix in rename_dict: - state_dict_[rename_dict[prefix] + suffix] = param - elif prefix.startswith("transformer_blocks."): - names = prefix.split(".") - names[0] = "blocks" - middle = ".".join(names[2:]) - if middle in rename_dict: - name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]]) - state_dict_[name_] = param - merged_keys = [name for name in state_dict_ if ".a_to_q." in name or ".b_to_q." in name] - for key in merged_keys: - param = torch.concat([ - state_dict_[key.replace("to_q", "to_q")], - state_dict_[key.replace("to_q", "to_k")], - state_dict_[key.replace("to_q", "to_v")], - ], dim=0) - name = key.replace("to_q", "to_qkv") - state_dict_.pop(key.replace("to_q", "to_q")) - state_dict_.pop(key.replace("to_q", "to_k")) - state_dict_.pop(key.replace("to_q", "to_v")) - state_dict_[name] = param - return state_dict_, self.infer_architecture(state_dict_) - - def from_civitai(self, state_dict): - rename_dict = { - "model.diffusion_model.context_embedder.bias": "context_embedder.bias", - "model.diffusion_model.context_embedder.weight": "context_embedder.weight", - "model.diffusion_model.final_layer.linear.bias": "proj_out.bias", - "model.diffusion_model.final_layer.linear.weight": "proj_out.weight", - - "model.diffusion_model.pos_embed": "pos_embedder.pos_embed", - "model.diffusion_model.t_embedder.mlp.0.bias": "time_embedder.timestep_embedder.0.bias", - "model.diffusion_model.t_embedder.mlp.0.weight": "time_embedder.timestep_embedder.0.weight", - "model.diffusion_model.t_embedder.mlp.2.bias": "time_embedder.timestep_embedder.2.bias", - "model.diffusion_model.t_embedder.mlp.2.weight": "time_embedder.timestep_embedder.2.weight", - "model.diffusion_model.x_embedder.proj.bias": "pos_embedder.proj.bias", - "model.diffusion_model.x_embedder.proj.weight": "pos_embedder.proj.weight", - "model.diffusion_model.y_embedder.mlp.0.bias": "pooled_text_embedder.0.bias", - "model.diffusion_model.y_embedder.mlp.0.weight": "pooled_text_embedder.0.weight", - "model.diffusion_model.y_embedder.mlp.2.bias": "pooled_text_embedder.2.bias", - "model.diffusion_model.y_embedder.mlp.2.weight": "pooled_text_embedder.2.weight", - - "model.diffusion_model.joint_blocks.23.context_block.adaLN_modulation.1.weight": "blocks.23.norm1_b.linear.weight", - "model.diffusion_model.joint_blocks.23.context_block.adaLN_modulation.1.bias": "blocks.23.norm1_b.linear.bias", - "model.diffusion_model.final_layer.adaLN_modulation.1.weight": "norm_out.linear.weight", - "model.diffusion_model.final_layer.adaLN_modulation.1.bias": "norm_out.linear.bias", - } - for i in range(40): - rename_dict.update({ - f"model.diffusion_model.joint_blocks.{i}.context_block.adaLN_modulation.1.bias": f"blocks.{i}.norm1_b.linear.bias", - f"model.diffusion_model.joint_blocks.{i}.context_block.adaLN_modulation.1.weight": f"blocks.{i}.norm1_b.linear.weight", - f"model.diffusion_model.joint_blocks.{i}.context_block.attn.proj.bias": f"blocks.{i}.attn.b_to_out.bias", - f"model.diffusion_model.joint_blocks.{i}.context_block.attn.proj.weight": f"blocks.{i}.attn.b_to_out.weight", - f"model.diffusion_model.joint_blocks.{i}.context_block.attn.qkv.bias": [f'blocks.{i}.attn.b_to_q.bias', f'blocks.{i}.attn.b_to_k.bias', f'blocks.{i}.attn.b_to_v.bias'], - f"model.diffusion_model.joint_blocks.{i}.context_block.attn.qkv.weight": [f'blocks.{i}.attn.b_to_q.weight', f'blocks.{i}.attn.b_to_k.weight', f'blocks.{i}.attn.b_to_v.weight'], - f"model.diffusion_model.joint_blocks.{i}.context_block.mlp.fc1.bias": f"blocks.{i}.ff_b.0.bias", - f"model.diffusion_model.joint_blocks.{i}.context_block.mlp.fc1.weight": f"blocks.{i}.ff_b.0.weight", - f"model.diffusion_model.joint_blocks.{i}.context_block.mlp.fc2.bias": f"blocks.{i}.ff_b.2.bias", - f"model.diffusion_model.joint_blocks.{i}.context_block.mlp.fc2.weight": f"blocks.{i}.ff_b.2.weight", - f"model.diffusion_model.joint_blocks.{i}.x_block.adaLN_modulation.1.bias": f"blocks.{i}.norm1_a.linear.bias", - f"model.diffusion_model.joint_blocks.{i}.x_block.adaLN_modulation.1.weight": f"blocks.{i}.norm1_a.linear.weight", - f"model.diffusion_model.joint_blocks.{i}.x_block.attn.proj.bias": f"blocks.{i}.attn.a_to_out.bias", - f"model.diffusion_model.joint_blocks.{i}.x_block.attn.proj.weight": f"blocks.{i}.attn.a_to_out.weight", - f"model.diffusion_model.joint_blocks.{i}.x_block.attn.qkv.bias": [f'blocks.{i}.attn.a_to_q.bias', f'blocks.{i}.attn.a_to_k.bias', f'blocks.{i}.attn.a_to_v.bias'], - f"model.diffusion_model.joint_blocks.{i}.x_block.attn.qkv.weight": [f'blocks.{i}.attn.a_to_q.weight', f'blocks.{i}.attn.a_to_k.weight', f'blocks.{i}.attn.a_to_v.weight'], - f"model.diffusion_model.joint_blocks.{i}.x_block.mlp.fc1.bias": f"blocks.{i}.ff_a.0.bias", - f"model.diffusion_model.joint_blocks.{i}.x_block.mlp.fc1.weight": f"blocks.{i}.ff_a.0.weight", - f"model.diffusion_model.joint_blocks.{i}.x_block.mlp.fc2.bias": f"blocks.{i}.ff_a.2.bias", - f"model.diffusion_model.joint_blocks.{i}.x_block.mlp.fc2.weight": f"blocks.{i}.ff_a.2.weight", - f"model.diffusion_model.joint_blocks.{i}.x_block.attn.ln_q.weight": f"blocks.{i}.attn.norm_q_a.weight", - f"model.diffusion_model.joint_blocks.{i}.x_block.attn.ln_k.weight": f"blocks.{i}.attn.norm_k_a.weight", - f"model.diffusion_model.joint_blocks.{i}.context_block.attn.ln_q.weight": f"blocks.{i}.attn.norm_q_b.weight", - f"model.diffusion_model.joint_blocks.{i}.context_block.attn.ln_k.weight": f"blocks.{i}.attn.norm_k_b.weight", - - f"model.diffusion_model.joint_blocks.{i}.x_block.attn2.ln_q.weight": f"blocks.{i}.attn2.norm_q_a.weight", - f"model.diffusion_model.joint_blocks.{i}.x_block.attn2.ln_k.weight": f"blocks.{i}.attn2.norm_k_a.weight", - f"model.diffusion_model.joint_blocks.{i}.x_block.attn2.qkv.weight": f"blocks.{i}.attn2.a_to_qkv.weight", - f"model.diffusion_model.joint_blocks.{i}.x_block.attn2.qkv.bias": f"blocks.{i}.attn2.a_to_qkv.bias", - f"model.diffusion_model.joint_blocks.{i}.x_block.attn2.proj.weight": f"blocks.{i}.attn2.a_to_out.weight", - f"model.diffusion_model.joint_blocks.{i}.x_block.attn2.proj.bias": f"blocks.{i}.attn2.a_to_out.bias", - }) - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "model.diffusion_model.pos_embed": - pos_embed_max_size = int(param.shape[1] ** 0.5 + 0.4) - param = param.reshape((1, pos_embed_max_size, pos_embed_max_size, param.shape[-1])) - if isinstance(rename_dict[name], str): - state_dict_[rename_dict[name]] = param - else: - name_ = rename_dict[name][0].replace(".a_to_q.", ".a_to_qkv.").replace(".b_to_q.", ".b_to_qkv.") - state_dict_[name_] = param - extra_kwargs = self.infer_architecture(state_dict_) - num_layers = extra_kwargs["num_layers"] - for name in [ - f"blocks.{num_layers-1}.norm1_b.linear.weight", f"blocks.{num_layers-1}.norm1_b.linear.bias", "norm_out.linear.weight", "norm_out.linear.bias", - ]: - param = state_dict_[name] - dim = param.shape[0] // 2 - param = torch.concat([param[dim:], param[:dim]], axis=0) - state_dict_[name] = param - return state_dict_, self.infer_architecture(state_dict_) diff --git a/diffsynth/models/sd3_text_encoder.py b/diffsynth/models/sd3_text_encoder.py deleted file mode 100644 index efe29ca8ae99586ae197ee633a9c3d7f2c074f77..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd3_text_encoder.py +++ /dev/null @@ -1,1120 +0,0 @@ -import torch -from transformers import T5EncoderModel, T5Config -from .sd_text_encoder import SDTextEncoder -from .sdxl_text_encoder import SDXLTextEncoder2, SDXLTextEncoder2StateDictConverter - - -class SD3TextEncoder1(SDTextEncoder): - def __init__(self, vocab_size=49408): - super().__init__(vocab_size=vocab_size) - - def forward(self, input_ids, clip_skip=2, extra_mask=None): - embeds = self.token_embedding(input_ids) - embeds = embeds + self.position_embeds.to(dtype=embeds.dtype, device=input_ids.device) - attn_mask = self.attn_mask.to(device=embeds.device, dtype=embeds.dtype) - if extra_mask is not None: - attn_mask[:, extra_mask[0]==0] = float("-inf") - for encoder_id, encoder in enumerate(self.encoders): - embeds = encoder(embeds, attn_mask=attn_mask) - if encoder_id + clip_skip == len(self.encoders): - hidden_states = embeds - embeds = self.final_layer_norm(embeds) - pooled_embeds = embeds[torch.arange(embeds.shape[0]), input_ids.to(dtype=torch.int).argmax(dim=-1)] - return pooled_embeds, hidden_states - - @staticmethod - def state_dict_converter(): - return SD3TextEncoder1StateDictConverter() - - - -class SD3TextEncoder2(SDXLTextEncoder2): - def __init__(self): - super().__init__() - - @staticmethod - def state_dict_converter(): - return SD3TextEncoder2StateDictConverter() - - -class SD3TextEncoder3(T5EncoderModel): - def __init__(self): - config = T5Config( - _name_or_path = ".", - architectures = ["T5EncoderModel"], - classifier_dropout = 0.0, - d_ff = 10240, - d_kv = 64, - d_model = 4096, - decoder_start_token_id = 0, - dense_act_fn = "gelu_new", - dropout_rate = 0.1, - eos_token_id = 1, - feed_forward_proj = "gated-gelu", - initializer_factor = 1.0, - is_encoder_decoder = True, - is_gated_act = True, - layer_norm_epsilon = 1e-06, - model_type = "t5", - num_decoder_layers = 24, - num_heads = 64, - num_layers = 24, - output_past = True, - pad_token_id = 0, - relative_attention_max_distance = 128, - relative_attention_num_buckets = 32, - tie_word_embeddings = False, - torch_dtype = torch.float16, - transformers_version = "4.41.2", - use_cache = True, - vocab_size = 32128 - ) - super().__init__(config) - self.eval() - - def forward(self, input_ids): - outputs = super().forward(input_ids=input_ids) - prompt_emb = outputs.last_hidden_state - return prompt_emb - - @staticmethod - def state_dict_converter(): - return SD3TextEncoder3StateDictConverter() - - - -class SD3TextEncoder1StateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - rename_dict = { - "text_model.embeddings.token_embedding.weight": "token_embedding.weight", - "text_model.embeddings.position_embedding.weight": "position_embeds", - "text_model.final_layer_norm.weight": "final_layer_norm.weight", - "text_model.final_layer_norm.bias": "final_layer_norm.bias", - } - attn_rename_dict = { - "self_attn.q_proj": "attn.to_q", - "self_attn.k_proj": "attn.to_k", - "self_attn.v_proj": "attn.to_v", - "self_attn.out_proj": "attn.to_out", - "layer_norm1": "layer_norm1", - "layer_norm2": "layer_norm2", - "mlp.fc1": "fc1", - "mlp.fc2": "fc2", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "text_model.embeddings.position_embedding.weight": - param = param.reshape((1, param.shape[0], param.shape[1])) - state_dict_[rename_dict[name]] = param - elif name.startswith("text_model.encoder.layers."): - param = state_dict[name] - names = name.split(".") - layer_id, layer_type, tail = names[3], ".".join(names[4:-1]), names[-1] - name_ = ".".join(["encoders", layer_id, attn_rename_dict[layer_type], tail]) - state_dict_[name_] = param - return state_dict_ - - def from_civitai(self, state_dict): - rename_dict = { - "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight": "position_embeds", - "text_encoders.clip_l.transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.layer_norm1.bias": "encoders.0.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.layer_norm1.weight": "encoders.0.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.layer_norm2.bias": "encoders.0.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.layer_norm2.weight": "encoders.0.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.mlp.fc1.bias": "encoders.0.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.mlp.fc1.weight": "encoders.0.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.mlp.fc2.bias": "encoders.0.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.mlp.fc2.weight": "encoders.0.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.self_attn.k_proj.bias": "encoders.0.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.self_attn.k_proj.weight": "encoders.0.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.self_attn.out_proj.bias": "encoders.0.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.self_attn.out_proj.weight": "encoders.0.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.self_attn.q_proj.bias": "encoders.0.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.self_attn.q_proj.weight": "encoders.0.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.self_attn.v_proj.bias": "encoders.0.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.0.self_attn.v_proj.weight": "encoders.0.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.layer_norm1.bias": "encoders.1.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.layer_norm1.weight": "encoders.1.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.layer_norm2.bias": "encoders.1.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.layer_norm2.weight": "encoders.1.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.mlp.fc1.bias": "encoders.1.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.mlp.fc1.weight": "encoders.1.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.mlp.fc2.bias": "encoders.1.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.mlp.fc2.weight": "encoders.1.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.self_attn.k_proj.bias": "encoders.1.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.self_attn.k_proj.weight": "encoders.1.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.self_attn.out_proj.bias": "encoders.1.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.self_attn.out_proj.weight": "encoders.1.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.self_attn.q_proj.bias": "encoders.1.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.self_attn.q_proj.weight": "encoders.1.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.self_attn.v_proj.bias": "encoders.1.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.1.self_attn.v_proj.weight": "encoders.1.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.layer_norm1.bias": "encoders.10.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.layer_norm1.weight": "encoders.10.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.layer_norm2.bias": "encoders.10.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.layer_norm2.weight": "encoders.10.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.mlp.fc1.bias": "encoders.10.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.mlp.fc1.weight": "encoders.10.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.mlp.fc2.bias": "encoders.10.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.mlp.fc2.weight": "encoders.10.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.self_attn.k_proj.bias": "encoders.10.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.self_attn.k_proj.weight": "encoders.10.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.self_attn.out_proj.bias": "encoders.10.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.self_attn.out_proj.weight": "encoders.10.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.self_attn.q_proj.bias": "encoders.10.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.self_attn.q_proj.weight": "encoders.10.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.self_attn.v_proj.bias": "encoders.10.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.10.self_attn.v_proj.weight": "encoders.10.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.layer_norm1.bias": "encoders.11.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.layer_norm1.weight": "encoders.11.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.layer_norm2.bias": "encoders.11.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.layer_norm2.weight": "encoders.11.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.mlp.fc1.bias": "encoders.11.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.mlp.fc1.weight": "encoders.11.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.mlp.fc2.bias": "encoders.11.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.mlp.fc2.weight": "encoders.11.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.self_attn.k_proj.bias": "encoders.11.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.self_attn.k_proj.weight": "encoders.11.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.self_attn.out_proj.bias": "encoders.11.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.self_attn.out_proj.weight": "encoders.11.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.self_attn.q_proj.bias": "encoders.11.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.self_attn.q_proj.weight": "encoders.11.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.self_attn.v_proj.bias": "encoders.11.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.11.self_attn.v_proj.weight": "encoders.11.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.layer_norm1.bias": "encoders.2.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.layer_norm1.weight": "encoders.2.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.layer_norm2.bias": "encoders.2.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.layer_norm2.weight": "encoders.2.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.mlp.fc1.bias": "encoders.2.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.mlp.fc1.weight": "encoders.2.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.mlp.fc2.bias": "encoders.2.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.mlp.fc2.weight": "encoders.2.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias": "encoders.2.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.self_attn.k_proj.weight": "encoders.2.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.self_attn.out_proj.bias": "encoders.2.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.self_attn.out_proj.weight": "encoders.2.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.self_attn.q_proj.bias": "encoders.2.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.self_attn.q_proj.weight": "encoders.2.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.self_attn.v_proj.bias": "encoders.2.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.2.self_attn.v_proj.weight": "encoders.2.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.layer_norm1.bias": "encoders.3.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.layer_norm1.weight": "encoders.3.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.layer_norm2.bias": "encoders.3.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.layer_norm2.weight": "encoders.3.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.mlp.fc1.bias": "encoders.3.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.mlp.fc1.weight": "encoders.3.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.mlp.fc2.bias": "encoders.3.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.mlp.fc2.weight": "encoders.3.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias": "encoders.3.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.self_attn.k_proj.weight": "encoders.3.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.self_attn.out_proj.bias": "encoders.3.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.self_attn.out_proj.weight": "encoders.3.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.self_attn.q_proj.bias": "encoders.3.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.self_attn.q_proj.weight": "encoders.3.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.self_attn.v_proj.bias": "encoders.3.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.3.self_attn.v_proj.weight": "encoders.3.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.layer_norm1.bias": "encoders.4.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.layer_norm1.weight": "encoders.4.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.layer_norm2.bias": "encoders.4.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.layer_norm2.weight": "encoders.4.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.mlp.fc1.bias": "encoders.4.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.mlp.fc1.weight": "encoders.4.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.mlp.fc2.bias": "encoders.4.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.mlp.fc2.weight": "encoders.4.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.self_attn.k_proj.bias": "encoders.4.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.self_attn.k_proj.weight": "encoders.4.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.self_attn.out_proj.bias": "encoders.4.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.self_attn.out_proj.weight": "encoders.4.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.self_attn.q_proj.bias": "encoders.4.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.self_attn.q_proj.weight": "encoders.4.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.self_attn.v_proj.bias": "encoders.4.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.4.self_attn.v_proj.weight": "encoders.4.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.layer_norm1.bias": "encoders.5.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.layer_norm1.weight": "encoders.5.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.layer_norm2.bias": "encoders.5.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.layer_norm2.weight": "encoders.5.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.mlp.fc1.bias": "encoders.5.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.mlp.fc1.weight": "encoders.5.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.mlp.fc2.bias": "encoders.5.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.mlp.fc2.weight": "encoders.5.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.self_attn.k_proj.bias": "encoders.5.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.self_attn.k_proj.weight": "encoders.5.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.self_attn.out_proj.bias": "encoders.5.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.self_attn.out_proj.weight": "encoders.5.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.self_attn.q_proj.bias": "encoders.5.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.self_attn.q_proj.weight": "encoders.5.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.self_attn.v_proj.bias": "encoders.5.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.5.self_attn.v_proj.weight": "encoders.5.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.layer_norm1.bias": "encoders.6.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.layer_norm1.weight": "encoders.6.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.layer_norm2.bias": "encoders.6.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.layer_norm2.weight": "encoders.6.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.mlp.fc1.bias": "encoders.6.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.mlp.fc1.weight": "encoders.6.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.mlp.fc2.bias": "encoders.6.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.mlp.fc2.weight": "encoders.6.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.self_attn.k_proj.bias": "encoders.6.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.self_attn.k_proj.weight": "encoders.6.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.self_attn.out_proj.bias": "encoders.6.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.self_attn.out_proj.weight": "encoders.6.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.self_attn.q_proj.bias": "encoders.6.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.self_attn.q_proj.weight": "encoders.6.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.self_attn.v_proj.bias": "encoders.6.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.6.self_attn.v_proj.weight": "encoders.6.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.layer_norm1.bias": "encoders.7.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.layer_norm1.weight": "encoders.7.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.layer_norm2.bias": "encoders.7.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.layer_norm2.weight": "encoders.7.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.mlp.fc1.bias": "encoders.7.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.mlp.fc1.weight": "encoders.7.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.mlp.fc2.bias": "encoders.7.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.mlp.fc2.weight": "encoders.7.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.self_attn.k_proj.bias": "encoders.7.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.self_attn.k_proj.weight": "encoders.7.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.self_attn.out_proj.bias": "encoders.7.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.self_attn.out_proj.weight": "encoders.7.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.self_attn.q_proj.bias": "encoders.7.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.self_attn.q_proj.weight": "encoders.7.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.self_attn.v_proj.bias": "encoders.7.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.7.self_attn.v_proj.weight": "encoders.7.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.layer_norm1.bias": "encoders.8.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.layer_norm1.weight": "encoders.8.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.layer_norm2.bias": "encoders.8.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.layer_norm2.weight": "encoders.8.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.mlp.fc1.bias": "encoders.8.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.mlp.fc1.weight": "encoders.8.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.mlp.fc2.bias": "encoders.8.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.mlp.fc2.weight": "encoders.8.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.self_attn.k_proj.bias": "encoders.8.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.self_attn.k_proj.weight": "encoders.8.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.self_attn.out_proj.bias": "encoders.8.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.self_attn.out_proj.weight": "encoders.8.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.self_attn.q_proj.bias": "encoders.8.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.self_attn.q_proj.weight": "encoders.8.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.self_attn.v_proj.bias": "encoders.8.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.8.self_attn.v_proj.weight": "encoders.8.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.layer_norm1.bias": "encoders.9.layer_norm1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.layer_norm1.weight": "encoders.9.layer_norm1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.layer_norm2.bias": "encoders.9.layer_norm2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.layer_norm2.weight": "encoders.9.layer_norm2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.mlp.fc1.bias": "encoders.9.fc1.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.mlp.fc1.weight": "encoders.9.fc1.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.mlp.fc2.bias": "encoders.9.fc2.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.mlp.fc2.weight": "encoders.9.fc2.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.self_attn.k_proj.bias": "encoders.9.attn.to_k.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.self_attn.k_proj.weight": "encoders.9.attn.to_k.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.self_attn.out_proj.bias": "encoders.9.attn.to_out.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.self_attn.out_proj.weight": "encoders.9.attn.to_out.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.self_attn.q_proj.bias": "encoders.9.attn.to_q.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.self_attn.q_proj.weight": "encoders.9.attn.to_q.weight", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.self_attn.v_proj.bias": "encoders.9.attn.to_v.bias", - "text_encoders.clip_l.transformer.text_model.encoder.layers.9.self_attn.v_proj.weight": "encoders.9.attn.to_v.weight", - "text_encoders.clip_l.transformer.text_model.final_layer_norm.bias": "final_layer_norm.bias", - "text_encoders.clip_l.transformer.text_model.final_layer_norm.weight": "final_layer_norm.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "text_encoders.clip_l.transformer.text_model.embeddings.position_embedding.weight": - param = param.reshape((1, param.shape[0], param.shape[1])) - state_dict_[rename_dict[name]] = param - elif ("text_encoders.clip_l.transformer." + name) in rename_dict: - param = state_dict[name] - if name == "text_model.embeddings.position_embedding.weight": - param = param.reshape((1, param.shape[0], param.shape[1])) - state_dict_[rename_dict["text_encoders.clip_l.transformer." + name]] = param - return state_dict_ - - - -class SD3TextEncoder2StateDictConverter(SDXLTextEncoder2StateDictConverter): - def __init__(self): - pass - - def from_diffusers(self, state_dict): - return super().from_diffusers(state_dict) - - def from_civitai(self, state_dict): - rename_dict = { - "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight": "position_embeds", - "text_encoders.clip_g.transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.layer_norm1.bias": "encoders.0.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.layer_norm1.weight": "encoders.0.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.layer_norm2.bias": "encoders.0.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.layer_norm2.weight": "encoders.0.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.mlp.fc1.bias": "encoders.0.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.mlp.fc1.weight": "encoders.0.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.mlp.fc2.bias": "encoders.0.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.mlp.fc2.weight": "encoders.0.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.self_attn.k_proj.bias": "encoders.0.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.self_attn.k_proj.weight": "encoders.0.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.self_attn.out_proj.bias": "encoders.0.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.self_attn.out_proj.weight": "encoders.0.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.self_attn.q_proj.bias": "encoders.0.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.self_attn.q_proj.weight": "encoders.0.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.self_attn.v_proj.bias": "encoders.0.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.0.self_attn.v_proj.weight": "encoders.0.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.layer_norm1.bias": "encoders.1.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.layer_norm1.weight": "encoders.1.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.layer_norm2.bias": "encoders.1.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.layer_norm2.weight": "encoders.1.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.mlp.fc1.bias": "encoders.1.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.mlp.fc1.weight": "encoders.1.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.mlp.fc2.bias": "encoders.1.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.mlp.fc2.weight": "encoders.1.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.self_attn.k_proj.bias": "encoders.1.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.self_attn.k_proj.weight": "encoders.1.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.self_attn.out_proj.bias": "encoders.1.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.self_attn.out_proj.weight": "encoders.1.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.self_attn.q_proj.bias": "encoders.1.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.self_attn.q_proj.weight": "encoders.1.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.self_attn.v_proj.bias": "encoders.1.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.1.self_attn.v_proj.weight": "encoders.1.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.layer_norm1.bias": "encoders.10.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.layer_norm1.weight": "encoders.10.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.layer_norm2.bias": "encoders.10.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.layer_norm2.weight": "encoders.10.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.mlp.fc1.bias": "encoders.10.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.mlp.fc1.weight": "encoders.10.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.mlp.fc2.bias": "encoders.10.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.mlp.fc2.weight": "encoders.10.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.self_attn.k_proj.bias": "encoders.10.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.self_attn.k_proj.weight": "encoders.10.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.self_attn.out_proj.bias": "encoders.10.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.self_attn.out_proj.weight": "encoders.10.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.self_attn.q_proj.bias": "encoders.10.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.self_attn.q_proj.weight": "encoders.10.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.self_attn.v_proj.bias": "encoders.10.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.10.self_attn.v_proj.weight": "encoders.10.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.layer_norm1.bias": "encoders.11.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.layer_norm1.weight": "encoders.11.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.layer_norm2.bias": "encoders.11.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.layer_norm2.weight": "encoders.11.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.mlp.fc1.bias": "encoders.11.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.mlp.fc1.weight": "encoders.11.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.mlp.fc2.bias": "encoders.11.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.mlp.fc2.weight": "encoders.11.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.self_attn.k_proj.bias": "encoders.11.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.self_attn.k_proj.weight": "encoders.11.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.self_attn.out_proj.bias": "encoders.11.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.self_attn.out_proj.weight": "encoders.11.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.self_attn.q_proj.bias": "encoders.11.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.self_attn.q_proj.weight": "encoders.11.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.self_attn.v_proj.bias": "encoders.11.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.11.self_attn.v_proj.weight": "encoders.11.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.layer_norm1.bias": "encoders.12.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.layer_norm1.weight": "encoders.12.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.layer_norm2.bias": "encoders.12.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.layer_norm2.weight": "encoders.12.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.mlp.fc1.bias": "encoders.12.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.mlp.fc1.weight": "encoders.12.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.mlp.fc2.bias": "encoders.12.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.mlp.fc2.weight": "encoders.12.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.self_attn.k_proj.bias": "encoders.12.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.self_attn.k_proj.weight": "encoders.12.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.self_attn.out_proj.bias": "encoders.12.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.self_attn.out_proj.weight": "encoders.12.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.self_attn.q_proj.bias": "encoders.12.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.self_attn.q_proj.weight": "encoders.12.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.self_attn.v_proj.bias": "encoders.12.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.12.self_attn.v_proj.weight": "encoders.12.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.layer_norm1.bias": "encoders.13.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.layer_norm1.weight": "encoders.13.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.layer_norm2.bias": "encoders.13.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.layer_norm2.weight": "encoders.13.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.mlp.fc1.bias": "encoders.13.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.mlp.fc1.weight": "encoders.13.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.mlp.fc2.bias": "encoders.13.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.mlp.fc2.weight": "encoders.13.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.self_attn.k_proj.bias": "encoders.13.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.self_attn.k_proj.weight": "encoders.13.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.self_attn.out_proj.bias": "encoders.13.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.self_attn.out_proj.weight": "encoders.13.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.self_attn.q_proj.bias": "encoders.13.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.self_attn.q_proj.weight": "encoders.13.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.self_attn.v_proj.bias": "encoders.13.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.13.self_attn.v_proj.weight": "encoders.13.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.layer_norm1.bias": "encoders.14.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.layer_norm1.weight": "encoders.14.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.layer_norm2.bias": "encoders.14.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.layer_norm2.weight": "encoders.14.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.mlp.fc1.bias": "encoders.14.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.mlp.fc1.weight": "encoders.14.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.mlp.fc2.bias": "encoders.14.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.mlp.fc2.weight": "encoders.14.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.self_attn.k_proj.bias": "encoders.14.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.self_attn.k_proj.weight": "encoders.14.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.self_attn.out_proj.bias": "encoders.14.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.self_attn.out_proj.weight": "encoders.14.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.self_attn.q_proj.bias": "encoders.14.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.self_attn.q_proj.weight": "encoders.14.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.self_attn.v_proj.bias": "encoders.14.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.14.self_attn.v_proj.weight": "encoders.14.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.layer_norm1.bias": "encoders.15.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.layer_norm1.weight": "encoders.15.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.layer_norm2.bias": "encoders.15.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.layer_norm2.weight": "encoders.15.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.mlp.fc1.bias": "encoders.15.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.mlp.fc1.weight": "encoders.15.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.mlp.fc2.bias": "encoders.15.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.mlp.fc2.weight": "encoders.15.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.self_attn.k_proj.bias": "encoders.15.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.self_attn.k_proj.weight": "encoders.15.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.self_attn.out_proj.bias": "encoders.15.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.self_attn.out_proj.weight": "encoders.15.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.self_attn.q_proj.bias": "encoders.15.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.self_attn.q_proj.weight": "encoders.15.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.self_attn.v_proj.bias": "encoders.15.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.15.self_attn.v_proj.weight": "encoders.15.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.layer_norm1.bias": "encoders.16.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.layer_norm1.weight": "encoders.16.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.layer_norm2.bias": "encoders.16.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.layer_norm2.weight": "encoders.16.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.mlp.fc1.bias": "encoders.16.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.mlp.fc1.weight": "encoders.16.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.mlp.fc2.bias": "encoders.16.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.mlp.fc2.weight": "encoders.16.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.self_attn.k_proj.bias": "encoders.16.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.self_attn.k_proj.weight": "encoders.16.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.self_attn.out_proj.bias": "encoders.16.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.self_attn.out_proj.weight": "encoders.16.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.self_attn.q_proj.bias": "encoders.16.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.self_attn.q_proj.weight": "encoders.16.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.self_attn.v_proj.bias": "encoders.16.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.16.self_attn.v_proj.weight": "encoders.16.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.layer_norm1.bias": "encoders.17.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.layer_norm1.weight": "encoders.17.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.layer_norm2.bias": "encoders.17.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.layer_norm2.weight": "encoders.17.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.mlp.fc1.bias": "encoders.17.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.mlp.fc1.weight": "encoders.17.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.mlp.fc2.bias": "encoders.17.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.mlp.fc2.weight": "encoders.17.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.self_attn.k_proj.bias": "encoders.17.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.self_attn.k_proj.weight": "encoders.17.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.self_attn.out_proj.bias": "encoders.17.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.self_attn.out_proj.weight": "encoders.17.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.self_attn.q_proj.bias": "encoders.17.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.self_attn.q_proj.weight": "encoders.17.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.self_attn.v_proj.bias": "encoders.17.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.17.self_attn.v_proj.weight": "encoders.17.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.layer_norm1.bias": "encoders.18.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.layer_norm1.weight": "encoders.18.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.layer_norm2.bias": "encoders.18.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.layer_norm2.weight": "encoders.18.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.mlp.fc1.bias": "encoders.18.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.mlp.fc1.weight": "encoders.18.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.mlp.fc2.bias": "encoders.18.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.mlp.fc2.weight": "encoders.18.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.self_attn.k_proj.bias": "encoders.18.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.self_attn.k_proj.weight": "encoders.18.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.self_attn.out_proj.bias": "encoders.18.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.self_attn.out_proj.weight": "encoders.18.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.self_attn.q_proj.bias": "encoders.18.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.self_attn.q_proj.weight": "encoders.18.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.self_attn.v_proj.bias": "encoders.18.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.18.self_attn.v_proj.weight": "encoders.18.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.layer_norm1.bias": "encoders.19.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.layer_norm1.weight": "encoders.19.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.layer_norm2.bias": "encoders.19.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.layer_norm2.weight": "encoders.19.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.mlp.fc1.bias": "encoders.19.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.mlp.fc1.weight": "encoders.19.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.mlp.fc2.bias": "encoders.19.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.mlp.fc2.weight": "encoders.19.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.self_attn.k_proj.bias": "encoders.19.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.self_attn.k_proj.weight": "encoders.19.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.self_attn.out_proj.bias": "encoders.19.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.self_attn.out_proj.weight": "encoders.19.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.self_attn.q_proj.bias": "encoders.19.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.self_attn.q_proj.weight": "encoders.19.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.self_attn.v_proj.bias": "encoders.19.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.19.self_attn.v_proj.weight": "encoders.19.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.layer_norm1.bias": "encoders.2.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.layer_norm1.weight": "encoders.2.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.layer_norm2.bias": "encoders.2.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.layer_norm2.weight": "encoders.2.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.mlp.fc1.bias": "encoders.2.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.mlp.fc1.weight": "encoders.2.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.mlp.fc2.bias": "encoders.2.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.mlp.fc2.weight": "encoders.2.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias": "encoders.2.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.self_attn.k_proj.weight": "encoders.2.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.self_attn.out_proj.bias": "encoders.2.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.self_attn.out_proj.weight": "encoders.2.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.self_attn.q_proj.bias": "encoders.2.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.self_attn.q_proj.weight": "encoders.2.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.self_attn.v_proj.bias": "encoders.2.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.2.self_attn.v_proj.weight": "encoders.2.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.layer_norm1.bias": "encoders.20.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.layer_norm1.weight": "encoders.20.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.layer_norm2.bias": "encoders.20.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.layer_norm2.weight": "encoders.20.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.mlp.fc1.bias": "encoders.20.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.mlp.fc1.weight": "encoders.20.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.mlp.fc2.bias": "encoders.20.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.mlp.fc2.weight": "encoders.20.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.self_attn.k_proj.bias": "encoders.20.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.self_attn.k_proj.weight": "encoders.20.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.self_attn.out_proj.bias": "encoders.20.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.self_attn.out_proj.weight": "encoders.20.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.self_attn.q_proj.bias": "encoders.20.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.self_attn.q_proj.weight": "encoders.20.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.self_attn.v_proj.bias": "encoders.20.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.20.self_attn.v_proj.weight": "encoders.20.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.layer_norm1.bias": "encoders.21.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.layer_norm1.weight": "encoders.21.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.layer_norm2.bias": "encoders.21.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.layer_norm2.weight": "encoders.21.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.mlp.fc1.bias": "encoders.21.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.mlp.fc1.weight": "encoders.21.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.mlp.fc2.bias": "encoders.21.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.mlp.fc2.weight": "encoders.21.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.self_attn.k_proj.bias": "encoders.21.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.self_attn.k_proj.weight": "encoders.21.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.self_attn.out_proj.bias": "encoders.21.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.self_attn.out_proj.weight": "encoders.21.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.self_attn.q_proj.bias": "encoders.21.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.self_attn.q_proj.weight": "encoders.21.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.self_attn.v_proj.bias": "encoders.21.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.21.self_attn.v_proj.weight": "encoders.21.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.layer_norm1.bias": "encoders.22.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.layer_norm1.weight": "encoders.22.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.layer_norm2.bias": "encoders.22.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.layer_norm2.weight": "encoders.22.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.mlp.fc1.bias": "encoders.22.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.mlp.fc1.weight": "encoders.22.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.mlp.fc2.bias": "encoders.22.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.mlp.fc2.weight": "encoders.22.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.self_attn.k_proj.bias": "encoders.22.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.self_attn.k_proj.weight": "encoders.22.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.self_attn.out_proj.bias": "encoders.22.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.self_attn.out_proj.weight": "encoders.22.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.self_attn.q_proj.bias": "encoders.22.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.self_attn.q_proj.weight": "encoders.22.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.self_attn.v_proj.bias": "encoders.22.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.22.self_attn.v_proj.weight": "encoders.22.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.layer_norm1.bias": "encoders.23.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.layer_norm1.weight": "encoders.23.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.layer_norm2.bias": "encoders.23.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.layer_norm2.weight": "encoders.23.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.mlp.fc1.bias": "encoders.23.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.mlp.fc1.weight": "encoders.23.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.mlp.fc2.bias": "encoders.23.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.mlp.fc2.weight": "encoders.23.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.self_attn.k_proj.bias": "encoders.23.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.self_attn.k_proj.weight": "encoders.23.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.self_attn.out_proj.bias": "encoders.23.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.self_attn.out_proj.weight": "encoders.23.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.self_attn.q_proj.bias": "encoders.23.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.self_attn.q_proj.weight": "encoders.23.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.self_attn.v_proj.bias": "encoders.23.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.23.self_attn.v_proj.weight": "encoders.23.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.layer_norm1.bias": "encoders.24.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.layer_norm1.weight": "encoders.24.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.layer_norm2.bias": "encoders.24.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.layer_norm2.weight": "encoders.24.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.mlp.fc1.bias": "encoders.24.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.mlp.fc1.weight": "encoders.24.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.mlp.fc2.bias": "encoders.24.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.mlp.fc2.weight": "encoders.24.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.self_attn.k_proj.bias": "encoders.24.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.self_attn.k_proj.weight": "encoders.24.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.self_attn.out_proj.bias": "encoders.24.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.self_attn.out_proj.weight": "encoders.24.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.self_attn.q_proj.bias": "encoders.24.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.self_attn.q_proj.weight": "encoders.24.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.self_attn.v_proj.bias": "encoders.24.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.24.self_attn.v_proj.weight": "encoders.24.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.layer_norm1.bias": "encoders.25.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.layer_norm1.weight": "encoders.25.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.layer_norm2.bias": "encoders.25.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.layer_norm2.weight": "encoders.25.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.mlp.fc1.bias": "encoders.25.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.mlp.fc1.weight": "encoders.25.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.mlp.fc2.bias": "encoders.25.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.mlp.fc2.weight": "encoders.25.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.self_attn.k_proj.bias": "encoders.25.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.self_attn.k_proj.weight": "encoders.25.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.self_attn.out_proj.bias": "encoders.25.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.self_attn.out_proj.weight": "encoders.25.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.self_attn.q_proj.bias": "encoders.25.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.self_attn.q_proj.weight": "encoders.25.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.self_attn.v_proj.bias": "encoders.25.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.25.self_attn.v_proj.weight": "encoders.25.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.layer_norm1.bias": "encoders.26.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.layer_norm1.weight": "encoders.26.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.layer_norm2.bias": "encoders.26.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.layer_norm2.weight": "encoders.26.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.mlp.fc1.bias": "encoders.26.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.mlp.fc1.weight": "encoders.26.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.mlp.fc2.bias": "encoders.26.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.mlp.fc2.weight": "encoders.26.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.self_attn.k_proj.bias": "encoders.26.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.self_attn.k_proj.weight": "encoders.26.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.self_attn.out_proj.bias": "encoders.26.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.self_attn.out_proj.weight": "encoders.26.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.self_attn.q_proj.bias": "encoders.26.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.self_attn.q_proj.weight": "encoders.26.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.self_attn.v_proj.bias": "encoders.26.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.26.self_attn.v_proj.weight": "encoders.26.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.layer_norm1.bias": "encoders.27.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.layer_norm1.weight": "encoders.27.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.layer_norm2.bias": "encoders.27.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.layer_norm2.weight": "encoders.27.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.mlp.fc1.bias": "encoders.27.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.mlp.fc1.weight": "encoders.27.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.mlp.fc2.bias": "encoders.27.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.mlp.fc2.weight": "encoders.27.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.self_attn.k_proj.bias": "encoders.27.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.self_attn.k_proj.weight": "encoders.27.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.self_attn.out_proj.bias": "encoders.27.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.self_attn.out_proj.weight": "encoders.27.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.self_attn.q_proj.bias": "encoders.27.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.self_attn.q_proj.weight": "encoders.27.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.self_attn.v_proj.bias": "encoders.27.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.27.self_attn.v_proj.weight": "encoders.27.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.layer_norm1.bias": "encoders.28.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.layer_norm1.weight": "encoders.28.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.layer_norm2.bias": "encoders.28.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.layer_norm2.weight": "encoders.28.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.mlp.fc1.bias": "encoders.28.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.mlp.fc1.weight": "encoders.28.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.mlp.fc2.bias": "encoders.28.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.mlp.fc2.weight": "encoders.28.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.self_attn.k_proj.bias": "encoders.28.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.self_attn.k_proj.weight": "encoders.28.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.self_attn.out_proj.bias": "encoders.28.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.self_attn.out_proj.weight": "encoders.28.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.self_attn.q_proj.bias": "encoders.28.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.self_attn.q_proj.weight": "encoders.28.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.self_attn.v_proj.bias": "encoders.28.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.28.self_attn.v_proj.weight": "encoders.28.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.layer_norm1.bias": "encoders.29.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.layer_norm1.weight": "encoders.29.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.layer_norm2.bias": "encoders.29.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.layer_norm2.weight": "encoders.29.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.mlp.fc1.bias": "encoders.29.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.mlp.fc1.weight": "encoders.29.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.mlp.fc2.bias": "encoders.29.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.mlp.fc2.weight": "encoders.29.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.self_attn.k_proj.bias": "encoders.29.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.self_attn.k_proj.weight": "encoders.29.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.self_attn.out_proj.bias": "encoders.29.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.self_attn.out_proj.weight": "encoders.29.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.self_attn.q_proj.bias": "encoders.29.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.self_attn.q_proj.weight": "encoders.29.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.self_attn.v_proj.bias": "encoders.29.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.29.self_attn.v_proj.weight": "encoders.29.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.layer_norm1.bias": "encoders.3.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.layer_norm1.weight": "encoders.3.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.layer_norm2.bias": "encoders.3.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.layer_norm2.weight": "encoders.3.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.mlp.fc1.bias": "encoders.3.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.mlp.fc1.weight": "encoders.3.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.mlp.fc2.bias": "encoders.3.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.mlp.fc2.weight": "encoders.3.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias": "encoders.3.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.self_attn.k_proj.weight": "encoders.3.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.self_attn.out_proj.bias": "encoders.3.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.self_attn.out_proj.weight": "encoders.3.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.self_attn.q_proj.bias": "encoders.3.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.self_attn.q_proj.weight": "encoders.3.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.self_attn.v_proj.bias": "encoders.3.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.3.self_attn.v_proj.weight": "encoders.3.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.layer_norm1.bias": "encoders.30.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.layer_norm1.weight": "encoders.30.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.layer_norm2.bias": "encoders.30.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.layer_norm2.weight": "encoders.30.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.mlp.fc1.bias": "encoders.30.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.mlp.fc1.weight": "encoders.30.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.mlp.fc2.bias": "encoders.30.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.mlp.fc2.weight": "encoders.30.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.self_attn.k_proj.bias": "encoders.30.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.self_attn.k_proj.weight": "encoders.30.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.self_attn.out_proj.bias": "encoders.30.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.self_attn.out_proj.weight": "encoders.30.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.self_attn.q_proj.bias": "encoders.30.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.self_attn.q_proj.weight": "encoders.30.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.self_attn.v_proj.bias": "encoders.30.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.30.self_attn.v_proj.weight": "encoders.30.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.layer_norm1.bias": "encoders.31.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.layer_norm1.weight": "encoders.31.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.layer_norm2.bias": "encoders.31.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.layer_norm2.weight": "encoders.31.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.mlp.fc1.bias": "encoders.31.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.mlp.fc1.weight": "encoders.31.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.mlp.fc2.bias": "encoders.31.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.mlp.fc2.weight": "encoders.31.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.self_attn.k_proj.bias": "encoders.31.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.self_attn.k_proj.weight": "encoders.31.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.self_attn.out_proj.bias": "encoders.31.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.self_attn.out_proj.weight": "encoders.31.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.self_attn.q_proj.bias": "encoders.31.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.self_attn.q_proj.weight": "encoders.31.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.self_attn.v_proj.bias": "encoders.31.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.31.self_attn.v_proj.weight": "encoders.31.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.layer_norm1.bias": "encoders.4.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.layer_norm1.weight": "encoders.4.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.layer_norm2.bias": "encoders.4.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.layer_norm2.weight": "encoders.4.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.mlp.fc1.bias": "encoders.4.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.mlp.fc1.weight": "encoders.4.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.mlp.fc2.bias": "encoders.4.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.mlp.fc2.weight": "encoders.4.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.self_attn.k_proj.bias": "encoders.4.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.self_attn.k_proj.weight": "encoders.4.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.self_attn.out_proj.bias": "encoders.4.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.self_attn.out_proj.weight": "encoders.4.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.self_attn.q_proj.bias": "encoders.4.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.self_attn.q_proj.weight": "encoders.4.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.self_attn.v_proj.bias": "encoders.4.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.4.self_attn.v_proj.weight": "encoders.4.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.layer_norm1.bias": "encoders.5.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.layer_norm1.weight": "encoders.5.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.layer_norm2.bias": "encoders.5.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.layer_norm2.weight": "encoders.5.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.mlp.fc1.bias": "encoders.5.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.mlp.fc1.weight": "encoders.5.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.mlp.fc2.bias": "encoders.5.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.mlp.fc2.weight": "encoders.5.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.self_attn.k_proj.bias": "encoders.5.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.self_attn.k_proj.weight": "encoders.5.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.self_attn.out_proj.bias": "encoders.5.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.self_attn.out_proj.weight": "encoders.5.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.self_attn.q_proj.bias": "encoders.5.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.self_attn.q_proj.weight": "encoders.5.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.self_attn.v_proj.bias": "encoders.5.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.5.self_attn.v_proj.weight": "encoders.5.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.layer_norm1.bias": "encoders.6.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.layer_norm1.weight": "encoders.6.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.layer_norm2.bias": "encoders.6.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.layer_norm2.weight": "encoders.6.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.mlp.fc1.bias": "encoders.6.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.mlp.fc1.weight": "encoders.6.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.mlp.fc2.bias": "encoders.6.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.mlp.fc2.weight": "encoders.6.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.self_attn.k_proj.bias": "encoders.6.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.self_attn.k_proj.weight": "encoders.6.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.self_attn.out_proj.bias": "encoders.6.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.self_attn.out_proj.weight": "encoders.6.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.self_attn.q_proj.bias": "encoders.6.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.self_attn.q_proj.weight": "encoders.6.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.self_attn.v_proj.bias": "encoders.6.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.6.self_attn.v_proj.weight": "encoders.6.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.layer_norm1.bias": "encoders.7.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.layer_norm1.weight": "encoders.7.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.layer_norm2.bias": "encoders.7.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.layer_norm2.weight": "encoders.7.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.mlp.fc1.bias": "encoders.7.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.mlp.fc1.weight": "encoders.7.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.mlp.fc2.bias": "encoders.7.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.mlp.fc2.weight": "encoders.7.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.self_attn.k_proj.bias": "encoders.7.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.self_attn.k_proj.weight": "encoders.7.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.self_attn.out_proj.bias": "encoders.7.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.self_attn.out_proj.weight": "encoders.7.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.self_attn.q_proj.bias": "encoders.7.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.self_attn.q_proj.weight": "encoders.7.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.self_attn.v_proj.bias": "encoders.7.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.7.self_attn.v_proj.weight": "encoders.7.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.layer_norm1.bias": "encoders.8.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.layer_norm1.weight": "encoders.8.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.layer_norm2.bias": "encoders.8.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.layer_norm2.weight": "encoders.8.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.mlp.fc1.bias": "encoders.8.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.mlp.fc1.weight": "encoders.8.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.mlp.fc2.bias": "encoders.8.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.mlp.fc2.weight": "encoders.8.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.self_attn.k_proj.bias": "encoders.8.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.self_attn.k_proj.weight": "encoders.8.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.self_attn.out_proj.bias": "encoders.8.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.self_attn.out_proj.weight": "encoders.8.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.self_attn.q_proj.bias": "encoders.8.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.self_attn.q_proj.weight": "encoders.8.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.self_attn.v_proj.bias": "encoders.8.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.8.self_attn.v_proj.weight": "encoders.8.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.layer_norm1.bias": "encoders.9.layer_norm1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.layer_norm1.weight": "encoders.9.layer_norm1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.layer_norm2.bias": "encoders.9.layer_norm2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.layer_norm2.weight": "encoders.9.layer_norm2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.mlp.fc1.bias": "encoders.9.fc1.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.mlp.fc1.weight": "encoders.9.fc1.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.mlp.fc2.bias": "encoders.9.fc2.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.mlp.fc2.weight": "encoders.9.fc2.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.self_attn.k_proj.bias": "encoders.9.attn.to_k.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.self_attn.k_proj.weight": "encoders.9.attn.to_k.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.self_attn.out_proj.bias": "encoders.9.attn.to_out.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.self_attn.out_proj.weight": "encoders.9.attn.to_out.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.self_attn.q_proj.bias": "encoders.9.attn.to_q.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.self_attn.q_proj.weight": "encoders.9.attn.to_q.weight", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.self_attn.v_proj.bias": "encoders.9.attn.to_v.bias", - "text_encoders.clip_g.transformer.text_model.encoder.layers.9.self_attn.v_proj.weight": "encoders.9.attn.to_v.weight", - "text_encoders.clip_g.transformer.text_model.final_layer_norm.bias": "final_layer_norm.bias", - "text_encoders.clip_g.transformer.text_model.final_layer_norm.weight": "final_layer_norm.weight", - "text_encoders.clip_g.transformer.text_projection.weight": "text_projection.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "text_encoders.clip_g.transformer.text_model.embeddings.position_embedding.weight": - param = param.reshape((1, param.shape[0], param.shape[1])) - state_dict_[rename_dict[name]] = param - elif ("text_encoders.clip_g.transformer." + name) in rename_dict: - param = state_dict[name] - if name == "text_model.embeddings.position_embedding.weight": - param = param.reshape((1, param.shape[0], param.shape[1])) - state_dict_[rename_dict["text_encoders.clip_g.transformer." + name]] = param - return state_dict_ - - - -class SD3TextEncoder3StateDictConverter(): - def __init__(self): - pass - - def from_diffusers(self, state_dict): - state_dict_ = state_dict - return state_dict_ - - def from_civitai(self, state_dict): - prefix = "text_encoders.t5xxl.transformer." - state_dict_ = {name[len(prefix):]: param for name, param in state_dict.items() if name.startswith(prefix)} - if len(state_dict_) > 0: - return self.from_diffusers(state_dict_) - name_list = [ - "encoder.block.0.layer.0.SelfAttention.k.weight", - "encoder.block.0.layer.0.SelfAttention.o.weight", - "encoder.block.0.layer.0.SelfAttention.q.weight", - "encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight", - "encoder.block.0.layer.0.SelfAttention.v.weight", - "encoder.block.0.layer.0.layer_norm.weight", - "encoder.block.0.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.0.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.0.layer.1.DenseReluDense.wo.weight", - "encoder.block.0.layer.1.layer_norm.weight", - "encoder.block.1.layer.0.SelfAttention.k.weight", - "encoder.block.1.layer.0.SelfAttention.o.weight", - "encoder.block.1.layer.0.SelfAttention.q.weight", - "encoder.block.1.layer.0.SelfAttention.v.weight", - "encoder.block.1.layer.0.layer_norm.weight", - "encoder.block.1.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.1.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.1.layer.1.DenseReluDense.wo.weight", - "encoder.block.1.layer.1.layer_norm.weight", - "encoder.block.10.layer.0.SelfAttention.k.weight", - "encoder.block.10.layer.0.SelfAttention.o.weight", - "encoder.block.10.layer.0.SelfAttention.q.weight", - "encoder.block.10.layer.0.SelfAttention.v.weight", - "encoder.block.10.layer.0.layer_norm.weight", - "encoder.block.10.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.10.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.10.layer.1.DenseReluDense.wo.weight", - "encoder.block.10.layer.1.layer_norm.weight", - "encoder.block.11.layer.0.SelfAttention.k.weight", - "encoder.block.11.layer.0.SelfAttention.o.weight", - "encoder.block.11.layer.0.SelfAttention.q.weight", - "encoder.block.11.layer.0.SelfAttention.v.weight", - "encoder.block.11.layer.0.layer_norm.weight", - "encoder.block.11.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.11.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.11.layer.1.DenseReluDense.wo.weight", - "encoder.block.11.layer.1.layer_norm.weight", - "encoder.block.12.layer.0.SelfAttention.k.weight", - "encoder.block.12.layer.0.SelfAttention.o.weight", - "encoder.block.12.layer.0.SelfAttention.q.weight", - "encoder.block.12.layer.0.SelfAttention.v.weight", - "encoder.block.12.layer.0.layer_norm.weight", - "encoder.block.12.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.12.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.12.layer.1.DenseReluDense.wo.weight", - "encoder.block.12.layer.1.layer_norm.weight", - "encoder.block.13.layer.0.SelfAttention.k.weight", - "encoder.block.13.layer.0.SelfAttention.o.weight", - "encoder.block.13.layer.0.SelfAttention.q.weight", - "encoder.block.13.layer.0.SelfAttention.v.weight", - "encoder.block.13.layer.0.layer_norm.weight", - "encoder.block.13.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.13.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.13.layer.1.DenseReluDense.wo.weight", - "encoder.block.13.layer.1.layer_norm.weight", - "encoder.block.14.layer.0.SelfAttention.k.weight", - "encoder.block.14.layer.0.SelfAttention.o.weight", - "encoder.block.14.layer.0.SelfAttention.q.weight", - "encoder.block.14.layer.0.SelfAttention.v.weight", - "encoder.block.14.layer.0.layer_norm.weight", - "encoder.block.14.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.14.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.14.layer.1.DenseReluDense.wo.weight", - "encoder.block.14.layer.1.layer_norm.weight", - "encoder.block.15.layer.0.SelfAttention.k.weight", - "encoder.block.15.layer.0.SelfAttention.o.weight", - "encoder.block.15.layer.0.SelfAttention.q.weight", - "encoder.block.15.layer.0.SelfAttention.v.weight", - "encoder.block.15.layer.0.layer_norm.weight", - "encoder.block.15.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.15.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.15.layer.1.DenseReluDense.wo.weight", - "encoder.block.15.layer.1.layer_norm.weight", - "encoder.block.16.layer.0.SelfAttention.k.weight", - "encoder.block.16.layer.0.SelfAttention.o.weight", - "encoder.block.16.layer.0.SelfAttention.q.weight", - "encoder.block.16.layer.0.SelfAttention.v.weight", - "encoder.block.16.layer.0.layer_norm.weight", - "encoder.block.16.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.16.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.16.layer.1.DenseReluDense.wo.weight", - "encoder.block.16.layer.1.layer_norm.weight", - "encoder.block.17.layer.0.SelfAttention.k.weight", - "encoder.block.17.layer.0.SelfAttention.o.weight", - "encoder.block.17.layer.0.SelfAttention.q.weight", - "encoder.block.17.layer.0.SelfAttention.v.weight", - "encoder.block.17.layer.0.layer_norm.weight", - "encoder.block.17.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.17.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.17.layer.1.DenseReluDense.wo.weight", - "encoder.block.17.layer.1.layer_norm.weight", - "encoder.block.18.layer.0.SelfAttention.k.weight", - "encoder.block.18.layer.0.SelfAttention.o.weight", - "encoder.block.18.layer.0.SelfAttention.q.weight", - "encoder.block.18.layer.0.SelfAttention.v.weight", - "encoder.block.18.layer.0.layer_norm.weight", - "encoder.block.18.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.18.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.18.layer.1.DenseReluDense.wo.weight", - "encoder.block.18.layer.1.layer_norm.weight", - "encoder.block.19.layer.0.SelfAttention.k.weight", - "encoder.block.19.layer.0.SelfAttention.o.weight", - "encoder.block.19.layer.0.SelfAttention.q.weight", - "encoder.block.19.layer.0.SelfAttention.v.weight", - "encoder.block.19.layer.0.layer_norm.weight", - "encoder.block.19.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.19.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.19.layer.1.DenseReluDense.wo.weight", - "encoder.block.19.layer.1.layer_norm.weight", - "encoder.block.2.layer.0.SelfAttention.k.weight", - "encoder.block.2.layer.0.SelfAttention.o.weight", - "encoder.block.2.layer.0.SelfAttention.q.weight", - "encoder.block.2.layer.0.SelfAttention.v.weight", - "encoder.block.2.layer.0.layer_norm.weight", - "encoder.block.2.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.2.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.2.layer.1.DenseReluDense.wo.weight", - "encoder.block.2.layer.1.layer_norm.weight", - "encoder.block.20.layer.0.SelfAttention.k.weight", - "encoder.block.20.layer.0.SelfAttention.o.weight", - "encoder.block.20.layer.0.SelfAttention.q.weight", - "encoder.block.20.layer.0.SelfAttention.v.weight", - "encoder.block.20.layer.0.layer_norm.weight", - "encoder.block.20.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.20.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.20.layer.1.DenseReluDense.wo.weight", - "encoder.block.20.layer.1.layer_norm.weight", - "encoder.block.21.layer.0.SelfAttention.k.weight", - "encoder.block.21.layer.0.SelfAttention.o.weight", - "encoder.block.21.layer.0.SelfAttention.q.weight", - "encoder.block.21.layer.0.SelfAttention.v.weight", - "encoder.block.21.layer.0.layer_norm.weight", - "encoder.block.21.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.21.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.21.layer.1.DenseReluDense.wo.weight", - "encoder.block.21.layer.1.layer_norm.weight", - "encoder.block.22.layer.0.SelfAttention.k.weight", - "encoder.block.22.layer.0.SelfAttention.o.weight", - "encoder.block.22.layer.0.SelfAttention.q.weight", - "encoder.block.22.layer.0.SelfAttention.v.weight", - "encoder.block.22.layer.0.layer_norm.weight", - "encoder.block.22.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.22.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.22.layer.1.DenseReluDense.wo.weight", - "encoder.block.22.layer.1.layer_norm.weight", - "encoder.block.23.layer.0.SelfAttention.k.weight", - "encoder.block.23.layer.0.SelfAttention.o.weight", - "encoder.block.23.layer.0.SelfAttention.q.weight", - "encoder.block.23.layer.0.SelfAttention.v.weight", - "encoder.block.23.layer.0.layer_norm.weight", - "encoder.block.23.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.23.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.23.layer.1.DenseReluDense.wo.weight", - "encoder.block.23.layer.1.layer_norm.weight", - "encoder.block.3.layer.0.SelfAttention.k.weight", - "encoder.block.3.layer.0.SelfAttention.o.weight", - "encoder.block.3.layer.0.SelfAttention.q.weight", - "encoder.block.3.layer.0.SelfAttention.v.weight", - "encoder.block.3.layer.0.layer_norm.weight", - "encoder.block.3.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.3.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.3.layer.1.DenseReluDense.wo.weight", - "encoder.block.3.layer.1.layer_norm.weight", - "encoder.block.4.layer.0.SelfAttention.k.weight", - "encoder.block.4.layer.0.SelfAttention.o.weight", - "encoder.block.4.layer.0.SelfAttention.q.weight", - "encoder.block.4.layer.0.SelfAttention.v.weight", - "encoder.block.4.layer.0.layer_norm.weight", - "encoder.block.4.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.4.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.4.layer.1.DenseReluDense.wo.weight", - "encoder.block.4.layer.1.layer_norm.weight", - "encoder.block.5.layer.0.SelfAttention.k.weight", - "encoder.block.5.layer.0.SelfAttention.o.weight", - "encoder.block.5.layer.0.SelfAttention.q.weight", - "encoder.block.5.layer.0.SelfAttention.v.weight", - "encoder.block.5.layer.0.layer_norm.weight", - "encoder.block.5.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.5.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.5.layer.1.DenseReluDense.wo.weight", - "encoder.block.5.layer.1.layer_norm.weight", - "encoder.block.6.layer.0.SelfAttention.k.weight", - "encoder.block.6.layer.0.SelfAttention.o.weight", - "encoder.block.6.layer.0.SelfAttention.q.weight", - "encoder.block.6.layer.0.SelfAttention.v.weight", - "encoder.block.6.layer.0.layer_norm.weight", - "encoder.block.6.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.6.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.6.layer.1.DenseReluDense.wo.weight", - "encoder.block.6.layer.1.layer_norm.weight", - "encoder.block.7.layer.0.SelfAttention.k.weight", - "encoder.block.7.layer.0.SelfAttention.o.weight", - "encoder.block.7.layer.0.SelfAttention.q.weight", - "encoder.block.7.layer.0.SelfAttention.v.weight", - "encoder.block.7.layer.0.layer_norm.weight", - "encoder.block.7.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.7.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.7.layer.1.DenseReluDense.wo.weight", - "encoder.block.7.layer.1.layer_norm.weight", - "encoder.block.8.layer.0.SelfAttention.k.weight", - "encoder.block.8.layer.0.SelfAttention.o.weight", - "encoder.block.8.layer.0.SelfAttention.q.weight", - "encoder.block.8.layer.0.SelfAttention.v.weight", - "encoder.block.8.layer.0.layer_norm.weight", - "encoder.block.8.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.8.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.8.layer.1.DenseReluDense.wo.weight", - "encoder.block.8.layer.1.layer_norm.weight", - "encoder.block.9.layer.0.SelfAttention.k.weight", - "encoder.block.9.layer.0.SelfAttention.o.weight", - "encoder.block.9.layer.0.SelfAttention.q.weight", - "encoder.block.9.layer.0.SelfAttention.v.weight", - "encoder.block.9.layer.0.layer_norm.weight", - "encoder.block.9.layer.1.DenseReluDense.wi_0.weight", - "encoder.block.9.layer.1.DenseReluDense.wi_1.weight", - "encoder.block.9.layer.1.DenseReluDense.wo.weight", - "encoder.block.9.layer.1.layer_norm.weight", - "encoder.embed_tokens.weight", - "encoder.final_layer_norm.weight", - "shared.weight", - ] - state_dict_ = {} - for name, param in state_dict.items(): - if name in name_list: - state_dict_[name] = param - return state_dict_ - diff --git a/diffsynth/models/sd3_vae_decoder.py b/diffsynth/models/sd3_vae_decoder.py deleted file mode 100644 index 55fd9c05bdb3b6efe4da417f77b7c7b6e1ef949b..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd3_vae_decoder.py +++ /dev/null @@ -1,81 +0,0 @@ -import torch -from .sd_vae_decoder import VAEAttentionBlock, SDVAEDecoderStateDictConverter -from .sd_unet import ResnetBlock, UpSampler -from .tiler import TileWorker - - - -class SD3VAEDecoder(torch.nn.Module): - def __init__(self): - super().__init__() - self.scaling_factor = 1.5305 # Different from SD 1.x - self.shift_factor = 0.0609 # Different from SD 1.x - self.conv_in = torch.nn.Conv2d(16, 512, kernel_size=3, padding=1) # Different from SD 1.x - - self.blocks = torch.nn.ModuleList([ - # UNetMidBlock2D - ResnetBlock(512, 512, eps=1e-6), - VAEAttentionBlock(1, 512, 512, 1, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - # UpDecoderBlock2D - ResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - UpSampler(512), - # UpDecoderBlock2D - ResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - UpSampler(512), - # UpDecoderBlock2D - ResnetBlock(512, 256, eps=1e-6), - ResnetBlock(256, 256, eps=1e-6), - ResnetBlock(256, 256, eps=1e-6), - UpSampler(256), - # UpDecoderBlock2D - ResnetBlock(256, 128, eps=1e-6), - ResnetBlock(128, 128, eps=1e-6), - ResnetBlock(128, 128, eps=1e-6), - ]) - - self.conv_norm_out = torch.nn.GroupNorm(num_channels=128, num_groups=32, eps=1e-6) - self.conv_act = torch.nn.SiLU() - self.conv_out = torch.nn.Conv2d(128, 3, kernel_size=3, padding=1) - - def tiled_forward(self, sample, tile_size=64, tile_stride=32): - hidden_states = TileWorker().tiled_forward( - lambda x: self.forward(x), - sample, - tile_size, - tile_stride, - tile_device=sample.device, - tile_dtype=sample.dtype - ) - return hidden_states - - def forward(self, sample, tiled=False, tile_size=64, tile_stride=32, **kwargs): - # For VAE Decoder, we do not need to apply the tiler on each layer. - if tiled: - return self.tiled_forward(sample, tile_size=tile_size, tile_stride=tile_stride) - - # 1. pre-process - hidden_states = sample / self.scaling_factor + self.shift_factor - hidden_states = self.conv_in(hidden_states) - time_emb = None - text_emb = None - res_stack = None - - # 2. blocks - for i, block in enumerate(self.blocks): - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - - # 3. output - hidden_states = self.conv_norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - - return hidden_states - - @staticmethod - def state_dict_converter(): - return SDVAEDecoderStateDictConverter() \ No newline at end of file diff --git a/diffsynth/models/sd3_vae_encoder.py b/diffsynth/models/sd3_vae_encoder.py deleted file mode 100644 index c486866b889093ac501c54e224f67c5428cf81c8..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd3_vae_encoder.py +++ /dev/null @@ -1,95 +0,0 @@ -import torch -from .sd_unet import ResnetBlock, DownSampler -from .sd_vae_encoder import VAEAttentionBlock, SDVAEEncoderStateDictConverter -from .tiler import TileWorker -from einops import rearrange - - -class SD3VAEEncoder(torch.nn.Module): - def __init__(self): - super().__init__() - self.scaling_factor = 1.5305 # Different from SD 1.x - self.shift_factor = 0.0609 # Different from SD 1.x - self.conv_in = torch.nn.Conv2d(3, 128, kernel_size=3, padding=1) - - self.blocks = torch.nn.ModuleList([ - # DownEncoderBlock2D - ResnetBlock(128, 128, eps=1e-6), - ResnetBlock(128, 128, eps=1e-6), - DownSampler(128, padding=0, extra_padding=True), - # DownEncoderBlock2D - ResnetBlock(128, 256, eps=1e-6), - ResnetBlock(256, 256, eps=1e-6), - DownSampler(256, padding=0, extra_padding=True), - # DownEncoderBlock2D - ResnetBlock(256, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - DownSampler(512, padding=0, extra_padding=True), - # DownEncoderBlock2D - ResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - # UNetMidBlock2D - ResnetBlock(512, 512, eps=1e-6), - VAEAttentionBlock(1, 512, 512, 1, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - ]) - - self.conv_norm_out = torch.nn.GroupNorm(num_channels=512, num_groups=32, eps=1e-6) - self.conv_act = torch.nn.SiLU() - self.conv_out = torch.nn.Conv2d(512, 32, kernel_size=3, padding=1) - - def tiled_forward(self, sample, tile_size=64, tile_stride=32): - hidden_states = TileWorker().tiled_forward( - lambda x: self.forward(x), - sample, - tile_size, - tile_stride, - tile_device=sample.device, - tile_dtype=sample.dtype - ) - return hidden_states - - def forward(self, sample, tiled=False, tile_size=64, tile_stride=32, **kwargs): - # For VAE Decoder, we do not need to apply the tiler on each layer. - if tiled: - return self.tiled_forward(sample, tile_size=tile_size, tile_stride=tile_stride) - - # 1. pre-process - hidden_states = self.conv_in(sample) - time_emb = None - text_emb = None - res_stack = None - - # 2. blocks - for i, block in enumerate(self.blocks): - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - - # 3. output - hidden_states = self.conv_norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - hidden_states = hidden_states[:, :16] - hidden_states = (hidden_states - self.shift_factor) * self.scaling_factor - - return hidden_states - - def encode_video(self, sample, batch_size=8): - B = sample.shape[0] - hidden_states = [] - - for i in range(0, sample.shape[2], batch_size): - - j = min(i + batch_size, sample.shape[2]) - sample_batch = rearrange(sample[:,:,i:j], "B C T H W -> (B T) C H W") - - hidden_states_batch = self(sample_batch) - hidden_states_batch = rearrange(hidden_states_batch, "(B T) C H W -> B C T H W", B=B) - - hidden_states.append(hidden_states_batch) - - hidden_states = torch.concat(hidden_states, dim=2) - return hidden_states - - @staticmethod - def state_dict_converter(): - return SDVAEEncoderStateDictConverter() diff --git a/diffsynth/models/sd_controlnet.py b/diffsynth/models/sd_controlnet.py deleted file mode 100644 index 910e0dbae8dc6647e6e478f79c239450cefb2027..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd_controlnet.py +++ /dev/null @@ -1,589 +0,0 @@ -import torch -from .sd_unet import Timesteps, ResnetBlock, AttentionBlock, PushBlock, DownSampler -from .tiler import TileWorker - - -class ControlNetConditioningLayer(torch.nn.Module): - def __init__(self, channels = (3, 16, 32, 96, 256, 320)): - super().__init__() - self.blocks = torch.nn.ModuleList([]) - self.blocks.append(torch.nn.Conv2d(channels[0], channels[1], kernel_size=3, padding=1)) - self.blocks.append(torch.nn.SiLU()) - for i in range(1, len(channels) - 2): - self.blocks.append(torch.nn.Conv2d(channels[i], channels[i], kernel_size=3, padding=1)) - self.blocks.append(torch.nn.SiLU()) - self.blocks.append(torch.nn.Conv2d(channels[i], channels[i+1], kernel_size=3, padding=1, stride=2)) - self.blocks.append(torch.nn.SiLU()) - self.blocks.append(torch.nn.Conv2d(channels[-2], channels[-1], kernel_size=3, padding=1)) - - def forward(self, conditioning): - for block in self.blocks: - conditioning = block(conditioning) - return conditioning - - -class SDControlNet(torch.nn.Module): - def __init__(self, global_pool=False): - super().__init__() - self.time_proj = Timesteps(320) - self.time_embedding = torch.nn.Sequential( - torch.nn.Linear(320, 1280), - torch.nn.SiLU(), - torch.nn.Linear(1280, 1280) - ) - self.conv_in = torch.nn.Conv2d(4, 320, kernel_size=3, padding=1) - - self.controlnet_conv_in = ControlNetConditioningLayer(channels=(3, 16, 32, 96, 256, 320)) - - self.blocks = torch.nn.ModuleList([ - # CrossAttnDownBlock2D - ResnetBlock(320, 320, 1280), - AttentionBlock(8, 40, 320, 1, 768), - PushBlock(), - ResnetBlock(320, 320, 1280), - AttentionBlock(8, 40, 320, 1, 768), - PushBlock(), - DownSampler(320), - PushBlock(), - # CrossAttnDownBlock2D - ResnetBlock(320, 640, 1280), - AttentionBlock(8, 80, 640, 1, 768), - PushBlock(), - ResnetBlock(640, 640, 1280), - AttentionBlock(8, 80, 640, 1, 768), - PushBlock(), - DownSampler(640), - PushBlock(), - # CrossAttnDownBlock2D - ResnetBlock(640, 1280, 1280), - AttentionBlock(8, 160, 1280, 1, 768), - PushBlock(), - ResnetBlock(1280, 1280, 1280), - AttentionBlock(8, 160, 1280, 1, 768), - PushBlock(), - DownSampler(1280), - PushBlock(), - # DownBlock2D - ResnetBlock(1280, 1280, 1280), - PushBlock(), - ResnetBlock(1280, 1280, 1280), - PushBlock(), - # UNetMidBlock2DCrossAttn - ResnetBlock(1280, 1280, 1280), - AttentionBlock(8, 160, 1280, 1, 768), - ResnetBlock(1280, 1280, 1280), - PushBlock() - ]) - - self.controlnet_blocks = torch.nn.ModuleList([ - torch.nn.Conv2d(320, 320, kernel_size=(1, 1)), - torch.nn.Conv2d(320, 320, kernel_size=(1, 1), bias=False), - torch.nn.Conv2d(320, 320, kernel_size=(1, 1), bias=False), - torch.nn.Conv2d(320, 320, kernel_size=(1, 1), bias=False), - torch.nn.Conv2d(640, 640, kernel_size=(1, 1)), - torch.nn.Conv2d(640, 640, kernel_size=(1, 1), bias=False), - torch.nn.Conv2d(640, 640, kernel_size=(1, 1), bias=False), - torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1)), - torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1), bias=False), - torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1), bias=False), - torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1), bias=False), - torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1), bias=False), - torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1), bias=False), - ]) - - self.global_pool = global_pool - - def forward( - self, - sample, timestep, encoder_hidden_states, conditioning, - tiled=False, tile_size=64, tile_stride=32, - **kwargs - ): - # 1. time - time_emb = self.time_proj(timestep).to(sample.dtype) - time_emb = self.time_embedding(time_emb) - time_emb = time_emb.repeat(sample.shape[0], 1) - - # 2. pre-process - height, width = sample.shape[2], sample.shape[3] - hidden_states = self.conv_in(sample) + self.controlnet_conv_in(conditioning) - text_emb = encoder_hidden_states - res_stack = [hidden_states] - - # 3. blocks - for i, block in enumerate(self.blocks): - if tiled and not isinstance(block, PushBlock): - _, _, inter_height, _ = hidden_states.shape - resize_scale = inter_height / height - hidden_states = TileWorker().tiled_forward( - lambda x: block(x, time_emb, text_emb, res_stack)[0], - hidden_states, - int(tile_size * resize_scale), - int(tile_stride * resize_scale), - tile_device=hidden_states.device, - tile_dtype=hidden_states.dtype - ) - else: - hidden_states, _, _, _ = block(hidden_states, time_emb, text_emb, res_stack) - - # 4. ControlNet blocks - controlnet_res_stack = [block(res) for block, res in zip(self.controlnet_blocks, res_stack)] - - # pool - if self.global_pool: - controlnet_res_stack = [res.mean(dim=(2, 3), keepdim=True) for res in controlnet_res_stack] - - return controlnet_res_stack - - @staticmethod - def state_dict_converter(): - return SDControlNetStateDictConverter() - - -class SDControlNetStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - # architecture - block_types = [ - 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock', - 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock', - 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock', - 'ResnetBlock', 'PushBlock', 'ResnetBlock', 'PushBlock', - 'ResnetBlock', 'AttentionBlock', 'ResnetBlock', - 'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'UpSampler', - 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler', - 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler', - 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock' - ] - - # controlnet_rename_dict - controlnet_rename_dict = { - "controlnet_cond_embedding.conv_in.weight": "controlnet_conv_in.blocks.0.weight", - "controlnet_cond_embedding.conv_in.bias": "controlnet_conv_in.blocks.0.bias", - "controlnet_cond_embedding.blocks.0.weight": "controlnet_conv_in.blocks.2.weight", - "controlnet_cond_embedding.blocks.0.bias": "controlnet_conv_in.blocks.2.bias", - "controlnet_cond_embedding.blocks.1.weight": "controlnet_conv_in.blocks.4.weight", - "controlnet_cond_embedding.blocks.1.bias": "controlnet_conv_in.blocks.4.bias", - "controlnet_cond_embedding.blocks.2.weight": "controlnet_conv_in.blocks.6.weight", - "controlnet_cond_embedding.blocks.2.bias": "controlnet_conv_in.blocks.6.bias", - "controlnet_cond_embedding.blocks.3.weight": "controlnet_conv_in.blocks.8.weight", - "controlnet_cond_embedding.blocks.3.bias": "controlnet_conv_in.blocks.8.bias", - "controlnet_cond_embedding.blocks.4.weight": "controlnet_conv_in.blocks.10.weight", - "controlnet_cond_embedding.blocks.4.bias": "controlnet_conv_in.blocks.10.bias", - "controlnet_cond_embedding.blocks.5.weight": "controlnet_conv_in.blocks.12.weight", - "controlnet_cond_embedding.blocks.5.bias": "controlnet_conv_in.blocks.12.bias", - "controlnet_cond_embedding.conv_out.weight": "controlnet_conv_in.blocks.14.weight", - "controlnet_cond_embedding.conv_out.bias": "controlnet_conv_in.blocks.14.bias", - } - - # Rename each parameter - name_list = sorted([name for name in state_dict]) - rename_dict = {} - block_id = {"ResnetBlock": -1, "AttentionBlock": -1, "DownSampler": -1, "UpSampler": -1} - last_block_type_with_id = {"ResnetBlock": "", "AttentionBlock": "", "DownSampler": "", "UpSampler": ""} - for name in name_list: - names = name.split(".") - if names[0] in ["conv_in", "conv_norm_out", "conv_out"]: - pass - elif name in controlnet_rename_dict: - names = controlnet_rename_dict[name].split(".") - elif names[0] == "controlnet_down_blocks": - names[0] = "controlnet_blocks" - elif names[0] == "controlnet_mid_block": - names = ["controlnet_blocks", "12", names[-1]] - elif names[0] in ["time_embedding", "add_embedding"]: - if names[0] == "add_embedding": - names[0] = "add_time_embedding" - names[1] = {"linear_1": "0", "linear_2": "2"}[names[1]] - elif names[0] in ["down_blocks", "mid_block", "up_blocks"]: - if names[0] == "mid_block": - names.insert(1, "0") - block_type = {"resnets": "ResnetBlock", "attentions": "AttentionBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[2]] - block_type_with_id = ".".join(names[:4]) - if block_type_with_id != last_block_type_with_id[block_type]: - block_id[block_type] += 1 - last_block_type_with_id[block_type] = block_type_with_id - while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type: - block_id[block_type] += 1 - block_type_with_id = ".".join(names[:4]) - names = ["blocks", str(block_id[block_type])] + names[4:] - if "ff" in names: - ff_index = names.index("ff") - component = ".".join(names[ff_index:ff_index+3]) - component = {"ff.net.0": "act_fn", "ff.net.2": "ff"}[component] - names = names[:ff_index] + [component] + names[ff_index+3:] - if "to_out" in names: - names.pop(names.index("to_out") + 1) - else: - raise ValueError(f"Unknown parameters: {name}") - rename_dict[name] = ".".join(names) - - # Convert state_dict - state_dict_ = {} - for name, param in state_dict.items(): - if ".proj_in." in name or ".proj_out." in name: - param = param.squeeze() - if rename_dict[name] in [ - "controlnet_blocks.1.bias", "controlnet_blocks.2.bias", "controlnet_blocks.3.bias", "controlnet_blocks.5.bias", "controlnet_blocks.6.bias", - "controlnet_blocks.8.bias", "controlnet_blocks.9.bias", "controlnet_blocks.10.bias", "controlnet_blocks.11.bias", "controlnet_blocks.12.bias" - ]: - continue - state_dict_[rename_dict[name]] = param - return state_dict_ - - def from_civitai(self, state_dict): - if "mid_block.resnets.1.time_emb_proj.weight" in state_dict: - # For controlnets in diffusers format - return self.from_diffusers(state_dict) - rename_dict = { - "control_model.time_embed.0.weight": "time_embedding.0.weight", - "control_model.time_embed.0.bias": "time_embedding.0.bias", - "control_model.time_embed.2.weight": "time_embedding.2.weight", - "control_model.time_embed.2.bias": "time_embedding.2.bias", - "control_model.input_blocks.0.0.weight": "conv_in.weight", - "control_model.input_blocks.0.0.bias": "conv_in.bias", - "control_model.input_blocks.1.0.in_layers.0.weight": "blocks.0.norm1.weight", - "control_model.input_blocks.1.0.in_layers.0.bias": "blocks.0.norm1.bias", - "control_model.input_blocks.1.0.in_layers.2.weight": "blocks.0.conv1.weight", - "control_model.input_blocks.1.0.in_layers.2.bias": "blocks.0.conv1.bias", - "control_model.input_blocks.1.0.emb_layers.1.weight": "blocks.0.time_emb_proj.weight", - "control_model.input_blocks.1.0.emb_layers.1.bias": "blocks.0.time_emb_proj.bias", - "control_model.input_blocks.1.0.out_layers.0.weight": "blocks.0.norm2.weight", - "control_model.input_blocks.1.0.out_layers.0.bias": "blocks.0.norm2.bias", - "control_model.input_blocks.1.0.out_layers.3.weight": "blocks.0.conv2.weight", - "control_model.input_blocks.1.0.out_layers.3.bias": "blocks.0.conv2.bias", - "control_model.input_blocks.1.1.norm.weight": "blocks.1.norm.weight", - "control_model.input_blocks.1.1.norm.bias": "blocks.1.norm.bias", - "control_model.input_blocks.1.1.proj_in.weight": "blocks.1.proj_in.weight", - "control_model.input_blocks.1.1.proj_in.bias": "blocks.1.proj_in.bias", - "control_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q.weight": "blocks.1.transformer_blocks.0.attn1.to_q.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k.weight": "blocks.1.transformer_blocks.0.attn1.to_k.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v.weight": "blocks.1.transformer_blocks.0.attn1.to_v.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.1.transformer_blocks.0.attn1.to_out.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.1.transformer_blocks.0.attn1.to_out.bias", - "control_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.1.transformer_blocks.0.act_fn.proj.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.1.transformer_blocks.0.act_fn.proj.bias", - "control_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight": "blocks.1.transformer_blocks.0.ff.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias": "blocks.1.transformer_blocks.0.ff.bias", - "control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight": "blocks.1.transformer_blocks.0.attn2.to_q.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight": "blocks.1.transformer_blocks.0.attn2.to_k.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight": "blocks.1.transformer_blocks.0.attn2.to_v.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.1.transformer_blocks.0.attn2.to_out.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.1.transformer_blocks.0.attn2.to_out.bias", - "control_model.input_blocks.1.1.transformer_blocks.0.norm1.weight": "blocks.1.transformer_blocks.0.norm1.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.norm1.bias": "blocks.1.transformer_blocks.0.norm1.bias", - "control_model.input_blocks.1.1.transformer_blocks.0.norm2.weight": "blocks.1.transformer_blocks.0.norm2.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.norm2.bias": "blocks.1.transformer_blocks.0.norm2.bias", - "control_model.input_blocks.1.1.transformer_blocks.0.norm3.weight": "blocks.1.transformer_blocks.0.norm3.weight", - "control_model.input_blocks.1.1.transformer_blocks.0.norm3.bias": "blocks.1.transformer_blocks.0.norm3.bias", - "control_model.input_blocks.1.1.proj_out.weight": "blocks.1.proj_out.weight", - "control_model.input_blocks.1.1.proj_out.bias": "blocks.1.proj_out.bias", - "control_model.input_blocks.2.0.in_layers.0.weight": "blocks.3.norm1.weight", - "control_model.input_blocks.2.0.in_layers.0.bias": "blocks.3.norm1.bias", - "control_model.input_blocks.2.0.in_layers.2.weight": "blocks.3.conv1.weight", - "control_model.input_blocks.2.0.in_layers.2.bias": "blocks.3.conv1.bias", - "control_model.input_blocks.2.0.emb_layers.1.weight": "blocks.3.time_emb_proj.weight", - "control_model.input_blocks.2.0.emb_layers.1.bias": "blocks.3.time_emb_proj.bias", - "control_model.input_blocks.2.0.out_layers.0.weight": "blocks.3.norm2.weight", - "control_model.input_blocks.2.0.out_layers.0.bias": "blocks.3.norm2.bias", - "control_model.input_blocks.2.0.out_layers.3.weight": "blocks.3.conv2.weight", - "control_model.input_blocks.2.0.out_layers.3.bias": "blocks.3.conv2.bias", - "control_model.input_blocks.2.1.norm.weight": "blocks.4.norm.weight", - "control_model.input_blocks.2.1.norm.bias": "blocks.4.norm.bias", - "control_model.input_blocks.2.1.proj_in.weight": "blocks.4.proj_in.weight", - "control_model.input_blocks.2.1.proj_in.bias": "blocks.4.proj_in.bias", - "control_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q.weight": "blocks.4.transformer_blocks.0.attn1.to_q.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k.weight": "blocks.4.transformer_blocks.0.attn1.to_k.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v.weight": "blocks.4.transformer_blocks.0.attn1.to_v.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.4.transformer_blocks.0.attn1.to_out.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.4.transformer_blocks.0.attn1.to_out.bias", - "control_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.4.transformer_blocks.0.act_fn.proj.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.4.transformer_blocks.0.act_fn.proj.bias", - "control_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight": "blocks.4.transformer_blocks.0.ff.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias": "blocks.4.transformer_blocks.0.ff.bias", - "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight": "blocks.4.transformer_blocks.0.attn2.to_q.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight": "blocks.4.transformer_blocks.0.attn2.to_k.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight": "blocks.4.transformer_blocks.0.attn2.to_v.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.4.transformer_blocks.0.attn2.to_out.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.4.transformer_blocks.0.attn2.to_out.bias", - "control_model.input_blocks.2.1.transformer_blocks.0.norm1.weight": "blocks.4.transformer_blocks.0.norm1.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.norm1.bias": "blocks.4.transformer_blocks.0.norm1.bias", - "control_model.input_blocks.2.1.transformer_blocks.0.norm2.weight": "blocks.4.transformer_blocks.0.norm2.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.norm2.bias": "blocks.4.transformer_blocks.0.norm2.bias", - "control_model.input_blocks.2.1.transformer_blocks.0.norm3.weight": "blocks.4.transformer_blocks.0.norm3.weight", - "control_model.input_blocks.2.1.transformer_blocks.0.norm3.bias": "blocks.4.transformer_blocks.0.norm3.bias", - "control_model.input_blocks.2.1.proj_out.weight": "blocks.4.proj_out.weight", - "control_model.input_blocks.2.1.proj_out.bias": "blocks.4.proj_out.bias", - "control_model.input_blocks.3.0.op.weight": "blocks.6.conv.weight", - "control_model.input_blocks.3.0.op.bias": "blocks.6.conv.bias", - "control_model.input_blocks.4.0.in_layers.0.weight": "blocks.8.norm1.weight", - "control_model.input_blocks.4.0.in_layers.0.bias": "blocks.8.norm1.bias", - "control_model.input_blocks.4.0.in_layers.2.weight": "blocks.8.conv1.weight", - "control_model.input_blocks.4.0.in_layers.2.bias": "blocks.8.conv1.bias", - "control_model.input_blocks.4.0.emb_layers.1.weight": "blocks.8.time_emb_proj.weight", - "control_model.input_blocks.4.0.emb_layers.1.bias": "blocks.8.time_emb_proj.bias", - "control_model.input_blocks.4.0.out_layers.0.weight": "blocks.8.norm2.weight", - "control_model.input_blocks.4.0.out_layers.0.bias": "blocks.8.norm2.bias", - "control_model.input_blocks.4.0.out_layers.3.weight": "blocks.8.conv2.weight", - "control_model.input_blocks.4.0.out_layers.3.bias": "blocks.8.conv2.bias", - "control_model.input_blocks.4.0.skip_connection.weight": "blocks.8.conv_shortcut.weight", - "control_model.input_blocks.4.0.skip_connection.bias": "blocks.8.conv_shortcut.bias", - "control_model.input_blocks.4.1.norm.weight": "blocks.9.norm.weight", - "control_model.input_blocks.4.1.norm.bias": "blocks.9.norm.bias", - "control_model.input_blocks.4.1.proj_in.weight": "blocks.9.proj_in.weight", - "control_model.input_blocks.4.1.proj_in.bias": "blocks.9.proj_in.bias", - "control_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.9.transformer_blocks.0.attn1.to_q.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.9.transformer_blocks.0.attn1.to_k.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.9.transformer_blocks.0.attn1.to_v.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.9.transformer_blocks.0.attn1.to_out.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.9.transformer_blocks.0.attn1.to_out.bias", - "control_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.9.transformer_blocks.0.act_fn.proj.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.9.transformer_blocks.0.act_fn.proj.bias", - "control_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.9.transformer_blocks.0.ff.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.9.transformer_blocks.0.ff.bias", - "control_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.9.transformer_blocks.0.attn2.to_q.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.9.transformer_blocks.0.attn2.to_k.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.9.transformer_blocks.0.attn2.to_v.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.9.transformer_blocks.0.attn2.to_out.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.9.transformer_blocks.0.attn2.to_out.bias", - "control_model.input_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.9.transformer_blocks.0.norm1.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.9.transformer_blocks.0.norm1.bias", - "control_model.input_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.9.transformer_blocks.0.norm2.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.9.transformer_blocks.0.norm2.bias", - "control_model.input_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.9.transformer_blocks.0.norm3.weight", - "control_model.input_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.9.transformer_blocks.0.norm3.bias", - "control_model.input_blocks.4.1.proj_out.weight": "blocks.9.proj_out.weight", - "control_model.input_blocks.4.1.proj_out.bias": "blocks.9.proj_out.bias", - "control_model.input_blocks.5.0.in_layers.0.weight": "blocks.11.norm1.weight", - "control_model.input_blocks.5.0.in_layers.0.bias": "blocks.11.norm1.bias", - "control_model.input_blocks.5.0.in_layers.2.weight": "blocks.11.conv1.weight", - "control_model.input_blocks.5.0.in_layers.2.bias": "blocks.11.conv1.bias", - "control_model.input_blocks.5.0.emb_layers.1.weight": "blocks.11.time_emb_proj.weight", - "control_model.input_blocks.5.0.emb_layers.1.bias": "blocks.11.time_emb_proj.bias", - "control_model.input_blocks.5.0.out_layers.0.weight": "blocks.11.norm2.weight", - "control_model.input_blocks.5.0.out_layers.0.bias": "blocks.11.norm2.bias", - "control_model.input_blocks.5.0.out_layers.3.weight": "blocks.11.conv2.weight", - "control_model.input_blocks.5.0.out_layers.3.bias": "blocks.11.conv2.bias", - "control_model.input_blocks.5.1.norm.weight": "blocks.12.norm.weight", - "control_model.input_blocks.5.1.norm.bias": "blocks.12.norm.bias", - "control_model.input_blocks.5.1.proj_in.weight": "blocks.12.proj_in.weight", - "control_model.input_blocks.5.1.proj_in.bias": "blocks.12.proj_in.bias", - "control_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.12.transformer_blocks.0.attn1.to_q.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.12.transformer_blocks.0.attn1.to_k.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.12.transformer_blocks.0.attn1.to_v.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.12.transformer_blocks.0.attn1.to_out.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.12.transformer_blocks.0.attn1.to_out.bias", - "control_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.12.transformer_blocks.0.act_fn.proj.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.12.transformer_blocks.0.act_fn.proj.bias", - "control_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.12.transformer_blocks.0.ff.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.12.transformer_blocks.0.ff.bias", - "control_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.12.transformer_blocks.0.attn2.to_q.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.12.transformer_blocks.0.attn2.to_k.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.12.transformer_blocks.0.attn2.to_v.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.12.transformer_blocks.0.attn2.to_out.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.12.transformer_blocks.0.attn2.to_out.bias", - "control_model.input_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.12.transformer_blocks.0.norm1.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.12.transformer_blocks.0.norm1.bias", - "control_model.input_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.12.transformer_blocks.0.norm2.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.12.transformer_blocks.0.norm2.bias", - "control_model.input_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.12.transformer_blocks.0.norm3.weight", - "control_model.input_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.12.transformer_blocks.0.norm3.bias", - "control_model.input_blocks.5.1.proj_out.weight": "blocks.12.proj_out.weight", - "control_model.input_blocks.5.1.proj_out.bias": "blocks.12.proj_out.bias", - "control_model.input_blocks.6.0.op.weight": "blocks.14.conv.weight", - "control_model.input_blocks.6.0.op.bias": "blocks.14.conv.bias", - "control_model.input_blocks.7.0.in_layers.0.weight": "blocks.16.norm1.weight", - "control_model.input_blocks.7.0.in_layers.0.bias": "blocks.16.norm1.bias", - "control_model.input_blocks.7.0.in_layers.2.weight": "blocks.16.conv1.weight", - "control_model.input_blocks.7.0.in_layers.2.bias": "blocks.16.conv1.bias", - "control_model.input_blocks.7.0.emb_layers.1.weight": "blocks.16.time_emb_proj.weight", - "control_model.input_blocks.7.0.emb_layers.1.bias": "blocks.16.time_emb_proj.bias", - "control_model.input_blocks.7.0.out_layers.0.weight": "blocks.16.norm2.weight", - "control_model.input_blocks.7.0.out_layers.0.bias": "blocks.16.norm2.bias", - "control_model.input_blocks.7.0.out_layers.3.weight": "blocks.16.conv2.weight", - "control_model.input_blocks.7.0.out_layers.3.bias": "blocks.16.conv2.bias", - "control_model.input_blocks.7.0.skip_connection.weight": "blocks.16.conv_shortcut.weight", - "control_model.input_blocks.7.0.skip_connection.bias": "blocks.16.conv_shortcut.bias", - "control_model.input_blocks.7.1.norm.weight": "blocks.17.norm.weight", - "control_model.input_blocks.7.1.norm.bias": "blocks.17.norm.bias", - "control_model.input_blocks.7.1.proj_in.weight": "blocks.17.proj_in.weight", - "control_model.input_blocks.7.1.proj_in.bias": "blocks.17.proj_in.bias", - "control_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.17.transformer_blocks.0.attn1.to_q.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.17.transformer_blocks.0.attn1.to_k.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.17.transformer_blocks.0.attn1.to_v.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.17.transformer_blocks.0.attn1.to_out.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.17.transformer_blocks.0.attn1.to_out.bias", - "control_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.17.transformer_blocks.0.act_fn.proj.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.17.transformer_blocks.0.act_fn.proj.bias", - "control_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.17.transformer_blocks.0.ff.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.17.transformer_blocks.0.ff.bias", - "control_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.17.transformer_blocks.0.attn2.to_q.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.17.transformer_blocks.0.attn2.to_k.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.17.transformer_blocks.0.attn2.to_v.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.17.transformer_blocks.0.attn2.to_out.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.17.transformer_blocks.0.attn2.to_out.bias", - "control_model.input_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.17.transformer_blocks.0.norm1.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.17.transformer_blocks.0.norm1.bias", - "control_model.input_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.17.transformer_blocks.0.norm2.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.17.transformer_blocks.0.norm2.bias", - "control_model.input_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.17.transformer_blocks.0.norm3.weight", - "control_model.input_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.17.transformer_blocks.0.norm3.bias", - "control_model.input_blocks.7.1.proj_out.weight": "blocks.17.proj_out.weight", - "control_model.input_blocks.7.1.proj_out.bias": "blocks.17.proj_out.bias", - "control_model.input_blocks.8.0.in_layers.0.weight": "blocks.19.norm1.weight", - "control_model.input_blocks.8.0.in_layers.0.bias": "blocks.19.norm1.bias", - "control_model.input_blocks.8.0.in_layers.2.weight": "blocks.19.conv1.weight", - "control_model.input_blocks.8.0.in_layers.2.bias": "blocks.19.conv1.bias", - "control_model.input_blocks.8.0.emb_layers.1.weight": "blocks.19.time_emb_proj.weight", - "control_model.input_blocks.8.0.emb_layers.1.bias": "blocks.19.time_emb_proj.bias", - "control_model.input_blocks.8.0.out_layers.0.weight": "blocks.19.norm2.weight", - "control_model.input_blocks.8.0.out_layers.0.bias": "blocks.19.norm2.bias", - "control_model.input_blocks.8.0.out_layers.3.weight": "blocks.19.conv2.weight", - "control_model.input_blocks.8.0.out_layers.3.bias": "blocks.19.conv2.bias", - "control_model.input_blocks.8.1.norm.weight": "blocks.20.norm.weight", - "control_model.input_blocks.8.1.norm.bias": "blocks.20.norm.bias", - "control_model.input_blocks.8.1.proj_in.weight": "blocks.20.proj_in.weight", - "control_model.input_blocks.8.1.proj_in.bias": "blocks.20.proj_in.bias", - "control_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.20.transformer_blocks.0.attn1.to_q.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.20.transformer_blocks.0.attn1.to_k.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.20.transformer_blocks.0.attn1.to_v.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.20.transformer_blocks.0.attn1.to_out.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.20.transformer_blocks.0.attn1.to_out.bias", - "control_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.20.transformer_blocks.0.act_fn.proj.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.20.transformer_blocks.0.act_fn.proj.bias", - "control_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.20.transformer_blocks.0.ff.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.20.transformer_blocks.0.ff.bias", - "control_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.20.transformer_blocks.0.attn2.to_q.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.20.transformer_blocks.0.attn2.to_k.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.20.transformer_blocks.0.attn2.to_v.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.20.transformer_blocks.0.attn2.to_out.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.20.transformer_blocks.0.attn2.to_out.bias", - "control_model.input_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.20.transformer_blocks.0.norm1.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.20.transformer_blocks.0.norm1.bias", - "control_model.input_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.20.transformer_blocks.0.norm2.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.20.transformer_blocks.0.norm2.bias", - "control_model.input_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.20.transformer_blocks.0.norm3.weight", - "control_model.input_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.20.transformer_blocks.0.norm3.bias", - "control_model.input_blocks.8.1.proj_out.weight": "blocks.20.proj_out.weight", - "control_model.input_blocks.8.1.proj_out.bias": "blocks.20.proj_out.bias", - "control_model.input_blocks.9.0.op.weight": "blocks.22.conv.weight", - "control_model.input_blocks.9.0.op.bias": "blocks.22.conv.bias", - "control_model.input_blocks.10.0.in_layers.0.weight": "blocks.24.norm1.weight", - "control_model.input_blocks.10.0.in_layers.0.bias": "blocks.24.norm1.bias", - "control_model.input_blocks.10.0.in_layers.2.weight": "blocks.24.conv1.weight", - "control_model.input_blocks.10.0.in_layers.2.bias": "blocks.24.conv1.bias", - "control_model.input_blocks.10.0.emb_layers.1.weight": "blocks.24.time_emb_proj.weight", - "control_model.input_blocks.10.0.emb_layers.1.bias": "blocks.24.time_emb_proj.bias", - "control_model.input_blocks.10.0.out_layers.0.weight": "blocks.24.norm2.weight", - "control_model.input_blocks.10.0.out_layers.0.bias": "blocks.24.norm2.bias", - "control_model.input_blocks.10.0.out_layers.3.weight": "blocks.24.conv2.weight", - "control_model.input_blocks.10.0.out_layers.3.bias": "blocks.24.conv2.bias", - "control_model.input_blocks.11.0.in_layers.0.weight": "blocks.26.norm1.weight", - "control_model.input_blocks.11.0.in_layers.0.bias": "blocks.26.norm1.bias", - "control_model.input_blocks.11.0.in_layers.2.weight": "blocks.26.conv1.weight", - "control_model.input_blocks.11.0.in_layers.2.bias": "blocks.26.conv1.bias", - "control_model.input_blocks.11.0.emb_layers.1.weight": "blocks.26.time_emb_proj.weight", - "control_model.input_blocks.11.0.emb_layers.1.bias": "blocks.26.time_emb_proj.bias", - "control_model.input_blocks.11.0.out_layers.0.weight": "blocks.26.norm2.weight", - "control_model.input_blocks.11.0.out_layers.0.bias": "blocks.26.norm2.bias", - "control_model.input_blocks.11.0.out_layers.3.weight": "blocks.26.conv2.weight", - "control_model.input_blocks.11.0.out_layers.3.bias": "blocks.26.conv2.bias", - "control_model.zero_convs.0.0.weight": "controlnet_blocks.0.weight", - "control_model.zero_convs.0.0.bias": "controlnet_blocks.0.bias", - "control_model.zero_convs.1.0.weight": "controlnet_blocks.1.weight", - "control_model.zero_convs.1.0.bias": "controlnet_blocks.0.bias", - "control_model.zero_convs.2.0.weight": "controlnet_blocks.2.weight", - "control_model.zero_convs.2.0.bias": "controlnet_blocks.0.bias", - "control_model.zero_convs.3.0.weight": "controlnet_blocks.3.weight", - "control_model.zero_convs.3.0.bias": "controlnet_blocks.0.bias", - "control_model.zero_convs.4.0.weight": "controlnet_blocks.4.weight", - "control_model.zero_convs.4.0.bias": "controlnet_blocks.4.bias", - "control_model.zero_convs.5.0.weight": "controlnet_blocks.5.weight", - "control_model.zero_convs.5.0.bias": "controlnet_blocks.4.bias", - "control_model.zero_convs.6.0.weight": "controlnet_blocks.6.weight", - "control_model.zero_convs.6.0.bias": "controlnet_blocks.4.bias", - "control_model.zero_convs.7.0.weight": "controlnet_blocks.7.weight", - "control_model.zero_convs.7.0.bias": "controlnet_blocks.7.bias", - "control_model.zero_convs.8.0.weight": "controlnet_blocks.8.weight", - "control_model.zero_convs.8.0.bias": "controlnet_blocks.7.bias", - "control_model.zero_convs.9.0.weight": "controlnet_blocks.9.weight", - "control_model.zero_convs.9.0.bias": "controlnet_blocks.7.bias", - "control_model.zero_convs.10.0.weight": "controlnet_blocks.10.weight", - "control_model.zero_convs.10.0.bias": "controlnet_blocks.7.bias", - "control_model.zero_convs.11.0.weight": "controlnet_blocks.11.weight", - "control_model.zero_convs.11.0.bias": "controlnet_blocks.7.bias", - "control_model.input_hint_block.0.weight": "controlnet_conv_in.blocks.0.weight", - "control_model.input_hint_block.0.bias": "controlnet_conv_in.blocks.0.bias", - "control_model.input_hint_block.2.weight": "controlnet_conv_in.blocks.2.weight", - "control_model.input_hint_block.2.bias": "controlnet_conv_in.blocks.2.bias", - "control_model.input_hint_block.4.weight": "controlnet_conv_in.blocks.4.weight", - "control_model.input_hint_block.4.bias": "controlnet_conv_in.blocks.4.bias", - "control_model.input_hint_block.6.weight": "controlnet_conv_in.blocks.6.weight", - "control_model.input_hint_block.6.bias": "controlnet_conv_in.blocks.6.bias", - "control_model.input_hint_block.8.weight": "controlnet_conv_in.blocks.8.weight", - "control_model.input_hint_block.8.bias": "controlnet_conv_in.blocks.8.bias", - "control_model.input_hint_block.10.weight": "controlnet_conv_in.blocks.10.weight", - "control_model.input_hint_block.10.bias": "controlnet_conv_in.blocks.10.bias", - "control_model.input_hint_block.12.weight": "controlnet_conv_in.blocks.12.weight", - "control_model.input_hint_block.12.bias": "controlnet_conv_in.blocks.12.bias", - "control_model.input_hint_block.14.weight": "controlnet_conv_in.blocks.14.weight", - "control_model.input_hint_block.14.bias": "controlnet_conv_in.blocks.14.bias", - "control_model.middle_block.0.in_layers.0.weight": "blocks.28.norm1.weight", - "control_model.middle_block.0.in_layers.0.bias": "blocks.28.norm1.bias", - "control_model.middle_block.0.in_layers.2.weight": "blocks.28.conv1.weight", - "control_model.middle_block.0.in_layers.2.bias": "blocks.28.conv1.bias", - "control_model.middle_block.0.emb_layers.1.weight": "blocks.28.time_emb_proj.weight", - "control_model.middle_block.0.emb_layers.1.bias": "blocks.28.time_emb_proj.bias", - "control_model.middle_block.0.out_layers.0.weight": "blocks.28.norm2.weight", - "control_model.middle_block.0.out_layers.0.bias": "blocks.28.norm2.bias", - "control_model.middle_block.0.out_layers.3.weight": "blocks.28.conv2.weight", - "control_model.middle_block.0.out_layers.3.bias": "blocks.28.conv2.bias", - "control_model.middle_block.1.norm.weight": "blocks.29.norm.weight", - "control_model.middle_block.1.norm.bias": "blocks.29.norm.bias", - "control_model.middle_block.1.proj_in.weight": "blocks.29.proj_in.weight", - "control_model.middle_block.1.proj_in.bias": "blocks.29.proj_in.bias", - "control_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight": "blocks.29.transformer_blocks.0.attn1.to_q.weight", - "control_model.middle_block.1.transformer_blocks.0.attn1.to_k.weight": "blocks.29.transformer_blocks.0.attn1.to_k.weight", - "control_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight": "blocks.29.transformer_blocks.0.attn1.to_v.weight", - "control_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.29.transformer_blocks.0.attn1.to_out.weight", - "control_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.29.transformer_blocks.0.attn1.to_out.bias", - "control_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.29.transformer_blocks.0.act_fn.proj.weight", - "control_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.29.transformer_blocks.0.act_fn.proj.bias", - "control_model.middle_block.1.transformer_blocks.0.ff.net.2.weight": "blocks.29.transformer_blocks.0.ff.weight", - "control_model.middle_block.1.transformer_blocks.0.ff.net.2.bias": "blocks.29.transformer_blocks.0.ff.bias", - "control_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight": "blocks.29.transformer_blocks.0.attn2.to_q.weight", - "control_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight": "blocks.29.transformer_blocks.0.attn2.to_k.weight", - "control_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight": "blocks.29.transformer_blocks.0.attn2.to_v.weight", - "control_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.29.transformer_blocks.0.attn2.to_out.weight", - "control_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.29.transformer_blocks.0.attn2.to_out.bias", - "control_model.middle_block.1.transformer_blocks.0.norm1.weight": "blocks.29.transformer_blocks.0.norm1.weight", - "control_model.middle_block.1.transformer_blocks.0.norm1.bias": "blocks.29.transformer_blocks.0.norm1.bias", - "control_model.middle_block.1.transformer_blocks.0.norm2.weight": "blocks.29.transformer_blocks.0.norm2.weight", - "control_model.middle_block.1.transformer_blocks.0.norm2.bias": "blocks.29.transformer_blocks.0.norm2.bias", - "control_model.middle_block.1.transformer_blocks.0.norm3.weight": "blocks.29.transformer_blocks.0.norm3.weight", - "control_model.middle_block.1.transformer_blocks.0.norm3.bias": "blocks.29.transformer_blocks.0.norm3.bias", - "control_model.middle_block.1.proj_out.weight": "blocks.29.proj_out.weight", - "control_model.middle_block.1.proj_out.bias": "blocks.29.proj_out.bias", - "control_model.middle_block.2.in_layers.0.weight": "blocks.30.norm1.weight", - "control_model.middle_block.2.in_layers.0.bias": "blocks.30.norm1.bias", - "control_model.middle_block.2.in_layers.2.weight": "blocks.30.conv1.weight", - "control_model.middle_block.2.in_layers.2.bias": "blocks.30.conv1.bias", - "control_model.middle_block.2.emb_layers.1.weight": "blocks.30.time_emb_proj.weight", - "control_model.middle_block.2.emb_layers.1.bias": "blocks.30.time_emb_proj.bias", - "control_model.middle_block.2.out_layers.0.weight": "blocks.30.norm2.weight", - "control_model.middle_block.2.out_layers.0.bias": "blocks.30.norm2.bias", - "control_model.middle_block.2.out_layers.3.weight": "blocks.30.conv2.weight", - "control_model.middle_block.2.out_layers.3.bias": "blocks.30.conv2.bias", - "control_model.middle_block_out.0.weight": "controlnet_blocks.12.weight", - "control_model.middle_block_out.0.bias": "controlnet_blocks.7.bias", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if ".proj_in." in name or ".proj_out." in name: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - return state_dict_ diff --git a/diffsynth/models/sd_ipadapter.py b/diffsynth/models/sd_ipadapter.py deleted file mode 100644 index 8d6ebd7d5e79ccd534aab11d22e046111562ccde..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd_ipadapter.py +++ /dev/null @@ -1,57 +0,0 @@ -from .svd_image_encoder import SVDImageEncoder -from .sdxl_ipadapter import IpAdapterImageProjModel, IpAdapterModule, SDXLIpAdapterStateDictConverter -from transformers import CLIPImageProcessor -import torch - - -class IpAdapterCLIPImageEmbedder(SVDImageEncoder): - def __init__(self): - super().__init__() - self.image_processor = CLIPImageProcessor() - - def forward(self, image): - pixel_values = self.image_processor(images=image, return_tensors="pt").pixel_values - pixel_values = pixel_values.to(device=self.embeddings.class_embedding.device, dtype=self.embeddings.class_embedding.dtype) - return super().forward(pixel_values) - - -class SDIpAdapter(torch.nn.Module): - def __init__(self): - super().__init__() - shape_list = [(768, 320)] * 2 + [(768, 640)] * 2 + [(768, 1280)] * 5 + [(768, 640)] * 3 + [(768, 320)] * 3 + [(768, 1280)] * 1 - self.ipadapter_modules = torch.nn.ModuleList([IpAdapterModule(*shape) for shape in shape_list]) - self.image_proj = IpAdapterImageProjModel(cross_attention_dim=768, clip_embeddings_dim=1024, clip_extra_context_tokens=4) - self.set_full_adapter() - - def set_full_adapter(self): - block_ids = [1, 4, 9, 12, 17, 20, 40, 43, 46, 50, 53, 56, 60, 63, 66, 29] - self.call_block_id = {(i, 0): j for j, i in enumerate(block_ids)} - - def set_less_adapter(self): - # IP-Adapter for SD v1.5 doesn't support this feature. - self.set_full_adapter() - - def forward(self, hidden_states, scale=1.0): - hidden_states = self.image_proj(hidden_states) - hidden_states = hidden_states.view(1, -1, hidden_states.shape[-1]) - ip_kv_dict = {} - for (block_id, transformer_id) in self.call_block_id: - ipadapter_id = self.call_block_id[(block_id, transformer_id)] - ip_k, ip_v = self.ipadapter_modules[ipadapter_id](hidden_states) - if block_id not in ip_kv_dict: - ip_kv_dict[block_id] = {} - ip_kv_dict[block_id][transformer_id] = { - "ip_k": ip_k, - "ip_v": ip_v, - "scale": scale - } - return ip_kv_dict - - @staticmethod - def state_dict_converter(): - return SDIpAdapterStateDictConverter() - - -class SDIpAdapterStateDictConverter(SDXLIpAdapterStateDictConverter): - def __init__(self): - pass diff --git a/diffsynth/models/sd_motion.py b/diffsynth/models/sd_motion.py deleted file mode 100644 index fb49138e147538537a60fb4a3e2d12a175da4a50..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd_motion.py +++ /dev/null @@ -1,199 +0,0 @@ -from .sd_unet import SDUNet, Attention, GEGLU -import torch -from einops import rearrange, repeat - - -class TemporalTransformerBlock(torch.nn.Module): - - def __init__(self, dim, num_attention_heads, attention_head_dim, max_position_embeddings=32): - super().__init__() - - # 1. Self-Attn - self.pe1 = torch.nn.Parameter(torch.zeros(1, max_position_embeddings, dim)) - self.norm1 = torch.nn.LayerNorm(dim, elementwise_affine=True) - self.attn1 = Attention(q_dim=dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True) - - # 2. Cross-Attn - self.pe2 = torch.nn.Parameter(torch.zeros(1, max_position_embeddings, dim)) - self.norm2 = torch.nn.LayerNorm(dim, elementwise_affine=True) - self.attn2 = Attention(q_dim=dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True) - - # 3. Feed-forward - self.norm3 = torch.nn.LayerNorm(dim, elementwise_affine=True) - self.act_fn = GEGLU(dim, dim * 4) - self.ff = torch.nn.Linear(dim * 4, dim) - - - def forward(self, hidden_states, batch_size=1): - - # 1. Self-Attention - norm_hidden_states = self.norm1(hidden_states) - norm_hidden_states = rearrange(norm_hidden_states, "(b f) h c -> (b h) f c", b=batch_size) - attn_output = self.attn1(norm_hidden_states + self.pe1[:, :norm_hidden_states.shape[1]]) - attn_output = rearrange(attn_output, "(b h) f c -> (b f) h c", b=batch_size) - hidden_states = attn_output + hidden_states - - # 2. Cross-Attention - norm_hidden_states = self.norm2(hidden_states) - norm_hidden_states = rearrange(norm_hidden_states, "(b f) h c -> (b h) f c", b=batch_size) - attn_output = self.attn2(norm_hidden_states + self.pe2[:, :norm_hidden_states.shape[1]]) - attn_output = rearrange(attn_output, "(b h) f c -> (b f) h c", b=batch_size) - hidden_states = attn_output + hidden_states - - # 3. Feed-forward - norm_hidden_states = self.norm3(hidden_states) - ff_output = self.act_fn(norm_hidden_states) - ff_output = self.ff(ff_output) - hidden_states = ff_output + hidden_states - - return hidden_states - - -class TemporalBlock(torch.nn.Module): - - def __init__(self, num_attention_heads, attention_head_dim, in_channels, num_layers=1, norm_num_groups=32, eps=1e-5): - super().__init__() - inner_dim = num_attention_heads * attention_head_dim - - self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True) - self.proj_in = torch.nn.Linear(in_channels, inner_dim) - - self.transformer_blocks = torch.nn.ModuleList([ - TemporalTransformerBlock( - inner_dim, - num_attention_heads, - attention_head_dim - ) - for d in range(num_layers) - ]) - - self.proj_out = torch.nn.Linear(inner_dim, in_channels) - - def forward(self, hidden_states, time_emb, text_emb, res_stack, batch_size=1): - batch, _, height, width = hidden_states.shape - residual = hidden_states - - hidden_states = self.norm(hidden_states) - inner_dim = hidden_states.shape[1] - hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) - hidden_states = self.proj_in(hidden_states) - - for block in self.transformer_blocks: - hidden_states = block( - hidden_states, - batch_size=batch_size - ) - - hidden_states = self.proj_out(hidden_states) - hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() - hidden_states = hidden_states + residual - - return hidden_states, time_emb, text_emb, res_stack - - -class SDMotionModel(torch.nn.Module): - def __init__(self): - super().__init__() - self.motion_modules = torch.nn.ModuleList([ - TemporalBlock(8, 40, 320, eps=1e-6), - TemporalBlock(8, 40, 320, eps=1e-6), - TemporalBlock(8, 80, 640, eps=1e-6), - TemporalBlock(8, 80, 640, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 160, 1280, eps=1e-6), - TemporalBlock(8, 80, 640, eps=1e-6), - TemporalBlock(8, 80, 640, eps=1e-6), - TemporalBlock(8, 80, 640, eps=1e-6), - TemporalBlock(8, 40, 320, eps=1e-6), - TemporalBlock(8, 40, 320, eps=1e-6), - TemporalBlock(8, 40, 320, eps=1e-6), - ]) - self.call_block_id = { - 1: 0, - 4: 1, - 9: 2, - 12: 3, - 17: 4, - 20: 5, - 24: 6, - 26: 7, - 29: 8, - 32: 9, - 34: 10, - 36: 11, - 40: 12, - 43: 13, - 46: 14, - 50: 15, - 53: 16, - 56: 17, - 60: 18, - 63: 19, - 66: 20 - } - - def forward(self): - pass - - @staticmethod - def state_dict_converter(): - return SDMotionModelStateDictConverter() - - -class SDMotionModelStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - rename_dict = { - "norm": "norm", - "proj_in": "proj_in", - "transformer_blocks.0.attention_blocks.0.to_q": "transformer_blocks.0.attn1.to_q", - "transformer_blocks.0.attention_blocks.0.to_k": "transformer_blocks.0.attn1.to_k", - "transformer_blocks.0.attention_blocks.0.to_v": "transformer_blocks.0.attn1.to_v", - "transformer_blocks.0.attention_blocks.0.to_out.0": "transformer_blocks.0.attn1.to_out", - "transformer_blocks.0.attention_blocks.0.pos_encoder": "transformer_blocks.0.pe1", - "transformer_blocks.0.attention_blocks.1.to_q": "transformer_blocks.0.attn2.to_q", - "transformer_blocks.0.attention_blocks.1.to_k": "transformer_blocks.0.attn2.to_k", - "transformer_blocks.0.attention_blocks.1.to_v": "transformer_blocks.0.attn2.to_v", - "transformer_blocks.0.attention_blocks.1.to_out.0": "transformer_blocks.0.attn2.to_out", - "transformer_blocks.0.attention_blocks.1.pos_encoder": "transformer_blocks.0.pe2", - "transformer_blocks.0.norms.0": "transformer_blocks.0.norm1", - "transformer_blocks.0.norms.1": "transformer_blocks.0.norm2", - "transformer_blocks.0.ff.net.0.proj": "transformer_blocks.0.act_fn.proj", - "transformer_blocks.0.ff.net.2": "transformer_blocks.0.ff", - "transformer_blocks.0.ff_norm": "transformer_blocks.0.norm3", - "proj_out": "proj_out", - } - name_list = sorted([i for i in state_dict if i.startswith("down_blocks.")]) - name_list += sorted([i for i in state_dict if i.startswith("mid_block.")]) - name_list += sorted([i for i in state_dict if i.startswith("up_blocks.")]) - state_dict_ = {} - last_prefix, module_id = "", -1 - for name in name_list: - names = name.split(".") - prefix_index = names.index("temporal_transformer") + 1 - prefix = ".".join(names[:prefix_index]) - if prefix != last_prefix: - last_prefix = prefix - module_id += 1 - middle_name = ".".join(names[prefix_index:-1]) - suffix = names[-1] - if "pos_encoder" in names: - rename = ".".join(["motion_modules", str(module_id), rename_dict[middle_name]]) - else: - rename = ".".join(["motion_modules", str(module_id), rename_dict[middle_name], suffix]) - state_dict_[rename] = state_dict[name] - return state_dict_ - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) diff --git a/diffsynth/models/sd_text_encoder.py b/diffsynth/models/sd_text_encoder.py deleted file mode 100644 index 8fe8994a10bc998b8778cae2cbd57b95545166ba..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd_text_encoder.py +++ /dev/null @@ -1,321 +0,0 @@ -import torch -from .attention import Attention - - -class CLIPEncoderLayer(torch.nn.Module): - def __init__(self, embed_dim, intermediate_size, num_heads=12, head_dim=64, use_quick_gelu=True): - super().__init__() - self.attn = Attention(q_dim=embed_dim, num_heads=num_heads, head_dim=head_dim, bias_q=True, bias_kv=True, bias_out=True) - self.layer_norm1 = torch.nn.LayerNorm(embed_dim) - self.layer_norm2 = torch.nn.LayerNorm(embed_dim) - self.fc1 = torch.nn.Linear(embed_dim, intermediate_size) - self.fc2 = torch.nn.Linear(intermediate_size, embed_dim) - - self.use_quick_gelu = use_quick_gelu - - def quickGELU(self, x): - return x * torch.sigmoid(1.702 * x) - - def forward(self, hidden_states, attn_mask=None): - residual = hidden_states - - hidden_states = self.layer_norm1(hidden_states) - hidden_states = self.attn(hidden_states, attn_mask=attn_mask) - hidden_states = residual + hidden_states - - residual = hidden_states - hidden_states = self.layer_norm2(hidden_states) - hidden_states = self.fc1(hidden_states) - if self.use_quick_gelu: - hidden_states = self.quickGELU(hidden_states) - else: - hidden_states = torch.nn.functional.gelu(hidden_states) - hidden_states = self.fc2(hidden_states) - hidden_states = residual + hidden_states - - return hidden_states - - -class SDTextEncoder(torch.nn.Module): - def __init__(self, embed_dim=768, vocab_size=49408, max_position_embeddings=77, num_encoder_layers=12, encoder_intermediate_size=3072): - super().__init__() - - # token_embedding - self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim) - - # position_embeds (This is a fixed tensor) - self.position_embeds = torch.nn.Parameter(torch.zeros(1, max_position_embeddings, embed_dim)) - - # encoders - self.encoders = torch.nn.ModuleList([CLIPEncoderLayer(embed_dim, encoder_intermediate_size) for _ in range(num_encoder_layers)]) - - # attn_mask - self.attn_mask = self.attention_mask(max_position_embeddings) - - # final_layer_norm - self.final_layer_norm = torch.nn.LayerNorm(embed_dim) - - def attention_mask(self, length): - mask = torch.empty(length, length) - mask.fill_(float("-inf")) - mask.triu_(1) - return mask - - def forward(self, input_ids, clip_skip=1): - embeds = self.token_embedding(input_ids) + self.position_embeds - attn_mask = self.attn_mask.to(device=embeds.device, dtype=embeds.dtype) - for encoder_id, encoder in enumerate(self.encoders): - embeds = encoder(embeds, attn_mask=attn_mask) - if encoder_id + clip_skip == len(self.encoders): - break - embeds = self.final_layer_norm(embeds) - return embeds - - @staticmethod - def state_dict_converter(): - return SDTextEncoderStateDictConverter() - - -class SDTextEncoderStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - rename_dict = { - "text_model.embeddings.token_embedding.weight": "token_embedding.weight", - "text_model.embeddings.position_embedding.weight": "position_embeds", - "text_model.final_layer_norm.weight": "final_layer_norm.weight", - "text_model.final_layer_norm.bias": "final_layer_norm.bias" - } - attn_rename_dict = { - "self_attn.q_proj": "attn.to_q", - "self_attn.k_proj": "attn.to_k", - "self_attn.v_proj": "attn.to_v", - "self_attn.out_proj": "attn.to_out", - "layer_norm1": "layer_norm1", - "layer_norm2": "layer_norm2", - "mlp.fc1": "fc1", - "mlp.fc2": "fc2", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "text_model.embeddings.position_embedding.weight": - param = param.reshape((1, param.shape[0], param.shape[1])) - state_dict_[rename_dict[name]] = param - elif name.startswith("text_model.encoder.layers."): - param = state_dict[name] - names = name.split(".") - layer_id, layer_type, tail = names[3], ".".join(names[4:-1]), names[-1] - name_ = ".".join(["encoders", layer_id, attn_rename_dict[layer_type], tail]) - state_dict_[name_] = param - return state_dict_ - - def from_civitai(self, state_dict): - rename_dict = { - "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight", - "cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.bias": "encoders.0.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm1.weight": "encoders.0.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm2.bias": "encoders.0.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.0.layer_norm2.weight": "encoders.0.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc1.bias": "encoders.0.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc1.weight": "encoders.0.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc2.bias": "encoders.0.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.0.mlp.fc2.weight": "encoders.0.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.k_proj.bias": "encoders.0.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.k_proj.weight": "encoders.0.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.out_proj.bias": "encoders.0.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.out_proj.weight": "encoders.0.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.q_proj.bias": "encoders.0.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.q_proj.weight": "encoders.0.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.v_proj.bias": "encoders.0.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.0.self_attn.v_proj.weight": "encoders.0.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm1.bias": "encoders.1.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm1.weight": "encoders.1.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm2.bias": "encoders.1.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.1.layer_norm2.weight": "encoders.1.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc1.bias": "encoders.1.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc1.weight": "encoders.1.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc2.bias": "encoders.1.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.1.mlp.fc2.weight": "encoders.1.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.k_proj.bias": "encoders.1.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.k_proj.weight": "encoders.1.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.out_proj.bias": "encoders.1.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.out_proj.weight": "encoders.1.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.q_proj.bias": "encoders.1.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.q_proj.weight": "encoders.1.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.v_proj.bias": "encoders.1.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.1.self_attn.v_proj.weight": "encoders.1.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm1.bias": "encoders.10.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm1.weight": "encoders.10.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm2.bias": "encoders.10.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.10.layer_norm2.weight": "encoders.10.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc1.bias": "encoders.10.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc1.weight": "encoders.10.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc2.bias": "encoders.10.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.10.mlp.fc2.weight": "encoders.10.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.k_proj.bias": "encoders.10.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.k_proj.weight": "encoders.10.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.out_proj.bias": "encoders.10.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.out_proj.weight": "encoders.10.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.q_proj.bias": "encoders.10.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.q_proj.weight": "encoders.10.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.v_proj.bias": "encoders.10.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.10.self_attn.v_proj.weight": "encoders.10.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm1.bias": "encoders.11.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm1.weight": "encoders.11.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm2.bias": "encoders.11.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.11.layer_norm2.weight": "encoders.11.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc1.bias": "encoders.11.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc1.weight": "encoders.11.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2.bias": "encoders.11.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2.weight": "encoders.11.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.bias": "encoders.11.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.weight": "encoders.11.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj.bias": "encoders.11.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj.weight": "encoders.11.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.q_proj.bias": "encoders.11.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.q_proj.weight": "encoders.11.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.v_proj.bias": "encoders.11.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.v_proj.weight": "encoders.11.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm1.bias": "encoders.2.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm1.weight": "encoders.2.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm2.bias": "encoders.2.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.2.layer_norm2.weight": "encoders.2.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc1.bias": "encoders.2.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc1.weight": "encoders.2.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2.bias": "encoders.2.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2.weight": "encoders.2.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias": "encoders.2.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.weight": "encoders.2.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj.bias": "encoders.2.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj.weight": "encoders.2.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.q_proj.bias": "encoders.2.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.q_proj.weight": "encoders.2.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.v_proj.bias": "encoders.2.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.v_proj.weight": "encoders.2.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm1.bias": "encoders.3.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm1.weight": "encoders.3.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.bias": "encoders.3.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.3.layer_norm2.weight": "encoders.3.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc1.bias": "encoders.3.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc1.weight": "encoders.3.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2.bias": "encoders.3.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2.weight": "encoders.3.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias": "encoders.3.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.weight": "encoders.3.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.bias": "encoders.3.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.weight": "encoders.3.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.q_proj.bias": "encoders.3.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.q_proj.weight": "encoders.3.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.v_proj.bias": "encoders.3.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.v_proj.weight": "encoders.3.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm1.bias": "encoders.4.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm1.weight": "encoders.4.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm2.bias": "encoders.4.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.4.layer_norm2.weight": "encoders.4.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc1.bias": "encoders.4.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc1.weight": "encoders.4.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc2.bias": "encoders.4.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.4.mlp.fc2.weight": "encoders.4.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.k_proj.bias": "encoders.4.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.k_proj.weight": "encoders.4.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.out_proj.bias": "encoders.4.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.out_proj.weight": "encoders.4.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.q_proj.bias": "encoders.4.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.q_proj.weight": "encoders.4.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.v_proj.bias": "encoders.4.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.4.self_attn.v_proj.weight": "encoders.4.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm1.bias": "encoders.5.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm1.weight": "encoders.5.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm2.bias": "encoders.5.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.5.layer_norm2.weight": "encoders.5.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc1.bias": "encoders.5.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc1.weight": "encoders.5.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc2.bias": "encoders.5.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.5.mlp.fc2.weight": "encoders.5.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.k_proj.bias": "encoders.5.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.k_proj.weight": "encoders.5.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.out_proj.bias": "encoders.5.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.out_proj.weight": "encoders.5.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.q_proj.bias": "encoders.5.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.q_proj.weight": "encoders.5.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.v_proj.bias": "encoders.5.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.5.self_attn.v_proj.weight": "encoders.5.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm1.bias": "encoders.6.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm1.weight": "encoders.6.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm2.bias": "encoders.6.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.6.layer_norm2.weight": "encoders.6.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc1.bias": "encoders.6.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc1.weight": "encoders.6.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc2.bias": "encoders.6.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.6.mlp.fc2.weight": "encoders.6.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.k_proj.bias": "encoders.6.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.k_proj.weight": "encoders.6.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.out_proj.bias": "encoders.6.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.out_proj.weight": "encoders.6.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.q_proj.bias": "encoders.6.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.q_proj.weight": "encoders.6.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.v_proj.bias": "encoders.6.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.6.self_attn.v_proj.weight": "encoders.6.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm1.bias": "encoders.7.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm1.weight": "encoders.7.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm2.bias": "encoders.7.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.7.layer_norm2.weight": "encoders.7.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc1.bias": "encoders.7.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc1.weight": "encoders.7.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc2.bias": "encoders.7.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.7.mlp.fc2.weight": "encoders.7.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.k_proj.bias": "encoders.7.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.k_proj.weight": "encoders.7.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.out_proj.bias": "encoders.7.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.out_proj.weight": "encoders.7.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.q_proj.bias": "encoders.7.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.q_proj.weight": "encoders.7.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.v_proj.bias": "encoders.7.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.7.self_attn.v_proj.weight": "encoders.7.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm1.bias": "encoders.8.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm1.weight": "encoders.8.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm2.bias": "encoders.8.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.8.layer_norm2.weight": "encoders.8.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc1.bias": "encoders.8.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc1.weight": "encoders.8.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc2.bias": "encoders.8.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.8.mlp.fc2.weight": "encoders.8.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.k_proj.bias": "encoders.8.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.k_proj.weight": "encoders.8.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.out_proj.bias": "encoders.8.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.out_proj.weight": "encoders.8.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.q_proj.bias": "encoders.8.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.q_proj.weight": "encoders.8.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.v_proj.bias": "encoders.8.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.8.self_attn.v_proj.weight": "encoders.8.attn.to_v.weight", - "cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm1.bias": "encoders.9.layer_norm1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm1.weight": "encoders.9.layer_norm1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm2.bias": "encoders.9.layer_norm2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.9.layer_norm2.weight": "encoders.9.layer_norm2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc1.bias": "encoders.9.fc1.bias", - "cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc1.weight": "encoders.9.fc1.weight", - "cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc2.bias": "encoders.9.fc2.bias", - "cond_stage_model.transformer.text_model.encoder.layers.9.mlp.fc2.weight": "encoders.9.fc2.weight", - "cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.k_proj.bias": "encoders.9.attn.to_k.bias", - "cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.k_proj.weight": "encoders.9.attn.to_k.weight", - "cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.out_proj.bias": "encoders.9.attn.to_out.bias", - "cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.out_proj.weight": "encoders.9.attn.to_out.weight", - "cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.q_proj.bias": "encoders.9.attn.to_q.bias", - "cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.q_proj.weight": "encoders.9.attn.to_q.weight", - "cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.v_proj.bias": "encoders.9.attn.to_v.bias", - "cond_stage_model.transformer.text_model.encoder.layers.9.self_attn.v_proj.weight": "encoders.9.attn.to_v.weight", - "cond_stage_model.transformer.text_model.final_layer_norm.bias": "final_layer_norm.bias", - "cond_stage_model.transformer.text_model.final_layer_norm.weight": "final_layer_norm.weight", - "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight": "position_embeds" - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight": - param = param.reshape((1, param.shape[0], param.shape[1])) - state_dict_[rename_dict[name]] = param - return state_dict_ diff --git a/diffsynth/models/sd_unet.py b/diffsynth/models/sd_unet.py deleted file mode 100644 index 33363909e4968292fe22e1953dc0c4a12e41d921..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd_unet.py +++ /dev/null @@ -1,1108 +0,0 @@ -import torch, math -from .attention import Attention -from .tiler import TileWorker - - -class Timesteps(torch.nn.Module): - def __init__(self, num_channels): - super().__init__() - self.num_channels = num_channels - - def forward(self, timesteps): - half_dim = self.num_channels // 2 - exponent = -math.log(10000) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) / half_dim - timesteps = timesteps.unsqueeze(-1) - emb = timesteps.float() * torch.exp(exponent) - emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=-1) - return emb - - -class GEGLU(torch.nn.Module): - - def __init__(self, dim_in, dim_out): - super().__init__() - self.proj = torch.nn.Linear(dim_in, dim_out * 2) - - def forward(self, hidden_states): - hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) - return hidden_states * torch.nn.functional.gelu(gate) - - -class BasicTransformerBlock(torch.nn.Module): - - def __init__(self, dim, num_attention_heads, attention_head_dim, cross_attention_dim): - super().__init__() - - # 1. Self-Attn - self.norm1 = torch.nn.LayerNorm(dim, elementwise_affine=True) - self.attn1 = Attention(q_dim=dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True) - - # 2. Cross-Attn - self.norm2 = torch.nn.LayerNorm(dim, elementwise_affine=True) - self.attn2 = Attention(q_dim=dim, kv_dim=cross_attention_dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True) - - # 3. Feed-forward - self.norm3 = torch.nn.LayerNorm(dim, elementwise_affine=True) - self.act_fn = GEGLU(dim, dim * 4) - self.ff = torch.nn.Linear(dim * 4, dim) - - - def forward(self, hidden_states, encoder_hidden_states, ipadapter_kwargs=None): - # 1. Self-Attention - norm_hidden_states = self.norm1(hidden_states) - attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) - hidden_states = attn_output + hidden_states - - # 2. Cross-Attention - norm_hidden_states = self.norm2(hidden_states) - attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, ipadapter_kwargs=ipadapter_kwargs) - hidden_states = attn_output + hidden_states - - # 3. Feed-forward - norm_hidden_states = self.norm3(hidden_states) - ff_output = self.act_fn(norm_hidden_states) - ff_output = self.ff(ff_output) - hidden_states = ff_output + hidden_states - - return hidden_states - - -class DownSampler(torch.nn.Module): - def __init__(self, channels, padding=1, extra_padding=False): - super().__init__() - self.conv = torch.nn.Conv2d(channels, channels, 3, stride=2, padding=padding) - self.extra_padding = extra_padding - - def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): - if self.extra_padding: - hidden_states = torch.nn.functional.pad(hidden_states, (0, 1, 0, 1), mode="constant", value=0) - hidden_states = self.conv(hidden_states) - return hidden_states, time_emb, text_emb, res_stack - - -class UpSampler(torch.nn.Module): - def __init__(self, channels): - super().__init__() - self.conv = torch.nn.Conv2d(channels, channels, 3, padding=1) - - def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): - hidden_states = torch.nn.functional.interpolate(hidden_states, scale_factor=2.0, mode="nearest") - hidden_states = self.conv(hidden_states) - return hidden_states, time_emb, text_emb, res_stack - - -class ResnetBlock(torch.nn.Module): - def __init__(self, in_channels, out_channels, temb_channels=None, groups=32, eps=1e-5): - super().__init__() - self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) - self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) - if temb_channels is not None: - self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) - self.norm2 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True) - self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) - self.nonlinearity = torch.nn.SiLU() - self.conv_shortcut = None - if in_channels != out_channels: - self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True) - - def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): - x = hidden_states - x = self.norm1(x) - x = self.nonlinearity(x) - x = self.conv1(x) - if time_emb is not None: - emb = self.nonlinearity(time_emb) - emb = self.time_emb_proj(emb)[:, :, None, None] - x = x + emb - x = self.norm2(x) - x = self.nonlinearity(x) - x = self.conv2(x) - if self.conv_shortcut is not None: - hidden_states = self.conv_shortcut(hidden_states) - hidden_states = hidden_states + x - return hidden_states, time_emb, text_emb, res_stack - - -class AttentionBlock(torch.nn.Module): - - def __init__(self, num_attention_heads, attention_head_dim, in_channels, num_layers=1, cross_attention_dim=None, norm_num_groups=32, eps=1e-5, need_proj_out=True): - super().__init__() - inner_dim = num_attention_heads * attention_head_dim - - self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True) - self.proj_in = torch.nn.Linear(in_channels, inner_dim) - - self.transformer_blocks = torch.nn.ModuleList([ - BasicTransformerBlock( - inner_dim, - num_attention_heads, - attention_head_dim, - cross_attention_dim=cross_attention_dim - ) - for d in range(num_layers) - ]) - self.need_proj_out = need_proj_out - if need_proj_out: - self.proj_out = torch.nn.Linear(inner_dim, in_channels) - - def forward( - self, - hidden_states, time_emb, text_emb, res_stack, - cross_frame_attention=False, - tiled=False, tile_size=64, tile_stride=32, - ipadapter_kwargs_list={}, - **kwargs - ): - batch, _, height, width = hidden_states.shape - residual = hidden_states - - hidden_states = self.norm(hidden_states) - inner_dim = hidden_states.shape[1] - hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) - hidden_states = self.proj_in(hidden_states) - - if cross_frame_attention: - hidden_states = hidden_states.reshape(1, batch * height * width, inner_dim) - encoder_hidden_states = text_emb.mean(dim=0, keepdim=True) - else: - encoder_hidden_states = text_emb - if encoder_hidden_states.shape[0] != hidden_states.shape[0]: - encoder_hidden_states = encoder_hidden_states.repeat(hidden_states.shape[0], 1, 1) - - if tiled: - tile_size = min(tile_size, min(height, width)) - hidden_states = hidden_states.permute(0, 2, 1).reshape(batch, inner_dim, height, width) - def block_tile_forward(x): - b, c, h, w = x.shape - x = x.permute(0, 2, 3, 1).reshape(b, h*w, c) - x = block(x, encoder_hidden_states) - x = x.reshape(b, h, w, c).permute(0, 3, 1, 2) - return x - for block in self.transformer_blocks: - hidden_states = TileWorker().tiled_forward( - block_tile_forward, - hidden_states, - tile_size, - tile_stride, - tile_device=hidden_states.device, - tile_dtype=hidden_states.dtype - ) - hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) - else: - for block_id, block in enumerate(self.transformer_blocks): - hidden_states = block( - hidden_states, - encoder_hidden_states=encoder_hidden_states, - ipadapter_kwargs=ipadapter_kwargs_list.get(block_id, None) - ) - if cross_frame_attention: - hidden_states = hidden_states.reshape(batch, height * width, inner_dim) - - if self.need_proj_out: - hidden_states = self.proj_out(hidden_states) - hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() - hidden_states = hidden_states + residual - else: - hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() - - return hidden_states, time_emb, text_emb, res_stack - - -class PushBlock(torch.nn.Module): - def __init__(self): - super().__init__() - - def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): - res_stack.append(hidden_states) - return hidden_states, time_emb, text_emb, res_stack - - -class PopBlock(torch.nn.Module): - def __init__(self): - super().__init__() - - def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): - res_hidden_states = res_stack.pop() - hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) - return hidden_states, time_emb, text_emb, res_stack - - -class SDUNet(torch.nn.Module): - def __init__(self): - super().__init__() - self.time_proj = Timesteps(320) - self.time_embedding = torch.nn.Sequential( - torch.nn.Linear(320, 1280), - torch.nn.SiLU(), - torch.nn.Linear(1280, 1280) - ) - self.conv_in = torch.nn.Conv2d(4, 320, kernel_size=3, padding=1) - - self.blocks = torch.nn.ModuleList([ - # CrossAttnDownBlock2D - ResnetBlock(320, 320, 1280), - AttentionBlock(8, 40, 320, 1, 768, eps=1e-6), - PushBlock(), - ResnetBlock(320, 320, 1280), - AttentionBlock(8, 40, 320, 1, 768, eps=1e-6), - PushBlock(), - DownSampler(320), - PushBlock(), - # CrossAttnDownBlock2D - ResnetBlock(320, 640, 1280), - AttentionBlock(8, 80, 640, 1, 768, eps=1e-6), - PushBlock(), - ResnetBlock(640, 640, 1280), - AttentionBlock(8, 80, 640, 1, 768, eps=1e-6), - PushBlock(), - DownSampler(640), - PushBlock(), - # CrossAttnDownBlock2D - ResnetBlock(640, 1280, 1280), - AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), - PushBlock(), - ResnetBlock(1280, 1280, 1280), - AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), - PushBlock(), - DownSampler(1280), - PushBlock(), - # DownBlock2D - ResnetBlock(1280, 1280, 1280), - PushBlock(), - ResnetBlock(1280, 1280, 1280), - PushBlock(), - # UNetMidBlock2DCrossAttn - ResnetBlock(1280, 1280, 1280), - AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), - ResnetBlock(1280, 1280, 1280), - # UpBlock2D - PopBlock(), - ResnetBlock(2560, 1280, 1280), - PopBlock(), - ResnetBlock(2560, 1280, 1280), - PopBlock(), - ResnetBlock(2560, 1280, 1280), - UpSampler(1280), - # CrossAttnUpBlock2D - PopBlock(), - ResnetBlock(2560, 1280, 1280), - AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), - PopBlock(), - ResnetBlock(2560, 1280, 1280), - AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), - PopBlock(), - ResnetBlock(1920, 1280, 1280), - AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), - UpSampler(1280), - # CrossAttnUpBlock2D - PopBlock(), - ResnetBlock(1920, 640, 1280), - AttentionBlock(8, 80, 640, 1, 768, eps=1e-6), - PopBlock(), - ResnetBlock(1280, 640, 1280), - AttentionBlock(8, 80, 640, 1, 768, eps=1e-6), - PopBlock(), - ResnetBlock(960, 640, 1280), - AttentionBlock(8, 80, 640, 1, 768, eps=1e-6), - UpSampler(640), - # CrossAttnUpBlock2D - PopBlock(), - ResnetBlock(960, 320, 1280), - AttentionBlock(8, 40, 320, 1, 768, eps=1e-6), - PopBlock(), - ResnetBlock(640, 320, 1280), - AttentionBlock(8, 40, 320, 1, 768, eps=1e-6), - PopBlock(), - ResnetBlock(640, 320, 1280), - AttentionBlock(8, 40, 320, 1, 768, eps=1e-6), - ]) - - self.conv_norm_out = torch.nn.GroupNorm(num_channels=320, num_groups=32, eps=1e-5) - self.conv_act = torch.nn.SiLU() - self.conv_out = torch.nn.Conv2d(320, 4, kernel_size=3, padding=1) - - def forward(self, sample, timestep, encoder_hidden_states, **kwargs): - # 1. time - time_emb = self.time_proj(timestep).to(sample.dtype) - time_emb = self.time_embedding(time_emb) - - # 2. pre-process - hidden_states = self.conv_in(sample) - text_emb = encoder_hidden_states - res_stack = [hidden_states] - - # 3. blocks - for i, block in enumerate(self.blocks): - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - - # 4. output - hidden_states = self.conv_norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - - return hidden_states - - @staticmethod - def state_dict_converter(): - return SDUNetStateDictConverter() - - -class SDUNetStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - # architecture - block_types = [ - 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock', - 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock', - 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock', - 'ResnetBlock', 'PushBlock', 'ResnetBlock', 'PushBlock', - 'ResnetBlock', 'AttentionBlock', 'ResnetBlock', - 'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'UpSampler', - 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler', - 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler', - 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock' - ] - - # Rename each parameter - name_list = sorted([name for name in state_dict]) - rename_dict = {} - block_id = {"ResnetBlock": -1, "AttentionBlock": -1, "DownSampler": -1, "UpSampler": -1} - last_block_type_with_id = {"ResnetBlock": "", "AttentionBlock": "", "DownSampler": "", "UpSampler": ""} - for name in name_list: - names = name.split(".") - if names[0] in ["conv_in", "conv_norm_out", "conv_out"]: - pass - elif names[0] in ["time_embedding", "add_embedding"]: - if names[0] == "add_embedding": - names[0] = "add_time_embedding" - names[1] = {"linear_1": "0", "linear_2": "2"}[names[1]] - elif names[0] in ["down_blocks", "mid_block", "up_blocks"]: - if names[0] == "mid_block": - names.insert(1, "0") - block_type = {"resnets": "ResnetBlock", "attentions": "AttentionBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[2]] - block_type_with_id = ".".join(names[:4]) - if block_type_with_id != last_block_type_with_id[block_type]: - block_id[block_type] += 1 - last_block_type_with_id[block_type] = block_type_with_id - while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type: - block_id[block_type] += 1 - block_type_with_id = ".".join(names[:4]) - names = ["blocks", str(block_id[block_type])] + names[4:] - if "ff" in names: - ff_index = names.index("ff") - component = ".".join(names[ff_index:ff_index+3]) - component = {"ff.net.0": "act_fn", "ff.net.2": "ff"}[component] - names = names[:ff_index] + [component] + names[ff_index+3:] - if "to_out" in names: - names.pop(names.index("to_out") + 1) - else: - raise ValueError(f"Unknown parameters: {name}") - rename_dict[name] = ".".join(names) - - # Convert state_dict - state_dict_ = {} - for name, param in state_dict.items(): - if ".proj_in." in name or ".proj_out." in name: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - return state_dict_ - - def from_civitai(self, state_dict): - rename_dict = { - "model.diffusion_model.input_blocks.0.0.bias": "conv_in.bias", - "model.diffusion_model.input_blocks.0.0.weight": "conv_in.weight", - "model.diffusion_model.input_blocks.1.0.emb_layers.1.bias": "blocks.0.time_emb_proj.bias", - "model.diffusion_model.input_blocks.1.0.emb_layers.1.weight": "blocks.0.time_emb_proj.weight", - "model.diffusion_model.input_blocks.1.0.in_layers.0.bias": "blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.1.0.in_layers.0.weight": "blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.1.0.in_layers.2.bias": "blocks.0.conv1.bias", - "model.diffusion_model.input_blocks.1.0.in_layers.2.weight": "blocks.0.conv1.weight", - "model.diffusion_model.input_blocks.1.0.out_layers.0.bias": "blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.1.0.out_layers.0.weight": "blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.1.0.out_layers.3.bias": "blocks.0.conv2.bias", - "model.diffusion_model.input_blocks.1.0.out_layers.3.weight": "blocks.0.conv2.weight", - "model.diffusion_model.input_blocks.1.1.norm.bias": "blocks.1.norm.bias", - "model.diffusion_model.input_blocks.1.1.norm.weight": "blocks.1.norm.weight", - "model.diffusion_model.input_blocks.1.1.proj_in.bias": "blocks.1.proj_in.bias", - "model.diffusion_model.input_blocks.1.1.proj_in.weight": "blocks.1.proj_in.weight", - "model.diffusion_model.input_blocks.1.1.proj_out.bias": "blocks.1.proj_out.bias", - "model.diffusion_model.input_blocks.1.1.proj_out.weight": "blocks.1.proj_out.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k.weight": "blocks.1.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.1.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.1.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q.weight": "blocks.1.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v.weight": "blocks.1.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight": "blocks.1.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.1.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.1.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight": "blocks.1.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight": "blocks.1.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.1.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.1.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias": "blocks.1.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight": "blocks.1.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.bias": "blocks.1.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.weight": "blocks.1.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.bias": "blocks.1.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight": "blocks.1.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.bias": "blocks.1.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.weight": "blocks.1.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.10.0.emb_layers.1.bias": "blocks.24.time_emb_proj.bias", - "model.diffusion_model.input_blocks.10.0.emb_layers.1.weight": "blocks.24.time_emb_proj.weight", - "model.diffusion_model.input_blocks.10.0.in_layers.0.bias": "blocks.24.norm1.bias", - "model.diffusion_model.input_blocks.10.0.in_layers.0.weight": "blocks.24.norm1.weight", - "model.diffusion_model.input_blocks.10.0.in_layers.2.bias": "blocks.24.conv1.bias", - "model.diffusion_model.input_blocks.10.0.in_layers.2.weight": "blocks.24.conv1.weight", - "model.diffusion_model.input_blocks.10.0.out_layers.0.bias": "blocks.24.norm2.bias", - "model.diffusion_model.input_blocks.10.0.out_layers.0.weight": "blocks.24.norm2.weight", - "model.diffusion_model.input_blocks.10.0.out_layers.3.bias": "blocks.24.conv2.bias", - "model.diffusion_model.input_blocks.10.0.out_layers.3.weight": "blocks.24.conv2.weight", - "model.diffusion_model.input_blocks.11.0.emb_layers.1.bias": "blocks.26.time_emb_proj.bias", - "model.diffusion_model.input_blocks.11.0.emb_layers.1.weight": "blocks.26.time_emb_proj.weight", - "model.diffusion_model.input_blocks.11.0.in_layers.0.bias": "blocks.26.norm1.bias", - "model.diffusion_model.input_blocks.11.0.in_layers.0.weight": "blocks.26.norm1.weight", - "model.diffusion_model.input_blocks.11.0.in_layers.2.bias": "blocks.26.conv1.bias", - "model.diffusion_model.input_blocks.11.0.in_layers.2.weight": "blocks.26.conv1.weight", - "model.diffusion_model.input_blocks.11.0.out_layers.0.bias": "blocks.26.norm2.bias", - "model.diffusion_model.input_blocks.11.0.out_layers.0.weight": "blocks.26.norm2.weight", - "model.diffusion_model.input_blocks.11.0.out_layers.3.bias": "blocks.26.conv2.bias", - "model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "blocks.26.conv2.weight", - "model.diffusion_model.input_blocks.2.0.emb_layers.1.bias": "blocks.3.time_emb_proj.bias", - "model.diffusion_model.input_blocks.2.0.emb_layers.1.weight": "blocks.3.time_emb_proj.weight", - "model.diffusion_model.input_blocks.2.0.in_layers.0.bias": "blocks.3.norm1.bias", - "model.diffusion_model.input_blocks.2.0.in_layers.0.weight": "blocks.3.norm1.weight", - "model.diffusion_model.input_blocks.2.0.in_layers.2.bias": "blocks.3.conv1.bias", - "model.diffusion_model.input_blocks.2.0.in_layers.2.weight": "blocks.3.conv1.weight", - "model.diffusion_model.input_blocks.2.0.out_layers.0.bias": "blocks.3.norm2.bias", - "model.diffusion_model.input_blocks.2.0.out_layers.0.weight": "blocks.3.norm2.weight", - "model.diffusion_model.input_blocks.2.0.out_layers.3.bias": "blocks.3.conv2.bias", - "model.diffusion_model.input_blocks.2.0.out_layers.3.weight": "blocks.3.conv2.weight", - "model.diffusion_model.input_blocks.2.1.norm.bias": "blocks.4.norm.bias", - "model.diffusion_model.input_blocks.2.1.norm.weight": "blocks.4.norm.weight", - "model.diffusion_model.input_blocks.2.1.proj_in.bias": "blocks.4.proj_in.bias", - "model.diffusion_model.input_blocks.2.1.proj_in.weight": "blocks.4.proj_in.weight", - "model.diffusion_model.input_blocks.2.1.proj_out.bias": "blocks.4.proj_out.bias", - "model.diffusion_model.input_blocks.2.1.proj_out.weight": "blocks.4.proj_out.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k.weight": "blocks.4.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.4.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.4.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q.weight": "blocks.4.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v.weight": "blocks.4.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight": "blocks.4.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.4.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.4.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight": "blocks.4.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight": "blocks.4.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.4.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.4.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias": "blocks.4.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight": "blocks.4.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.bias": "blocks.4.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.weight": "blocks.4.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.bias": "blocks.4.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.weight": "blocks.4.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.bias": "blocks.4.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.weight": "blocks.4.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.3.0.op.bias": "blocks.6.conv.bias", - "model.diffusion_model.input_blocks.3.0.op.weight": "blocks.6.conv.weight", - "model.diffusion_model.input_blocks.4.0.emb_layers.1.bias": "blocks.8.time_emb_proj.bias", - "model.diffusion_model.input_blocks.4.0.emb_layers.1.weight": "blocks.8.time_emb_proj.weight", - "model.diffusion_model.input_blocks.4.0.in_layers.0.bias": "blocks.8.norm1.bias", - "model.diffusion_model.input_blocks.4.0.in_layers.0.weight": "blocks.8.norm1.weight", - "model.diffusion_model.input_blocks.4.0.in_layers.2.bias": "blocks.8.conv1.bias", - "model.diffusion_model.input_blocks.4.0.in_layers.2.weight": "blocks.8.conv1.weight", - "model.diffusion_model.input_blocks.4.0.out_layers.0.bias": "blocks.8.norm2.bias", - "model.diffusion_model.input_blocks.4.0.out_layers.0.weight": "blocks.8.norm2.weight", - "model.diffusion_model.input_blocks.4.0.out_layers.3.bias": "blocks.8.conv2.bias", - "model.diffusion_model.input_blocks.4.0.out_layers.3.weight": "blocks.8.conv2.weight", - "model.diffusion_model.input_blocks.4.0.skip_connection.bias": "blocks.8.conv_shortcut.bias", - "model.diffusion_model.input_blocks.4.0.skip_connection.weight": "blocks.8.conv_shortcut.weight", - "model.diffusion_model.input_blocks.4.1.norm.bias": "blocks.9.norm.bias", - "model.diffusion_model.input_blocks.4.1.norm.weight": "blocks.9.norm.weight", - "model.diffusion_model.input_blocks.4.1.proj_in.bias": "blocks.9.proj_in.bias", - "model.diffusion_model.input_blocks.4.1.proj_in.weight": "blocks.9.proj_in.weight", - "model.diffusion_model.input_blocks.4.1.proj_out.bias": "blocks.9.proj_out.bias", - "model.diffusion_model.input_blocks.4.1.proj_out.weight": "blocks.9.proj_out.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.9.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.9.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.9.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.9.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.9.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.9.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.9.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.9.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.9.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.9.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.9.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.9.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.9.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.9.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.9.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.9.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.9.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.9.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.9.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.9.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.5.0.emb_layers.1.bias": "blocks.11.time_emb_proj.bias", - "model.diffusion_model.input_blocks.5.0.emb_layers.1.weight": "blocks.11.time_emb_proj.weight", - "model.diffusion_model.input_blocks.5.0.in_layers.0.bias": "blocks.11.norm1.bias", - "model.diffusion_model.input_blocks.5.0.in_layers.0.weight": "blocks.11.norm1.weight", - "model.diffusion_model.input_blocks.5.0.in_layers.2.bias": "blocks.11.conv1.bias", - "model.diffusion_model.input_blocks.5.0.in_layers.2.weight": "blocks.11.conv1.weight", - "model.diffusion_model.input_blocks.5.0.out_layers.0.bias": "blocks.11.norm2.bias", - "model.diffusion_model.input_blocks.5.0.out_layers.0.weight": "blocks.11.norm2.weight", - "model.diffusion_model.input_blocks.5.0.out_layers.3.bias": "blocks.11.conv2.bias", - "model.diffusion_model.input_blocks.5.0.out_layers.3.weight": "blocks.11.conv2.weight", - "model.diffusion_model.input_blocks.5.1.norm.bias": "blocks.12.norm.bias", - "model.diffusion_model.input_blocks.5.1.norm.weight": "blocks.12.norm.weight", - "model.diffusion_model.input_blocks.5.1.proj_in.bias": "blocks.12.proj_in.bias", - "model.diffusion_model.input_blocks.5.1.proj_in.weight": "blocks.12.proj_in.weight", - "model.diffusion_model.input_blocks.5.1.proj_out.bias": "blocks.12.proj_out.bias", - "model.diffusion_model.input_blocks.5.1.proj_out.weight": "blocks.12.proj_out.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.12.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.12.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.12.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.12.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.12.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.12.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.12.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.12.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.12.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.12.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.12.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.12.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.12.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.12.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.12.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.12.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.12.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.12.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.12.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.12.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.6.0.op.bias": "blocks.14.conv.bias", - "model.diffusion_model.input_blocks.6.0.op.weight": "blocks.14.conv.weight", - "model.diffusion_model.input_blocks.7.0.emb_layers.1.bias": "blocks.16.time_emb_proj.bias", - "model.diffusion_model.input_blocks.7.0.emb_layers.1.weight": "blocks.16.time_emb_proj.weight", - "model.diffusion_model.input_blocks.7.0.in_layers.0.bias": "blocks.16.norm1.bias", - "model.diffusion_model.input_blocks.7.0.in_layers.0.weight": "blocks.16.norm1.weight", - "model.diffusion_model.input_blocks.7.0.in_layers.2.bias": "blocks.16.conv1.bias", - "model.diffusion_model.input_blocks.7.0.in_layers.2.weight": "blocks.16.conv1.weight", - "model.diffusion_model.input_blocks.7.0.out_layers.0.bias": "blocks.16.norm2.bias", - "model.diffusion_model.input_blocks.7.0.out_layers.0.weight": "blocks.16.norm2.weight", - "model.diffusion_model.input_blocks.7.0.out_layers.3.bias": "blocks.16.conv2.bias", - "model.diffusion_model.input_blocks.7.0.out_layers.3.weight": "blocks.16.conv2.weight", - "model.diffusion_model.input_blocks.7.0.skip_connection.bias": "blocks.16.conv_shortcut.bias", - "model.diffusion_model.input_blocks.7.0.skip_connection.weight": "blocks.16.conv_shortcut.weight", - "model.diffusion_model.input_blocks.7.1.norm.bias": "blocks.17.norm.bias", - "model.diffusion_model.input_blocks.7.1.norm.weight": "blocks.17.norm.weight", - "model.diffusion_model.input_blocks.7.1.proj_in.bias": "blocks.17.proj_in.bias", - "model.diffusion_model.input_blocks.7.1.proj_in.weight": "blocks.17.proj_in.weight", - "model.diffusion_model.input_blocks.7.1.proj_out.bias": "blocks.17.proj_out.bias", - "model.diffusion_model.input_blocks.7.1.proj_out.weight": "blocks.17.proj_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.17.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.17.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.17.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.17.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.17.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.17.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.17.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.17.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.17.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.17.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.17.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.17.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.17.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.17.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.17.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.17.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.17.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.17.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.17.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.17.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.8.0.emb_layers.1.bias": "blocks.19.time_emb_proj.bias", - "model.diffusion_model.input_blocks.8.0.emb_layers.1.weight": "blocks.19.time_emb_proj.weight", - "model.diffusion_model.input_blocks.8.0.in_layers.0.bias": "blocks.19.norm1.bias", - "model.diffusion_model.input_blocks.8.0.in_layers.0.weight": "blocks.19.norm1.weight", - "model.diffusion_model.input_blocks.8.0.in_layers.2.bias": "blocks.19.conv1.bias", - "model.diffusion_model.input_blocks.8.0.in_layers.2.weight": "blocks.19.conv1.weight", - "model.diffusion_model.input_blocks.8.0.out_layers.0.bias": "blocks.19.norm2.bias", - "model.diffusion_model.input_blocks.8.0.out_layers.0.weight": "blocks.19.norm2.weight", - "model.diffusion_model.input_blocks.8.0.out_layers.3.bias": "blocks.19.conv2.bias", - "model.diffusion_model.input_blocks.8.0.out_layers.3.weight": "blocks.19.conv2.weight", - "model.diffusion_model.input_blocks.8.1.norm.bias": "blocks.20.norm.bias", - "model.diffusion_model.input_blocks.8.1.norm.weight": "blocks.20.norm.weight", - "model.diffusion_model.input_blocks.8.1.proj_in.bias": "blocks.20.proj_in.bias", - "model.diffusion_model.input_blocks.8.1.proj_in.weight": "blocks.20.proj_in.weight", - "model.diffusion_model.input_blocks.8.1.proj_out.bias": "blocks.20.proj_out.bias", - "model.diffusion_model.input_blocks.8.1.proj_out.weight": "blocks.20.proj_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.20.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.20.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.20.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.20.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.20.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.20.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.20.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.20.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.20.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.20.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.20.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.20.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.20.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.20.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.20.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.20.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.20.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.20.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.20.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.20.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.9.0.op.bias": "blocks.22.conv.bias", - "model.diffusion_model.input_blocks.9.0.op.weight": "blocks.22.conv.weight", - "model.diffusion_model.middle_block.0.emb_layers.1.bias": "blocks.28.time_emb_proj.bias", - "model.diffusion_model.middle_block.0.emb_layers.1.weight": "blocks.28.time_emb_proj.weight", - "model.diffusion_model.middle_block.0.in_layers.0.bias": "blocks.28.norm1.bias", - "model.diffusion_model.middle_block.0.in_layers.0.weight": "blocks.28.norm1.weight", - "model.diffusion_model.middle_block.0.in_layers.2.bias": "blocks.28.conv1.bias", - "model.diffusion_model.middle_block.0.in_layers.2.weight": "blocks.28.conv1.weight", - "model.diffusion_model.middle_block.0.out_layers.0.bias": "blocks.28.norm2.bias", - "model.diffusion_model.middle_block.0.out_layers.0.weight": "blocks.28.norm2.weight", - "model.diffusion_model.middle_block.0.out_layers.3.bias": "blocks.28.conv2.bias", - "model.diffusion_model.middle_block.0.out_layers.3.weight": "blocks.28.conv2.weight", - "model.diffusion_model.middle_block.1.norm.bias": "blocks.29.norm.bias", - "model.diffusion_model.middle_block.1.norm.weight": "blocks.29.norm.weight", - "model.diffusion_model.middle_block.1.proj_in.bias": "blocks.29.proj_in.bias", - "model.diffusion_model.middle_block.1.proj_in.weight": "blocks.29.proj_in.weight", - "model.diffusion_model.middle_block.1.proj_out.bias": "blocks.29.proj_out.bias", - "model.diffusion_model.middle_block.1.proj_out.weight": "blocks.29.proj_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k.weight": "blocks.29.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.29.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.29.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight": "blocks.29.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight": "blocks.29.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight": "blocks.29.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.29.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.29.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight": "blocks.29.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight": "blocks.29.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.29.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.29.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.bias": "blocks.29.transformer_blocks.0.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.weight": "blocks.29.transformer_blocks.0.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.bias": "blocks.29.transformer_blocks.0.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.weight": "blocks.29.transformer_blocks.0.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.bias": "blocks.29.transformer_blocks.0.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight": "blocks.29.transformer_blocks.0.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.bias": "blocks.29.transformer_blocks.0.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.weight": "blocks.29.transformer_blocks.0.norm3.weight", - "model.diffusion_model.middle_block.2.emb_layers.1.bias": "blocks.30.time_emb_proj.bias", - "model.diffusion_model.middle_block.2.emb_layers.1.weight": "blocks.30.time_emb_proj.weight", - "model.diffusion_model.middle_block.2.in_layers.0.bias": "blocks.30.norm1.bias", - "model.diffusion_model.middle_block.2.in_layers.0.weight": "blocks.30.norm1.weight", - "model.diffusion_model.middle_block.2.in_layers.2.bias": "blocks.30.conv1.bias", - "model.diffusion_model.middle_block.2.in_layers.2.weight": "blocks.30.conv1.weight", - "model.diffusion_model.middle_block.2.out_layers.0.bias": "blocks.30.norm2.bias", - "model.diffusion_model.middle_block.2.out_layers.0.weight": "blocks.30.norm2.weight", - "model.diffusion_model.middle_block.2.out_layers.3.bias": "blocks.30.conv2.bias", - "model.diffusion_model.middle_block.2.out_layers.3.weight": "blocks.30.conv2.weight", - "model.diffusion_model.out.0.bias": "conv_norm_out.bias", - "model.diffusion_model.out.0.weight": "conv_norm_out.weight", - "model.diffusion_model.out.2.bias": "conv_out.bias", - "model.diffusion_model.out.2.weight": "conv_out.weight", - "model.diffusion_model.output_blocks.0.0.emb_layers.1.bias": "blocks.32.time_emb_proj.bias", - "model.diffusion_model.output_blocks.0.0.emb_layers.1.weight": "blocks.32.time_emb_proj.weight", - "model.diffusion_model.output_blocks.0.0.in_layers.0.bias": "blocks.32.norm1.bias", - "model.diffusion_model.output_blocks.0.0.in_layers.0.weight": "blocks.32.norm1.weight", - "model.diffusion_model.output_blocks.0.0.in_layers.2.bias": "blocks.32.conv1.bias", - "model.diffusion_model.output_blocks.0.0.in_layers.2.weight": "blocks.32.conv1.weight", - "model.diffusion_model.output_blocks.0.0.out_layers.0.bias": "blocks.32.norm2.bias", - "model.diffusion_model.output_blocks.0.0.out_layers.0.weight": "blocks.32.norm2.weight", - "model.diffusion_model.output_blocks.0.0.out_layers.3.bias": "blocks.32.conv2.bias", - "model.diffusion_model.output_blocks.0.0.out_layers.3.weight": "blocks.32.conv2.weight", - "model.diffusion_model.output_blocks.0.0.skip_connection.bias": "blocks.32.conv_shortcut.bias", - "model.diffusion_model.output_blocks.0.0.skip_connection.weight": "blocks.32.conv_shortcut.weight", - "model.diffusion_model.output_blocks.1.0.emb_layers.1.bias": "blocks.34.time_emb_proj.bias", - "model.diffusion_model.output_blocks.1.0.emb_layers.1.weight": "blocks.34.time_emb_proj.weight", - "model.diffusion_model.output_blocks.1.0.in_layers.0.bias": "blocks.34.norm1.bias", - "model.diffusion_model.output_blocks.1.0.in_layers.0.weight": "blocks.34.norm1.weight", - "model.diffusion_model.output_blocks.1.0.in_layers.2.bias": "blocks.34.conv1.bias", - "model.diffusion_model.output_blocks.1.0.in_layers.2.weight": "blocks.34.conv1.weight", - "model.diffusion_model.output_blocks.1.0.out_layers.0.bias": "blocks.34.norm2.bias", - "model.diffusion_model.output_blocks.1.0.out_layers.0.weight": "blocks.34.norm2.weight", - "model.diffusion_model.output_blocks.1.0.out_layers.3.bias": "blocks.34.conv2.bias", - "model.diffusion_model.output_blocks.1.0.out_layers.3.weight": "blocks.34.conv2.weight", - "model.diffusion_model.output_blocks.1.0.skip_connection.bias": "blocks.34.conv_shortcut.bias", - "model.diffusion_model.output_blocks.1.0.skip_connection.weight": "blocks.34.conv_shortcut.weight", - "model.diffusion_model.output_blocks.10.0.emb_layers.1.bias": "blocks.62.time_emb_proj.bias", - "model.diffusion_model.output_blocks.10.0.emb_layers.1.weight": "blocks.62.time_emb_proj.weight", - "model.diffusion_model.output_blocks.10.0.in_layers.0.bias": "blocks.62.norm1.bias", - "model.diffusion_model.output_blocks.10.0.in_layers.0.weight": "blocks.62.norm1.weight", - "model.diffusion_model.output_blocks.10.0.in_layers.2.bias": "blocks.62.conv1.bias", - "model.diffusion_model.output_blocks.10.0.in_layers.2.weight": "blocks.62.conv1.weight", - "model.diffusion_model.output_blocks.10.0.out_layers.0.bias": "blocks.62.norm2.bias", - "model.diffusion_model.output_blocks.10.0.out_layers.0.weight": "blocks.62.norm2.weight", - "model.diffusion_model.output_blocks.10.0.out_layers.3.bias": "blocks.62.conv2.bias", - "model.diffusion_model.output_blocks.10.0.out_layers.3.weight": "blocks.62.conv2.weight", - "model.diffusion_model.output_blocks.10.0.skip_connection.bias": "blocks.62.conv_shortcut.bias", - "model.diffusion_model.output_blocks.10.0.skip_connection.weight": "blocks.62.conv_shortcut.weight", - "model.diffusion_model.output_blocks.10.1.norm.bias": "blocks.63.norm.bias", - "model.diffusion_model.output_blocks.10.1.norm.weight": "blocks.63.norm.weight", - "model.diffusion_model.output_blocks.10.1.proj_in.bias": "blocks.63.proj_in.bias", - "model.diffusion_model.output_blocks.10.1.proj_in.weight": "blocks.63.proj_in.weight", - "model.diffusion_model.output_blocks.10.1.proj_out.bias": "blocks.63.proj_out.bias", - "model.diffusion_model.output_blocks.10.1.proj_out.weight": "blocks.63.proj_out.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k.weight": "blocks.63.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.63.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.63.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q.weight": "blocks.63.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v.weight": "blocks.63.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight": "blocks.63.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.63.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.63.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q.weight": "blocks.63.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight": "blocks.63.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.63.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.63.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.bias": "blocks.63.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.weight": "blocks.63.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.bias": "blocks.63.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.weight": "blocks.63.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.bias": "blocks.63.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight": "blocks.63.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.bias": "blocks.63.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.weight": "blocks.63.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.11.0.emb_layers.1.bias": "blocks.65.time_emb_proj.bias", - "model.diffusion_model.output_blocks.11.0.emb_layers.1.weight": "blocks.65.time_emb_proj.weight", - "model.diffusion_model.output_blocks.11.0.in_layers.0.bias": "blocks.65.norm1.bias", - "model.diffusion_model.output_blocks.11.0.in_layers.0.weight": "blocks.65.norm1.weight", - "model.diffusion_model.output_blocks.11.0.in_layers.2.bias": "blocks.65.conv1.bias", - "model.diffusion_model.output_blocks.11.0.in_layers.2.weight": "blocks.65.conv1.weight", - "model.diffusion_model.output_blocks.11.0.out_layers.0.bias": "blocks.65.norm2.bias", - "model.diffusion_model.output_blocks.11.0.out_layers.0.weight": "blocks.65.norm2.weight", - "model.diffusion_model.output_blocks.11.0.out_layers.3.bias": "blocks.65.conv2.bias", - "model.diffusion_model.output_blocks.11.0.out_layers.3.weight": "blocks.65.conv2.weight", - "model.diffusion_model.output_blocks.11.0.skip_connection.bias": "blocks.65.conv_shortcut.bias", - "model.diffusion_model.output_blocks.11.0.skip_connection.weight": "blocks.65.conv_shortcut.weight", - "model.diffusion_model.output_blocks.11.1.norm.bias": "blocks.66.norm.bias", - "model.diffusion_model.output_blocks.11.1.norm.weight": "blocks.66.norm.weight", - "model.diffusion_model.output_blocks.11.1.proj_in.bias": "blocks.66.proj_in.bias", - "model.diffusion_model.output_blocks.11.1.proj_in.weight": "blocks.66.proj_in.weight", - "model.diffusion_model.output_blocks.11.1.proj_out.bias": "blocks.66.proj_out.bias", - "model.diffusion_model.output_blocks.11.1.proj_out.weight": "blocks.66.proj_out.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k.weight": "blocks.66.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.66.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.66.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q.weight": "blocks.66.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v.weight": "blocks.66.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight": "blocks.66.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.66.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.66.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q.weight": "blocks.66.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight": "blocks.66.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.66.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.66.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.bias": "blocks.66.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.weight": "blocks.66.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias": "blocks.66.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.weight": "blocks.66.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.bias": "blocks.66.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight": "blocks.66.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.bias": "blocks.66.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.weight": "blocks.66.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.2.0.emb_layers.1.bias": "blocks.36.time_emb_proj.bias", - "model.diffusion_model.output_blocks.2.0.emb_layers.1.weight": "blocks.36.time_emb_proj.weight", - "model.diffusion_model.output_blocks.2.0.in_layers.0.bias": "blocks.36.norm1.bias", - "model.diffusion_model.output_blocks.2.0.in_layers.0.weight": "blocks.36.norm1.weight", - "model.diffusion_model.output_blocks.2.0.in_layers.2.bias": "blocks.36.conv1.bias", - "model.diffusion_model.output_blocks.2.0.in_layers.2.weight": "blocks.36.conv1.weight", - "model.diffusion_model.output_blocks.2.0.out_layers.0.bias": "blocks.36.norm2.bias", - "model.diffusion_model.output_blocks.2.0.out_layers.0.weight": "blocks.36.norm2.weight", - "model.diffusion_model.output_blocks.2.0.out_layers.3.bias": "blocks.36.conv2.bias", - "model.diffusion_model.output_blocks.2.0.out_layers.3.weight": "blocks.36.conv2.weight", - "model.diffusion_model.output_blocks.2.0.skip_connection.bias": "blocks.36.conv_shortcut.bias", - "model.diffusion_model.output_blocks.2.0.skip_connection.weight": "blocks.36.conv_shortcut.weight", - "model.diffusion_model.output_blocks.2.1.conv.bias": "blocks.37.conv.bias", - "model.diffusion_model.output_blocks.2.1.conv.weight": "blocks.37.conv.weight", - "model.diffusion_model.output_blocks.3.0.emb_layers.1.bias": "blocks.39.time_emb_proj.bias", - "model.diffusion_model.output_blocks.3.0.emb_layers.1.weight": "blocks.39.time_emb_proj.weight", - "model.diffusion_model.output_blocks.3.0.in_layers.0.bias": "blocks.39.norm1.bias", - "model.diffusion_model.output_blocks.3.0.in_layers.0.weight": "blocks.39.norm1.weight", - "model.diffusion_model.output_blocks.3.0.in_layers.2.bias": "blocks.39.conv1.bias", - "model.diffusion_model.output_blocks.3.0.in_layers.2.weight": "blocks.39.conv1.weight", - "model.diffusion_model.output_blocks.3.0.out_layers.0.bias": "blocks.39.norm2.bias", - "model.diffusion_model.output_blocks.3.0.out_layers.0.weight": "blocks.39.norm2.weight", - "model.diffusion_model.output_blocks.3.0.out_layers.3.bias": "blocks.39.conv2.bias", - "model.diffusion_model.output_blocks.3.0.out_layers.3.weight": "blocks.39.conv2.weight", - "model.diffusion_model.output_blocks.3.0.skip_connection.bias": "blocks.39.conv_shortcut.bias", - "model.diffusion_model.output_blocks.3.0.skip_connection.weight": "blocks.39.conv_shortcut.weight", - "model.diffusion_model.output_blocks.3.1.norm.bias": "blocks.40.norm.bias", - "model.diffusion_model.output_blocks.3.1.norm.weight": "blocks.40.norm.weight", - "model.diffusion_model.output_blocks.3.1.proj_in.bias": "blocks.40.proj_in.bias", - "model.diffusion_model.output_blocks.3.1.proj_in.weight": "blocks.40.proj_in.weight", - "model.diffusion_model.output_blocks.3.1.proj_out.bias": "blocks.40.proj_out.bias", - "model.diffusion_model.output_blocks.3.1.proj_out.weight": "blocks.40.proj_out.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k.weight": "blocks.40.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.40.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.40.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q.weight": "blocks.40.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v.weight": "blocks.40.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight": "blocks.40.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.40.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.40.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q.weight": "blocks.40.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight": "blocks.40.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.40.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.40.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.bias": "blocks.40.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.weight": "blocks.40.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.bias": "blocks.40.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.weight": "blocks.40.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.bias": "blocks.40.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight": "blocks.40.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.bias": "blocks.40.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.weight": "blocks.40.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.4.0.emb_layers.1.bias": "blocks.42.time_emb_proj.bias", - "model.diffusion_model.output_blocks.4.0.emb_layers.1.weight": "blocks.42.time_emb_proj.weight", - "model.diffusion_model.output_blocks.4.0.in_layers.0.bias": "blocks.42.norm1.bias", - "model.diffusion_model.output_blocks.4.0.in_layers.0.weight": "blocks.42.norm1.weight", - "model.diffusion_model.output_blocks.4.0.in_layers.2.bias": "blocks.42.conv1.bias", - "model.diffusion_model.output_blocks.4.0.in_layers.2.weight": "blocks.42.conv1.weight", - "model.diffusion_model.output_blocks.4.0.out_layers.0.bias": "blocks.42.norm2.bias", - "model.diffusion_model.output_blocks.4.0.out_layers.0.weight": "blocks.42.norm2.weight", - "model.diffusion_model.output_blocks.4.0.out_layers.3.bias": "blocks.42.conv2.bias", - "model.diffusion_model.output_blocks.4.0.out_layers.3.weight": "blocks.42.conv2.weight", - "model.diffusion_model.output_blocks.4.0.skip_connection.bias": "blocks.42.conv_shortcut.bias", - "model.diffusion_model.output_blocks.4.0.skip_connection.weight": "blocks.42.conv_shortcut.weight", - "model.diffusion_model.output_blocks.4.1.norm.bias": "blocks.43.norm.bias", - "model.diffusion_model.output_blocks.4.1.norm.weight": "blocks.43.norm.weight", - "model.diffusion_model.output_blocks.4.1.proj_in.bias": "blocks.43.proj_in.bias", - "model.diffusion_model.output_blocks.4.1.proj_in.weight": "blocks.43.proj_in.weight", - "model.diffusion_model.output_blocks.4.1.proj_out.bias": "blocks.43.proj_out.bias", - "model.diffusion_model.output_blocks.4.1.proj_out.weight": "blocks.43.proj_out.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.43.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.43.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.43.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.43.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.43.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.43.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.43.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.43.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.43.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.43.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.43.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.43.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.43.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.43.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.43.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.43.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.43.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.43.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.43.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.43.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.5.0.emb_layers.1.bias": "blocks.45.time_emb_proj.bias", - "model.diffusion_model.output_blocks.5.0.emb_layers.1.weight": "blocks.45.time_emb_proj.weight", - "model.diffusion_model.output_blocks.5.0.in_layers.0.bias": "blocks.45.norm1.bias", - "model.diffusion_model.output_blocks.5.0.in_layers.0.weight": "blocks.45.norm1.weight", - "model.diffusion_model.output_blocks.5.0.in_layers.2.bias": "blocks.45.conv1.bias", - "model.diffusion_model.output_blocks.5.0.in_layers.2.weight": "blocks.45.conv1.weight", - "model.diffusion_model.output_blocks.5.0.out_layers.0.bias": "blocks.45.norm2.bias", - "model.diffusion_model.output_blocks.5.0.out_layers.0.weight": "blocks.45.norm2.weight", - "model.diffusion_model.output_blocks.5.0.out_layers.3.bias": "blocks.45.conv2.bias", - "model.diffusion_model.output_blocks.5.0.out_layers.3.weight": "blocks.45.conv2.weight", - "model.diffusion_model.output_blocks.5.0.skip_connection.bias": "blocks.45.conv_shortcut.bias", - "model.diffusion_model.output_blocks.5.0.skip_connection.weight": "blocks.45.conv_shortcut.weight", - "model.diffusion_model.output_blocks.5.1.norm.bias": "blocks.46.norm.bias", - "model.diffusion_model.output_blocks.5.1.norm.weight": "blocks.46.norm.weight", - "model.diffusion_model.output_blocks.5.1.proj_in.bias": "blocks.46.proj_in.bias", - "model.diffusion_model.output_blocks.5.1.proj_in.weight": "blocks.46.proj_in.weight", - "model.diffusion_model.output_blocks.5.1.proj_out.bias": "blocks.46.proj_out.bias", - "model.diffusion_model.output_blocks.5.1.proj_out.weight": "blocks.46.proj_out.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.46.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.46.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.46.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.46.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.46.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.46.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.46.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.46.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.46.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.46.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.46.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.46.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.46.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.46.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.46.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.46.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.46.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.46.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.46.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.46.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.5.2.conv.bias": "blocks.47.conv.bias", - "model.diffusion_model.output_blocks.5.2.conv.weight": "blocks.47.conv.weight", - "model.diffusion_model.output_blocks.6.0.emb_layers.1.bias": "blocks.49.time_emb_proj.bias", - "model.diffusion_model.output_blocks.6.0.emb_layers.1.weight": "blocks.49.time_emb_proj.weight", - "model.diffusion_model.output_blocks.6.0.in_layers.0.bias": "blocks.49.norm1.bias", - "model.diffusion_model.output_blocks.6.0.in_layers.0.weight": "blocks.49.norm1.weight", - "model.diffusion_model.output_blocks.6.0.in_layers.2.bias": "blocks.49.conv1.bias", - "model.diffusion_model.output_blocks.6.0.in_layers.2.weight": "blocks.49.conv1.weight", - "model.diffusion_model.output_blocks.6.0.out_layers.0.bias": "blocks.49.norm2.bias", - "model.diffusion_model.output_blocks.6.0.out_layers.0.weight": "blocks.49.norm2.weight", - "model.diffusion_model.output_blocks.6.0.out_layers.3.bias": "blocks.49.conv2.bias", - "model.diffusion_model.output_blocks.6.0.out_layers.3.weight": "blocks.49.conv2.weight", - "model.diffusion_model.output_blocks.6.0.skip_connection.bias": "blocks.49.conv_shortcut.bias", - "model.diffusion_model.output_blocks.6.0.skip_connection.weight": "blocks.49.conv_shortcut.weight", - "model.diffusion_model.output_blocks.6.1.norm.bias": "blocks.50.norm.bias", - "model.diffusion_model.output_blocks.6.1.norm.weight": "blocks.50.norm.weight", - "model.diffusion_model.output_blocks.6.1.proj_in.bias": "blocks.50.proj_in.bias", - "model.diffusion_model.output_blocks.6.1.proj_in.weight": "blocks.50.proj_in.weight", - "model.diffusion_model.output_blocks.6.1.proj_out.bias": "blocks.50.proj_out.bias", - "model.diffusion_model.output_blocks.6.1.proj_out.weight": "blocks.50.proj_out.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k.weight": "blocks.50.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.50.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.50.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q.weight": "blocks.50.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v.weight": "blocks.50.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight": "blocks.50.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.50.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.50.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q.weight": "blocks.50.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight": "blocks.50.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.50.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.50.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.bias": "blocks.50.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.weight": "blocks.50.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.bias": "blocks.50.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.weight": "blocks.50.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.bias": "blocks.50.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight": "blocks.50.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.bias": "blocks.50.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.weight": "blocks.50.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.7.0.emb_layers.1.bias": "blocks.52.time_emb_proj.bias", - "model.diffusion_model.output_blocks.7.0.emb_layers.1.weight": "blocks.52.time_emb_proj.weight", - "model.diffusion_model.output_blocks.7.0.in_layers.0.bias": "blocks.52.norm1.bias", - "model.diffusion_model.output_blocks.7.0.in_layers.0.weight": "blocks.52.norm1.weight", - "model.diffusion_model.output_blocks.7.0.in_layers.2.bias": "blocks.52.conv1.bias", - "model.diffusion_model.output_blocks.7.0.in_layers.2.weight": "blocks.52.conv1.weight", - "model.diffusion_model.output_blocks.7.0.out_layers.0.bias": "blocks.52.norm2.bias", - "model.diffusion_model.output_blocks.7.0.out_layers.0.weight": "blocks.52.norm2.weight", - "model.diffusion_model.output_blocks.7.0.out_layers.3.bias": "blocks.52.conv2.bias", - "model.diffusion_model.output_blocks.7.0.out_layers.3.weight": "blocks.52.conv2.weight", - "model.diffusion_model.output_blocks.7.0.skip_connection.bias": "blocks.52.conv_shortcut.bias", - "model.diffusion_model.output_blocks.7.0.skip_connection.weight": "blocks.52.conv_shortcut.weight", - "model.diffusion_model.output_blocks.7.1.norm.bias": "blocks.53.norm.bias", - "model.diffusion_model.output_blocks.7.1.norm.weight": "blocks.53.norm.weight", - "model.diffusion_model.output_blocks.7.1.proj_in.bias": "blocks.53.proj_in.bias", - "model.diffusion_model.output_blocks.7.1.proj_in.weight": "blocks.53.proj_in.weight", - "model.diffusion_model.output_blocks.7.1.proj_out.bias": "blocks.53.proj_out.bias", - "model.diffusion_model.output_blocks.7.1.proj_out.weight": "blocks.53.proj_out.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.53.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.53.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.53.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.53.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.53.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.53.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.53.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.53.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.53.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.53.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.53.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.53.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.53.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.53.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.53.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.53.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.53.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.53.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.53.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.53.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.8.0.emb_layers.1.bias": "blocks.55.time_emb_proj.bias", - "model.diffusion_model.output_blocks.8.0.emb_layers.1.weight": "blocks.55.time_emb_proj.weight", - "model.diffusion_model.output_blocks.8.0.in_layers.0.bias": "blocks.55.norm1.bias", - "model.diffusion_model.output_blocks.8.0.in_layers.0.weight": "blocks.55.norm1.weight", - "model.diffusion_model.output_blocks.8.0.in_layers.2.bias": "blocks.55.conv1.bias", - "model.diffusion_model.output_blocks.8.0.in_layers.2.weight": "blocks.55.conv1.weight", - "model.diffusion_model.output_blocks.8.0.out_layers.0.bias": "blocks.55.norm2.bias", - "model.diffusion_model.output_blocks.8.0.out_layers.0.weight": "blocks.55.norm2.weight", - "model.diffusion_model.output_blocks.8.0.out_layers.3.bias": "blocks.55.conv2.bias", - "model.diffusion_model.output_blocks.8.0.out_layers.3.weight": "blocks.55.conv2.weight", - "model.diffusion_model.output_blocks.8.0.skip_connection.bias": "blocks.55.conv_shortcut.bias", - "model.diffusion_model.output_blocks.8.0.skip_connection.weight": "blocks.55.conv_shortcut.weight", - "model.diffusion_model.output_blocks.8.1.norm.bias": "blocks.56.norm.bias", - "model.diffusion_model.output_blocks.8.1.norm.weight": "blocks.56.norm.weight", - "model.diffusion_model.output_blocks.8.1.proj_in.bias": "blocks.56.proj_in.bias", - "model.diffusion_model.output_blocks.8.1.proj_in.weight": "blocks.56.proj_in.weight", - "model.diffusion_model.output_blocks.8.1.proj_out.bias": "blocks.56.proj_out.bias", - "model.diffusion_model.output_blocks.8.1.proj_out.weight": "blocks.56.proj_out.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.56.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.56.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.56.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.56.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.56.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.56.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.56.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.56.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.56.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.56.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.56.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.56.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.56.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.56.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.56.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.56.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.56.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.56.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.56.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.56.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.8.2.conv.bias": "blocks.57.conv.bias", - "model.diffusion_model.output_blocks.8.2.conv.weight": "blocks.57.conv.weight", - "model.diffusion_model.output_blocks.9.0.emb_layers.1.bias": "blocks.59.time_emb_proj.bias", - "model.diffusion_model.output_blocks.9.0.emb_layers.1.weight": "blocks.59.time_emb_proj.weight", - "model.diffusion_model.output_blocks.9.0.in_layers.0.bias": "blocks.59.norm1.bias", - "model.diffusion_model.output_blocks.9.0.in_layers.0.weight": "blocks.59.norm1.weight", - "model.diffusion_model.output_blocks.9.0.in_layers.2.bias": "blocks.59.conv1.bias", - "model.diffusion_model.output_blocks.9.0.in_layers.2.weight": "blocks.59.conv1.weight", - "model.diffusion_model.output_blocks.9.0.out_layers.0.bias": "blocks.59.norm2.bias", - "model.diffusion_model.output_blocks.9.0.out_layers.0.weight": "blocks.59.norm2.weight", - "model.diffusion_model.output_blocks.9.0.out_layers.3.bias": "blocks.59.conv2.bias", - "model.diffusion_model.output_blocks.9.0.out_layers.3.weight": "blocks.59.conv2.weight", - "model.diffusion_model.output_blocks.9.0.skip_connection.bias": "blocks.59.conv_shortcut.bias", - "model.diffusion_model.output_blocks.9.0.skip_connection.weight": "blocks.59.conv_shortcut.weight", - "model.diffusion_model.output_blocks.9.1.norm.bias": "blocks.60.norm.bias", - "model.diffusion_model.output_blocks.9.1.norm.weight": "blocks.60.norm.weight", - "model.diffusion_model.output_blocks.9.1.proj_in.bias": "blocks.60.proj_in.bias", - "model.diffusion_model.output_blocks.9.1.proj_in.weight": "blocks.60.proj_in.weight", - "model.diffusion_model.output_blocks.9.1.proj_out.bias": "blocks.60.proj_out.bias", - "model.diffusion_model.output_blocks.9.1.proj_out.weight": "blocks.60.proj_out.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k.weight": "blocks.60.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.60.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.60.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q.weight": "blocks.60.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v.weight": "blocks.60.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight": "blocks.60.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.60.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.60.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q.weight": "blocks.60.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight": "blocks.60.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.60.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.60.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.bias": "blocks.60.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.weight": "blocks.60.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.bias": "blocks.60.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.weight": "blocks.60.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.bias": "blocks.60.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.weight": "blocks.60.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.bias": "blocks.60.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight": "blocks.60.transformer_blocks.0.norm3.weight", - "model.diffusion_model.time_embed.0.bias": "time_embedding.0.bias", - "model.diffusion_model.time_embed.0.weight": "time_embedding.0.weight", - "model.diffusion_model.time_embed.2.bias": "time_embedding.2.bias", - "model.diffusion_model.time_embed.2.weight": "time_embedding.2.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if ".proj_in." in name or ".proj_out." in name: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - return state_dict_ \ No newline at end of file diff --git a/diffsynth/models/sd_vae_decoder.py b/diffsynth/models/sd_vae_decoder.py deleted file mode 100644 index 93f015a63ededec53507ea73d34e2d904f5bed06..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd_vae_decoder.py +++ /dev/null @@ -1,336 +0,0 @@ -import torch -from .attention import Attention -from .sd_unet import ResnetBlock, UpSampler -from .tiler import TileWorker - - -class VAEAttentionBlock(torch.nn.Module): - - def __init__(self, num_attention_heads, attention_head_dim, in_channels, num_layers=1, norm_num_groups=32, eps=1e-5): - super().__init__() - inner_dim = num_attention_heads * attention_head_dim - - self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True) - - self.transformer_blocks = torch.nn.ModuleList([ - Attention( - inner_dim, - num_attention_heads, - attention_head_dim, - bias_q=True, - bias_kv=True, - bias_out=True - ) - for d in range(num_layers) - ]) - - def forward(self, hidden_states, time_emb, text_emb, res_stack): - batch, _, height, width = hidden_states.shape - residual = hidden_states - - hidden_states = self.norm(hidden_states) - inner_dim = hidden_states.shape[1] - hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) - - for block in self.transformer_blocks: - hidden_states = block(hidden_states) - - hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() - hidden_states = hidden_states + residual - - return hidden_states, time_emb, text_emb, res_stack - - -class SDVAEDecoder(torch.nn.Module): - def __init__(self): - super().__init__() - self.scaling_factor = 0.18215 - self.post_quant_conv = torch.nn.Conv2d(4, 4, kernel_size=1) - self.conv_in = torch.nn.Conv2d(4, 512, kernel_size=3, padding=1) - - self.blocks = torch.nn.ModuleList([ - # UNetMidBlock2D - ResnetBlock(512, 512, eps=1e-6), - VAEAttentionBlock(1, 512, 512, 1, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - # UpDecoderBlock2D - ResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - UpSampler(512), - # UpDecoderBlock2D - ResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - UpSampler(512), - # UpDecoderBlock2D - ResnetBlock(512, 256, eps=1e-6), - ResnetBlock(256, 256, eps=1e-6), - ResnetBlock(256, 256, eps=1e-6), - UpSampler(256), - # UpDecoderBlock2D - ResnetBlock(256, 128, eps=1e-6), - ResnetBlock(128, 128, eps=1e-6), - ResnetBlock(128, 128, eps=1e-6), - ]) - - self.conv_norm_out = torch.nn.GroupNorm(num_channels=128, num_groups=32, eps=1e-5) - self.conv_act = torch.nn.SiLU() - self.conv_out = torch.nn.Conv2d(128, 3, kernel_size=3, padding=1) - - def tiled_forward(self, sample, tile_size=64, tile_stride=32): - hidden_states = TileWorker().tiled_forward( - lambda x: self.forward(x), - sample, - tile_size, - tile_stride, - tile_device=sample.device, - tile_dtype=sample.dtype - ) - return hidden_states - - def forward(self, sample, tiled=False, tile_size=64, tile_stride=32, **kwargs): - original_dtype = sample.dtype - sample = sample.to(dtype=next(iter(self.parameters())).dtype) - # For VAE Decoder, we do not need to apply the tiler on each layer. - if tiled: - return self.tiled_forward(sample, tile_size=tile_size, tile_stride=tile_stride) - - # 1. pre-process - sample = sample / self.scaling_factor - hidden_states = self.post_quant_conv(sample) - hidden_states = self.conv_in(hidden_states) - time_emb = None - text_emb = None - res_stack = None - - # 2. blocks - for i, block in enumerate(self.blocks): - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - - # 3. output - hidden_states = self.conv_norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - hidden_states = hidden_states.to(original_dtype) - - return hidden_states - - @staticmethod - def state_dict_converter(): - return SDVAEDecoderStateDictConverter() - - -class SDVAEDecoderStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - # architecture - block_types = [ - 'ResnetBlock', 'VAEAttentionBlock', 'ResnetBlock', - 'ResnetBlock', 'ResnetBlock', 'ResnetBlock', 'UpSampler', - 'ResnetBlock', 'ResnetBlock', 'ResnetBlock', 'UpSampler', - 'ResnetBlock', 'ResnetBlock', 'ResnetBlock', 'UpSampler', - 'ResnetBlock', 'ResnetBlock', 'ResnetBlock' - ] - - # Rename each parameter - local_rename_dict = { - "post_quant_conv": "post_quant_conv", - "decoder.conv_in": "conv_in", - "decoder.mid_block.attentions.0.group_norm": "blocks.1.norm", - "decoder.mid_block.attentions.0.to_q": "blocks.1.transformer_blocks.0.to_q", - "decoder.mid_block.attentions.0.to_k": "blocks.1.transformer_blocks.0.to_k", - "decoder.mid_block.attentions.0.to_v": "blocks.1.transformer_blocks.0.to_v", - "decoder.mid_block.attentions.0.to_out.0": "blocks.1.transformer_blocks.0.to_out", - "decoder.mid_block.resnets.0.norm1": "blocks.0.norm1", - "decoder.mid_block.resnets.0.conv1": "blocks.0.conv1", - "decoder.mid_block.resnets.0.norm2": "blocks.0.norm2", - "decoder.mid_block.resnets.0.conv2": "blocks.0.conv2", - "decoder.mid_block.resnets.1.norm1": "blocks.2.norm1", - "decoder.mid_block.resnets.1.conv1": "blocks.2.conv1", - "decoder.mid_block.resnets.1.norm2": "blocks.2.norm2", - "decoder.mid_block.resnets.1.conv2": "blocks.2.conv2", - "decoder.conv_norm_out": "conv_norm_out", - "decoder.conv_out": "conv_out", - } - name_list = sorted([name for name in state_dict]) - rename_dict = {} - block_id = {"ResnetBlock": 2, "DownSampler": 2, "UpSampler": 2} - last_block_type_with_id = {"ResnetBlock": "", "DownSampler": "", "UpSampler": ""} - for name in name_list: - names = name.split(".") - name_prefix = ".".join(names[:-1]) - if name_prefix in local_rename_dict: - rename_dict[name] = local_rename_dict[name_prefix] + "." + names[-1] - elif name.startswith("decoder.up_blocks"): - block_type = {"resnets": "ResnetBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[3]] - block_type_with_id = ".".join(names[:5]) - if block_type_with_id != last_block_type_with_id[block_type]: - block_id[block_type] += 1 - last_block_type_with_id[block_type] = block_type_with_id - while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type: - block_id[block_type] += 1 - block_type_with_id = ".".join(names[:5]) - names = ["blocks", str(block_id[block_type])] + names[5:] - rename_dict[name] = ".".join(names) - - # Convert state_dict - state_dict_ = {} - for name, param in state_dict.items(): - if name in rename_dict: - state_dict_[rename_dict[name]] = param - return state_dict_ - - def from_civitai(self, state_dict): - rename_dict = { - "first_stage_model.decoder.conv_in.bias": "conv_in.bias", - "first_stage_model.decoder.conv_in.weight": "conv_in.weight", - "first_stage_model.decoder.conv_out.bias": "conv_out.bias", - "first_stage_model.decoder.conv_out.weight": "conv_out.weight", - "first_stage_model.decoder.mid.attn_1.k.bias": "blocks.1.transformer_blocks.0.to_k.bias", - "first_stage_model.decoder.mid.attn_1.k.weight": "blocks.1.transformer_blocks.0.to_k.weight", - "first_stage_model.decoder.mid.attn_1.norm.bias": "blocks.1.norm.bias", - "first_stage_model.decoder.mid.attn_1.norm.weight": "blocks.1.norm.weight", - "first_stage_model.decoder.mid.attn_1.proj_out.bias": "blocks.1.transformer_blocks.0.to_out.bias", - "first_stage_model.decoder.mid.attn_1.proj_out.weight": "blocks.1.transformer_blocks.0.to_out.weight", - "first_stage_model.decoder.mid.attn_1.q.bias": "blocks.1.transformer_blocks.0.to_q.bias", - "first_stage_model.decoder.mid.attn_1.q.weight": "blocks.1.transformer_blocks.0.to_q.weight", - "first_stage_model.decoder.mid.attn_1.v.bias": "blocks.1.transformer_blocks.0.to_v.bias", - "first_stage_model.decoder.mid.attn_1.v.weight": "blocks.1.transformer_blocks.0.to_v.weight", - "first_stage_model.decoder.mid.block_1.conv1.bias": "blocks.0.conv1.bias", - "first_stage_model.decoder.mid.block_1.conv1.weight": "blocks.0.conv1.weight", - "first_stage_model.decoder.mid.block_1.conv2.bias": "blocks.0.conv2.bias", - "first_stage_model.decoder.mid.block_1.conv2.weight": "blocks.0.conv2.weight", - "first_stage_model.decoder.mid.block_1.norm1.bias": "blocks.0.norm1.bias", - "first_stage_model.decoder.mid.block_1.norm1.weight": "blocks.0.norm1.weight", - "first_stage_model.decoder.mid.block_1.norm2.bias": "blocks.0.norm2.bias", - "first_stage_model.decoder.mid.block_1.norm2.weight": "blocks.0.norm2.weight", - "first_stage_model.decoder.mid.block_2.conv1.bias": "blocks.2.conv1.bias", - "first_stage_model.decoder.mid.block_2.conv1.weight": "blocks.2.conv1.weight", - "first_stage_model.decoder.mid.block_2.conv2.bias": "blocks.2.conv2.bias", - "first_stage_model.decoder.mid.block_2.conv2.weight": "blocks.2.conv2.weight", - "first_stage_model.decoder.mid.block_2.norm1.bias": "blocks.2.norm1.bias", - "first_stage_model.decoder.mid.block_2.norm1.weight": "blocks.2.norm1.weight", - "first_stage_model.decoder.mid.block_2.norm2.bias": "blocks.2.norm2.bias", - "first_stage_model.decoder.mid.block_2.norm2.weight": "blocks.2.norm2.weight", - "first_stage_model.decoder.norm_out.bias": "conv_norm_out.bias", - "first_stage_model.decoder.norm_out.weight": "conv_norm_out.weight", - "first_stage_model.decoder.up.0.block.0.conv1.bias": "blocks.15.conv1.bias", - "first_stage_model.decoder.up.0.block.0.conv1.weight": "blocks.15.conv1.weight", - "first_stage_model.decoder.up.0.block.0.conv2.bias": "blocks.15.conv2.bias", - "first_stage_model.decoder.up.0.block.0.conv2.weight": "blocks.15.conv2.weight", - "first_stage_model.decoder.up.0.block.0.nin_shortcut.bias": "blocks.15.conv_shortcut.bias", - "first_stage_model.decoder.up.0.block.0.nin_shortcut.weight": "blocks.15.conv_shortcut.weight", - "first_stage_model.decoder.up.0.block.0.norm1.bias": "blocks.15.norm1.bias", - "first_stage_model.decoder.up.0.block.0.norm1.weight": "blocks.15.norm1.weight", - "first_stage_model.decoder.up.0.block.0.norm2.bias": "blocks.15.norm2.bias", - "first_stage_model.decoder.up.0.block.0.norm2.weight": "blocks.15.norm2.weight", - "first_stage_model.decoder.up.0.block.1.conv1.bias": "blocks.16.conv1.bias", - "first_stage_model.decoder.up.0.block.1.conv1.weight": "blocks.16.conv1.weight", - "first_stage_model.decoder.up.0.block.1.conv2.bias": "blocks.16.conv2.bias", - "first_stage_model.decoder.up.0.block.1.conv2.weight": "blocks.16.conv2.weight", - "first_stage_model.decoder.up.0.block.1.norm1.bias": "blocks.16.norm1.bias", - "first_stage_model.decoder.up.0.block.1.norm1.weight": "blocks.16.norm1.weight", - "first_stage_model.decoder.up.0.block.1.norm2.bias": "blocks.16.norm2.bias", - "first_stage_model.decoder.up.0.block.1.norm2.weight": "blocks.16.norm2.weight", - "first_stage_model.decoder.up.0.block.2.conv1.bias": "blocks.17.conv1.bias", - "first_stage_model.decoder.up.0.block.2.conv1.weight": "blocks.17.conv1.weight", - "first_stage_model.decoder.up.0.block.2.conv2.bias": "blocks.17.conv2.bias", - "first_stage_model.decoder.up.0.block.2.conv2.weight": "blocks.17.conv2.weight", - "first_stage_model.decoder.up.0.block.2.norm1.bias": "blocks.17.norm1.bias", - "first_stage_model.decoder.up.0.block.2.norm1.weight": "blocks.17.norm1.weight", - "first_stage_model.decoder.up.0.block.2.norm2.bias": "blocks.17.norm2.bias", - "first_stage_model.decoder.up.0.block.2.norm2.weight": "blocks.17.norm2.weight", - "first_stage_model.decoder.up.1.block.0.conv1.bias": "blocks.11.conv1.bias", - "first_stage_model.decoder.up.1.block.0.conv1.weight": "blocks.11.conv1.weight", - "first_stage_model.decoder.up.1.block.0.conv2.bias": "blocks.11.conv2.bias", - "first_stage_model.decoder.up.1.block.0.conv2.weight": "blocks.11.conv2.weight", - "first_stage_model.decoder.up.1.block.0.nin_shortcut.bias": "blocks.11.conv_shortcut.bias", - "first_stage_model.decoder.up.1.block.0.nin_shortcut.weight": "blocks.11.conv_shortcut.weight", - "first_stage_model.decoder.up.1.block.0.norm1.bias": "blocks.11.norm1.bias", - "first_stage_model.decoder.up.1.block.0.norm1.weight": "blocks.11.norm1.weight", - "first_stage_model.decoder.up.1.block.0.norm2.bias": "blocks.11.norm2.bias", - "first_stage_model.decoder.up.1.block.0.norm2.weight": "blocks.11.norm2.weight", - "first_stage_model.decoder.up.1.block.1.conv1.bias": "blocks.12.conv1.bias", - "first_stage_model.decoder.up.1.block.1.conv1.weight": "blocks.12.conv1.weight", - "first_stage_model.decoder.up.1.block.1.conv2.bias": "blocks.12.conv2.bias", - "first_stage_model.decoder.up.1.block.1.conv2.weight": "blocks.12.conv2.weight", - "first_stage_model.decoder.up.1.block.1.norm1.bias": "blocks.12.norm1.bias", - "first_stage_model.decoder.up.1.block.1.norm1.weight": "blocks.12.norm1.weight", - "first_stage_model.decoder.up.1.block.1.norm2.bias": "blocks.12.norm2.bias", - "first_stage_model.decoder.up.1.block.1.norm2.weight": "blocks.12.norm2.weight", - "first_stage_model.decoder.up.1.block.2.conv1.bias": "blocks.13.conv1.bias", - "first_stage_model.decoder.up.1.block.2.conv1.weight": "blocks.13.conv1.weight", - "first_stage_model.decoder.up.1.block.2.conv2.bias": "blocks.13.conv2.bias", - "first_stage_model.decoder.up.1.block.2.conv2.weight": "blocks.13.conv2.weight", - "first_stage_model.decoder.up.1.block.2.norm1.bias": "blocks.13.norm1.bias", - "first_stage_model.decoder.up.1.block.2.norm1.weight": "blocks.13.norm1.weight", - "first_stage_model.decoder.up.1.block.2.norm2.bias": "blocks.13.norm2.bias", - "first_stage_model.decoder.up.1.block.2.norm2.weight": "blocks.13.norm2.weight", - "first_stage_model.decoder.up.1.upsample.conv.bias": "blocks.14.conv.bias", - "first_stage_model.decoder.up.1.upsample.conv.weight": "blocks.14.conv.weight", - "first_stage_model.decoder.up.2.block.0.conv1.bias": "blocks.7.conv1.bias", - "first_stage_model.decoder.up.2.block.0.conv1.weight": "blocks.7.conv1.weight", - "first_stage_model.decoder.up.2.block.0.conv2.bias": "blocks.7.conv2.bias", - "first_stage_model.decoder.up.2.block.0.conv2.weight": "blocks.7.conv2.weight", - "first_stage_model.decoder.up.2.block.0.norm1.bias": "blocks.7.norm1.bias", - "first_stage_model.decoder.up.2.block.0.norm1.weight": "blocks.7.norm1.weight", - "first_stage_model.decoder.up.2.block.0.norm2.bias": "blocks.7.norm2.bias", - "first_stage_model.decoder.up.2.block.0.norm2.weight": "blocks.7.norm2.weight", - "first_stage_model.decoder.up.2.block.1.conv1.bias": "blocks.8.conv1.bias", - "first_stage_model.decoder.up.2.block.1.conv1.weight": "blocks.8.conv1.weight", - "first_stage_model.decoder.up.2.block.1.conv2.bias": "blocks.8.conv2.bias", - "first_stage_model.decoder.up.2.block.1.conv2.weight": "blocks.8.conv2.weight", - "first_stage_model.decoder.up.2.block.1.norm1.bias": "blocks.8.norm1.bias", - "first_stage_model.decoder.up.2.block.1.norm1.weight": "blocks.8.norm1.weight", - "first_stage_model.decoder.up.2.block.1.norm2.bias": "blocks.8.norm2.bias", - "first_stage_model.decoder.up.2.block.1.norm2.weight": "blocks.8.norm2.weight", - "first_stage_model.decoder.up.2.block.2.conv1.bias": "blocks.9.conv1.bias", - "first_stage_model.decoder.up.2.block.2.conv1.weight": "blocks.9.conv1.weight", - "first_stage_model.decoder.up.2.block.2.conv2.bias": "blocks.9.conv2.bias", - "first_stage_model.decoder.up.2.block.2.conv2.weight": "blocks.9.conv2.weight", - "first_stage_model.decoder.up.2.block.2.norm1.bias": "blocks.9.norm1.bias", - "first_stage_model.decoder.up.2.block.2.norm1.weight": "blocks.9.norm1.weight", - "first_stage_model.decoder.up.2.block.2.norm2.bias": "blocks.9.norm2.bias", - "first_stage_model.decoder.up.2.block.2.norm2.weight": "blocks.9.norm2.weight", - "first_stage_model.decoder.up.2.upsample.conv.bias": "blocks.10.conv.bias", - "first_stage_model.decoder.up.2.upsample.conv.weight": "blocks.10.conv.weight", - "first_stage_model.decoder.up.3.block.0.conv1.bias": "blocks.3.conv1.bias", - "first_stage_model.decoder.up.3.block.0.conv1.weight": "blocks.3.conv1.weight", - "first_stage_model.decoder.up.3.block.0.conv2.bias": "blocks.3.conv2.bias", - "first_stage_model.decoder.up.3.block.0.conv2.weight": "blocks.3.conv2.weight", - "first_stage_model.decoder.up.3.block.0.norm1.bias": "blocks.3.norm1.bias", - "first_stage_model.decoder.up.3.block.0.norm1.weight": "blocks.3.norm1.weight", - "first_stage_model.decoder.up.3.block.0.norm2.bias": "blocks.3.norm2.bias", - "first_stage_model.decoder.up.3.block.0.norm2.weight": "blocks.3.norm2.weight", - "first_stage_model.decoder.up.3.block.1.conv1.bias": "blocks.4.conv1.bias", - "first_stage_model.decoder.up.3.block.1.conv1.weight": "blocks.4.conv1.weight", - "first_stage_model.decoder.up.3.block.1.conv2.bias": "blocks.4.conv2.bias", - "first_stage_model.decoder.up.3.block.1.conv2.weight": "blocks.4.conv2.weight", - "first_stage_model.decoder.up.3.block.1.norm1.bias": "blocks.4.norm1.bias", - "first_stage_model.decoder.up.3.block.1.norm1.weight": "blocks.4.norm1.weight", - "first_stage_model.decoder.up.3.block.1.norm2.bias": "blocks.4.norm2.bias", - "first_stage_model.decoder.up.3.block.1.norm2.weight": "blocks.4.norm2.weight", - "first_stage_model.decoder.up.3.block.2.conv1.bias": "blocks.5.conv1.bias", - "first_stage_model.decoder.up.3.block.2.conv1.weight": "blocks.5.conv1.weight", - "first_stage_model.decoder.up.3.block.2.conv2.bias": "blocks.5.conv2.bias", - "first_stage_model.decoder.up.3.block.2.conv2.weight": "blocks.5.conv2.weight", - "first_stage_model.decoder.up.3.block.2.norm1.bias": "blocks.5.norm1.bias", - "first_stage_model.decoder.up.3.block.2.norm1.weight": "blocks.5.norm1.weight", - "first_stage_model.decoder.up.3.block.2.norm2.bias": "blocks.5.norm2.bias", - "first_stage_model.decoder.up.3.block.2.norm2.weight": "blocks.5.norm2.weight", - "first_stage_model.decoder.up.3.upsample.conv.bias": "blocks.6.conv.bias", - "first_stage_model.decoder.up.3.upsample.conv.weight": "blocks.6.conv.weight", - "first_stage_model.post_quant_conv.bias": "post_quant_conv.bias", - "first_stage_model.post_quant_conv.weight": "post_quant_conv.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if "transformer_blocks" in rename_dict[name]: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - return state_dict_ diff --git a/diffsynth/models/sd_vae_encoder.py b/diffsynth/models/sd_vae_encoder.py deleted file mode 100644 index 60965c591c01bd12dce5f0abdbfd121c033c47c6..0000000000000000000000000000000000000000 --- a/diffsynth/models/sd_vae_encoder.py +++ /dev/null @@ -1,282 +0,0 @@ -import torch -from .sd_unet import ResnetBlock, DownSampler -from .sd_vae_decoder import VAEAttentionBlock -from .tiler import TileWorker -from einops import rearrange - - -class SDVAEEncoder(torch.nn.Module): - def __init__(self): - super().__init__() - self.scaling_factor = 0.18215 - self.quant_conv = torch.nn.Conv2d(8, 8, kernel_size=1) - self.conv_in = torch.nn.Conv2d(3, 128, kernel_size=3, padding=1) - - self.blocks = torch.nn.ModuleList([ - # DownEncoderBlock2D - ResnetBlock(128, 128, eps=1e-6), - ResnetBlock(128, 128, eps=1e-6), - DownSampler(128, padding=0, extra_padding=True), - # DownEncoderBlock2D - ResnetBlock(128, 256, eps=1e-6), - ResnetBlock(256, 256, eps=1e-6), - DownSampler(256, padding=0, extra_padding=True), - # DownEncoderBlock2D - ResnetBlock(256, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - DownSampler(512, padding=0, extra_padding=True), - # DownEncoderBlock2D - ResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - # UNetMidBlock2D - ResnetBlock(512, 512, eps=1e-6), - VAEAttentionBlock(1, 512, 512, 1, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - ]) - - self.conv_norm_out = torch.nn.GroupNorm(num_channels=512, num_groups=32, eps=1e-6) - self.conv_act = torch.nn.SiLU() - self.conv_out = torch.nn.Conv2d(512, 8, kernel_size=3, padding=1) - - def tiled_forward(self, sample, tile_size=64, tile_stride=32): - hidden_states = TileWorker().tiled_forward( - lambda x: self.forward(x), - sample, - tile_size, - tile_stride, - tile_device=sample.device, - tile_dtype=sample.dtype - ) - return hidden_states - - def forward(self, sample, tiled=False, tile_size=64, tile_stride=32, **kwargs): - original_dtype = sample.dtype - sample = sample.to(dtype=next(iter(self.parameters())).dtype) - # For VAE Decoder, we do not need to apply the tiler on each layer. - if tiled: - return self.tiled_forward(sample, tile_size=tile_size, tile_stride=tile_stride) - - # 1. pre-process - hidden_states = self.conv_in(sample) - time_emb = None - text_emb = None - res_stack = None - - # 2. blocks - for i, block in enumerate(self.blocks): - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - - # 3. output - hidden_states = self.conv_norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - hidden_states = self.quant_conv(hidden_states) - hidden_states = hidden_states[:, :4] - hidden_states *= self.scaling_factor - hidden_states = hidden_states.to(original_dtype) - - return hidden_states - - def encode_video(self, sample, batch_size=8): - B = sample.shape[0] - hidden_states = [] - - for i in range(0, sample.shape[2], batch_size): - - j = min(i + batch_size, sample.shape[2]) - sample_batch = rearrange(sample[:,:,i:j], "B C T H W -> (B T) C H W") - - hidden_states_batch = self(sample_batch) - hidden_states_batch = rearrange(hidden_states_batch, "(B T) C H W -> B C T H W", B=B) - - hidden_states.append(hidden_states_batch) - - hidden_states = torch.concat(hidden_states, dim=2) - return hidden_states - - @staticmethod - def state_dict_converter(): - return SDVAEEncoderStateDictConverter() - - -class SDVAEEncoderStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - # architecture - block_types = [ - 'ResnetBlock', 'ResnetBlock', 'DownSampler', - 'ResnetBlock', 'ResnetBlock', 'DownSampler', - 'ResnetBlock', 'ResnetBlock', 'DownSampler', - 'ResnetBlock', 'ResnetBlock', - 'ResnetBlock', 'VAEAttentionBlock', 'ResnetBlock' - ] - - # Rename each parameter - local_rename_dict = { - "quant_conv": "quant_conv", - "encoder.conv_in": "conv_in", - "encoder.mid_block.attentions.0.group_norm": "blocks.12.norm", - "encoder.mid_block.attentions.0.to_q": "blocks.12.transformer_blocks.0.to_q", - "encoder.mid_block.attentions.0.to_k": "blocks.12.transformer_blocks.0.to_k", - "encoder.mid_block.attentions.0.to_v": "blocks.12.transformer_blocks.0.to_v", - "encoder.mid_block.attentions.0.to_out.0": "blocks.12.transformer_blocks.0.to_out", - "encoder.mid_block.resnets.0.norm1": "blocks.11.norm1", - "encoder.mid_block.resnets.0.conv1": "blocks.11.conv1", - "encoder.mid_block.resnets.0.norm2": "blocks.11.norm2", - "encoder.mid_block.resnets.0.conv2": "blocks.11.conv2", - "encoder.mid_block.resnets.1.norm1": "blocks.13.norm1", - "encoder.mid_block.resnets.1.conv1": "blocks.13.conv1", - "encoder.mid_block.resnets.1.norm2": "blocks.13.norm2", - "encoder.mid_block.resnets.1.conv2": "blocks.13.conv2", - "encoder.conv_norm_out": "conv_norm_out", - "encoder.conv_out": "conv_out", - } - name_list = sorted([name for name in state_dict]) - rename_dict = {} - block_id = {"ResnetBlock": -1, "DownSampler": -1, "UpSampler": -1} - last_block_type_with_id = {"ResnetBlock": "", "DownSampler": "", "UpSampler": ""} - for name in name_list: - names = name.split(".") - name_prefix = ".".join(names[:-1]) - if name_prefix in local_rename_dict: - rename_dict[name] = local_rename_dict[name_prefix] + "." + names[-1] - elif name.startswith("encoder.down_blocks"): - block_type = {"resnets": "ResnetBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[3]] - block_type_with_id = ".".join(names[:5]) - if block_type_with_id != last_block_type_with_id[block_type]: - block_id[block_type] += 1 - last_block_type_with_id[block_type] = block_type_with_id - while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type: - block_id[block_type] += 1 - block_type_with_id = ".".join(names[:5]) - names = ["blocks", str(block_id[block_type])] + names[5:] - rename_dict[name] = ".".join(names) - - # Convert state_dict - state_dict_ = {} - for name, param in state_dict.items(): - if name in rename_dict: - state_dict_[rename_dict[name]] = param - return state_dict_ - - def from_civitai(self, state_dict): - rename_dict = { - "first_stage_model.encoder.conv_in.bias": "conv_in.bias", - "first_stage_model.encoder.conv_in.weight": "conv_in.weight", - "first_stage_model.encoder.conv_out.bias": "conv_out.bias", - "first_stage_model.encoder.conv_out.weight": "conv_out.weight", - "first_stage_model.encoder.down.0.block.0.conv1.bias": "blocks.0.conv1.bias", - "first_stage_model.encoder.down.0.block.0.conv1.weight": "blocks.0.conv1.weight", - "first_stage_model.encoder.down.0.block.0.conv2.bias": "blocks.0.conv2.bias", - "first_stage_model.encoder.down.0.block.0.conv2.weight": "blocks.0.conv2.weight", - "first_stage_model.encoder.down.0.block.0.norm1.bias": "blocks.0.norm1.bias", - "first_stage_model.encoder.down.0.block.0.norm1.weight": "blocks.0.norm1.weight", - "first_stage_model.encoder.down.0.block.0.norm2.bias": "blocks.0.norm2.bias", - "first_stage_model.encoder.down.0.block.0.norm2.weight": "blocks.0.norm2.weight", - "first_stage_model.encoder.down.0.block.1.conv1.bias": "blocks.1.conv1.bias", - "first_stage_model.encoder.down.0.block.1.conv1.weight": "blocks.1.conv1.weight", - "first_stage_model.encoder.down.0.block.1.conv2.bias": "blocks.1.conv2.bias", - "first_stage_model.encoder.down.0.block.1.conv2.weight": "blocks.1.conv2.weight", - "first_stage_model.encoder.down.0.block.1.norm1.bias": "blocks.1.norm1.bias", - "first_stage_model.encoder.down.0.block.1.norm1.weight": "blocks.1.norm1.weight", - "first_stage_model.encoder.down.0.block.1.norm2.bias": "blocks.1.norm2.bias", - "first_stage_model.encoder.down.0.block.1.norm2.weight": "blocks.1.norm2.weight", - "first_stage_model.encoder.down.0.downsample.conv.bias": "blocks.2.conv.bias", - "first_stage_model.encoder.down.0.downsample.conv.weight": "blocks.2.conv.weight", - "first_stage_model.encoder.down.1.block.0.conv1.bias": "blocks.3.conv1.bias", - "first_stage_model.encoder.down.1.block.0.conv1.weight": "blocks.3.conv1.weight", - "first_stage_model.encoder.down.1.block.0.conv2.bias": "blocks.3.conv2.bias", - "first_stage_model.encoder.down.1.block.0.conv2.weight": "blocks.3.conv2.weight", - "first_stage_model.encoder.down.1.block.0.nin_shortcut.bias": "blocks.3.conv_shortcut.bias", - "first_stage_model.encoder.down.1.block.0.nin_shortcut.weight": "blocks.3.conv_shortcut.weight", - "first_stage_model.encoder.down.1.block.0.norm1.bias": "blocks.3.norm1.bias", - "first_stage_model.encoder.down.1.block.0.norm1.weight": "blocks.3.norm1.weight", - "first_stage_model.encoder.down.1.block.0.norm2.bias": "blocks.3.norm2.bias", - "first_stage_model.encoder.down.1.block.0.norm2.weight": "blocks.3.norm2.weight", - "first_stage_model.encoder.down.1.block.1.conv1.bias": "blocks.4.conv1.bias", - "first_stage_model.encoder.down.1.block.1.conv1.weight": "blocks.4.conv1.weight", - "first_stage_model.encoder.down.1.block.1.conv2.bias": "blocks.4.conv2.bias", - "first_stage_model.encoder.down.1.block.1.conv2.weight": "blocks.4.conv2.weight", - "first_stage_model.encoder.down.1.block.1.norm1.bias": "blocks.4.norm1.bias", - "first_stage_model.encoder.down.1.block.1.norm1.weight": "blocks.4.norm1.weight", - "first_stage_model.encoder.down.1.block.1.norm2.bias": "blocks.4.norm2.bias", - "first_stage_model.encoder.down.1.block.1.norm2.weight": "blocks.4.norm2.weight", - "first_stage_model.encoder.down.1.downsample.conv.bias": "blocks.5.conv.bias", - "first_stage_model.encoder.down.1.downsample.conv.weight": "blocks.5.conv.weight", - "first_stage_model.encoder.down.2.block.0.conv1.bias": "blocks.6.conv1.bias", - "first_stage_model.encoder.down.2.block.0.conv1.weight": "blocks.6.conv1.weight", - "first_stage_model.encoder.down.2.block.0.conv2.bias": "blocks.6.conv2.bias", - "first_stage_model.encoder.down.2.block.0.conv2.weight": "blocks.6.conv2.weight", - "first_stage_model.encoder.down.2.block.0.nin_shortcut.bias": "blocks.6.conv_shortcut.bias", - "first_stage_model.encoder.down.2.block.0.nin_shortcut.weight": "blocks.6.conv_shortcut.weight", - "first_stage_model.encoder.down.2.block.0.norm1.bias": "blocks.6.norm1.bias", - "first_stage_model.encoder.down.2.block.0.norm1.weight": "blocks.6.norm1.weight", - "first_stage_model.encoder.down.2.block.0.norm2.bias": "blocks.6.norm2.bias", - "first_stage_model.encoder.down.2.block.0.norm2.weight": "blocks.6.norm2.weight", - "first_stage_model.encoder.down.2.block.1.conv1.bias": "blocks.7.conv1.bias", - "first_stage_model.encoder.down.2.block.1.conv1.weight": "blocks.7.conv1.weight", - "first_stage_model.encoder.down.2.block.1.conv2.bias": "blocks.7.conv2.bias", - "first_stage_model.encoder.down.2.block.1.conv2.weight": "blocks.7.conv2.weight", - "first_stage_model.encoder.down.2.block.1.norm1.bias": "blocks.7.norm1.bias", - "first_stage_model.encoder.down.2.block.1.norm1.weight": "blocks.7.norm1.weight", - "first_stage_model.encoder.down.2.block.1.norm2.bias": "blocks.7.norm2.bias", - "first_stage_model.encoder.down.2.block.1.norm2.weight": "blocks.7.norm2.weight", - "first_stage_model.encoder.down.2.downsample.conv.bias": "blocks.8.conv.bias", - "first_stage_model.encoder.down.2.downsample.conv.weight": "blocks.8.conv.weight", - "first_stage_model.encoder.down.3.block.0.conv1.bias": "blocks.9.conv1.bias", - "first_stage_model.encoder.down.3.block.0.conv1.weight": "blocks.9.conv1.weight", - "first_stage_model.encoder.down.3.block.0.conv2.bias": "blocks.9.conv2.bias", - "first_stage_model.encoder.down.3.block.0.conv2.weight": "blocks.9.conv2.weight", - "first_stage_model.encoder.down.3.block.0.norm1.bias": "blocks.9.norm1.bias", - "first_stage_model.encoder.down.3.block.0.norm1.weight": "blocks.9.norm1.weight", - "first_stage_model.encoder.down.3.block.0.norm2.bias": "blocks.9.norm2.bias", - "first_stage_model.encoder.down.3.block.0.norm2.weight": "blocks.9.norm2.weight", - "first_stage_model.encoder.down.3.block.1.conv1.bias": "blocks.10.conv1.bias", - "first_stage_model.encoder.down.3.block.1.conv1.weight": "blocks.10.conv1.weight", - "first_stage_model.encoder.down.3.block.1.conv2.bias": "blocks.10.conv2.bias", - "first_stage_model.encoder.down.3.block.1.conv2.weight": "blocks.10.conv2.weight", - "first_stage_model.encoder.down.3.block.1.norm1.bias": "blocks.10.norm1.bias", - "first_stage_model.encoder.down.3.block.1.norm1.weight": "blocks.10.norm1.weight", - "first_stage_model.encoder.down.3.block.1.norm2.bias": "blocks.10.norm2.bias", - "first_stage_model.encoder.down.3.block.1.norm2.weight": "blocks.10.norm2.weight", - "first_stage_model.encoder.mid.attn_1.k.bias": "blocks.12.transformer_blocks.0.to_k.bias", - "first_stage_model.encoder.mid.attn_1.k.weight": "blocks.12.transformer_blocks.0.to_k.weight", - "first_stage_model.encoder.mid.attn_1.norm.bias": "blocks.12.norm.bias", - "first_stage_model.encoder.mid.attn_1.norm.weight": "blocks.12.norm.weight", - "first_stage_model.encoder.mid.attn_1.proj_out.bias": "blocks.12.transformer_blocks.0.to_out.bias", - "first_stage_model.encoder.mid.attn_1.proj_out.weight": "blocks.12.transformer_blocks.0.to_out.weight", - "first_stage_model.encoder.mid.attn_1.q.bias": "blocks.12.transformer_blocks.0.to_q.bias", - "first_stage_model.encoder.mid.attn_1.q.weight": "blocks.12.transformer_blocks.0.to_q.weight", - "first_stage_model.encoder.mid.attn_1.v.bias": "blocks.12.transformer_blocks.0.to_v.bias", - "first_stage_model.encoder.mid.attn_1.v.weight": "blocks.12.transformer_blocks.0.to_v.weight", - "first_stage_model.encoder.mid.block_1.conv1.bias": "blocks.11.conv1.bias", - "first_stage_model.encoder.mid.block_1.conv1.weight": "blocks.11.conv1.weight", - "first_stage_model.encoder.mid.block_1.conv2.bias": "blocks.11.conv2.bias", - "first_stage_model.encoder.mid.block_1.conv2.weight": "blocks.11.conv2.weight", - "first_stage_model.encoder.mid.block_1.norm1.bias": "blocks.11.norm1.bias", - "first_stage_model.encoder.mid.block_1.norm1.weight": "blocks.11.norm1.weight", - "first_stage_model.encoder.mid.block_1.norm2.bias": "blocks.11.norm2.bias", - "first_stage_model.encoder.mid.block_1.norm2.weight": "blocks.11.norm2.weight", - "first_stage_model.encoder.mid.block_2.conv1.bias": "blocks.13.conv1.bias", - "first_stage_model.encoder.mid.block_2.conv1.weight": "blocks.13.conv1.weight", - "first_stage_model.encoder.mid.block_2.conv2.bias": "blocks.13.conv2.bias", - "first_stage_model.encoder.mid.block_2.conv2.weight": "blocks.13.conv2.weight", - "first_stage_model.encoder.mid.block_2.norm1.bias": "blocks.13.norm1.bias", - "first_stage_model.encoder.mid.block_2.norm1.weight": "blocks.13.norm1.weight", - "first_stage_model.encoder.mid.block_2.norm2.bias": "blocks.13.norm2.bias", - "first_stage_model.encoder.mid.block_2.norm2.weight": "blocks.13.norm2.weight", - "first_stage_model.encoder.norm_out.bias": "conv_norm_out.bias", - "first_stage_model.encoder.norm_out.weight": "conv_norm_out.weight", - "first_stage_model.quant_conv.bias": "quant_conv.bias", - "first_stage_model.quant_conv.weight": "quant_conv.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if "transformer_blocks" in rename_dict[name]: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - return state_dict_ diff --git a/diffsynth/models/sdxl_controlnet.py b/diffsynth/models/sdxl_controlnet.py deleted file mode 100644 index acddf1cc4109af01bd9c06121f6cd4d8604ce945..0000000000000000000000000000000000000000 --- a/diffsynth/models/sdxl_controlnet.py +++ /dev/null @@ -1,318 +0,0 @@ -import torch -from .sd_unet import Timesteps, ResnetBlock, AttentionBlock, PushBlock, DownSampler -from .sdxl_unet import SDXLUNet -from .tiler import TileWorker -from .sd_controlnet import ControlNetConditioningLayer -from collections import OrderedDict - - - -class QuickGELU(torch.nn.Module): - - def forward(self, x: torch.Tensor): - return x * torch.sigmoid(1.702 * x) - - - -class ResidualAttentionBlock(torch.nn.Module): - - def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): - super().__init__() - - self.attn = torch.nn.MultiheadAttention(d_model, n_head) - self.ln_1 = torch.nn.LayerNorm(d_model) - self.mlp = torch.nn.Sequential(OrderedDict([ - ("c_fc", torch.nn.Linear(d_model, d_model * 4)), - ("gelu", QuickGELU()), - ("c_proj", torch.nn.Linear(d_model * 4, d_model)) - ])) - self.ln_2 = torch.nn.LayerNorm(d_model) - self.attn_mask = attn_mask - - def attention(self, x: torch.Tensor): - self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None - return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] - - def forward(self, x: torch.Tensor): - x = x + self.attention(self.ln_1(x)) - x = x + self.mlp(self.ln_2(x)) - return x - - - -class SDXLControlNetUnion(torch.nn.Module): - def __init__(self, global_pool=False): - super().__init__() - self.time_proj = Timesteps(320) - self.time_embedding = torch.nn.Sequential( - torch.nn.Linear(320, 1280), - torch.nn.SiLU(), - torch.nn.Linear(1280, 1280) - ) - self.add_time_proj = Timesteps(256) - self.add_time_embedding = torch.nn.Sequential( - torch.nn.Linear(2816, 1280), - torch.nn.SiLU(), - torch.nn.Linear(1280, 1280) - ) - self.control_type_proj = Timesteps(256) - self.control_type_embedding = torch.nn.Sequential( - torch.nn.Linear(256 * 8, 1280), - torch.nn.SiLU(), - torch.nn.Linear(1280, 1280) - ) - self.conv_in = torch.nn.Conv2d(4, 320, kernel_size=3, padding=1) - - self.controlnet_conv_in = ControlNetConditioningLayer(channels=(3, 16, 32, 96, 256, 320)) - self.controlnet_transformer = ResidualAttentionBlock(320, 8) - self.task_embedding = torch.nn.Parameter(torch.randn(8, 320)) - self.spatial_ch_projs = torch.nn.Linear(320, 320) - - self.blocks = torch.nn.ModuleList([ - # DownBlock2D - ResnetBlock(320, 320, 1280), - PushBlock(), - ResnetBlock(320, 320, 1280), - PushBlock(), - DownSampler(320), - PushBlock(), - # CrossAttnDownBlock2D - ResnetBlock(320, 640, 1280), - AttentionBlock(10, 64, 640, 2, 2048), - PushBlock(), - ResnetBlock(640, 640, 1280), - AttentionBlock(10, 64, 640, 2, 2048), - PushBlock(), - DownSampler(640), - PushBlock(), - # CrossAttnDownBlock2D - ResnetBlock(640, 1280, 1280), - AttentionBlock(20, 64, 1280, 10, 2048), - PushBlock(), - ResnetBlock(1280, 1280, 1280), - AttentionBlock(20, 64, 1280, 10, 2048), - PushBlock(), - # UNetMidBlock2DCrossAttn - ResnetBlock(1280, 1280, 1280), - AttentionBlock(20, 64, 1280, 10, 2048), - ResnetBlock(1280, 1280, 1280), - PushBlock() - ]) - - self.controlnet_blocks = torch.nn.ModuleList([ - torch.nn.Conv2d(320, 320, kernel_size=(1, 1)), - torch.nn.Conv2d(320, 320, kernel_size=(1, 1)), - torch.nn.Conv2d(320, 320, kernel_size=(1, 1)), - torch.nn.Conv2d(320, 320, kernel_size=(1, 1)), - torch.nn.Conv2d(640, 640, kernel_size=(1, 1)), - torch.nn.Conv2d(640, 640, kernel_size=(1, 1)), - torch.nn.Conv2d(640, 640, kernel_size=(1, 1)), - torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1)), - torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1)), - torch.nn.Conv2d(1280, 1280, kernel_size=(1, 1)), - ]) - - self.global_pool = global_pool - - # 0 -- openpose - # 1 -- depth - # 2 -- hed/pidi/scribble/ted - # 3 -- canny/lineart/anime_lineart/mlsd - # 4 -- normal - # 5 -- segment - # 6 -- tile - # 7 -- repaint - self.task_id = { - "openpose": 0, - "depth": 1, - "softedge": 2, - "canny": 3, - "lineart": 3, - "lineart_anime": 3, - "tile": 6, - "inpaint": 7 - } - - - def fuse_condition_to_input(self, hidden_states, task_id, conditioning): - controlnet_cond = self.controlnet_conv_in(conditioning) - feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) - feat_seq = feat_seq + self.task_embedding[task_id] - x = torch.stack([feat_seq, torch.mean(hidden_states, dim=(2, 3))], dim=1) - x = self.controlnet_transformer(x) - - alpha = self.spatial_ch_projs(x[:,0]).unsqueeze(-1).unsqueeze(-1) - controlnet_cond_fuser = controlnet_cond + alpha - - hidden_states = hidden_states + controlnet_cond_fuser - return hidden_states - - - def forward( - self, - sample, timestep, encoder_hidden_states, - conditioning, processor_id, add_time_id, add_text_embeds, - tiled=False, tile_size=64, tile_stride=32, - unet:SDXLUNet=None, - **kwargs - ): - task_id = self.task_id[processor_id] - - # 1. time - t_emb = self.time_proj(timestep).to(sample.dtype) - t_emb = self.time_embedding(t_emb) - - time_embeds = self.add_time_proj(add_time_id) - time_embeds = time_embeds.reshape((add_text_embeds.shape[0], -1)) - add_embeds = torch.concat([add_text_embeds, time_embeds], dim=-1) - add_embeds = add_embeds.to(sample.dtype) - if unet is not None and unet.is_kolors: - add_embeds = unet.add_time_embedding(add_embeds) - else: - add_embeds = self.add_time_embedding(add_embeds) - - control_type = torch.zeros((sample.shape[0], 8), dtype=sample.dtype, device=sample.device) - control_type[:, task_id] = 1 - control_embeds = self.control_type_proj(control_type.flatten()) - control_embeds = control_embeds.reshape((sample.shape[0], -1)) - control_embeds = control_embeds.to(sample.dtype) - control_embeds = self.control_type_embedding(control_embeds) - time_emb = t_emb + add_embeds + control_embeds - - # 2. pre-process - height, width = sample.shape[2], sample.shape[3] - hidden_states = self.conv_in(sample) - hidden_states = self.fuse_condition_to_input(hidden_states, task_id, conditioning) - text_emb = encoder_hidden_states - if unet is not None and unet.is_kolors: - text_emb = unet.text_intermediate_proj(text_emb) - res_stack = [hidden_states] - - # 3. blocks - for i, block in enumerate(self.blocks): - if tiled and not isinstance(block, PushBlock): - _, _, inter_height, _ = hidden_states.shape - resize_scale = inter_height / height - hidden_states = TileWorker().tiled_forward( - lambda x: block(x, time_emb, text_emb, res_stack)[0], - hidden_states, - int(tile_size * resize_scale), - int(tile_stride * resize_scale), - tile_device=hidden_states.device, - tile_dtype=hidden_states.dtype - ) - else: - hidden_states, _, _, _ = block(hidden_states, time_emb, text_emb, res_stack) - - # 4. ControlNet blocks - controlnet_res_stack = [block(res) for block, res in zip(self.controlnet_blocks, res_stack)] - - # pool - if self.global_pool: - controlnet_res_stack = [res.mean(dim=(2, 3), keepdim=True) for res in controlnet_res_stack] - - return controlnet_res_stack - - @staticmethod - def state_dict_converter(): - return SDXLControlNetUnionStateDictConverter() - - - -class SDXLControlNetUnionStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - # architecture - block_types = [ - "ResnetBlock", "PushBlock", "ResnetBlock", "PushBlock", "DownSampler", "PushBlock", - "ResnetBlock", "AttentionBlock", "PushBlock", "ResnetBlock", "AttentionBlock", "PushBlock", "DownSampler", "PushBlock", - "ResnetBlock", "AttentionBlock", "PushBlock", "ResnetBlock", "AttentionBlock", "PushBlock", - "ResnetBlock", "AttentionBlock", "ResnetBlock", "PushBlock" - ] - - # controlnet_rename_dict - controlnet_rename_dict = { - "controlnet_cond_embedding.conv_in.weight": "controlnet_conv_in.blocks.0.weight", - "controlnet_cond_embedding.conv_in.bias": "controlnet_conv_in.blocks.0.bias", - "controlnet_cond_embedding.blocks.0.weight": "controlnet_conv_in.blocks.2.weight", - "controlnet_cond_embedding.blocks.0.bias": "controlnet_conv_in.blocks.2.bias", - "controlnet_cond_embedding.blocks.1.weight": "controlnet_conv_in.blocks.4.weight", - "controlnet_cond_embedding.blocks.1.bias": "controlnet_conv_in.blocks.4.bias", - "controlnet_cond_embedding.blocks.2.weight": "controlnet_conv_in.blocks.6.weight", - "controlnet_cond_embedding.blocks.2.bias": "controlnet_conv_in.blocks.6.bias", - "controlnet_cond_embedding.blocks.3.weight": "controlnet_conv_in.blocks.8.weight", - "controlnet_cond_embedding.blocks.3.bias": "controlnet_conv_in.blocks.8.bias", - "controlnet_cond_embedding.blocks.4.weight": "controlnet_conv_in.blocks.10.weight", - "controlnet_cond_embedding.blocks.4.bias": "controlnet_conv_in.blocks.10.bias", - "controlnet_cond_embedding.blocks.5.weight": "controlnet_conv_in.blocks.12.weight", - "controlnet_cond_embedding.blocks.5.bias": "controlnet_conv_in.blocks.12.bias", - "controlnet_cond_embedding.conv_out.weight": "controlnet_conv_in.blocks.14.weight", - "controlnet_cond_embedding.conv_out.bias": "controlnet_conv_in.blocks.14.bias", - "control_add_embedding.linear_1.weight": "control_type_embedding.0.weight", - "control_add_embedding.linear_1.bias": "control_type_embedding.0.bias", - "control_add_embedding.linear_2.weight": "control_type_embedding.2.weight", - "control_add_embedding.linear_2.bias": "control_type_embedding.2.bias", - } - - # Rename each parameter - name_list = sorted([name for name in state_dict]) - rename_dict = {} - block_id = {"ResnetBlock": -1, "AttentionBlock": -1, "DownSampler": -1, "UpSampler": -1} - last_block_type_with_id = {"ResnetBlock": "", "AttentionBlock": "", "DownSampler": "", "UpSampler": ""} - for name in name_list: - names = name.split(".") - if names[0] in ["conv_in", "conv_norm_out", "conv_out", "task_embedding", "spatial_ch_projs"]: - pass - elif name in controlnet_rename_dict: - names = controlnet_rename_dict[name].split(".") - elif names[0] == "controlnet_down_blocks": - names[0] = "controlnet_blocks" - elif names[0] == "controlnet_mid_block": - names = ["controlnet_blocks", "9", names[-1]] - elif names[0] in ["time_embedding", "add_embedding"]: - if names[0] == "add_embedding": - names[0] = "add_time_embedding" - names[1] = {"linear_1": "0", "linear_2": "2"}[names[1]] - elif names[0] == "control_add_embedding": - names[0] = "control_type_embedding" - elif names[0] == "transformer_layes": - names[0] = "controlnet_transformer" - names.pop(1) - elif names[0] in ["down_blocks", "mid_block", "up_blocks"]: - if names[0] == "mid_block": - names.insert(1, "0") - block_type = {"resnets": "ResnetBlock", "attentions": "AttentionBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[2]] - block_type_with_id = ".".join(names[:4]) - if block_type_with_id != last_block_type_with_id[block_type]: - block_id[block_type] += 1 - last_block_type_with_id[block_type] = block_type_with_id - while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type: - block_id[block_type] += 1 - block_type_with_id = ".".join(names[:4]) - names = ["blocks", str(block_id[block_type])] + names[4:] - if "ff" in names: - ff_index = names.index("ff") - component = ".".join(names[ff_index:ff_index+3]) - component = {"ff.net.0": "act_fn", "ff.net.2": "ff"}[component] - names = names[:ff_index] + [component] + names[ff_index+3:] - if "to_out" in names: - names.pop(names.index("to_out") + 1) - else: - print(name, state_dict[name].shape) - # raise ValueError(f"Unknown parameters: {name}") - rename_dict[name] = ".".join(names) - - # Convert state_dict - state_dict_ = {} - for name, param in state_dict.items(): - if name not in rename_dict: - continue - if ".proj_in." in name or ".proj_out." in name: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - return state_dict_ - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) \ No newline at end of file diff --git a/diffsynth/models/sdxl_ipadapter.py b/diffsynth/models/sdxl_ipadapter.py deleted file mode 100644 index d959d3b9249e690c6240670fc191e11e27deaaa2..0000000000000000000000000000000000000000 --- a/diffsynth/models/sdxl_ipadapter.py +++ /dev/null @@ -1,122 +0,0 @@ -from .svd_image_encoder import SVDImageEncoder -from transformers import CLIPImageProcessor -import torch - - -class IpAdapterXLCLIPImageEmbedder(SVDImageEncoder): - def __init__(self): - super().__init__(embed_dim=1664, encoder_intermediate_size=8192, projection_dim=1280, num_encoder_layers=48, num_heads=16, head_dim=104) - self.image_processor = CLIPImageProcessor() - - def forward(self, image): - pixel_values = self.image_processor(images=image, return_tensors="pt").pixel_values - pixel_values = pixel_values.to(device=self.embeddings.class_embedding.device, dtype=self.embeddings.class_embedding.dtype) - return super().forward(pixel_values) - - -class IpAdapterImageProjModel(torch.nn.Module): - def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280, clip_extra_context_tokens=4): - super().__init__() - self.cross_attention_dim = cross_attention_dim - self.clip_extra_context_tokens = clip_extra_context_tokens - self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) - self.norm = torch.nn.LayerNorm(cross_attention_dim) - - def forward(self, image_embeds): - clip_extra_context_tokens = self.proj(image_embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim) - clip_extra_context_tokens = self.norm(clip_extra_context_tokens) - return clip_extra_context_tokens - - -class IpAdapterModule(torch.nn.Module): - def __init__(self, input_dim, output_dim): - super().__init__() - self.to_k_ip = torch.nn.Linear(input_dim, output_dim, bias=False) - self.to_v_ip = torch.nn.Linear(input_dim, output_dim, bias=False) - - def forward(self, hidden_states): - ip_k = self.to_k_ip(hidden_states) - ip_v = self.to_v_ip(hidden_states) - return ip_k, ip_v - - -class SDXLIpAdapter(torch.nn.Module): - def __init__(self): - super().__init__() - shape_list = [(2048, 640)] * 4 + [(2048, 1280)] * 50 + [(2048, 640)] * 6 + [(2048, 1280)] * 10 - self.ipadapter_modules = torch.nn.ModuleList([IpAdapterModule(*shape) for shape in shape_list]) - self.image_proj = IpAdapterImageProjModel() - self.set_full_adapter() - - def set_full_adapter(self): - map_list = sum([ - [(7, i) for i in range(2)], - [(10, i) for i in range(2)], - [(15, i) for i in range(10)], - [(18, i) for i in range(10)], - [(25, i) for i in range(10)], - [(28, i) for i in range(10)], - [(31, i) for i in range(10)], - [(35, i) for i in range(2)], - [(38, i) for i in range(2)], - [(41, i) for i in range(2)], - [(21, i) for i in range(10)], - ], []) - self.call_block_id = {i: j for j, i in enumerate(map_list)} - - def set_less_adapter(self): - map_list = sum([ - [(7, i) for i in range(2)], - [(10, i) for i in range(2)], - [(15, i) for i in range(10)], - [(18, i) for i in range(10)], - [(25, i) for i in range(10)], - [(28, i) for i in range(10)], - [(31, i) for i in range(10)], - [(35, i) for i in range(2)], - [(38, i) for i in range(2)], - [(41, i) for i in range(2)], - [(21, i) for i in range(10)], - ], []) - self.call_block_id = {i: j for j, i in enumerate(map_list) if j>=34 and j<44} - - def forward(self, hidden_states, scale=1.0): - hidden_states = self.image_proj(hidden_states) - hidden_states = hidden_states.view(1, -1, hidden_states.shape[-1]) - ip_kv_dict = {} - for (block_id, transformer_id) in self.call_block_id: - ipadapter_id = self.call_block_id[(block_id, transformer_id)] - ip_k, ip_v = self.ipadapter_modules[ipadapter_id](hidden_states) - if block_id not in ip_kv_dict: - ip_kv_dict[block_id] = {} - ip_kv_dict[block_id][transformer_id] = { - "ip_k": ip_k, - "ip_v": ip_v, - "scale": scale - } - return ip_kv_dict - - @staticmethod - def state_dict_converter(): - return SDXLIpAdapterStateDictConverter() - - -class SDXLIpAdapterStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - state_dict_ = {} - for name in state_dict["ip_adapter"]: - names = name.split(".") - layer_id = str(int(names[0]) // 2) - name_ = ".".join(["ipadapter_modules"] + [layer_id] + names[1:]) - state_dict_[name_] = state_dict["ip_adapter"][name] - for name in state_dict["image_proj"]: - name_ = "image_proj." + name - state_dict_[name_] = state_dict["image_proj"][name] - return state_dict_ - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) - diff --git a/diffsynth/models/sdxl_motion.py b/diffsynth/models/sdxl_motion.py deleted file mode 100644 index 268c3e96f006e697eed5ac03fad3f5c995cfa319..0000000000000000000000000000000000000000 --- a/diffsynth/models/sdxl_motion.py +++ /dev/null @@ -1,104 +0,0 @@ -from .sd_motion import TemporalBlock -import torch - - - -class SDXLMotionModel(torch.nn.Module): - def __init__(self): - super().__init__() - self.motion_modules = torch.nn.ModuleList([ - TemporalBlock(8, 320//8, 320, eps=1e-6), - TemporalBlock(8, 320//8, 320, eps=1e-6), - - TemporalBlock(8, 640//8, 640, eps=1e-6), - TemporalBlock(8, 640//8, 640, eps=1e-6), - - TemporalBlock(8, 1280//8, 1280, eps=1e-6), - TemporalBlock(8, 1280//8, 1280, eps=1e-6), - - TemporalBlock(8, 1280//8, 1280, eps=1e-6), - TemporalBlock(8, 1280//8, 1280, eps=1e-6), - TemporalBlock(8, 1280//8, 1280, eps=1e-6), - - TemporalBlock(8, 640//8, 640, eps=1e-6), - TemporalBlock(8, 640//8, 640, eps=1e-6), - TemporalBlock(8, 640//8, 640, eps=1e-6), - - TemporalBlock(8, 320//8, 320, eps=1e-6), - TemporalBlock(8, 320//8, 320, eps=1e-6), - TemporalBlock(8, 320//8, 320, eps=1e-6), - ]) - self.call_block_id = { - 0: 0, - 2: 1, - 7: 2, - 10: 3, - 15: 4, - 18: 5, - 25: 6, - 28: 7, - 31: 8, - 35: 9, - 38: 10, - 41: 11, - 44: 12, - 46: 13, - 48: 14, - } - - def forward(self): - pass - - @staticmethod - def state_dict_converter(): - return SDMotionModelStateDictConverter() - - -class SDMotionModelStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - rename_dict = { - "norm": "norm", - "proj_in": "proj_in", - "transformer_blocks.0.attention_blocks.0.to_q": "transformer_blocks.0.attn1.to_q", - "transformer_blocks.0.attention_blocks.0.to_k": "transformer_blocks.0.attn1.to_k", - "transformer_blocks.0.attention_blocks.0.to_v": "transformer_blocks.0.attn1.to_v", - "transformer_blocks.0.attention_blocks.0.to_out.0": "transformer_blocks.0.attn1.to_out", - "transformer_blocks.0.attention_blocks.0.pos_encoder": "transformer_blocks.0.pe1", - "transformer_blocks.0.attention_blocks.1.to_q": "transformer_blocks.0.attn2.to_q", - "transformer_blocks.0.attention_blocks.1.to_k": "transformer_blocks.0.attn2.to_k", - "transformer_blocks.0.attention_blocks.1.to_v": "transformer_blocks.0.attn2.to_v", - "transformer_blocks.0.attention_blocks.1.to_out.0": "transformer_blocks.0.attn2.to_out", - "transformer_blocks.0.attention_blocks.1.pos_encoder": "transformer_blocks.0.pe2", - "transformer_blocks.0.norms.0": "transformer_blocks.0.norm1", - "transformer_blocks.0.norms.1": "transformer_blocks.0.norm2", - "transformer_blocks.0.ff.net.0.proj": "transformer_blocks.0.act_fn.proj", - "transformer_blocks.0.ff.net.2": "transformer_blocks.0.ff", - "transformer_blocks.0.ff_norm": "transformer_blocks.0.norm3", - "proj_out": "proj_out", - } - name_list = sorted([i for i in state_dict if i.startswith("down_blocks.")]) - name_list += sorted([i for i in state_dict if i.startswith("mid_block.")]) - name_list += sorted([i for i in state_dict if i.startswith("up_blocks.")]) - state_dict_ = {} - last_prefix, module_id = "", -1 - for name in name_list: - names = name.split(".") - prefix_index = names.index("temporal_transformer") + 1 - prefix = ".".join(names[:prefix_index]) - if prefix != last_prefix: - last_prefix = prefix - module_id += 1 - middle_name = ".".join(names[prefix_index:-1]) - suffix = names[-1] - if "pos_encoder" in names: - rename = ".".join(["motion_modules", str(module_id), rename_dict[middle_name]]) - else: - rename = ".".join(["motion_modules", str(module_id), rename_dict[middle_name], suffix]) - state_dict_[rename] = state_dict[name] - return state_dict_ - - def from_civitai(self, state_dict): - return self.from_diffusers(state_dict) diff --git a/diffsynth/models/sdxl_text_encoder.py b/diffsynth/models/sdxl_text_encoder.py deleted file mode 100644 index 5d30c7d4056bf37abbb341b2807aa47a67785023..0000000000000000000000000000000000000000 --- a/diffsynth/models/sdxl_text_encoder.py +++ /dev/null @@ -1,759 +0,0 @@ -import torch -from .sd_text_encoder import CLIPEncoderLayer - - -class SDXLTextEncoder(torch.nn.Module): - def __init__(self, embed_dim=768, vocab_size=49408, max_position_embeddings=77, num_encoder_layers=11, encoder_intermediate_size=3072): - super().__init__() - - # token_embedding - self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim) - - # position_embeds (This is a fixed tensor) - self.position_embeds = torch.nn.Parameter(torch.zeros(1, max_position_embeddings, embed_dim)) - - # encoders - self.encoders = torch.nn.ModuleList([CLIPEncoderLayer(embed_dim, encoder_intermediate_size) for _ in range(num_encoder_layers)]) - - # attn_mask - self.attn_mask = self.attention_mask(max_position_embeddings) - - # The text encoder is different to that in Stable Diffusion 1.x. - # It does not include final_layer_norm. - - def attention_mask(self, length): - mask = torch.empty(length, length) - mask.fill_(float("-inf")) - mask.triu_(1) - return mask - - def forward(self, input_ids, clip_skip=1): - embeds = self.token_embedding(input_ids) + self.position_embeds - attn_mask = self.attn_mask.to(device=embeds.device, dtype=embeds.dtype) - for encoder_id, encoder in enumerate(self.encoders): - embeds = encoder(embeds, attn_mask=attn_mask) - if encoder_id + clip_skip == len(self.encoders): - break - return embeds - - @staticmethod - def state_dict_converter(): - return SDXLTextEncoderStateDictConverter() - - -class SDXLTextEncoder2(torch.nn.Module): - def __init__(self, embed_dim=1280, vocab_size=49408, max_position_embeddings=77, num_encoder_layers=32, encoder_intermediate_size=5120): - super().__init__() - - # token_embedding - self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim) - - # position_embeds (This is a fixed tensor) - self.position_embeds = torch.nn.Parameter(torch.zeros(1, max_position_embeddings, embed_dim)) - - # encoders - self.encoders = torch.nn.ModuleList([CLIPEncoderLayer(embed_dim, encoder_intermediate_size, num_heads=20, head_dim=64, use_quick_gelu=False) for _ in range(num_encoder_layers)]) - - # attn_mask - self.attn_mask = self.attention_mask(max_position_embeddings) - - # final_layer_norm - self.final_layer_norm = torch.nn.LayerNorm(embed_dim) - - # text_projection - self.text_projection = torch.nn.Linear(embed_dim, embed_dim, bias=False) - - def attention_mask(self, length): - mask = torch.empty(length, length) - mask.fill_(float("-inf")) - mask.triu_(1) - return mask - - def forward(self, input_ids, clip_skip=2): - embeds = self.token_embedding(input_ids) + self.position_embeds - attn_mask = self.attn_mask.to(device=embeds.device, dtype=embeds.dtype) - for encoder_id, encoder in enumerate(self.encoders): - embeds = encoder(embeds, attn_mask=attn_mask) - if encoder_id + clip_skip == len(self.encoders): - hidden_states = embeds - embeds = self.final_layer_norm(embeds) - pooled_embeds = embeds[torch.arange(embeds.shape[0]), input_ids.to(dtype=torch.int).argmax(dim=-1)] - pooled_embeds = self.text_projection(pooled_embeds) - return pooled_embeds, hidden_states - - @staticmethod - def state_dict_converter(): - return SDXLTextEncoder2StateDictConverter() - - -class SDXLTextEncoderStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - rename_dict = { - "text_model.embeddings.token_embedding.weight": "token_embedding.weight", - "text_model.embeddings.position_embedding.weight": "position_embeds", - "text_model.final_layer_norm.weight": "final_layer_norm.weight", - "text_model.final_layer_norm.bias": "final_layer_norm.bias" - } - attn_rename_dict = { - "self_attn.q_proj": "attn.to_q", - "self_attn.k_proj": "attn.to_k", - "self_attn.v_proj": "attn.to_v", - "self_attn.out_proj": "attn.to_out", - "layer_norm1": "layer_norm1", - "layer_norm2": "layer_norm2", - "mlp.fc1": "fc1", - "mlp.fc2": "fc2", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "text_model.embeddings.position_embedding.weight": - param = param.reshape((1, param.shape[0], param.shape[1])) - state_dict_[rename_dict[name]] = param - elif name.startswith("text_model.encoder.layers."): - param = state_dict[name] - names = name.split(".") - layer_id, layer_type, tail = names[3], ".".join(names[4:-1]), names[-1] - name_ = ".".join(["encoders", layer_id, attn_rename_dict[layer_type], tail]) - state_dict_[name_] = param - return state_dict_ - - def from_civitai(self, state_dict): - rename_dict = { - "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight": "position_embeds", - "conditioner.embedders.0.transformer.text_model.embeddings.token_embedding.weight": "token_embedding.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.layer_norm1.bias": "encoders.0.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.layer_norm1.weight": "encoders.0.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.layer_norm2.bias": "encoders.0.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.layer_norm2.weight": "encoders.0.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.mlp.fc1.bias": "encoders.0.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.mlp.fc1.weight": "encoders.0.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.mlp.fc2.bias": "encoders.0.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.mlp.fc2.weight": "encoders.0.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.self_attn.k_proj.bias": "encoders.0.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.self_attn.k_proj.weight": "encoders.0.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.self_attn.out_proj.bias": "encoders.0.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.self_attn.out_proj.weight": "encoders.0.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.self_attn.q_proj.bias": "encoders.0.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.self_attn.q_proj.weight": "encoders.0.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.self_attn.v_proj.bias": "encoders.0.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.0.self_attn.v_proj.weight": "encoders.0.attn.to_v.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.layer_norm1.bias": "encoders.1.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.layer_norm1.weight": "encoders.1.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.layer_norm2.bias": "encoders.1.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.layer_norm2.weight": "encoders.1.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.mlp.fc1.bias": "encoders.1.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.mlp.fc1.weight": "encoders.1.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.mlp.fc2.bias": "encoders.1.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.mlp.fc2.weight": "encoders.1.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.self_attn.k_proj.bias": "encoders.1.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.self_attn.k_proj.weight": "encoders.1.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.self_attn.out_proj.bias": "encoders.1.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.self_attn.out_proj.weight": "encoders.1.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.self_attn.q_proj.bias": "encoders.1.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.self_attn.q_proj.weight": "encoders.1.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.self_attn.v_proj.bias": "encoders.1.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.1.self_attn.v_proj.weight": "encoders.1.attn.to_v.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.layer_norm1.bias": "encoders.10.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.layer_norm1.weight": "encoders.10.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.layer_norm2.bias": "encoders.10.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.layer_norm2.weight": "encoders.10.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.mlp.fc1.bias": "encoders.10.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.mlp.fc1.weight": "encoders.10.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.mlp.fc2.bias": "encoders.10.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.mlp.fc2.weight": "encoders.10.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.self_attn.k_proj.bias": "encoders.10.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.self_attn.k_proj.weight": "encoders.10.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.self_attn.out_proj.bias": "encoders.10.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.self_attn.out_proj.weight": "encoders.10.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.self_attn.q_proj.bias": "encoders.10.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.self_attn.q_proj.weight": "encoders.10.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.self_attn.v_proj.bias": "encoders.10.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.10.self_attn.v_proj.weight": "encoders.10.attn.to_v.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.layer_norm1.bias": "encoders.2.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.layer_norm1.weight": "encoders.2.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.layer_norm2.bias": "encoders.2.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.layer_norm2.weight": "encoders.2.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.mlp.fc1.bias": "encoders.2.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.mlp.fc1.weight": "encoders.2.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.mlp.fc2.bias": "encoders.2.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.mlp.fc2.weight": "encoders.2.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias": "encoders.2.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.k_proj.weight": "encoders.2.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.out_proj.bias": "encoders.2.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.out_proj.weight": "encoders.2.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.q_proj.bias": "encoders.2.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.q_proj.weight": "encoders.2.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.v_proj.bias": "encoders.2.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.v_proj.weight": "encoders.2.attn.to_v.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.layer_norm1.bias": "encoders.3.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.layer_norm1.weight": "encoders.3.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.layer_norm2.bias": "encoders.3.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.layer_norm2.weight": "encoders.3.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.mlp.fc1.bias": "encoders.3.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.mlp.fc1.weight": "encoders.3.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.mlp.fc2.bias": "encoders.3.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.mlp.fc2.weight": "encoders.3.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias": "encoders.3.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.k_proj.weight": "encoders.3.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.out_proj.bias": "encoders.3.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.out_proj.weight": "encoders.3.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.q_proj.bias": "encoders.3.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.q_proj.weight": "encoders.3.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.v_proj.bias": "encoders.3.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.v_proj.weight": "encoders.3.attn.to_v.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.layer_norm1.bias": "encoders.4.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.layer_norm1.weight": "encoders.4.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.layer_norm2.bias": "encoders.4.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.layer_norm2.weight": "encoders.4.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.mlp.fc1.bias": "encoders.4.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.mlp.fc1.weight": "encoders.4.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.mlp.fc2.bias": "encoders.4.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.mlp.fc2.weight": "encoders.4.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.self_attn.k_proj.bias": "encoders.4.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.self_attn.k_proj.weight": "encoders.4.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.self_attn.out_proj.bias": "encoders.4.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.self_attn.out_proj.weight": "encoders.4.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.self_attn.q_proj.bias": "encoders.4.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.self_attn.q_proj.weight": "encoders.4.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.self_attn.v_proj.bias": "encoders.4.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.4.self_attn.v_proj.weight": "encoders.4.attn.to_v.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.layer_norm1.bias": "encoders.5.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.layer_norm1.weight": "encoders.5.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.layer_norm2.bias": "encoders.5.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.layer_norm2.weight": "encoders.5.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.mlp.fc1.bias": "encoders.5.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.mlp.fc1.weight": "encoders.5.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.mlp.fc2.bias": "encoders.5.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.mlp.fc2.weight": "encoders.5.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.self_attn.k_proj.bias": "encoders.5.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.self_attn.k_proj.weight": "encoders.5.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.self_attn.out_proj.bias": "encoders.5.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.self_attn.out_proj.weight": "encoders.5.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.self_attn.q_proj.bias": "encoders.5.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.self_attn.q_proj.weight": "encoders.5.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.self_attn.v_proj.bias": "encoders.5.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.5.self_attn.v_proj.weight": "encoders.5.attn.to_v.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.layer_norm1.bias": "encoders.6.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.layer_norm1.weight": "encoders.6.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.layer_norm2.bias": "encoders.6.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.layer_norm2.weight": "encoders.6.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.mlp.fc1.bias": "encoders.6.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.mlp.fc1.weight": "encoders.6.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.mlp.fc2.bias": "encoders.6.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.mlp.fc2.weight": "encoders.6.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.self_attn.k_proj.bias": "encoders.6.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.self_attn.k_proj.weight": "encoders.6.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.self_attn.out_proj.bias": "encoders.6.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.self_attn.out_proj.weight": "encoders.6.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.self_attn.q_proj.bias": "encoders.6.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.self_attn.q_proj.weight": "encoders.6.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.self_attn.v_proj.bias": "encoders.6.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.6.self_attn.v_proj.weight": "encoders.6.attn.to_v.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.layer_norm1.bias": "encoders.7.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.layer_norm1.weight": "encoders.7.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.layer_norm2.bias": "encoders.7.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.layer_norm2.weight": "encoders.7.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.mlp.fc1.bias": "encoders.7.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.mlp.fc1.weight": "encoders.7.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.mlp.fc2.bias": "encoders.7.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.mlp.fc2.weight": "encoders.7.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.self_attn.k_proj.bias": "encoders.7.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.self_attn.k_proj.weight": "encoders.7.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.self_attn.out_proj.bias": "encoders.7.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.self_attn.out_proj.weight": "encoders.7.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.self_attn.q_proj.bias": "encoders.7.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.self_attn.q_proj.weight": "encoders.7.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.self_attn.v_proj.bias": "encoders.7.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.7.self_attn.v_proj.weight": "encoders.7.attn.to_v.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.layer_norm1.bias": "encoders.8.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.layer_norm1.weight": "encoders.8.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.layer_norm2.bias": "encoders.8.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.layer_norm2.weight": "encoders.8.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.mlp.fc1.bias": "encoders.8.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.mlp.fc1.weight": "encoders.8.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.mlp.fc2.bias": "encoders.8.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.mlp.fc2.weight": "encoders.8.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.self_attn.k_proj.bias": "encoders.8.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.self_attn.k_proj.weight": "encoders.8.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.self_attn.out_proj.bias": "encoders.8.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.self_attn.out_proj.weight": "encoders.8.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.self_attn.q_proj.bias": "encoders.8.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.self_attn.q_proj.weight": "encoders.8.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.self_attn.v_proj.bias": "encoders.8.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.8.self_attn.v_proj.weight": "encoders.8.attn.to_v.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.layer_norm1.bias": "encoders.9.layer_norm1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.layer_norm1.weight": "encoders.9.layer_norm1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.layer_norm2.bias": "encoders.9.layer_norm2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.layer_norm2.weight": "encoders.9.layer_norm2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.mlp.fc1.bias": "encoders.9.fc1.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.mlp.fc1.weight": "encoders.9.fc1.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.mlp.fc2.bias": "encoders.9.fc2.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.mlp.fc2.weight": "encoders.9.fc2.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.self_attn.k_proj.bias": "encoders.9.attn.to_k.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.self_attn.k_proj.weight": "encoders.9.attn.to_k.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.self_attn.out_proj.bias": "encoders.9.attn.to_out.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.self_attn.out_proj.weight": "encoders.9.attn.to_out.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.self_attn.q_proj.bias": "encoders.9.attn.to_q.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.self_attn.q_proj.weight": "encoders.9.attn.to_q.weight", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.self_attn.v_proj.bias": "encoders.9.attn.to_v.bias", - "conditioner.embedders.0.transformer.text_model.encoder.layers.9.self_attn.v_proj.weight": "encoders.9.attn.to_v.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "conditioner.embedders.0.transformer.text_model.embeddings.position_embedding.weight": - param = param.reshape((1, param.shape[0], param.shape[1])) - state_dict_[rename_dict[name]] = param - return state_dict_ - - -class SDXLTextEncoder2StateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - rename_dict = { - "text_model.embeddings.token_embedding.weight": "token_embedding.weight", - "text_model.embeddings.position_embedding.weight": "position_embeds", - "text_model.final_layer_norm.weight": "final_layer_norm.weight", - "text_model.final_layer_norm.bias": "final_layer_norm.bias", - "text_projection.weight": "text_projection.weight" - } - attn_rename_dict = { - "self_attn.q_proj": "attn.to_q", - "self_attn.k_proj": "attn.to_k", - "self_attn.v_proj": "attn.to_v", - "self_attn.out_proj": "attn.to_out", - "layer_norm1": "layer_norm1", - "layer_norm2": "layer_norm2", - "mlp.fc1": "fc1", - "mlp.fc2": "fc2", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "text_model.embeddings.position_embedding.weight": - param = param.reshape((1, param.shape[0], param.shape[1])) - state_dict_[rename_dict[name]] = param - elif name.startswith("text_model.encoder.layers."): - param = state_dict[name] - names = name.split(".") - layer_id, layer_type, tail = names[3], ".".join(names[4:-1]), names[-1] - name_ = ".".join(["encoders", layer_id, attn_rename_dict[layer_type], tail]) - state_dict_[name_] = param - return state_dict_ - - def from_civitai(self, state_dict): - rename_dict = { - "conditioner.embedders.1.model.ln_final.bias": "final_layer_norm.bias", - "conditioner.embedders.1.model.ln_final.weight": "final_layer_norm.weight", - "conditioner.embedders.1.model.positional_embedding": "position_embeds", - "conditioner.embedders.1.model.token_embedding.weight": "token_embedding.weight", - "conditioner.embedders.1.model.transformer.resblocks.0.attn.in_proj_bias": ['encoders.0.attn.to_q.bias', 'encoders.0.attn.to_k.bias', 'encoders.0.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.0.attn.in_proj_weight": ['encoders.0.attn.to_q.weight', 'encoders.0.attn.to_k.weight', 'encoders.0.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.0.attn.out_proj.bias": "encoders.0.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.0.attn.out_proj.weight": "encoders.0.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.0.ln_1.bias": "encoders.0.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.0.ln_1.weight": "encoders.0.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.0.ln_2.bias": "encoders.0.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.0.ln_2.weight": "encoders.0.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.0.mlp.c_fc.bias": "encoders.0.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.0.mlp.c_fc.weight": "encoders.0.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.0.mlp.c_proj.bias": "encoders.0.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.0.mlp.c_proj.weight": "encoders.0.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.1.attn.in_proj_bias": ['encoders.1.attn.to_q.bias', 'encoders.1.attn.to_k.bias', 'encoders.1.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.1.attn.in_proj_weight": ['encoders.1.attn.to_q.weight', 'encoders.1.attn.to_k.weight', 'encoders.1.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.1.attn.out_proj.bias": "encoders.1.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.1.attn.out_proj.weight": "encoders.1.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.1.ln_1.bias": "encoders.1.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.1.ln_1.weight": "encoders.1.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.1.ln_2.bias": "encoders.1.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.1.ln_2.weight": "encoders.1.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.1.mlp.c_fc.bias": "encoders.1.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.1.mlp.c_fc.weight": "encoders.1.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.1.mlp.c_proj.bias": "encoders.1.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.1.mlp.c_proj.weight": "encoders.1.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.10.attn.in_proj_bias": ['encoders.10.attn.to_q.bias', 'encoders.10.attn.to_k.bias', 'encoders.10.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.10.attn.in_proj_weight": ['encoders.10.attn.to_q.weight', 'encoders.10.attn.to_k.weight', 'encoders.10.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.10.attn.out_proj.bias": "encoders.10.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.10.attn.out_proj.weight": "encoders.10.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.10.ln_1.bias": "encoders.10.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.10.ln_1.weight": "encoders.10.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.10.ln_2.bias": "encoders.10.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.10.ln_2.weight": "encoders.10.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.10.mlp.c_fc.bias": "encoders.10.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.10.mlp.c_fc.weight": "encoders.10.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.10.mlp.c_proj.bias": "encoders.10.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.10.mlp.c_proj.weight": "encoders.10.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.11.attn.in_proj_bias": ['encoders.11.attn.to_q.bias', 'encoders.11.attn.to_k.bias', 'encoders.11.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.11.attn.in_proj_weight": ['encoders.11.attn.to_q.weight', 'encoders.11.attn.to_k.weight', 'encoders.11.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.11.attn.out_proj.bias": "encoders.11.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.11.attn.out_proj.weight": "encoders.11.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.11.ln_1.bias": "encoders.11.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.11.ln_1.weight": "encoders.11.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.11.ln_2.bias": "encoders.11.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.11.ln_2.weight": "encoders.11.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.11.mlp.c_fc.bias": "encoders.11.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.11.mlp.c_fc.weight": "encoders.11.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.11.mlp.c_proj.bias": "encoders.11.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.11.mlp.c_proj.weight": "encoders.11.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.12.attn.in_proj_bias": ['encoders.12.attn.to_q.bias', 'encoders.12.attn.to_k.bias', 'encoders.12.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.12.attn.in_proj_weight": ['encoders.12.attn.to_q.weight', 'encoders.12.attn.to_k.weight', 'encoders.12.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.12.attn.out_proj.bias": "encoders.12.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.12.attn.out_proj.weight": "encoders.12.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.12.ln_1.bias": "encoders.12.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.12.ln_1.weight": "encoders.12.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.12.ln_2.bias": "encoders.12.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.12.ln_2.weight": "encoders.12.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.12.mlp.c_fc.bias": "encoders.12.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.12.mlp.c_fc.weight": "encoders.12.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.12.mlp.c_proj.bias": "encoders.12.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.12.mlp.c_proj.weight": "encoders.12.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.13.attn.in_proj_bias": ['encoders.13.attn.to_q.bias', 'encoders.13.attn.to_k.bias', 'encoders.13.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.13.attn.in_proj_weight": ['encoders.13.attn.to_q.weight', 'encoders.13.attn.to_k.weight', 'encoders.13.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.13.attn.out_proj.bias": "encoders.13.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.13.attn.out_proj.weight": "encoders.13.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.13.ln_1.bias": "encoders.13.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.13.ln_1.weight": "encoders.13.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.13.ln_2.bias": "encoders.13.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.13.ln_2.weight": "encoders.13.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.13.mlp.c_fc.bias": "encoders.13.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.13.mlp.c_fc.weight": "encoders.13.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.13.mlp.c_proj.bias": "encoders.13.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.13.mlp.c_proj.weight": "encoders.13.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.14.attn.in_proj_bias": ['encoders.14.attn.to_q.bias', 'encoders.14.attn.to_k.bias', 'encoders.14.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.14.attn.in_proj_weight": ['encoders.14.attn.to_q.weight', 'encoders.14.attn.to_k.weight', 'encoders.14.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.14.attn.out_proj.bias": "encoders.14.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.14.attn.out_proj.weight": "encoders.14.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.14.ln_1.bias": "encoders.14.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.14.ln_1.weight": "encoders.14.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.14.ln_2.bias": "encoders.14.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.14.ln_2.weight": "encoders.14.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.14.mlp.c_fc.bias": "encoders.14.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.14.mlp.c_fc.weight": "encoders.14.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.14.mlp.c_proj.bias": "encoders.14.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.14.mlp.c_proj.weight": "encoders.14.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.15.attn.in_proj_bias": ['encoders.15.attn.to_q.bias', 'encoders.15.attn.to_k.bias', 'encoders.15.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.15.attn.in_proj_weight": ['encoders.15.attn.to_q.weight', 'encoders.15.attn.to_k.weight', 'encoders.15.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.15.attn.out_proj.bias": "encoders.15.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.15.attn.out_proj.weight": "encoders.15.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.15.ln_1.bias": "encoders.15.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.15.ln_1.weight": "encoders.15.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.15.ln_2.bias": "encoders.15.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.15.ln_2.weight": "encoders.15.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.15.mlp.c_fc.bias": "encoders.15.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.15.mlp.c_fc.weight": "encoders.15.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.15.mlp.c_proj.bias": "encoders.15.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.15.mlp.c_proj.weight": "encoders.15.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.16.attn.in_proj_bias": ['encoders.16.attn.to_q.bias', 'encoders.16.attn.to_k.bias', 'encoders.16.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.16.attn.in_proj_weight": ['encoders.16.attn.to_q.weight', 'encoders.16.attn.to_k.weight', 'encoders.16.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.16.attn.out_proj.bias": "encoders.16.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.16.attn.out_proj.weight": "encoders.16.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.16.ln_1.bias": "encoders.16.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.16.ln_1.weight": "encoders.16.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.16.ln_2.bias": "encoders.16.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.16.ln_2.weight": "encoders.16.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.16.mlp.c_fc.bias": "encoders.16.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.16.mlp.c_fc.weight": "encoders.16.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.16.mlp.c_proj.bias": "encoders.16.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.16.mlp.c_proj.weight": "encoders.16.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.17.attn.in_proj_bias": ['encoders.17.attn.to_q.bias', 'encoders.17.attn.to_k.bias', 'encoders.17.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.17.attn.in_proj_weight": ['encoders.17.attn.to_q.weight', 'encoders.17.attn.to_k.weight', 'encoders.17.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.17.attn.out_proj.bias": "encoders.17.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.17.attn.out_proj.weight": "encoders.17.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.17.ln_1.bias": "encoders.17.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.17.ln_1.weight": "encoders.17.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.17.ln_2.bias": "encoders.17.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.17.ln_2.weight": "encoders.17.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.17.mlp.c_fc.bias": "encoders.17.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.17.mlp.c_fc.weight": "encoders.17.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.17.mlp.c_proj.bias": "encoders.17.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.17.mlp.c_proj.weight": "encoders.17.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.18.attn.in_proj_bias": ['encoders.18.attn.to_q.bias', 'encoders.18.attn.to_k.bias', 'encoders.18.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.18.attn.in_proj_weight": ['encoders.18.attn.to_q.weight', 'encoders.18.attn.to_k.weight', 'encoders.18.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.18.attn.out_proj.bias": "encoders.18.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.18.attn.out_proj.weight": "encoders.18.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.18.ln_1.bias": "encoders.18.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.18.ln_1.weight": "encoders.18.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.18.ln_2.bias": "encoders.18.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.18.ln_2.weight": "encoders.18.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.18.mlp.c_fc.bias": "encoders.18.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.18.mlp.c_fc.weight": "encoders.18.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.18.mlp.c_proj.bias": "encoders.18.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.18.mlp.c_proj.weight": "encoders.18.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.19.attn.in_proj_bias": ['encoders.19.attn.to_q.bias', 'encoders.19.attn.to_k.bias', 'encoders.19.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.19.attn.in_proj_weight": ['encoders.19.attn.to_q.weight', 'encoders.19.attn.to_k.weight', 'encoders.19.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.19.attn.out_proj.bias": "encoders.19.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.19.attn.out_proj.weight": "encoders.19.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.19.ln_1.bias": "encoders.19.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.19.ln_1.weight": "encoders.19.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.19.ln_2.bias": "encoders.19.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.19.ln_2.weight": "encoders.19.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.19.mlp.c_fc.bias": "encoders.19.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.19.mlp.c_fc.weight": "encoders.19.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.19.mlp.c_proj.bias": "encoders.19.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.19.mlp.c_proj.weight": "encoders.19.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.2.attn.in_proj_bias": ['encoders.2.attn.to_q.bias', 'encoders.2.attn.to_k.bias', 'encoders.2.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.2.attn.in_proj_weight": ['encoders.2.attn.to_q.weight', 'encoders.2.attn.to_k.weight', 'encoders.2.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.2.attn.out_proj.bias": "encoders.2.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.2.attn.out_proj.weight": "encoders.2.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.2.ln_1.bias": "encoders.2.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.2.ln_1.weight": "encoders.2.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.2.ln_2.bias": "encoders.2.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.2.ln_2.weight": "encoders.2.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.2.mlp.c_fc.bias": "encoders.2.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.2.mlp.c_fc.weight": "encoders.2.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.2.mlp.c_proj.bias": "encoders.2.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.2.mlp.c_proj.weight": "encoders.2.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.20.attn.in_proj_bias": ['encoders.20.attn.to_q.bias', 'encoders.20.attn.to_k.bias', 'encoders.20.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.20.attn.in_proj_weight": ['encoders.20.attn.to_q.weight', 'encoders.20.attn.to_k.weight', 'encoders.20.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.20.attn.out_proj.bias": "encoders.20.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.20.attn.out_proj.weight": "encoders.20.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.20.ln_1.bias": "encoders.20.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.20.ln_1.weight": "encoders.20.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.20.ln_2.bias": "encoders.20.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.20.ln_2.weight": "encoders.20.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.20.mlp.c_fc.bias": "encoders.20.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.20.mlp.c_fc.weight": "encoders.20.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.20.mlp.c_proj.bias": "encoders.20.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.20.mlp.c_proj.weight": "encoders.20.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.21.attn.in_proj_bias": ['encoders.21.attn.to_q.bias', 'encoders.21.attn.to_k.bias', 'encoders.21.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.21.attn.in_proj_weight": ['encoders.21.attn.to_q.weight', 'encoders.21.attn.to_k.weight', 'encoders.21.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.21.attn.out_proj.bias": "encoders.21.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.21.attn.out_proj.weight": "encoders.21.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.21.ln_1.bias": "encoders.21.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.21.ln_1.weight": "encoders.21.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.21.ln_2.bias": "encoders.21.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.21.ln_2.weight": "encoders.21.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.21.mlp.c_fc.bias": "encoders.21.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.21.mlp.c_fc.weight": "encoders.21.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.21.mlp.c_proj.bias": "encoders.21.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.21.mlp.c_proj.weight": "encoders.21.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.22.attn.in_proj_bias": ['encoders.22.attn.to_q.bias', 'encoders.22.attn.to_k.bias', 'encoders.22.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.22.attn.in_proj_weight": ['encoders.22.attn.to_q.weight', 'encoders.22.attn.to_k.weight', 'encoders.22.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.22.attn.out_proj.bias": "encoders.22.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.22.attn.out_proj.weight": "encoders.22.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.22.ln_1.bias": "encoders.22.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.22.ln_1.weight": "encoders.22.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.22.ln_2.bias": "encoders.22.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.22.ln_2.weight": "encoders.22.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.22.mlp.c_fc.bias": "encoders.22.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.22.mlp.c_fc.weight": "encoders.22.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.22.mlp.c_proj.bias": "encoders.22.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.22.mlp.c_proj.weight": "encoders.22.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.23.attn.in_proj_bias": ['encoders.23.attn.to_q.bias', 'encoders.23.attn.to_k.bias', 'encoders.23.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.23.attn.in_proj_weight": ['encoders.23.attn.to_q.weight', 'encoders.23.attn.to_k.weight', 'encoders.23.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.23.attn.out_proj.bias": "encoders.23.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.23.attn.out_proj.weight": "encoders.23.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.23.ln_1.bias": "encoders.23.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.23.ln_1.weight": "encoders.23.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.23.ln_2.bias": "encoders.23.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.23.ln_2.weight": "encoders.23.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.23.mlp.c_fc.bias": "encoders.23.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.23.mlp.c_fc.weight": "encoders.23.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.23.mlp.c_proj.bias": "encoders.23.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.23.mlp.c_proj.weight": "encoders.23.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.24.attn.in_proj_bias": ['encoders.24.attn.to_q.bias', 'encoders.24.attn.to_k.bias', 'encoders.24.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.24.attn.in_proj_weight": ['encoders.24.attn.to_q.weight', 'encoders.24.attn.to_k.weight', 'encoders.24.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.24.attn.out_proj.bias": "encoders.24.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.24.attn.out_proj.weight": "encoders.24.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.24.ln_1.bias": "encoders.24.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.24.ln_1.weight": "encoders.24.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.24.ln_2.bias": "encoders.24.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.24.ln_2.weight": "encoders.24.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.24.mlp.c_fc.bias": "encoders.24.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.24.mlp.c_fc.weight": "encoders.24.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.24.mlp.c_proj.bias": "encoders.24.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.24.mlp.c_proj.weight": "encoders.24.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.25.attn.in_proj_bias": ['encoders.25.attn.to_q.bias', 'encoders.25.attn.to_k.bias', 'encoders.25.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.25.attn.in_proj_weight": ['encoders.25.attn.to_q.weight', 'encoders.25.attn.to_k.weight', 'encoders.25.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.25.attn.out_proj.bias": "encoders.25.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.25.attn.out_proj.weight": "encoders.25.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.25.ln_1.bias": "encoders.25.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.25.ln_1.weight": "encoders.25.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.25.ln_2.bias": "encoders.25.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.25.ln_2.weight": "encoders.25.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.25.mlp.c_fc.bias": "encoders.25.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.25.mlp.c_fc.weight": "encoders.25.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.25.mlp.c_proj.bias": "encoders.25.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.25.mlp.c_proj.weight": "encoders.25.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.26.attn.in_proj_bias": ['encoders.26.attn.to_q.bias', 'encoders.26.attn.to_k.bias', 'encoders.26.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.26.attn.in_proj_weight": ['encoders.26.attn.to_q.weight', 'encoders.26.attn.to_k.weight', 'encoders.26.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.26.attn.out_proj.bias": "encoders.26.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.26.attn.out_proj.weight": "encoders.26.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.26.ln_1.bias": "encoders.26.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.26.ln_1.weight": "encoders.26.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.26.ln_2.bias": "encoders.26.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.26.ln_2.weight": "encoders.26.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.26.mlp.c_fc.bias": "encoders.26.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.26.mlp.c_fc.weight": "encoders.26.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.26.mlp.c_proj.bias": "encoders.26.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.26.mlp.c_proj.weight": "encoders.26.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.27.attn.in_proj_bias": ['encoders.27.attn.to_q.bias', 'encoders.27.attn.to_k.bias', 'encoders.27.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.27.attn.in_proj_weight": ['encoders.27.attn.to_q.weight', 'encoders.27.attn.to_k.weight', 'encoders.27.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.27.attn.out_proj.bias": "encoders.27.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.27.attn.out_proj.weight": "encoders.27.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.27.ln_1.bias": "encoders.27.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.27.ln_1.weight": "encoders.27.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.27.ln_2.bias": "encoders.27.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.27.ln_2.weight": "encoders.27.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.27.mlp.c_fc.bias": "encoders.27.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.27.mlp.c_fc.weight": "encoders.27.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.27.mlp.c_proj.bias": "encoders.27.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.27.mlp.c_proj.weight": "encoders.27.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.28.attn.in_proj_bias": ['encoders.28.attn.to_q.bias', 'encoders.28.attn.to_k.bias', 'encoders.28.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.28.attn.in_proj_weight": ['encoders.28.attn.to_q.weight', 'encoders.28.attn.to_k.weight', 'encoders.28.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.28.attn.out_proj.bias": "encoders.28.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.28.attn.out_proj.weight": "encoders.28.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.28.ln_1.bias": "encoders.28.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.28.ln_1.weight": "encoders.28.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.28.ln_2.bias": "encoders.28.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.28.ln_2.weight": "encoders.28.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.28.mlp.c_fc.bias": "encoders.28.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.28.mlp.c_fc.weight": "encoders.28.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.28.mlp.c_proj.bias": "encoders.28.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.28.mlp.c_proj.weight": "encoders.28.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.29.attn.in_proj_bias": ['encoders.29.attn.to_q.bias', 'encoders.29.attn.to_k.bias', 'encoders.29.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.29.attn.in_proj_weight": ['encoders.29.attn.to_q.weight', 'encoders.29.attn.to_k.weight', 'encoders.29.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.29.attn.out_proj.bias": "encoders.29.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.29.attn.out_proj.weight": "encoders.29.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.29.ln_1.bias": "encoders.29.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.29.ln_1.weight": "encoders.29.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.29.ln_2.bias": "encoders.29.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.29.ln_2.weight": "encoders.29.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.29.mlp.c_fc.bias": "encoders.29.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.29.mlp.c_fc.weight": "encoders.29.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.29.mlp.c_proj.bias": "encoders.29.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.29.mlp.c_proj.weight": "encoders.29.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.3.attn.in_proj_bias": ['encoders.3.attn.to_q.bias', 'encoders.3.attn.to_k.bias', 'encoders.3.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.3.attn.in_proj_weight": ['encoders.3.attn.to_q.weight', 'encoders.3.attn.to_k.weight', 'encoders.3.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.3.attn.out_proj.bias": "encoders.3.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.3.attn.out_proj.weight": "encoders.3.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.3.ln_1.bias": "encoders.3.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.3.ln_1.weight": "encoders.3.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.3.ln_2.bias": "encoders.3.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.3.ln_2.weight": "encoders.3.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.3.mlp.c_fc.bias": "encoders.3.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.3.mlp.c_fc.weight": "encoders.3.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.3.mlp.c_proj.bias": "encoders.3.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.3.mlp.c_proj.weight": "encoders.3.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.30.attn.in_proj_bias": ['encoders.30.attn.to_q.bias', 'encoders.30.attn.to_k.bias', 'encoders.30.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.30.attn.in_proj_weight": ['encoders.30.attn.to_q.weight', 'encoders.30.attn.to_k.weight', 'encoders.30.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.30.attn.out_proj.bias": "encoders.30.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.30.attn.out_proj.weight": "encoders.30.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.30.ln_1.bias": "encoders.30.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.30.ln_1.weight": "encoders.30.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.30.ln_2.bias": "encoders.30.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.30.ln_2.weight": "encoders.30.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.30.mlp.c_fc.bias": "encoders.30.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.30.mlp.c_fc.weight": "encoders.30.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.30.mlp.c_proj.bias": "encoders.30.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.30.mlp.c_proj.weight": "encoders.30.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.31.attn.in_proj_bias": ['encoders.31.attn.to_q.bias', 'encoders.31.attn.to_k.bias', 'encoders.31.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.31.attn.in_proj_weight": ['encoders.31.attn.to_q.weight', 'encoders.31.attn.to_k.weight', 'encoders.31.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.31.attn.out_proj.bias": "encoders.31.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.31.attn.out_proj.weight": "encoders.31.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.31.ln_1.bias": "encoders.31.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.31.ln_1.weight": "encoders.31.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.31.ln_2.bias": "encoders.31.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.31.ln_2.weight": "encoders.31.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.31.mlp.c_fc.bias": "encoders.31.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.31.mlp.c_fc.weight": "encoders.31.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.31.mlp.c_proj.bias": "encoders.31.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.31.mlp.c_proj.weight": "encoders.31.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.4.attn.in_proj_bias": ['encoders.4.attn.to_q.bias', 'encoders.4.attn.to_k.bias', 'encoders.4.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.4.attn.in_proj_weight": ['encoders.4.attn.to_q.weight', 'encoders.4.attn.to_k.weight', 'encoders.4.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.4.attn.out_proj.bias": "encoders.4.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.4.attn.out_proj.weight": "encoders.4.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.4.ln_1.bias": "encoders.4.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.4.ln_1.weight": "encoders.4.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.4.ln_2.bias": "encoders.4.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.4.ln_2.weight": "encoders.4.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.4.mlp.c_fc.bias": "encoders.4.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.4.mlp.c_fc.weight": "encoders.4.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.4.mlp.c_proj.bias": "encoders.4.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.4.mlp.c_proj.weight": "encoders.4.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.5.attn.in_proj_bias": ['encoders.5.attn.to_q.bias', 'encoders.5.attn.to_k.bias', 'encoders.5.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.5.attn.in_proj_weight": ['encoders.5.attn.to_q.weight', 'encoders.5.attn.to_k.weight', 'encoders.5.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.5.attn.out_proj.bias": "encoders.5.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.5.attn.out_proj.weight": "encoders.5.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.5.ln_1.bias": "encoders.5.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.5.ln_1.weight": "encoders.5.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.5.ln_2.bias": "encoders.5.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.5.ln_2.weight": "encoders.5.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.5.mlp.c_fc.bias": "encoders.5.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.5.mlp.c_fc.weight": "encoders.5.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.5.mlp.c_proj.bias": "encoders.5.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.5.mlp.c_proj.weight": "encoders.5.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.6.attn.in_proj_bias": ['encoders.6.attn.to_q.bias', 'encoders.6.attn.to_k.bias', 'encoders.6.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.6.attn.in_proj_weight": ['encoders.6.attn.to_q.weight', 'encoders.6.attn.to_k.weight', 'encoders.6.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.6.attn.out_proj.bias": "encoders.6.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.6.attn.out_proj.weight": "encoders.6.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.6.ln_1.bias": "encoders.6.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.6.ln_1.weight": "encoders.6.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.6.ln_2.bias": "encoders.6.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.6.ln_2.weight": "encoders.6.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.6.mlp.c_fc.bias": "encoders.6.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.6.mlp.c_fc.weight": "encoders.6.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.6.mlp.c_proj.bias": "encoders.6.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.6.mlp.c_proj.weight": "encoders.6.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.7.attn.in_proj_bias": ['encoders.7.attn.to_q.bias', 'encoders.7.attn.to_k.bias', 'encoders.7.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.7.attn.in_proj_weight": ['encoders.7.attn.to_q.weight', 'encoders.7.attn.to_k.weight', 'encoders.7.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.7.attn.out_proj.bias": "encoders.7.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.7.attn.out_proj.weight": "encoders.7.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.7.ln_1.bias": "encoders.7.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.7.ln_1.weight": "encoders.7.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.7.ln_2.bias": "encoders.7.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.7.ln_2.weight": "encoders.7.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.7.mlp.c_fc.bias": "encoders.7.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.7.mlp.c_fc.weight": "encoders.7.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.7.mlp.c_proj.bias": "encoders.7.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.7.mlp.c_proj.weight": "encoders.7.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.8.attn.in_proj_bias": ['encoders.8.attn.to_q.bias', 'encoders.8.attn.to_k.bias', 'encoders.8.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.8.attn.in_proj_weight": ['encoders.8.attn.to_q.weight', 'encoders.8.attn.to_k.weight', 'encoders.8.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.8.attn.out_proj.bias": "encoders.8.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.8.attn.out_proj.weight": "encoders.8.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.8.ln_1.bias": "encoders.8.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.8.ln_1.weight": "encoders.8.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.8.ln_2.bias": "encoders.8.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.8.ln_2.weight": "encoders.8.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.8.mlp.c_fc.bias": "encoders.8.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.8.mlp.c_fc.weight": "encoders.8.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.8.mlp.c_proj.bias": "encoders.8.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.8.mlp.c_proj.weight": "encoders.8.fc2.weight", - "conditioner.embedders.1.model.transformer.resblocks.9.attn.in_proj_bias": ['encoders.9.attn.to_q.bias', 'encoders.9.attn.to_k.bias', 'encoders.9.attn.to_v.bias'], - "conditioner.embedders.1.model.transformer.resblocks.9.attn.in_proj_weight": ['encoders.9.attn.to_q.weight', 'encoders.9.attn.to_k.weight', 'encoders.9.attn.to_v.weight'], - "conditioner.embedders.1.model.transformer.resblocks.9.attn.out_proj.bias": "encoders.9.attn.to_out.bias", - "conditioner.embedders.1.model.transformer.resblocks.9.attn.out_proj.weight": "encoders.9.attn.to_out.weight", - "conditioner.embedders.1.model.transformer.resblocks.9.ln_1.bias": "encoders.9.layer_norm1.bias", - "conditioner.embedders.1.model.transformer.resblocks.9.ln_1.weight": "encoders.9.layer_norm1.weight", - "conditioner.embedders.1.model.transformer.resblocks.9.ln_2.bias": "encoders.9.layer_norm2.bias", - "conditioner.embedders.1.model.transformer.resblocks.9.ln_2.weight": "encoders.9.layer_norm2.weight", - "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_fc.bias": "encoders.9.fc1.bias", - "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_fc.weight": "encoders.9.fc1.weight", - "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.bias": "encoders.9.fc2.bias", - "conditioner.embedders.1.model.transformer.resblocks.9.mlp.c_proj.weight": "encoders.9.fc2.weight", - "conditioner.embedders.1.model.text_projection": "text_projection.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "conditioner.embedders.1.model.positional_embedding": - param = param.reshape((1, param.shape[0], param.shape[1])) - elif name == "conditioner.embedders.1.model.text_projection": - param = param.T - if isinstance(rename_dict[name], str): - state_dict_[rename_dict[name]] = param - else: - length = param.shape[0] // 3 - for i, rename in enumerate(rename_dict[name]): - state_dict_[rename] = param[i*length: i*length+length] - return state_dict_ \ No newline at end of file diff --git a/diffsynth/models/sdxl_unet.py b/diffsynth/models/sdxl_unet.py deleted file mode 100644 index 9bc63e63181c999f94421b72843c7b9e03b31d4a..0000000000000000000000000000000000000000 --- a/diffsynth/models/sdxl_unet.py +++ /dev/null @@ -1,1901 +0,0 @@ -import torch -from .sd_unet import Timesteps, ResnetBlock, AttentionBlock, PushBlock, PopBlock, DownSampler, UpSampler - - -class SDXLUNet(torch.nn.Module): - def __init__(self, is_kolors=False): - super().__init__() - self.time_proj = Timesteps(320) - self.time_embedding = torch.nn.Sequential( - torch.nn.Linear(320, 1280), - torch.nn.SiLU(), - torch.nn.Linear(1280, 1280) - ) - self.add_time_proj = Timesteps(256) - self.add_time_embedding = torch.nn.Sequential( - torch.nn.Linear(5632 if is_kolors else 2816, 1280), - torch.nn.SiLU(), - torch.nn.Linear(1280, 1280) - ) - self.conv_in = torch.nn.Conv2d(4, 320, kernel_size=3, padding=1) - self.text_intermediate_proj = torch.nn.Linear(4096, 2048) if is_kolors else None - - self.blocks = torch.nn.ModuleList([ - # DownBlock2D - ResnetBlock(320, 320, 1280), - PushBlock(), - ResnetBlock(320, 320, 1280), - PushBlock(), - DownSampler(320), - PushBlock(), - # CrossAttnDownBlock2D - ResnetBlock(320, 640, 1280), - AttentionBlock(10, 64, 640, 2, 2048), - PushBlock(), - ResnetBlock(640, 640, 1280), - AttentionBlock(10, 64, 640, 2, 2048), - PushBlock(), - DownSampler(640), - PushBlock(), - # CrossAttnDownBlock2D - ResnetBlock(640, 1280, 1280), - AttentionBlock(20, 64, 1280, 10, 2048), - PushBlock(), - ResnetBlock(1280, 1280, 1280), - AttentionBlock(20, 64, 1280, 10, 2048), - PushBlock(), - # UNetMidBlock2DCrossAttn - ResnetBlock(1280, 1280, 1280), - AttentionBlock(20, 64, 1280, 10, 2048), - ResnetBlock(1280, 1280, 1280), - # CrossAttnUpBlock2D - PopBlock(), - ResnetBlock(2560, 1280, 1280), - AttentionBlock(20, 64, 1280, 10, 2048), - PopBlock(), - ResnetBlock(2560, 1280, 1280), - AttentionBlock(20, 64, 1280, 10, 2048), - PopBlock(), - ResnetBlock(1920, 1280, 1280), - AttentionBlock(20, 64, 1280, 10, 2048), - UpSampler(1280), - # CrossAttnUpBlock2D - PopBlock(), - ResnetBlock(1920, 640, 1280), - AttentionBlock(10, 64, 640, 2, 2048), - PopBlock(), - ResnetBlock(1280, 640, 1280), - AttentionBlock(10, 64, 640, 2, 2048), - PopBlock(), - ResnetBlock(960, 640, 1280), - AttentionBlock(10, 64, 640, 2, 2048), - UpSampler(640), - # UpBlock2D - PopBlock(), - ResnetBlock(960, 320, 1280), - PopBlock(), - ResnetBlock(640, 320, 1280), - PopBlock(), - ResnetBlock(640, 320, 1280) - ]) - - self.conv_norm_out = torch.nn.GroupNorm(num_channels=320, num_groups=32, eps=1e-5) - self.conv_act = torch.nn.SiLU() - self.conv_out = torch.nn.Conv2d(320, 4, kernel_size=3, padding=1) - - self.is_kolors = is_kolors - - def forward( - self, - sample, timestep, encoder_hidden_states, add_time_id, add_text_embeds, - tiled=False, tile_size=64, tile_stride=8, - use_gradient_checkpointing=False, - **kwargs - ): - # 1. time - t_emb = self.time_proj(timestep).to(sample.dtype) - t_emb = self.time_embedding(t_emb) - - time_embeds = self.add_time_proj(add_time_id) - time_embeds = time_embeds.reshape((add_text_embeds.shape[0], -1)) - add_embeds = torch.concat([add_text_embeds, time_embeds], dim=-1) - add_embeds = add_embeds.to(sample.dtype) - add_embeds = self.add_time_embedding(add_embeds) - - time_emb = t_emb + add_embeds - - # 2. pre-process - height, width = sample.shape[2], sample.shape[3] - hidden_states = self.conv_in(sample) - text_emb = encoder_hidden_states if self.text_intermediate_proj is None else self.text_intermediate_proj(encoder_hidden_states) - res_stack = [hidden_states] - - # 3. blocks - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - return custom_forward - for i, block in enumerate(self.blocks): - if self.training and use_gradient_checkpointing and not (isinstance(block, PushBlock) or isinstance(block, PopBlock)): - hidden_states, time_emb, text_emb, res_stack = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - hidden_states, time_emb, text_emb, res_stack, - use_reentrant=False, - ) - else: - hidden_states, time_emb, text_emb, res_stack = block( - hidden_states, time_emb, text_emb, res_stack, - tiled=tiled, tile_size=tile_size, tile_stride=tile_stride - ) - - # 4. output - hidden_states = self.conv_norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - - return hidden_states - - @staticmethod - def state_dict_converter(): - return SDXLUNetStateDictConverter() - - -class SDXLUNetStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - # architecture - block_types = [ - 'ResnetBlock', 'PushBlock', 'ResnetBlock', 'PushBlock', 'DownSampler', 'PushBlock', - 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock', - 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', - 'ResnetBlock', 'AttentionBlock', 'ResnetBlock', - 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler', - 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler', - 'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock' - ] - - # Rename each parameter - name_list = sorted([name for name in state_dict]) - rename_dict = {} - block_id = {"ResnetBlock": -1, "AttentionBlock": -1, "DownSampler": -1, "UpSampler": -1} - last_block_type_with_id = {"ResnetBlock": "", "AttentionBlock": "", "DownSampler": "", "UpSampler": ""} - for name in name_list: - names = name.split(".") - if names[0] in ["conv_in", "conv_norm_out", "conv_out"]: - pass - elif names[0] in ["encoder_hid_proj"]: - names[0] = "text_intermediate_proj" - elif names[0] in ["time_embedding", "add_embedding"]: - if names[0] == "add_embedding": - names[0] = "add_time_embedding" - names[1] = {"linear_1": "0", "linear_2": "2"}[names[1]] - elif names[0] in ["down_blocks", "mid_block", "up_blocks"]: - if names[0] == "mid_block": - names.insert(1, "0") - block_type = {"resnets": "ResnetBlock", "attentions": "AttentionBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[2]] - block_type_with_id = ".".join(names[:4]) - if block_type_with_id != last_block_type_with_id[block_type]: - block_id[block_type] += 1 - last_block_type_with_id[block_type] = block_type_with_id - while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type: - block_id[block_type] += 1 - block_type_with_id = ".".join(names[:4]) - names = ["blocks", str(block_id[block_type])] + names[4:] - if "ff" in names: - ff_index = names.index("ff") - component = ".".join(names[ff_index:ff_index+3]) - component = {"ff.net.0": "act_fn", "ff.net.2": "ff"}[component] - names = names[:ff_index] + [component] + names[ff_index+3:] - if "to_out" in names: - names.pop(names.index("to_out") + 1) - else: - raise ValueError(f"Unknown parameters: {name}") - rename_dict[name] = ".".join(names) - - # Convert state_dict - state_dict_ = {} - for name, param in state_dict.items(): - if ".proj_in." in name or ".proj_out." in name: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - if "text_intermediate_proj.weight" in state_dict_: - return state_dict_, {"is_kolors": True} - else: - return state_dict_ - - def from_civitai(self, state_dict): - rename_dict = { - "model.diffusion_model.input_blocks.0.0.bias": "conv_in.bias", - "model.diffusion_model.input_blocks.0.0.weight": "conv_in.weight", - "model.diffusion_model.input_blocks.1.0.emb_layers.1.bias": "blocks.0.time_emb_proj.bias", - "model.diffusion_model.input_blocks.1.0.emb_layers.1.weight": "blocks.0.time_emb_proj.weight", - "model.diffusion_model.input_blocks.1.0.in_layers.0.bias": "blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.1.0.in_layers.0.weight": "blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.1.0.in_layers.2.bias": "blocks.0.conv1.bias", - "model.diffusion_model.input_blocks.1.0.in_layers.2.weight": "blocks.0.conv1.weight", - "model.diffusion_model.input_blocks.1.0.out_layers.0.bias": "blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.1.0.out_layers.0.weight": "blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.1.0.out_layers.3.bias": "blocks.0.conv2.bias", - "model.diffusion_model.input_blocks.1.0.out_layers.3.weight": "blocks.0.conv2.weight", - "model.diffusion_model.input_blocks.2.0.emb_layers.1.bias": "blocks.2.time_emb_proj.bias", - "model.diffusion_model.input_blocks.2.0.emb_layers.1.weight": "blocks.2.time_emb_proj.weight", - "model.diffusion_model.input_blocks.2.0.in_layers.0.bias": "blocks.2.norm1.bias", - "model.diffusion_model.input_blocks.2.0.in_layers.0.weight": "blocks.2.norm1.weight", - "model.diffusion_model.input_blocks.2.0.in_layers.2.bias": "blocks.2.conv1.bias", - "model.diffusion_model.input_blocks.2.0.in_layers.2.weight": "blocks.2.conv1.weight", - "model.diffusion_model.input_blocks.2.0.out_layers.0.bias": "blocks.2.norm2.bias", - "model.diffusion_model.input_blocks.2.0.out_layers.0.weight": "blocks.2.norm2.weight", - "model.diffusion_model.input_blocks.2.0.out_layers.3.bias": "blocks.2.conv2.bias", - "model.diffusion_model.input_blocks.2.0.out_layers.3.weight": "blocks.2.conv2.weight", - "model.diffusion_model.input_blocks.3.0.op.bias": "blocks.4.conv.bias", - "model.diffusion_model.input_blocks.3.0.op.weight": "blocks.4.conv.weight", - "model.diffusion_model.input_blocks.4.0.emb_layers.1.bias": "blocks.6.time_emb_proj.bias", - "model.diffusion_model.input_blocks.4.0.emb_layers.1.weight": "blocks.6.time_emb_proj.weight", - "model.diffusion_model.input_blocks.4.0.in_layers.0.bias": "blocks.6.norm1.bias", - "model.diffusion_model.input_blocks.4.0.in_layers.0.weight": "blocks.6.norm1.weight", - "model.diffusion_model.input_blocks.4.0.in_layers.2.bias": "blocks.6.conv1.bias", - "model.diffusion_model.input_blocks.4.0.in_layers.2.weight": "blocks.6.conv1.weight", - "model.diffusion_model.input_blocks.4.0.out_layers.0.bias": "blocks.6.norm2.bias", - "model.diffusion_model.input_blocks.4.0.out_layers.0.weight": "blocks.6.norm2.weight", - "model.diffusion_model.input_blocks.4.0.out_layers.3.bias": "blocks.6.conv2.bias", - "model.diffusion_model.input_blocks.4.0.out_layers.3.weight": "blocks.6.conv2.weight", - "model.diffusion_model.input_blocks.4.0.skip_connection.bias": "blocks.6.conv_shortcut.bias", - "model.diffusion_model.input_blocks.4.0.skip_connection.weight": "blocks.6.conv_shortcut.weight", - "model.diffusion_model.input_blocks.4.1.norm.bias": "blocks.7.norm.bias", - "model.diffusion_model.input_blocks.4.1.norm.weight": "blocks.7.norm.weight", - "model.diffusion_model.input_blocks.4.1.proj_in.bias": "blocks.7.proj_in.bias", - "model.diffusion_model.input_blocks.4.1.proj_in.weight": "blocks.7.proj_in.weight", - "model.diffusion_model.input_blocks.4.1.proj_out.bias": "blocks.7.proj_out.bias", - "model.diffusion_model.input_blocks.4.1.proj_out.weight": "blocks.7.proj_out.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.7.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.7.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.7.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.7.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.7.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.7.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.7.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.7.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.7.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.7.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.7.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.7.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.7.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.7.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.7.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.7.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.7.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.7.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.7.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.7.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.attn1.to_k.weight": "blocks.7.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.7.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.7.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.attn1.to_q.weight": "blocks.7.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.attn1.to_v.weight": "blocks.7.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.attn2.to_k.weight": "blocks.7.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.7.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.7.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.attn2.to_q.weight": "blocks.7.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.attn2.to_v.weight": "blocks.7.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.7.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.7.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.ff.net.2.bias": "blocks.7.transformer_blocks.1.ff.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.ff.net.2.weight": "blocks.7.transformer_blocks.1.ff.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.norm1.bias": "blocks.7.transformer_blocks.1.norm1.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.norm1.weight": "blocks.7.transformer_blocks.1.norm1.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.norm2.bias": "blocks.7.transformer_blocks.1.norm2.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.norm2.weight": "blocks.7.transformer_blocks.1.norm2.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.norm3.bias": "blocks.7.transformer_blocks.1.norm3.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.1.norm3.weight": "blocks.7.transformer_blocks.1.norm3.weight", - "model.diffusion_model.input_blocks.5.0.emb_layers.1.bias": "blocks.9.time_emb_proj.bias", - "model.diffusion_model.input_blocks.5.0.emb_layers.1.weight": "blocks.9.time_emb_proj.weight", - "model.diffusion_model.input_blocks.5.0.in_layers.0.bias": "blocks.9.norm1.bias", - "model.diffusion_model.input_blocks.5.0.in_layers.0.weight": "blocks.9.norm1.weight", - "model.diffusion_model.input_blocks.5.0.in_layers.2.bias": "blocks.9.conv1.bias", - "model.diffusion_model.input_blocks.5.0.in_layers.2.weight": "blocks.9.conv1.weight", - "model.diffusion_model.input_blocks.5.0.out_layers.0.bias": "blocks.9.norm2.bias", - "model.diffusion_model.input_blocks.5.0.out_layers.0.weight": "blocks.9.norm2.weight", - "model.diffusion_model.input_blocks.5.0.out_layers.3.bias": "blocks.9.conv2.bias", - "model.diffusion_model.input_blocks.5.0.out_layers.3.weight": "blocks.9.conv2.weight", - "model.diffusion_model.input_blocks.5.1.norm.bias": "blocks.10.norm.bias", - "model.diffusion_model.input_blocks.5.1.norm.weight": "blocks.10.norm.weight", - "model.diffusion_model.input_blocks.5.1.proj_in.bias": "blocks.10.proj_in.bias", - "model.diffusion_model.input_blocks.5.1.proj_in.weight": "blocks.10.proj_in.weight", - "model.diffusion_model.input_blocks.5.1.proj_out.bias": "blocks.10.proj_out.bias", - "model.diffusion_model.input_blocks.5.1.proj_out.weight": "blocks.10.proj_out.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.10.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.10.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.10.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.10.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.10.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.10.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.10.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.10.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.10.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.10.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.10.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.10.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.10.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.10.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.10.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.10.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.10.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.10.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.10.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.10.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.attn1.to_k.weight": "blocks.10.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.10.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.10.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.attn1.to_q.weight": "blocks.10.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.attn1.to_v.weight": "blocks.10.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.attn2.to_k.weight": "blocks.10.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.10.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.10.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.attn2.to_q.weight": "blocks.10.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.attn2.to_v.weight": "blocks.10.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.10.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.10.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.ff.net.2.bias": "blocks.10.transformer_blocks.1.ff.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.ff.net.2.weight": "blocks.10.transformer_blocks.1.ff.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.norm1.bias": "blocks.10.transformer_blocks.1.norm1.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.norm1.weight": "blocks.10.transformer_blocks.1.norm1.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.norm2.bias": "blocks.10.transformer_blocks.1.norm2.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.norm2.weight": "blocks.10.transformer_blocks.1.norm2.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.norm3.bias": "blocks.10.transformer_blocks.1.norm3.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.1.norm3.weight": "blocks.10.transformer_blocks.1.norm3.weight", - "model.diffusion_model.input_blocks.6.0.op.bias": "blocks.12.conv.bias", - "model.diffusion_model.input_blocks.6.0.op.weight": "blocks.12.conv.weight", - "model.diffusion_model.input_blocks.7.0.emb_layers.1.bias": "blocks.14.time_emb_proj.bias", - "model.diffusion_model.input_blocks.7.0.emb_layers.1.weight": "blocks.14.time_emb_proj.weight", - "model.diffusion_model.input_blocks.7.0.in_layers.0.bias": "blocks.14.norm1.bias", - "model.diffusion_model.input_blocks.7.0.in_layers.0.weight": "blocks.14.norm1.weight", - "model.diffusion_model.input_blocks.7.0.in_layers.2.bias": "blocks.14.conv1.bias", - "model.diffusion_model.input_blocks.7.0.in_layers.2.weight": "blocks.14.conv1.weight", - "model.diffusion_model.input_blocks.7.0.out_layers.0.bias": "blocks.14.norm2.bias", - "model.diffusion_model.input_blocks.7.0.out_layers.0.weight": "blocks.14.norm2.weight", - "model.diffusion_model.input_blocks.7.0.out_layers.3.bias": "blocks.14.conv2.bias", - "model.diffusion_model.input_blocks.7.0.out_layers.3.weight": "blocks.14.conv2.weight", - "model.diffusion_model.input_blocks.7.0.skip_connection.bias": "blocks.14.conv_shortcut.bias", - "model.diffusion_model.input_blocks.7.0.skip_connection.weight": "blocks.14.conv_shortcut.weight", - "model.diffusion_model.input_blocks.7.1.norm.bias": "blocks.15.norm.bias", - "model.diffusion_model.input_blocks.7.1.norm.weight": "blocks.15.norm.weight", - "model.diffusion_model.input_blocks.7.1.proj_in.bias": "blocks.15.proj_in.bias", - "model.diffusion_model.input_blocks.7.1.proj_in.weight": "blocks.15.proj_in.weight", - "model.diffusion_model.input_blocks.7.1.proj_out.bias": "blocks.15.proj_out.bias", - "model.diffusion_model.input_blocks.7.1.proj_out.weight": "blocks.15.proj_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.15.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.15.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.15.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.15.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.15.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.15.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.15.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.15.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.15.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.15.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.15.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.15.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.15.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.15.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.15.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.15.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.15.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.15.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.15.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.15.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.attn1.to_k.weight": "blocks.15.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.15.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.15.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.attn1.to_q.weight": "blocks.15.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.attn1.to_v.weight": "blocks.15.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.attn2.to_k.weight": "blocks.15.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.15.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.15.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.attn2.to_q.weight": "blocks.15.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.attn2.to_v.weight": "blocks.15.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.15.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.15.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.ff.net.2.bias": "blocks.15.transformer_blocks.1.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.ff.net.2.weight": "blocks.15.transformer_blocks.1.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.norm1.bias": "blocks.15.transformer_blocks.1.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.norm1.weight": "blocks.15.transformer_blocks.1.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.norm2.bias": "blocks.15.transformer_blocks.1.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.norm2.weight": "blocks.15.transformer_blocks.1.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.norm3.bias": "blocks.15.transformer_blocks.1.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.1.norm3.weight": "blocks.15.transformer_blocks.1.norm3.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.attn1.to_k.weight": "blocks.15.transformer_blocks.2.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.attn1.to_out.0.bias": "blocks.15.transformer_blocks.2.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.attn1.to_out.0.weight": "blocks.15.transformer_blocks.2.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.attn1.to_q.weight": "blocks.15.transformer_blocks.2.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.attn1.to_v.weight": "blocks.15.transformer_blocks.2.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.attn2.to_k.weight": "blocks.15.transformer_blocks.2.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.attn2.to_out.0.bias": "blocks.15.transformer_blocks.2.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.attn2.to_out.0.weight": "blocks.15.transformer_blocks.2.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.attn2.to_q.weight": "blocks.15.transformer_blocks.2.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.attn2.to_v.weight": "blocks.15.transformer_blocks.2.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.ff.net.0.proj.bias": "blocks.15.transformer_blocks.2.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.ff.net.0.proj.weight": "blocks.15.transformer_blocks.2.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.ff.net.2.bias": "blocks.15.transformer_blocks.2.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.ff.net.2.weight": "blocks.15.transformer_blocks.2.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.norm1.bias": "blocks.15.transformer_blocks.2.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.norm1.weight": "blocks.15.transformer_blocks.2.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.norm2.bias": "blocks.15.transformer_blocks.2.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.norm2.weight": "blocks.15.transformer_blocks.2.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.norm3.bias": "blocks.15.transformer_blocks.2.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.2.norm3.weight": "blocks.15.transformer_blocks.2.norm3.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.attn1.to_k.weight": "blocks.15.transformer_blocks.3.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.attn1.to_out.0.bias": "blocks.15.transformer_blocks.3.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.attn1.to_out.0.weight": "blocks.15.transformer_blocks.3.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.attn1.to_q.weight": "blocks.15.transformer_blocks.3.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.attn1.to_v.weight": "blocks.15.transformer_blocks.3.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.attn2.to_k.weight": "blocks.15.transformer_blocks.3.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.attn2.to_out.0.bias": "blocks.15.transformer_blocks.3.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.attn2.to_out.0.weight": "blocks.15.transformer_blocks.3.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.attn2.to_q.weight": "blocks.15.transformer_blocks.3.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.attn2.to_v.weight": "blocks.15.transformer_blocks.3.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.ff.net.0.proj.bias": "blocks.15.transformer_blocks.3.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.ff.net.0.proj.weight": "blocks.15.transformer_blocks.3.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.ff.net.2.bias": "blocks.15.transformer_blocks.3.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.ff.net.2.weight": "blocks.15.transformer_blocks.3.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.norm1.bias": "blocks.15.transformer_blocks.3.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.norm1.weight": "blocks.15.transformer_blocks.3.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.norm2.bias": "blocks.15.transformer_blocks.3.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.norm2.weight": "blocks.15.transformer_blocks.3.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.norm3.bias": "blocks.15.transformer_blocks.3.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.3.norm3.weight": "blocks.15.transformer_blocks.3.norm3.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn1.to_k.weight": "blocks.15.transformer_blocks.4.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn1.to_out.0.bias": "blocks.15.transformer_blocks.4.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn1.to_out.0.weight": "blocks.15.transformer_blocks.4.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn1.to_q.weight": "blocks.15.transformer_blocks.4.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn1.to_v.weight": "blocks.15.transformer_blocks.4.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_k.weight": "blocks.15.transformer_blocks.4.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_out.0.bias": "blocks.15.transformer_blocks.4.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_out.0.weight": "blocks.15.transformer_blocks.4.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_q.weight": "blocks.15.transformer_blocks.4.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_v.weight": "blocks.15.transformer_blocks.4.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.ff.net.0.proj.bias": "blocks.15.transformer_blocks.4.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.ff.net.0.proj.weight": "blocks.15.transformer_blocks.4.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.ff.net.2.bias": "blocks.15.transformer_blocks.4.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.ff.net.2.weight": "blocks.15.transformer_blocks.4.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.norm1.bias": "blocks.15.transformer_blocks.4.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.norm1.weight": "blocks.15.transformer_blocks.4.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.norm2.bias": "blocks.15.transformer_blocks.4.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.norm2.weight": "blocks.15.transformer_blocks.4.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.norm3.bias": "blocks.15.transformer_blocks.4.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.4.norm3.weight": "blocks.15.transformer_blocks.4.norm3.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn1.to_k.weight": "blocks.15.transformer_blocks.5.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn1.to_out.0.bias": "blocks.15.transformer_blocks.5.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn1.to_out.0.weight": "blocks.15.transformer_blocks.5.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn1.to_q.weight": "blocks.15.transformer_blocks.5.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn1.to_v.weight": "blocks.15.transformer_blocks.5.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_k.weight": "blocks.15.transformer_blocks.5.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_out.0.bias": "blocks.15.transformer_blocks.5.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_out.0.weight": "blocks.15.transformer_blocks.5.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_q.weight": "blocks.15.transformer_blocks.5.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_v.weight": "blocks.15.transformer_blocks.5.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.ff.net.0.proj.bias": "blocks.15.transformer_blocks.5.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.ff.net.0.proj.weight": "blocks.15.transformer_blocks.5.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.ff.net.2.bias": "blocks.15.transformer_blocks.5.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.ff.net.2.weight": "blocks.15.transformer_blocks.5.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.norm1.bias": "blocks.15.transformer_blocks.5.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.norm1.weight": "blocks.15.transformer_blocks.5.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.norm2.bias": "blocks.15.transformer_blocks.5.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.norm2.weight": "blocks.15.transformer_blocks.5.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.norm3.bias": "blocks.15.transformer_blocks.5.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.5.norm3.weight": "blocks.15.transformer_blocks.5.norm3.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn1.to_k.weight": "blocks.15.transformer_blocks.6.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn1.to_out.0.bias": "blocks.15.transformer_blocks.6.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn1.to_out.0.weight": "blocks.15.transformer_blocks.6.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn1.to_q.weight": "blocks.15.transformer_blocks.6.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn1.to_v.weight": "blocks.15.transformer_blocks.6.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_k.weight": "blocks.15.transformer_blocks.6.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_out.0.bias": "blocks.15.transformer_blocks.6.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_out.0.weight": "blocks.15.transformer_blocks.6.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_q.weight": "blocks.15.transformer_blocks.6.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_v.weight": "blocks.15.transformer_blocks.6.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.ff.net.0.proj.bias": "blocks.15.transformer_blocks.6.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.ff.net.0.proj.weight": "blocks.15.transformer_blocks.6.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.ff.net.2.bias": "blocks.15.transformer_blocks.6.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.ff.net.2.weight": "blocks.15.transformer_blocks.6.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.norm1.bias": "blocks.15.transformer_blocks.6.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.norm1.weight": "blocks.15.transformer_blocks.6.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.norm2.bias": "blocks.15.transformer_blocks.6.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.norm2.weight": "blocks.15.transformer_blocks.6.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.norm3.bias": "blocks.15.transformer_blocks.6.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.6.norm3.weight": "blocks.15.transformer_blocks.6.norm3.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.attn1.to_k.weight": "blocks.15.transformer_blocks.7.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.attn1.to_out.0.bias": "blocks.15.transformer_blocks.7.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.attn1.to_out.0.weight": "blocks.15.transformer_blocks.7.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.attn1.to_q.weight": "blocks.15.transformer_blocks.7.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.attn1.to_v.weight": "blocks.15.transformer_blocks.7.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.attn2.to_k.weight": "blocks.15.transformer_blocks.7.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.attn2.to_out.0.bias": "blocks.15.transformer_blocks.7.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.attn2.to_out.0.weight": "blocks.15.transformer_blocks.7.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.attn2.to_q.weight": "blocks.15.transformer_blocks.7.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.attn2.to_v.weight": "blocks.15.transformer_blocks.7.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.ff.net.0.proj.bias": "blocks.15.transformer_blocks.7.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.ff.net.0.proj.weight": "blocks.15.transformer_blocks.7.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.ff.net.2.bias": "blocks.15.transformer_blocks.7.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.ff.net.2.weight": "blocks.15.transformer_blocks.7.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.norm1.bias": "blocks.15.transformer_blocks.7.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.norm1.weight": "blocks.15.transformer_blocks.7.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.norm2.bias": "blocks.15.transformer_blocks.7.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.norm2.weight": "blocks.15.transformer_blocks.7.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.norm3.bias": "blocks.15.transformer_blocks.7.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.7.norm3.weight": "blocks.15.transformer_blocks.7.norm3.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.attn1.to_k.weight": "blocks.15.transformer_blocks.8.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.attn1.to_out.0.bias": "blocks.15.transformer_blocks.8.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.attn1.to_out.0.weight": "blocks.15.transformer_blocks.8.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.attn1.to_q.weight": "blocks.15.transformer_blocks.8.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.attn1.to_v.weight": "blocks.15.transformer_blocks.8.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.attn2.to_k.weight": "blocks.15.transformer_blocks.8.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.attn2.to_out.0.bias": "blocks.15.transformer_blocks.8.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.attn2.to_out.0.weight": "blocks.15.transformer_blocks.8.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.attn2.to_q.weight": "blocks.15.transformer_blocks.8.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.attn2.to_v.weight": "blocks.15.transformer_blocks.8.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.ff.net.0.proj.bias": "blocks.15.transformer_blocks.8.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.ff.net.0.proj.weight": "blocks.15.transformer_blocks.8.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.ff.net.2.bias": "blocks.15.transformer_blocks.8.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.ff.net.2.weight": "blocks.15.transformer_blocks.8.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.norm1.bias": "blocks.15.transformer_blocks.8.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.norm1.weight": "blocks.15.transformer_blocks.8.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.norm2.bias": "blocks.15.transformer_blocks.8.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.norm2.weight": "blocks.15.transformer_blocks.8.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.norm3.bias": "blocks.15.transformer_blocks.8.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.8.norm3.weight": "blocks.15.transformer_blocks.8.norm3.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.attn1.to_k.weight": "blocks.15.transformer_blocks.9.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.attn1.to_out.0.bias": "blocks.15.transformer_blocks.9.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.attn1.to_out.0.weight": "blocks.15.transformer_blocks.9.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.attn1.to_q.weight": "blocks.15.transformer_blocks.9.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.attn1.to_v.weight": "blocks.15.transformer_blocks.9.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.attn2.to_k.weight": "blocks.15.transformer_blocks.9.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.attn2.to_out.0.bias": "blocks.15.transformer_blocks.9.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.attn2.to_out.0.weight": "blocks.15.transformer_blocks.9.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.attn2.to_q.weight": "blocks.15.transformer_blocks.9.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.attn2.to_v.weight": "blocks.15.transformer_blocks.9.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.ff.net.0.proj.bias": "blocks.15.transformer_blocks.9.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.ff.net.0.proj.weight": "blocks.15.transformer_blocks.9.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.ff.net.2.bias": "blocks.15.transformer_blocks.9.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.ff.net.2.weight": "blocks.15.transformer_blocks.9.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.norm1.bias": "blocks.15.transformer_blocks.9.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.norm1.weight": "blocks.15.transformer_blocks.9.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.norm2.bias": "blocks.15.transformer_blocks.9.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.norm2.weight": "blocks.15.transformer_blocks.9.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.norm3.bias": "blocks.15.transformer_blocks.9.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.9.norm3.weight": "blocks.15.transformer_blocks.9.norm3.weight", - "model.diffusion_model.input_blocks.8.0.emb_layers.1.bias": "blocks.17.time_emb_proj.bias", - "model.diffusion_model.input_blocks.8.0.emb_layers.1.weight": "blocks.17.time_emb_proj.weight", - "model.diffusion_model.input_blocks.8.0.in_layers.0.bias": "blocks.17.norm1.bias", - "model.diffusion_model.input_blocks.8.0.in_layers.0.weight": "blocks.17.norm1.weight", - "model.diffusion_model.input_blocks.8.0.in_layers.2.bias": "blocks.17.conv1.bias", - "model.diffusion_model.input_blocks.8.0.in_layers.2.weight": "blocks.17.conv1.weight", - "model.diffusion_model.input_blocks.8.0.out_layers.0.bias": "blocks.17.norm2.bias", - "model.diffusion_model.input_blocks.8.0.out_layers.0.weight": "blocks.17.norm2.weight", - "model.diffusion_model.input_blocks.8.0.out_layers.3.bias": "blocks.17.conv2.bias", - "model.diffusion_model.input_blocks.8.0.out_layers.3.weight": "blocks.17.conv2.weight", - "model.diffusion_model.input_blocks.8.1.norm.bias": "blocks.18.norm.bias", - "model.diffusion_model.input_blocks.8.1.norm.weight": "blocks.18.norm.weight", - "model.diffusion_model.input_blocks.8.1.proj_in.bias": "blocks.18.proj_in.bias", - "model.diffusion_model.input_blocks.8.1.proj_in.weight": "blocks.18.proj_in.weight", - "model.diffusion_model.input_blocks.8.1.proj_out.bias": "blocks.18.proj_out.bias", - "model.diffusion_model.input_blocks.8.1.proj_out.weight": "blocks.18.proj_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.18.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.18.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.18.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.18.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.18.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.18.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.18.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.18.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.18.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.18.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.18.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.18.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.18.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.18.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.18.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.18.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.18.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.18.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.18.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.18.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.attn1.to_k.weight": "blocks.18.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.18.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.18.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.attn1.to_q.weight": "blocks.18.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.attn1.to_v.weight": "blocks.18.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.attn2.to_k.weight": "blocks.18.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.18.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.18.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.attn2.to_q.weight": "blocks.18.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.attn2.to_v.weight": "blocks.18.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.18.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.18.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.ff.net.2.bias": "blocks.18.transformer_blocks.1.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.ff.net.2.weight": "blocks.18.transformer_blocks.1.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.norm1.bias": "blocks.18.transformer_blocks.1.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.norm1.weight": "blocks.18.transformer_blocks.1.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.norm2.bias": "blocks.18.transformer_blocks.1.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.norm2.weight": "blocks.18.transformer_blocks.1.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.norm3.bias": "blocks.18.transformer_blocks.1.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.1.norm3.weight": "blocks.18.transformer_blocks.1.norm3.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.attn1.to_k.weight": "blocks.18.transformer_blocks.2.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.attn1.to_out.0.bias": "blocks.18.transformer_blocks.2.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.attn1.to_out.0.weight": "blocks.18.transformer_blocks.2.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.attn1.to_q.weight": "blocks.18.transformer_blocks.2.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.attn1.to_v.weight": "blocks.18.transformer_blocks.2.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.attn2.to_k.weight": "blocks.18.transformer_blocks.2.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.attn2.to_out.0.bias": "blocks.18.transformer_blocks.2.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.attn2.to_out.0.weight": "blocks.18.transformer_blocks.2.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.attn2.to_q.weight": "blocks.18.transformer_blocks.2.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.attn2.to_v.weight": "blocks.18.transformer_blocks.2.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.ff.net.0.proj.bias": "blocks.18.transformer_blocks.2.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.ff.net.0.proj.weight": "blocks.18.transformer_blocks.2.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.ff.net.2.bias": "blocks.18.transformer_blocks.2.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.ff.net.2.weight": "blocks.18.transformer_blocks.2.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.norm1.bias": "blocks.18.transformer_blocks.2.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.norm1.weight": "blocks.18.transformer_blocks.2.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.norm2.bias": "blocks.18.transformer_blocks.2.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.norm2.weight": "blocks.18.transformer_blocks.2.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.norm3.bias": "blocks.18.transformer_blocks.2.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.2.norm3.weight": "blocks.18.transformer_blocks.2.norm3.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.attn1.to_k.weight": "blocks.18.transformer_blocks.3.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.attn1.to_out.0.bias": "blocks.18.transformer_blocks.3.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.attn1.to_out.0.weight": "blocks.18.transformer_blocks.3.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.attn1.to_q.weight": "blocks.18.transformer_blocks.3.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.attn1.to_v.weight": "blocks.18.transformer_blocks.3.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.attn2.to_k.weight": "blocks.18.transformer_blocks.3.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.attn2.to_out.0.bias": "blocks.18.transformer_blocks.3.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.attn2.to_out.0.weight": "blocks.18.transformer_blocks.3.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.attn2.to_q.weight": "blocks.18.transformer_blocks.3.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.attn2.to_v.weight": "blocks.18.transformer_blocks.3.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.ff.net.0.proj.bias": "blocks.18.transformer_blocks.3.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.ff.net.0.proj.weight": "blocks.18.transformer_blocks.3.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.ff.net.2.bias": "blocks.18.transformer_blocks.3.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.ff.net.2.weight": "blocks.18.transformer_blocks.3.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.norm1.bias": "blocks.18.transformer_blocks.3.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.norm1.weight": "blocks.18.transformer_blocks.3.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.norm2.bias": "blocks.18.transformer_blocks.3.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.norm2.weight": "blocks.18.transformer_blocks.3.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.norm3.bias": "blocks.18.transformer_blocks.3.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.3.norm3.weight": "blocks.18.transformer_blocks.3.norm3.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.attn1.to_k.weight": "blocks.18.transformer_blocks.4.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.attn1.to_out.0.bias": "blocks.18.transformer_blocks.4.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.attn1.to_out.0.weight": "blocks.18.transformer_blocks.4.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.attn1.to_q.weight": "blocks.18.transformer_blocks.4.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.attn1.to_v.weight": "blocks.18.transformer_blocks.4.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.attn2.to_k.weight": "blocks.18.transformer_blocks.4.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.attn2.to_out.0.bias": "blocks.18.transformer_blocks.4.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.attn2.to_out.0.weight": "blocks.18.transformer_blocks.4.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.attn2.to_q.weight": "blocks.18.transformer_blocks.4.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.attn2.to_v.weight": "blocks.18.transformer_blocks.4.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.ff.net.0.proj.bias": "blocks.18.transformer_blocks.4.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.ff.net.0.proj.weight": "blocks.18.transformer_blocks.4.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.ff.net.2.bias": "blocks.18.transformer_blocks.4.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.ff.net.2.weight": "blocks.18.transformer_blocks.4.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.norm1.bias": "blocks.18.transformer_blocks.4.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.norm1.weight": "blocks.18.transformer_blocks.4.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.norm2.bias": "blocks.18.transformer_blocks.4.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.norm2.weight": "blocks.18.transformer_blocks.4.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.norm3.bias": "blocks.18.transformer_blocks.4.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.4.norm3.weight": "blocks.18.transformer_blocks.4.norm3.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.attn1.to_k.weight": "blocks.18.transformer_blocks.5.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.attn1.to_out.0.bias": "blocks.18.transformer_blocks.5.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.attn1.to_out.0.weight": "blocks.18.transformer_blocks.5.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.attn1.to_q.weight": "blocks.18.transformer_blocks.5.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.attn1.to_v.weight": "blocks.18.transformer_blocks.5.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.attn2.to_k.weight": "blocks.18.transformer_blocks.5.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.attn2.to_out.0.bias": "blocks.18.transformer_blocks.5.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.attn2.to_out.0.weight": "blocks.18.transformer_blocks.5.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.attn2.to_q.weight": "blocks.18.transformer_blocks.5.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.attn2.to_v.weight": "blocks.18.transformer_blocks.5.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.ff.net.0.proj.bias": "blocks.18.transformer_blocks.5.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.ff.net.0.proj.weight": "blocks.18.transformer_blocks.5.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.ff.net.2.bias": "blocks.18.transformer_blocks.5.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.ff.net.2.weight": "blocks.18.transformer_blocks.5.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.norm1.bias": "blocks.18.transformer_blocks.5.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.norm1.weight": "blocks.18.transformer_blocks.5.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.norm2.bias": "blocks.18.transformer_blocks.5.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.norm2.weight": "blocks.18.transformer_blocks.5.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.norm3.bias": "blocks.18.transformer_blocks.5.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.5.norm3.weight": "blocks.18.transformer_blocks.5.norm3.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.attn1.to_k.weight": "blocks.18.transformer_blocks.6.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.attn1.to_out.0.bias": "blocks.18.transformer_blocks.6.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.attn1.to_out.0.weight": "blocks.18.transformer_blocks.6.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.attn1.to_q.weight": "blocks.18.transformer_blocks.6.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.attn1.to_v.weight": "blocks.18.transformer_blocks.6.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.attn2.to_k.weight": "blocks.18.transformer_blocks.6.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.attn2.to_out.0.bias": "blocks.18.transformer_blocks.6.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.attn2.to_out.0.weight": "blocks.18.transformer_blocks.6.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.attn2.to_q.weight": "blocks.18.transformer_blocks.6.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.attn2.to_v.weight": "blocks.18.transformer_blocks.6.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.ff.net.0.proj.bias": "blocks.18.transformer_blocks.6.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.ff.net.0.proj.weight": "blocks.18.transformer_blocks.6.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.ff.net.2.bias": "blocks.18.transformer_blocks.6.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.ff.net.2.weight": "blocks.18.transformer_blocks.6.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.norm1.bias": "blocks.18.transformer_blocks.6.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.norm1.weight": "blocks.18.transformer_blocks.6.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.norm2.bias": "blocks.18.transformer_blocks.6.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.norm2.weight": "blocks.18.transformer_blocks.6.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.norm3.bias": "blocks.18.transformer_blocks.6.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.6.norm3.weight": "blocks.18.transformer_blocks.6.norm3.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.attn1.to_k.weight": "blocks.18.transformer_blocks.7.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.attn1.to_out.0.bias": "blocks.18.transformer_blocks.7.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.attn1.to_out.0.weight": "blocks.18.transformer_blocks.7.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.attn1.to_q.weight": "blocks.18.transformer_blocks.7.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.attn1.to_v.weight": "blocks.18.transformer_blocks.7.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.attn2.to_k.weight": "blocks.18.transformer_blocks.7.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.attn2.to_out.0.bias": "blocks.18.transformer_blocks.7.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.attn2.to_out.0.weight": "blocks.18.transformer_blocks.7.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.attn2.to_q.weight": "blocks.18.transformer_blocks.7.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.attn2.to_v.weight": "blocks.18.transformer_blocks.7.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.ff.net.0.proj.bias": "blocks.18.transformer_blocks.7.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.ff.net.0.proj.weight": "blocks.18.transformer_blocks.7.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.ff.net.2.bias": "blocks.18.transformer_blocks.7.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.ff.net.2.weight": "blocks.18.transformer_blocks.7.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.norm1.bias": "blocks.18.transformer_blocks.7.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.norm1.weight": "blocks.18.transformer_blocks.7.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.norm2.bias": "blocks.18.transformer_blocks.7.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.norm2.weight": "blocks.18.transformer_blocks.7.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.norm3.bias": "blocks.18.transformer_blocks.7.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.7.norm3.weight": "blocks.18.transformer_blocks.7.norm3.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.attn1.to_k.weight": "blocks.18.transformer_blocks.8.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.attn1.to_out.0.bias": "blocks.18.transformer_blocks.8.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.attn1.to_out.0.weight": "blocks.18.transformer_blocks.8.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.attn1.to_q.weight": "blocks.18.transformer_blocks.8.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.attn1.to_v.weight": "blocks.18.transformer_blocks.8.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.attn2.to_k.weight": "blocks.18.transformer_blocks.8.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.attn2.to_out.0.bias": "blocks.18.transformer_blocks.8.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.attn2.to_out.0.weight": "blocks.18.transformer_blocks.8.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.attn2.to_q.weight": "blocks.18.transformer_blocks.8.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.attn2.to_v.weight": "blocks.18.transformer_blocks.8.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.ff.net.0.proj.bias": "blocks.18.transformer_blocks.8.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.ff.net.0.proj.weight": "blocks.18.transformer_blocks.8.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.ff.net.2.bias": "blocks.18.transformer_blocks.8.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.ff.net.2.weight": "blocks.18.transformer_blocks.8.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.norm1.bias": "blocks.18.transformer_blocks.8.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.norm1.weight": "blocks.18.transformer_blocks.8.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.norm2.bias": "blocks.18.transformer_blocks.8.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.norm2.weight": "blocks.18.transformer_blocks.8.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.norm3.bias": "blocks.18.transformer_blocks.8.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.8.norm3.weight": "blocks.18.transformer_blocks.8.norm3.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.attn1.to_k.weight": "blocks.18.transformer_blocks.9.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.attn1.to_out.0.bias": "blocks.18.transformer_blocks.9.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.attn1.to_out.0.weight": "blocks.18.transformer_blocks.9.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.attn1.to_q.weight": "blocks.18.transformer_blocks.9.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.attn1.to_v.weight": "blocks.18.transformer_blocks.9.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.attn2.to_k.weight": "blocks.18.transformer_blocks.9.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.attn2.to_out.0.bias": "blocks.18.transformer_blocks.9.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.attn2.to_out.0.weight": "blocks.18.transformer_blocks.9.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.attn2.to_q.weight": "blocks.18.transformer_blocks.9.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.attn2.to_v.weight": "blocks.18.transformer_blocks.9.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.ff.net.0.proj.bias": "blocks.18.transformer_blocks.9.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.ff.net.0.proj.weight": "blocks.18.transformer_blocks.9.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.ff.net.2.bias": "blocks.18.transformer_blocks.9.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.ff.net.2.weight": "blocks.18.transformer_blocks.9.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.norm1.bias": "blocks.18.transformer_blocks.9.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.norm1.weight": "blocks.18.transformer_blocks.9.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.norm2.bias": "blocks.18.transformer_blocks.9.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.norm2.weight": "blocks.18.transformer_blocks.9.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.norm3.bias": "blocks.18.transformer_blocks.9.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.9.norm3.weight": "blocks.18.transformer_blocks.9.norm3.weight", - "model.diffusion_model.label_emb.0.0.bias": "add_time_embedding.0.bias", - "model.diffusion_model.label_emb.0.0.weight": "add_time_embedding.0.weight", - "model.diffusion_model.label_emb.0.2.bias": "add_time_embedding.2.bias", - "model.diffusion_model.label_emb.0.2.weight": "add_time_embedding.2.weight", - "model.diffusion_model.middle_block.0.emb_layers.1.bias": "blocks.20.time_emb_proj.bias", - "model.diffusion_model.middle_block.0.emb_layers.1.weight": "blocks.20.time_emb_proj.weight", - "model.diffusion_model.middle_block.0.in_layers.0.bias": "blocks.20.norm1.bias", - "model.diffusion_model.middle_block.0.in_layers.0.weight": "blocks.20.norm1.weight", - "model.diffusion_model.middle_block.0.in_layers.2.bias": "blocks.20.conv1.bias", - "model.diffusion_model.middle_block.0.in_layers.2.weight": "blocks.20.conv1.weight", - "model.diffusion_model.middle_block.0.out_layers.0.bias": "blocks.20.norm2.bias", - "model.diffusion_model.middle_block.0.out_layers.0.weight": "blocks.20.norm2.weight", - "model.diffusion_model.middle_block.0.out_layers.3.bias": "blocks.20.conv2.bias", - "model.diffusion_model.middle_block.0.out_layers.3.weight": "blocks.20.conv2.weight", - "model.diffusion_model.middle_block.1.norm.bias": "blocks.21.norm.bias", - "model.diffusion_model.middle_block.1.norm.weight": "blocks.21.norm.weight", - "model.diffusion_model.middle_block.1.proj_in.bias": "blocks.21.proj_in.bias", - "model.diffusion_model.middle_block.1.proj_in.weight": "blocks.21.proj_in.weight", - "model.diffusion_model.middle_block.1.proj_out.bias": "blocks.21.proj_out.bias", - "model.diffusion_model.middle_block.1.proj_out.weight": "blocks.21.proj_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k.weight": "blocks.21.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.21.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.21.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight": "blocks.21.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight": "blocks.21.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight": "blocks.21.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.21.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.21.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight": "blocks.21.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight": "blocks.21.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.21.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.21.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.bias": "blocks.21.transformer_blocks.0.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.weight": "blocks.21.transformer_blocks.0.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.bias": "blocks.21.transformer_blocks.0.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.weight": "blocks.21.transformer_blocks.0.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.bias": "blocks.21.transformer_blocks.0.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight": "blocks.21.transformer_blocks.0.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.bias": "blocks.21.transformer_blocks.0.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.weight": "blocks.21.transformer_blocks.0.norm3.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.attn1.to_k.weight": "blocks.21.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.21.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.21.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.attn1.to_q.weight": "blocks.21.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.attn1.to_v.weight": "blocks.21.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.attn2.to_k.weight": "blocks.21.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.21.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.21.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.attn2.to_q.weight": "blocks.21.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.attn2.to_v.weight": "blocks.21.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.21.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.21.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.ff.net.2.bias": "blocks.21.transformer_blocks.1.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.1.ff.net.2.weight": "blocks.21.transformer_blocks.1.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.norm1.bias": "blocks.21.transformer_blocks.1.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.1.norm1.weight": "blocks.21.transformer_blocks.1.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.norm2.bias": "blocks.21.transformer_blocks.1.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.1.norm2.weight": "blocks.21.transformer_blocks.1.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.1.norm3.bias": "blocks.21.transformer_blocks.1.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.1.norm3.weight": "blocks.21.transformer_blocks.1.norm3.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.attn1.to_k.weight": "blocks.21.transformer_blocks.2.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.attn1.to_out.0.bias": "blocks.21.transformer_blocks.2.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.2.attn1.to_out.0.weight": "blocks.21.transformer_blocks.2.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.attn1.to_q.weight": "blocks.21.transformer_blocks.2.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.attn1.to_v.weight": "blocks.21.transformer_blocks.2.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_k.weight": "blocks.21.transformer_blocks.2.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_out.0.bias": "blocks.21.transformer_blocks.2.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_out.0.weight": "blocks.21.transformer_blocks.2.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_q.weight": "blocks.21.transformer_blocks.2.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_v.weight": "blocks.21.transformer_blocks.2.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.ff.net.0.proj.bias": "blocks.21.transformer_blocks.2.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.2.ff.net.0.proj.weight": "blocks.21.transformer_blocks.2.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.ff.net.2.bias": "blocks.21.transformer_blocks.2.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.2.ff.net.2.weight": "blocks.21.transformer_blocks.2.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.norm1.bias": "blocks.21.transformer_blocks.2.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.2.norm1.weight": "blocks.21.transformer_blocks.2.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.norm2.bias": "blocks.21.transformer_blocks.2.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.2.norm2.weight": "blocks.21.transformer_blocks.2.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.2.norm3.bias": "blocks.21.transformer_blocks.2.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.2.norm3.weight": "blocks.21.transformer_blocks.2.norm3.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.attn1.to_k.weight": "blocks.21.transformer_blocks.3.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.attn1.to_out.0.bias": "blocks.21.transformer_blocks.3.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.3.attn1.to_out.0.weight": "blocks.21.transformer_blocks.3.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.attn1.to_q.weight": "blocks.21.transformer_blocks.3.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.attn1.to_v.weight": "blocks.21.transformer_blocks.3.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_k.weight": "blocks.21.transformer_blocks.3.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_out.0.bias": "blocks.21.transformer_blocks.3.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_out.0.weight": "blocks.21.transformer_blocks.3.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_q.weight": "blocks.21.transformer_blocks.3.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_v.weight": "blocks.21.transformer_blocks.3.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.ff.net.0.proj.bias": "blocks.21.transformer_blocks.3.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.3.ff.net.0.proj.weight": "blocks.21.transformer_blocks.3.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.ff.net.2.bias": "blocks.21.transformer_blocks.3.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.3.ff.net.2.weight": "blocks.21.transformer_blocks.3.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.norm1.bias": "blocks.21.transformer_blocks.3.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.3.norm1.weight": "blocks.21.transformer_blocks.3.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.norm2.bias": "blocks.21.transformer_blocks.3.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.3.norm2.weight": "blocks.21.transformer_blocks.3.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.3.norm3.bias": "blocks.21.transformer_blocks.3.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.3.norm3.weight": "blocks.21.transformer_blocks.3.norm3.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.attn1.to_k.weight": "blocks.21.transformer_blocks.4.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.attn1.to_out.0.bias": "blocks.21.transformer_blocks.4.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.4.attn1.to_out.0.weight": "blocks.21.transformer_blocks.4.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.attn1.to_q.weight": "blocks.21.transformer_blocks.4.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.attn1.to_v.weight": "blocks.21.transformer_blocks.4.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_k.weight": "blocks.21.transformer_blocks.4.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_out.0.bias": "blocks.21.transformer_blocks.4.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_out.0.weight": "blocks.21.transformer_blocks.4.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_q.weight": "blocks.21.transformer_blocks.4.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_v.weight": "blocks.21.transformer_blocks.4.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.ff.net.0.proj.bias": "blocks.21.transformer_blocks.4.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.4.ff.net.0.proj.weight": "blocks.21.transformer_blocks.4.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.ff.net.2.bias": "blocks.21.transformer_blocks.4.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.4.ff.net.2.weight": "blocks.21.transformer_blocks.4.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.norm1.bias": "blocks.21.transformer_blocks.4.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.4.norm1.weight": "blocks.21.transformer_blocks.4.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.norm2.bias": "blocks.21.transformer_blocks.4.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.4.norm2.weight": "blocks.21.transformer_blocks.4.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.4.norm3.bias": "blocks.21.transformer_blocks.4.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.4.norm3.weight": "blocks.21.transformer_blocks.4.norm3.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.attn1.to_k.weight": "blocks.21.transformer_blocks.5.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.attn1.to_out.0.bias": "blocks.21.transformer_blocks.5.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.5.attn1.to_out.0.weight": "blocks.21.transformer_blocks.5.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.attn1.to_q.weight": "blocks.21.transformer_blocks.5.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.attn1.to_v.weight": "blocks.21.transformer_blocks.5.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_k.weight": "blocks.21.transformer_blocks.5.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_out.0.bias": "blocks.21.transformer_blocks.5.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_out.0.weight": "blocks.21.transformer_blocks.5.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_q.weight": "blocks.21.transformer_blocks.5.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_v.weight": "blocks.21.transformer_blocks.5.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.ff.net.0.proj.bias": "blocks.21.transformer_blocks.5.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.5.ff.net.0.proj.weight": "blocks.21.transformer_blocks.5.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.ff.net.2.bias": "blocks.21.transformer_blocks.5.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.5.ff.net.2.weight": "blocks.21.transformer_blocks.5.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.norm1.bias": "blocks.21.transformer_blocks.5.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.5.norm1.weight": "blocks.21.transformer_blocks.5.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.norm2.bias": "blocks.21.transformer_blocks.5.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.5.norm2.weight": "blocks.21.transformer_blocks.5.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.5.norm3.bias": "blocks.21.transformer_blocks.5.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.5.norm3.weight": "blocks.21.transformer_blocks.5.norm3.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.attn1.to_k.weight": "blocks.21.transformer_blocks.6.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.attn1.to_out.0.bias": "blocks.21.transformer_blocks.6.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.6.attn1.to_out.0.weight": "blocks.21.transformer_blocks.6.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.attn1.to_q.weight": "blocks.21.transformer_blocks.6.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.attn1.to_v.weight": "blocks.21.transformer_blocks.6.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_k.weight": "blocks.21.transformer_blocks.6.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_out.0.bias": "blocks.21.transformer_blocks.6.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_out.0.weight": "blocks.21.transformer_blocks.6.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_q.weight": "blocks.21.transformer_blocks.6.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_v.weight": "blocks.21.transformer_blocks.6.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.ff.net.0.proj.bias": "blocks.21.transformer_blocks.6.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.6.ff.net.0.proj.weight": "blocks.21.transformer_blocks.6.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.ff.net.2.bias": "blocks.21.transformer_blocks.6.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.6.ff.net.2.weight": "blocks.21.transformer_blocks.6.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.norm1.bias": "blocks.21.transformer_blocks.6.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.6.norm1.weight": "blocks.21.transformer_blocks.6.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.norm2.bias": "blocks.21.transformer_blocks.6.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.6.norm2.weight": "blocks.21.transformer_blocks.6.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.6.norm3.bias": "blocks.21.transformer_blocks.6.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.6.norm3.weight": "blocks.21.transformer_blocks.6.norm3.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.attn1.to_k.weight": "blocks.21.transformer_blocks.7.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.attn1.to_out.0.bias": "blocks.21.transformer_blocks.7.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.7.attn1.to_out.0.weight": "blocks.21.transformer_blocks.7.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.attn1.to_q.weight": "blocks.21.transformer_blocks.7.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.attn1.to_v.weight": "blocks.21.transformer_blocks.7.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_k.weight": "blocks.21.transformer_blocks.7.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_out.0.bias": "blocks.21.transformer_blocks.7.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_out.0.weight": "blocks.21.transformer_blocks.7.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_q.weight": "blocks.21.transformer_blocks.7.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_v.weight": "blocks.21.transformer_blocks.7.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.ff.net.0.proj.bias": "blocks.21.transformer_blocks.7.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.7.ff.net.0.proj.weight": "blocks.21.transformer_blocks.7.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.ff.net.2.bias": "blocks.21.transformer_blocks.7.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.7.ff.net.2.weight": "blocks.21.transformer_blocks.7.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.norm1.bias": "blocks.21.transformer_blocks.7.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.7.norm1.weight": "blocks.21.transformer_blocks.7.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.norm2.bias": "blocks.21.transformer_blocks.7.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.7.norm2.weight": "blocks.21.transformer_blocks.7.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.7.norm3.bias": "blocks.21.transformer_blocks.7.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.7.norm3.weight": "blocks.21.transformer_blocks.7.norm3.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.attn1.to_k.weight": "blocks.21.transformer_blocks.8.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.attn1.to_out.0.bias": "blocks.21.transformer_blocks.8.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.8.attn1.to_out.0.weight": "blocks.21.transformer_blocks.8.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.attn1.to_q.weight": "blocks.21.transformer_blocks.8.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.attn1.to_v.weight": "blocks.21.transformer_blocks.8.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_k.weight": "blocks.21.transformer_blocks.8.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_out.0.bias": "blocks.21.transformer_blocks.8.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_out.0.weight": "blocks.21.transformer_blocks.8.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_q.weight": "blocks.21.transformer_blocks.8.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_v.weight": "blocks.21.transformer_blocks.8.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.ff.net.0.proj.bias": "blocks.21.transformer_blocks.8.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.8.ff.net.0.proj.weight": "blocks.21.transformer_blocks.8.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.ff.net.2.bias": "blocks.21.transformer_blocks.8.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.8.ff.net.2.weight": "blocks.21.transformer_blocks.8.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.norm1.bias": "blocks.21.transformer_blocks.8.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.8.norm1.weight": "blocks.21.transformer_blocks.8.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.norm2.bias": "blocks.21.transformer_blocks.8.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.8.norm2.weight": "blocks.21.transformer_blocks.8.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.8.norm3.bias": "blocks.21.transformer_blocks.8.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.8.norm3.weight": "blocks.21.transformer_blocks.8.norm3.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.attn1.to_k.weight": "blocks.21.transformer_blocks.9.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.attn1.to_out.0.bias": "blocks.21.transformer_blocks.9.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.9.attn1.to_out.0.weight": "blocks.21.transformer_blocks.9.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.attn1.to_q.weight": "blocks.21.transformer_blocks.9.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.attn1.to_v.weight": "blocks.21.transformer_blocks.9.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_k.weight": "blocks.21.transformer_blocks.9.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_out.0.bias": "blocks.21.transformer_blocks.9.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_out.0.weight": "blocks.21.transformer_blocks.9.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_q.weight": "blocks.21.transformer_blocks.9.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_v.weight": "blocks.21.transformer_blocks.9.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.ff.net.0.proj.bias": "blocks.21.transformer_blocks.9.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.9.ff.net.0.proj.weight": "blocks.21.transformer_blocks.9.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.ff.net.2.bias": "blocks.21.transformer_blocks.9.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.9.ff.net.2.weight": "blocks.21.transformer_blocks.9.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.norm1.bias": "blocks.21.transformer_blocks.9.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.9.norm1.weight": "blocks.21.transformer_blocks.9.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.norm2.bias": "blocks.21.transformer_blocks.9.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.9.norm2.weight": "blocks.21.transformer_blocks.9.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.9.norm3.bias": "blocks.21.transformer_blocks.9.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.9.norm3.weight": "blocks.21.transformer_blocks.9.norm3.weight", - "model.diffusion_model.middle_block.2.emb_layers.1.bias": "blocks.22.time_emb_proj.bias", - "model.diffusion_model.middle_block.2.emb_layers.1.weight": "blocks.22.time_emb_proj.weight", - "model.diffusion_model.middle_block.2.in_layers.0.bias": "blocks.22.norm1.bias", - "model.diffusion_model.middle_block.2.in_layers.0.weight": "blocks.22.norm1.weight", - "model.diffusion_model.middle_block.2.in_layers.2.bias": "blocks.22.conv1.bias", - "model.diffusion_model.middle_block.2.in_layers.2.weight": "blocks.22.conv1.weight", - "model.diffusion_model.middle_block.2.out_layers.0.bias": "blocks.22.norm2.bias", - "model.diffusion_model.middle_block.2.out_layers.0.weight": "blocks.22.norm2.weight", - "model.diffusion_model.middle_block.2.out_layers.3.bias": "blocks.22.conv2.bias", - "model.diffusion_model.middle_block.2.out_layers.3.weight": "blocks.22.conv2.weight", - "model.diffusion_model.out.0.bias": "conv_norm_out.bias", - "model.diffusion_model.out.0.weight": "conv_norm_out.weight", - "model.diffusion_model.out.2.bias": "conv_out.bias", - "model.diffusion_model.out.2.weight": "conv_out.weight", - "model.diffusion_model.output_blocks.0.0.emb_layers.1.bias": "blocks.24.time_emb_proj.bias", - "model.diffusion_model.output_blocks.0.0.emb_layers.1.weight": "blocks.24.time_emb_proj.weight", - "model.diffusion_model.output_blocks.0.0.in_layers.0.bias": "blocks.24.norm1.bias", - "model.diffusion_model.output_blocks.0.0.in_layers.0.weight": "blocks.24.norm1.weight", - "model.diffusion_model.output_blocks.0.0.in_layers.2.bias": "blocks.24.conv1.bias", - "model.diffusion_model.output_blocks.0.0.in_layers.2.weight": "blocks.24.conv1.weight", - "model.diffusion_model.output_blocks.0.0.out_layers.0.bias": "blocks.24.norm2.bias", - "model.diffusion_model.output_blocks.0.0.out_layers.0.weight": "blocks.24.norm2.weight", - "model.diffusion_model.output_blocks.0.0.out_layers.3.bias": "blocks.24.conv2.bias", - "model.diffusion_model.output_blocks.0.0.out_layers.3.weight": "blocks.24.conv2.weight", - "model.diffusion_model.output_blocks.0.0.skip_connection.bias": "blocks.24.conv_shortcut.bias", - "model.diffusion_model.output_blocks.0.0.skip_connection.weight": "blocks.24.conv_shortcut.weight", - "model.diffusion_model.output_blocks.0.1.norm.bias": "blocks.25.norm.bias", - "model.diffusion_model.output_blocks.0.1.norm.weight": "blocks.25.norm.weight", - "model.diffusion_model.output_blocks.0.1.proj_in.bias": "blocks.25.proj_in.bias", - "model.diffusion_model.output_blocks.0.1.proj_in.weight": "blocks.25.proj_in.weight", - "model.diffusion_model.output_blocks.0.1.proj_out.bias": "blocks.25.proj_out.bias", - "model.diffusion_model.output_blocks.0.1.proj_out.weight": "blocks.25.proj_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.attn1.to_k.weight": "blocks.25.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.25.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.25.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.attn1.to_q.weight": "blocks.25.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.attn1.to_v.weight": "blocks.25.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.attn2.to_k.weight": "blocks.25.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.25.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.25.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.attn2.to_q.weight": "blocks.25.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.attn2.to_v.weight": "blocks.25.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.25.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.25.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.ff.net.2.bias": "blocks.25.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.ff.net.2.weight": "blocks.25.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.norm1.bias": "blocks.25.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.norm1.weight": "blocks.25.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.norm2.bias": "blocks.25.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.norm2.weight": "blocks.25.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.norm3.bias": "blocks.25.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.0.norm3.weight": "blocks.25.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.attn1.to_k.weight": "blocks.25.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.25.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.25.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.attn1.to_q.weight": "blocks.25.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.attn1.to_v.weight": "blocks.25.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.attn2.to_k.weight": "blocks.25.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.25.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.25.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.attn2.to_q.weight": "blocks.25.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.attn2.to_v.weight": "blocks.25.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.25.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.25.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.ff.net.2.bias": "blocks.25.transformer_blocks.1.ff.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.ff.net.2.weight": "blocks.25.transformer_blocks.1.ff.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.norm1.bias": "blocks.25.transformer_blocks.1.norm1.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.norm1.weight": "blocks.25.transformer_blocks.1.norm1.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.norm2.bias": "blocks.25.transformer_blocks.1.norm2.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.norm2.weight": "blocks.25.transformer_blocks.1.norm2.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.norm3.bias": "blocks.25.transformer_blocks.1.norm3.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.1.norm3.weight": "blocks.25.transformer_blocks.1.norm3.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.attn1.to_k.weight": "blocks.25.transformer_blocks.2.attn1.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.attn1.to_out.0.bias": "blocks.25.transformer_blocks.2.attn1.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.attn1.to_out.0.weight": "blocks.25.transformer_blocks.2.attn1.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.attn1.to_q.weight": "blocks.25.transformer_blocks.2.attn1.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.attn1.to_v.weight": "blocks.25.transformer_blocks.2.attn1.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.attn2.to_k.weight": "blocks.25.transformer_blocks.2.attn2.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.attn2.to_out.0.bias": "blocks.25.transformer_blocks.2.attn2.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.attn2.to_out.0.weight": "blocks.25.transformer_blocks.2.attn2.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.attn2.to_q.weight": "blocks.25.transformer_blocks.2.attn2.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.attn2.to_v.weight": "blocks.25.transformer_blocks.2.attn2.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.ff.net.0.proj.bias": "blocks.25.transformer_blocks.2.act_fn.proj.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.ff.net.0.proj.weight": "blocks.25.transformer_blocks.2.act_fn.proj.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.ff.net.2.bias": "blocks.25.transformer_blocks.2.ff.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.ff.net.2.weight": "blocks.25.transformer_blocks.2.ff.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.norm1.bias": "blocks.25.transformer_blocks.2.norm1.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.norm1.weight": "blocks.25.transformer_blocks.2.norm1.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.norm2.bias": "blocks.25.transformer_blocks.2.norm2.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.norm2.weight": "blocks.25.transformer_blocks.2.norm2.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.norm3.bias": "blocks.25.transformer_blocks.2.norm3.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.2.norm3.weight": "blocks.25.transformer_blocks.2.norm3.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.attn1.to_k.weight": "blocks.25.transformer_blocks.3.attn1.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.attn1.to_out.0.bias": "blocks.25.transformer_blocks.3.attn1.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.attn1.to_out.0.weight": "blocks.25.transformer_blocks.3.attn1.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.attn1.to_q.weight": "blocks.25.transformer_blocks.3.attn1.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.attn1.to_v.weight": "blocks.25.transformer_blocks.3.attn1.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.attn2.to_k.weight": "blocks.25.transformer_blocks.3.attn2.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.attn2.to_out.0.bias": "blocks.25.transformer_blocks.3.attn2.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.attn2.to_out.0.weight": "blocks.25.transformer_blocks.3.attn2.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.attn2.to_q.weight": "blocks.25.transformer_blocks.3.attn2.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.attn2.to_v.weight": "blocks.25.transformer_blocks.3.attn2.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.ff.net.0.proj.bias": "blocks.25.transformer_blocks.3.act_fn.proj.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.ff.net.0.proj.weight": "blocks.25.transformer_blocks.3.act_fn.proj.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.ff.net.2.bias": "blocks.25.transformer_blocks.3.ff.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.ff.net.2.weight": "blocks.25.transformer_blocks.3.ff.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.norm1.bias": "blocks.25.transformer_blocks.3.norm1.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.norm1.weight": "blocks.25.transformer_blocks.3.norm1.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.norm2.bias": "blocks.25.transformer_blocks.3.norm2.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.norm2.weight": "blocks.25.transformer_blocks.3.norm2.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.norm3.bias": "blocks.25.transformer_blocks.3.norm3.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.3.norm3.weight": "blocks.25.transformer_blocks.3.norm3.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.attn1.to_k.weight": "blocks.25.transformer_blocks.4.attn1.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.attn1.to_out.0.bias": "blocks.25.transformer_blocks.4.attn1.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.attn1.to_out.0.weight": "blocks.25.transformer_blocks.4.attn1.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.attn1.to_q.weight": "blocks.25.transformer_blocks.4.attn1.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.attn1.to_v.weight": "blocks.25.transformer_blocks.4.attn1.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.attn2.to_k.weight": "blocks.25.transformer_blocks.4.attn2.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.attn2.to_out.0.bias": "blocks.25.transformer_blocks.4.attn2.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.attn2.to_out.0.weight": "blocks.25.transformer_blocks.4.attn2.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.attn2.to_q.weight": "blocks.25.transformer_blocks.4.attn2.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.attn2.to_v.weight": "blocks.25.transformer_blocks.4.attn2.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.ff.net.0.proj.bias": "blocks.25.transformer_blocks.4.act_fn.proj.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.ff.net.0.proj.weight": "blocks.25.transformer_blocks.4.act_fn.proj.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.ff.net.2.bias": "blocks.25.transformer_blocks.4.ff.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.ff.net.2.weight": "blocks.25.transformer_blocks.4.ff.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.norm1.bias": "blocks.25.transformer_blocks.4.norm1.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.norm1.weight": "blocks.25.transformer_blocks.4.norm1.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.norm2.bias": "blocks.25.transformer_blocks.4.norm2.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.norm2.weight": "blocks.25.transformer_blocks.4.norm2.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.norm3.bias": "blocks.25.transformer_blocks.4.norm3.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.4.norm3.weight": "blocks.25.transformer_blocks.4.norm3.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.attn1.to_k.weight": "blocks.25.transformer_blocks.5.attn1.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.attn1.to_out.0.bias": "blocks.25.transformer_blocks.5.attn1.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.attn1.to_out.0.weight": "blocks.25.transformer_blocks.5.attn1.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.attn1.to_q.weight": "blocks.25.transformer_blocks.5.attn1.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.attn1.to_v.weight": "blocks.25.transformer_blocks.5.attn1.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.attn2.to_k.weight": "blocks.25.transformer_blocks.5.attn2.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.attn2.to_out.0.bias": "blocks.25.transformer_blocks.5.attn2.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.attn2.to_out.0.weight": "blocks.25.transformer_blocks.5.attn2.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.attn2.to_q.weight": "blocks.25.transformer_blocks.5.attn2.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.attn2.to_v.weight": "blocks.25.transformer_blocks.5.attn2.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.ff.net.0.proj.bias": "blocks.25.transformer_blocks.5.act_fn.proj.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.ff.net.0.proj.weight": "blocks.25.transformer_blocks.5.act_fn.proj.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.ff.net.2.bias": "blocks.25.transformer_blocks.5.ff.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.ff.net.2.weight": "blocks.25.transformer_blocks.5.ff.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.norm1.bias": "blocks.25.transformer_blocks.5.norm1.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.norm1.weight": "blocks.25.transformer_blocks.5.norm1.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.norm2.bias": "blocks.25.transformer_blocks.5.norm2.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.norm2.weight": "blocks.25.transformer_blocks.5.norm2.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.norm3.bias": "blocks.25.transformer_blocks.5.norm3.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.5.norm3.weight": "blocks.25.transformer_blocks.5.norm3.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.attn1.to_k.weight": "blocks.25.transformer_blocks.6.attn1.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.attn1.to_out.0.bias": "blocks.25.transformer_blocks.6.attn1.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.attn1.to_out.0.weight": "blocks.25.transformer_blocks.6.attn1.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.attn1.to_q.weight": "blocks.25.transformer_blocks.6.attn1.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.attn1.to_v.weight": "blocks.25.transformer_blocks.6.attn1.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.attn2.to_k.weight": "blocks.25.transformer_blocks.6.attn2.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.attn2.to_out.0.bias": "blocks.25.transformer_blocks.6.attn2.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.attn2.to_out.0.weight": "blocks.25.transformer_blocks.6.attn2.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.attn2.to_q.weight": "blocks.25.transformer_blocks.6.attn2.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.attn2.to_v.weight": "blocks.25.transformer_blocks.6.attn2.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.ff.net.0.proj.bias": "blocks.25.transformer_blocks.6.act_fn.proj.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.ff.net.0.proj.weight": "blocks.25.transformer_blocks.6.act_fn.proj.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.ff.net.2.bias": "blocks.25.transformer_blocks.6.ff.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.ff.net.2.weight": "blocks.25.transformer_blocks.6.ff.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.norm1.bias": "blocks.25.transformer_blocks.6.norm1.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.norm1.weight": "blocks.25.transformer_blocks.6.norm1.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.norm2.bias": "blocks.25.transformer_blocks.6.norm2.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.norm2.weight": "blocks.25.transformer_blocks.6.norm2.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.norm3.bias": "blocks.25.transformer_blocks.6.norm3.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.6.norm3.weight": "blocks.25.transformer_blocks.6.norm3.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.attn1.to_k.weight": "blocks.25.transformer_blocks.7.attn1.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.attn1.to_out.0.bias": "blocks.25.transformer_blocks.7.attn1.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.attn1.to_out.0.weight": "blocks.25.transformer_blocks.7.attn1.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.attn1.to_q.weight": "blocks.25.transformer_blocks.7.attn1.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.attn1.to_v.weight": "blocks.25.transformer_blocks.7.attn1.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.attn2.to_k.weight": "blocks.25.transformer_blocks.7.attn2.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.attn2.to_out.0.bias": "blocks.25.transformer_blocks.7.attn2.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.attn2.to_out.0.weight": "blocks.25.transformer_blocks.7.attn2.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.attn2.to_q.weight": "blocks.25.transformer_blocks.7.attn2.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.attn2.to_v.weight": "blocks.25.transformer_blocks.7.attn2.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.ff.net.0.proj.bias": "blocks.25.transformer_blocks.7.act_fn.proj.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.ff.net.0.proj.weight": "blocks.25.transformer_blocks.7.act_fn.proj.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.ff.net.2.bias": "blocks.25.transformer_blocks.7.ff.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.ff.net.2.weight": "blocks.25.transformer_blocks.7.ff.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.norm1.bias": "blocks.25.transformer_blocks.7.norm1.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.norm1.weight": "blocks.25.transformer_blocks.7.norm1.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.norm2.bias": "blocks.25.transformer_blocks.7.norm2.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.norm2.weight": "blocks.25.transformer_blocks.7.norm2.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.norm3.bias": "blocks.25.transformer_blocks.7.norm3.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.7.norm3.weight": "blocks.25.transformer_blocks.7.norm3.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.attn1.to_k.weight": "blocks.25.transformer_blocks.8.attn1.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.attn1.to_out.0.bias": "blocks.25.transformer_blocks.8.attn1.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.attn1.to_out.0.weight": "blocks.25.transformer_blocks.8.attn1.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.attn1.to_q.weight": "blocks.25.transformer_blocks.8.attn1.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.attn1.to_v.weight": "blocks.25.transformer_blocks.8.attn1.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.attn2.to_k.weight": "blocks.25.transformer_blocks.8.attn2.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.attn2.to_out.0.bias": "blocks.25.transformer_blocks.8.attn2.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.attn2.to_out.0.weight": "blocks.25.transformer_blocks.8.attn2.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.attn2.to_q.weight": "blocks.25.transformer_blocks.8.attn2.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.attn2.to_v.weight": "blocks.25.transformer_blocks.8.attn2.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.ff.net.0.proj.bias": "blocks.25.transformer_blocks.8.act_fn.proj.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.ff.net.0.proj.weight": "blocks.25.transformer_blocks.8.act_fn.proj.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.ff.net.2.bias": "blocks.25.transformer_blocks.8.ff.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.ff.net.2.weight": "blocks.25.transformer_blocks.8.ff.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.norm1.bias": "blocks.25.transformer_blocks.8.norm1.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.norm1.weight": "blocks.25.transformer_blocks.8.norm1.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.norm2.bias": "blocks.25.transformer_blocks.8.norm2.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.norm2.weight": "blocks.25.transformer_blocks.8.norm2.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.norm3.bias": "blocks.25.transformer_blocks.8.norm3.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.8.norm3.weight": "blocks.25.transformer_blocks.8.norm3.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.attn1.to_k.weight": "blocks.25.transformer_blocks.9.attn1.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.attn1.to_out.0.bias": "blocks.25.transformer_blocks.9.attn1.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.attn1.to_out.0.weight": "blocks.25.transformer_blocks.9.attn1.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.attn1.to_q.weight": "blocks.25.transformer_blocks.9.attn1.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.attn1.to_v.weight": "blocks.25.transformer_blocks.9.attn1.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.attn2.to_k.weight": "blocks.25.transformer_blocks.9.attn2.to_k.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.attn2.to_out.0.bias": "blocks.25.transformer_blocks.9.attn2.to_out.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.attn2.to_out.0.weight": "blocks.25.transformer_blocks.9.attn2.to_out.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.attn2.to_q.weight": "blocks.25.transformer_blocks.9.attn2.to_q.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.attn2.to_v.weight": "blocks.25.transformer_blocks.9.attn2.to_v.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.ff.net.0.proj.bias": "blocks.25.transformer_blocks.9.act_fn.proj.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.ff.net.0.proj.weight": "blocks.25.transformer_blocks.9.act_fn.proj.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.ff.net.2.bias": "blocks.25.transformer_blocks.9.ff.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.ff.net.2.weight": "blocks.25.transformer_blocks.9.ff.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.norm1.bias": "blocks.25.transformer_blocks.9.norm1.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.norm1.weight": "blocks.25.transformer_blocks.9.norm1.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.norm2.bias": "blocks.25.transformer_blocks.9.norm2.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.norm2.weight": "blocks.25.transformer_blocks.9.norm2.weight", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.norm3.bias": "blocks.25.transformer_blocks.9.norm3.bias", - "model.diffusion_model.output_blocks.0.1.transformer_blocks.9.norm3.weight": "blocks.25.transformer_blocks.9.norm3.weight", - "model.diffusion_model.output_blocks.1.0.emb_layers.1.bias": "blocks.27.time_emb_proj.bias", - "model.diffusion_model.output_blocks.1.0.emb_layers.1.weight": "blocks.27.time_emb_proj.weight", - "model.diffusion_model.output_blocks.1.0.in_layers.0.bias": "blocks.27.norm1.bias", - "model.diffusion_model.output_blocks.1.0.in_layers.0.weight": "blocks.27.norm1.weight", - "model.diffusion_model.output_blocks.1.0.in_layers.2.bias": "blocks.27.conv1.bias", - "model.diffusion_model.output_blocks.1.0.in_layers.2.weight": "blocks.27.conv1.weight", - "model.diffusion_model.output_blocks.1.0.out_layers.0.bias": "blocks.27.norm2.bias", - "model.diffusion_model.output_blocks.1.0.out_layers.0.weight": "blocks.27.norm2.weight", - "model.diffusion_model.output_blocks.1.0.out_layers.3.bias": "blocks.27.conv2.bias", - "model.diffusion_model.output_blocks.1.0.out_layers.3.weight": "blocks.27.conv2.weight", - "model.diffusion_model.output_blocks.1.0.skip_connection.bias": "blocks.27.conv_shortcut.bias", - "model.diffusion_model.output_blocks.1.0.skip_connection.weight": "blocks.27.conv_shortcut.weight", - "model.diffusion_model.output_blocks.1.1.norm.bias": "blocks.28.norm.bias", - "model.diffusion_model.output_blocks.1.1.norm.weight": "blocks.28.norm.weight", - "model.diffusion_model.output_blocks.1.1.proj_in.bias": "blocks.28.proj_in.bias", - "model.diffusion_model.output_blocks.1.1.proj_in.weight": "blocks.28.proj_in.weight", - "model.diffusion_model.output_blocks.1.1.proj_out.bias": "blocks.28.proj_out.bias", - "model.diffusion_model.output_blocks.1.1.proj_out.weight": "blocks.28.proj_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.attn1.to_k.weight": "blocks.28.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.28.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.28.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.attn1.to_q.weight": "blocks.28.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.attn1.to_v.weight": "blocks.28.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.attn2.to_k.weight": "blocks.28.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.28.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.28.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.attn2.to_q.weight": "blocks.28.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.attn2.to_v.weight": "blocks.28.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.28.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.28.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.ff.net.2.bias": "blocks.28.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.ff.net.2.weight": "blocks.28.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.norm1.bias": "blocks.28.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.norm1.weight": "blocks.28.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.norm2.bias": "blocks.28.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.norm2.weight": "blocks.28.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.norm3.bias": "blocks.28.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.0.norm3.weight": "blocks.28.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.attn1.to_k.weight": "blocks.28.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.28.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.28.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.attn1.to_q.weight": "blocks.28.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.attn1.to_v.weight": "blocks.28.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.attn2.to_k.weight": "blocks.28.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.28.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.28.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.attn2.to_q.weight": "blocks.28.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.attn2.to_v.weight": "blocks.28.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.28.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.28.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.ff.net.2.bias": "blocks.28.transformer_blocks.1.ff.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.ff.net.2.weight": "blocks.28.transformer_blocks.1.ff.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.norm1.bias": "blocks.28.transformer_blocks.1.norm1.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.norm1.weight": "blocks.28.transformer_blocks.1.norm1.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.norm2.bias": "blocks.28.transformer_blocks.1.norm2.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.norm2.weight": "blocks.28.transformer_blocks.1.norm2.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.norm3.bias": "blocks.28.transformer_blocks.1.norm3.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.1.norm3.weight": "blocks.28.transformer_blocks.1.norm3.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.attn1.to_k.weight": "blocks.28.transformer_blocks.2.attn1.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.attn1.to_out.0.bias": "blocks.28.transformer_blocks.2.attn1.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.attn1.to_out.0.weight": "blocks.28.transformer_blocks.2.attn1.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.attn1.to_q.weight": "blocks.28.transformer_blocks.2.attn1.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.attn1.to_v.weight": "blocks.28.transformer_blocks.2.attn1.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.attn2.to_k.weight": "blocks.28.transformer_blocks.2.attn2.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.attn2.to_out.0.bias": "blocks.28.transformer_blocks.2.attn2.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.attn2.to_out.0.weight": "blocks.28.transformer_blocks.2.attn2.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.attn2.to_q.weight": "blocks.28.transformer_blocks.2.attn2.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.attn2.to_v.weight": "blocks.28.transformer_blocks.2.attn2.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.ff.net.0.proj.bias": "blocks.28.transformer_blocks.2.act_fn.proj.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.ff.net.0.proj.weight": "blocks.28.transformer_blocks.2.act_fn.proj.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.ff.net.2.bias": "blocks.28.transformer_blocks.2.ff.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.ff.net.2.weight": "blocks.28.transformer_blocks.2.ff.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.norm1.bias": "blocks.28.transformer_blocks.2.norm1.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.norm1.weight": "blocks.28.transformer_blocks.2.norm1.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.norm2.bias": "blocks.28.transformer_blocks.2.norm2.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.norm2.weight": "blocks.28.transformer_blocks.2.norm2.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.norm3.bias": "blocks.28.transformer_blocks.2.norm3.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.2.norm3.weight": "blocks.28.transformer_blocks.2.norm3.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.attn1.to_k.weight": "blocks.28.transformer_blocks.3.attn1.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.attn1.to_out.0.bias": "blocks.28.transformer_blocks.3.attn1.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.attn1.to_out.0.weight": "blocks.28.transformer_blocks.3.attn1.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.attn1.to_q.weight": "blocks.28.transformer_blocks.3.attn1.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.attn1.to_v.weight": "blocks.28.transformer_blocks.3.attn1.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.attn2.to_k.weight": "blocks.28.transformer_blocks.3.attn2.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.attn2.to_out.0.bias": "blocks.28.transformer_blocks.3.attn2.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.attn2.to_out.0.weight": "blocks.28.transformer_blocks.3.attn2.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.attn2.to_q.weight": "blocks.28.transformer_blocks.3.attn2.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.attn2.to_v.weight": "blocks.28.transformer_blocks.3.attn2.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.ff.net.0.proj.bias": "blocks.28.transformer_blocks.3.act_fn.proj.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.ff.net.0.proj.weight": "blocks.28.transformer_blocks.3.act_fn.proj.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.ff.net.2.bias": "blocks.28.transformer_blocks.3.ff.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.ff.net.2.weight": "blocks.28.transformer_blocks.3.ff.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.norm1.bias": "blocks.28.transformer_blocks.3.norm1.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.norm1.weight": "blocks.28.transformer_blocks.3.norm1.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.norm2.bias": "blocks.28.transformer_blocks.3.norm2.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.norm2.weight": "blocks.28.transformer_blocks.3.norm2.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.norm3.bias": "blocks.28.transformer_blocks.3.norm3.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.3.norm3.weight": "blocks.28.transformer_blocks.3.norm3.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.attn1.to_k.weight": "blocks.28.transformer_blocks.4.attn1.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.attn1.to_out.0.bias": "blocks.28.transformer_blocks.4.attn1.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.attn1.to_out.0.weight": "blocks.28.transformer_blocks.4.attn1.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.attn1.to_q.weight": "blocks.28.transformer_blocks.4.attn1.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.attn1.to_v.weight": "blocks.28.transformer_blocks.4.attn1.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.attn2.to_k.weight": "blocks.28.transformer_blocks.4.attn2.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.attn2.to_out.0.bias": "blocks.28.transformer_blocks.4.attn2.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.attn2.to_out.0.weight": "blocks.28.transformer_blocks.4.attn2.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.attn2.to_q.weight": "blocks.28.transformer_blocks.4.attn2.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.attn2.to_v.weight": "blocks.28.transformer_blocks.4.attn2.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.ff.net.0.proj.bias": "blocks.28.transformer_blocks.4.act_fn.proj.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.ff.net.0.proj.weight": "blocks.28.transformer_blocks.4.act_fn.proj.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.ff.net.2.bias": "blocks.28.transformer_blocks.4.ff.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.ff.net.2.weight": "blocks.28.transformer_blocks.4.ff.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.norm1.bias": "blocks.28.transformer_blocks.4.norm1.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.norm1.weight": "blocks.28.transformer_blocks.4.norm1.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.norm2.bias": "blocks.28.transformer_blocks.4.norm2.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.norm2.weight": "blocks.28.transformer_blocks.4.norm2.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.norm3.bias": "blocks.28.transformer_blocks.4.norm3.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.4.norm3.weight": "blocks.28.transformer_blocks.4.norm3.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.attn1.to_k.weight": "blocks.28.transformer_blocks.5.attn1.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.attn1.to_out.0.bias": "blocks.28.transformer_blocks.5.attn1.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.attn1.to_out.0.weight": "blocks.28.transformer_blocks.5.attn1.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.attn1.to_q.weight": "blocks.28.transformer_blocks.5.attn1.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.attn1.to_v.weight": "blocks.28.transformer_blocks.5.attn1.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.attn2.to_k.weight": "blocks.28.transformer_blocks.5.attn2.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.attn2.to_out.0.bias": "blocks.28.transformer_blocks.5.attn2.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.attn2.to_out.0.weight": "blocks.28.transformer_blocks.5.attn2.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.attn2.to_q.weight": "blocks.28.transformer_blocks.5.attn2.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.attn2.to_v.weight": "blocks.28.transformer_blocks.5.attn2.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.ff.net.0.proj.bias": "blocks.28.transformer_blocks.5.act_fn.proj.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.ff.net.0.proj.weight": "blocks.28.transformer_blocks.5.act_fn.proj.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.ff.net.2.bias": "blocks.28.transformer_blocks.5.ff.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.ff.net.2.weight": "blocks.28.transformer_blocks.5.ff.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.norm1.bias": "blocks.28.transformer_blocks.5.norm1.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.norm1.weight": "blocks.28.transformer_blocks.5.norm1.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.norm2.bias": "blocks.28.transformer_blocks.5.norm2.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.norm2.weight": "blocks.28.transformer_blocks.5.norm2.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.norm3.bias": "blocks.28.transformer_blocks.5.norm3.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.5.norm3.weight": "blocks.28.transformer_blocks.5.norm3.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.attn1.to_k.weight": "blocks.28.transformer_blocks.6.attn1.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.attn1.to_out.0.bias": "blocks.28.transformer_blocks.6.attn1.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.attn1.to_out.0.weight": "blocks.28.transformer_blocks.6.attn1.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.attn1.to_q.weight": "blocks.28.transformer_blocks.6.attn1.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.attn1.to_v.weight": "blocks.28.transformer_blocks.6.attn1.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.attn2.to_k.weight": "blocks.28.transformer_blocks.6.attn2.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.attn2.to_out.0.bias": "blocks.28.transformer_blocks.6.attn2.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.attn2.to_out.0.weight": "blocks.28.transformer_blocks.6.attn2.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.attn2.to_q.weight": "blocks.28.transformer_blocks.6.attn2.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.attn2.to_v.weight": "blocks.28.transformer_blocks.6.attn2.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.ff.net.0.proj.bias": "blocks.28.transformer_blocks.6.act_fn.proj.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.ff.net.0.proj.weight": "blocks.28.transformer_blocks.6.act_fn.proj.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.ff.net.2.bias": "blocks.28.transformer_blocks.6.ff.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.ff.net.2.weight": "blocks.28.transformer_blocks.6.ff.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.norm1.bias": "blocks.28.transformer_blocks.6.norm1.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.norm1.weight": "blocks.28.transformer_blocks.6.norm1.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.norm2.bias": "blocks.28.transformer_blocks.6.norm2.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.norm2.weight": "blocks.28.transformer_blocks.6.norm2.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.norm3.bias": "blocks.28.transformer_blocks.6.norm3.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.6.norm3.weight": "blocks.28.transformer_blocks.6.norm3.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.attn1.to_k.weight": "blocks.28.transformer_blocks.7.attn1.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.attn1.to_out.0.bias": "blocks.28.transformer_blocks.7.attn1.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.attn1.to_out.0.weight": "blocks.28.transformer_blocks.7.attn1.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.attn1.to_q.weight": "blocks.28.transformer_blocks.7.attn1.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.attn1.to_v.weight": "blocks.28.transformer_blocks.7.attn1.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.attn2.to_k.weight": "blocks.28.transformer_blocks.7.attn2.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.attn2.to_out.0.bias": "blocks.28.transformer_blocks.7.attn2.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.attn2.to_out.0.weight": "blocks.28.transformer_blocks.7.attn2.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.attn2.to_q.weight": "blocks.28.transformer_blocks.7.attn2.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.attn2.to_v.weight": "blocks.28.transformer_blocks.7.attn2.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.ff.net.0.proj.bias": "blocks.28.transformer_blocks.7.act_fn.proj.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.ff.net.0.proj.weight": "blocks.28.transformer_blocks.7.act_fn.proj.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.ff.net.2.bias": "blocks.28.transformer_blocks.7.ff.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.ff.net.2.weight": "blocks.28.transformer_blocks.7.ff.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.norm1.bias": "blocks.28.transformer_blocks.7.norm1.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.norm1.weight": "blocks.28.transformer_blocks.7.norm1.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.norm2.bias": "blocks.28.transformer_blocks.7.norm2.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.norm2.weight": "blocks.28.transformer_blocks.7.norm2.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.norm3.bias": "blocks.28.transformer_blocks.7.norm3.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.7.norm3.weight": "blocks.28.transformer_blocks.7.norm3.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.attn1.to_k.weight": "blocks.28.transformer_blocks.8.attn1.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.attn1.to_out.0.bias": "blocks.28.transformer_blocks.8.attn1.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.attn1.to_out.0.weight": "blocks.28.transformer_blocks.8.attn1.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.attn1.to_q.weight": "blocks.28.transformer_blocks.8.attn1.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.attn1.to_v.weight": "blocks.28.transformer_blocks.8.attn1.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.attn2.to_k.weight": "blocks.28.transformer_blocks.8.attn2.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.attn2.to_out.0.bias": "blocks.28.transformer_blocks.8.attn2.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.attn2.to_out.0.weight": "blocks.28.transformer_blocks.8.attn2.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.attn2.to_q.weight": "blocks.28.transformer_blocks.8.attn2.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.attn2.to_v.weight": "blocks.28.transformer_blocks.8.attn2.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.ff.net.0.proj.bias": "blocks.28.transformer_blocks.8.act_fn.proj.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.ff.net.0.proj.weight": "blocks.28.transformer_blocks.8.act_fn.proj.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.ff.net.2.bias": "blocks.28.transformer_blocks.8.ff.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.ff.net.2.weight": "blocks.28.transformer_blocks.8.ff.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.norm1.bias": "blocks.28.transformer_blocks.8.norm1.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.norm1.weight": "blocks.28.transformer_blocks.8.norm1.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.norm2.bias": "blocks.28.transformer_blocks.8.norm2.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.norm2.weight": "blocks.28.transformer_blocks.8.norm2.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.norm3.bias": "blocks.28.transformer_blocks.8.norm3.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.8.norm3.weight": "blocks.28.transformer_blocks.8.norm3.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.attn1.to_k.weight": "blocks.28.transformer_blocks.9.attn1.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.attn1.to_out.0.bias": "blocks.28.transformer_blocks.9.attn1.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.attn1.to_out.0.weight": "blocks.28.transformer_blocks.9.attn1.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.attn1.to_q.weight": "blocks.28.transformer_blocks.9.attn1.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.attn1.to_v.weight": "blocks.28.transformer_blocks.9.attn1.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.attn2.to_k.weight": "blocks.28.transformer_blocks.9.attn2.to_k.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.attn2.to_out.0.bias": "blocks.28.transformer_blocks.9.attn2.to_out.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.attn2.to_out.0.weight": "blocks.28.transformer_blocks.9.attn2.to_out.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.attn2.to_q.weight": "blocks.28.transformer_blocks.9.attn2.to_q.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.attn2.to_v.weight": "blocks.28.transformer_blocks.9.attn2.to_v.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.ff.net.0.proj.bias": "blocks.28.transformer_blocks.9.act_fn.proj.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.ff.net.0.proj.weight": "blocks.28.transformer_blocks.9.act_fn.proj.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.ff.net.2.bias": "blocks.28.transformer_blocks.9.ff.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.ff.net.2.weight": "blocks.28.transformer_blocks.9.ff.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.norm1.bias": "blocks.28.transformer_blocks.9.norm1.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.norm1.weight": "blocks.28.transformer_blocks.9.norm1.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.norm2.bias": "blocks.28.transformer_blocks.9.norm2.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.norm2.weight": "blocks.28.transformer_blocks.9.norm2.weight", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.norm3.bias": "blocks.28.transformer_blocks.9.norm3.bias", - "model.diffusion_model.output_blocks.1.1.transformer_blocks.9.norm3.weight": "blocks.28.transformer_blocks.9.norm3.weight", - "model.diffusion_model.output_blocks.2.0.emb_layers.1.bias": "blocks.30.time_emb_proj.bias", - "model.diffusion_model.output_blocks.2.0.emb_layers.1.weight": "blocks.30.time_emb_proj.weight", - "model.diffusion_model.output_blocks.2.0.in_layers.0.bias": "blocks.30.norm1.bias", - "model.diffusion_model.output_blocks.2.0.in_layers.0.weight": "blocks.30.norm1.weight", - "model.diffusion_model.output_blocks.2.0.in_layers.2.bias": "blocks.30.conv1.bias", - "model.diffusion_model.output_blocks.2.0.in_layers.2.weight": "blocks.30.conv1.weight", - "model.diffusion_model.output_blocks.2.0.out_layers.0.bias": "blocks.30.norm2.bias", - "model.diffusion_model.output_blocks.2.0.out_layers.0.weight": "blocks.30.norm2.weight", - "model.diffusion_model.output_blocks.2.0.out_layers.3.bias": "blocks.30.conv2.bias", - "model.diffusion_model.output_blocks.2.0.out_layers.3.weight": "blocks.30.conv2.weight", - "model.diffusion_model.output_blocks.2.0.skip_connection.bias": "blocks.30.conv_shortcut.bias", - "model.diffusion_model.output_blocks.2.0.skip_connection.weight": "blocks.30.conv_shortcut.weight", - "model.diffusion_model.output_blocks.2.1.norm.bias": "blocks.31.norm.bias", - "model.diffusion_model.output_blocks.2.1.norm.weight": "blocks.31.norm.weight", - "model.diffusion_model.output_blocks.2.1.proj_in.bias": "blocks.31.proj_in.bias", - "model.diffusion_model.output_blocks.2.1.proj_in.weight": "blocks.31.proj_in.weight", - "model.diffusion_model.output_blocks.2.1.proj_out.bias": "blocks.31.proj_out.bias", - "model.diffusion_model.output_blocks.2.1.proj_out.weight": "blocks.31.proj_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn1.to_k.weight": "blocks.31.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.31.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.31.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn1.to_q.weight": "blocks.31.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn1.to_v.weight": "blocks.31.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_k.weight": "blocks.31.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.31.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.31.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_q.weight": "blocks.31.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_v.weight": "blocks.31.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.31.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.31.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.ff.net.2.bias": "blocks.31.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.ff.net.2.weight": "blocks.31.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.norm1.bias": "blocks.31.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.norm1.weight": "blocks.31.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.norm2.bias": "blocks.31.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.norm2.weight": "blocks.31.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.norm3.bias": "blocks.31.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.0.norm3.weight": "blocks.31.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.attn1.to_k.weight": "blocks.31.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.31.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.31.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.attn1.to_q.weight": "blocks.31.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.attn1.to_v.weight": "blocks.31.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.attn2.to_k.weight": "blocks.31.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.31.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.31.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.attn2.to_q.weight": "blocks.31.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.attn2.to_v.weight": "blocks.31.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.31.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.31.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.ff.net.2.bias": "blocks.31.transformer_blocks.1.ff.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.ff.net.2.weight": "blocks.31.transformer_blocks.1.ff.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.norm1.bias": "blocks.31.transformer_blocks.1.norm1.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.norm1.weight": "blocks.31.transformer_blocks.1.norm1.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.norm2.bias": "blocks.31.transformer_blocks.1.norm2.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.norm2.weight": "blocks.31.transformer_blocks.1.norm2.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.norm3.bias": "blocks.31.transformer_blocks.1.norm3.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.1.norm3.weight": "blocks.31.transformer_blocks.1.norm3.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.attn1.to_k.weight": "blocks.31.transformer_blocks.2.attn1.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.attn1.to_out.0.bias": "blocks.31.transformer_blocks.2.attn1.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.attn1.to_out.0.weight": "blocks.31.transformer_blocks.2.attn1.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.attn1.to_q.weight": "blocks.31.transformer_blocks.2.attn1.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.attn1.to_v.weight": "blocks.31.transformer_blocks.2.attn1.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.attn2.to_k.weight": "blocks.31.transformer_blocks.2.attn2.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.attn2.to_out.0.bias": "blocks.31.transformer_blocks.2.attn2.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.attn2.to_out.0.weight": "blocks.31.transformer_blocks.2.attn2.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.attn2.to_q.weight": "blocks.31.transformer_blocks.2.attn2.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.attn2.to_v.weight": "blocks.31.transformer_blocks.2.attn2.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.ff.net.0.proj.bias": "blocks.31.transformer_blocks.2.act_fn.proj.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.ff.net.0.proj.weight": "blocks.31.transformer_blocks.2.act_fn.proj.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.ff.net.2.bias": "blocks.31.transformer_blocks.2.ff.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.ff.net.2.weight": "blocks.31.transformer_blocks.2.ff.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.norm1.bias": "blocks.31.transformer_blocks.2.norm1.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.norm1.weight": "blocks.31.transformer_blocks.2.norm1.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.norm2.bias": "blocks.31.transformer_blocks.2.norm2.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.norm2.weight": "blocks.31.transformer_blocks.2.norm2.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.norm3.bias": "blocks.31.transformer_blocks.2.norm3.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.2.norm3.weight": "blocks.31.transformer_blocks.2.norm3.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.attn1.to_k.weight": "blocks.31.transformer_blocks.3.attn1.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.attn1.to_out.0.bias": "blocks.31.transformer_blocks.3.attn1.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.attn1.to_out.0.weight": "blocks.31.transformer_blocks.3.attn1.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.attn1.to_q.weight": "blocks.31.transformer_blocks.3.attn1.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.attn1.to_v.weight": "blocks.31.transformer_blocks.3.attn1.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.attn2.to_k.weight": "blocks.31.transformer_blocks.3.attn2.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.attn2.to_out.0.bias": "blocks.31.transformer_blocks.3.attn2.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.attn2.to_out.0.weight": "blocks.31.transformer_blocks.3.attn2.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.attn2.to_q.weight": "blocks.31.transformer_blocks.3.attn2.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.attn2.to_v.weight": "blocks.31.transformer_blocks.3.attn2.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.ff.net.0.proj.bias": "blocks.31.transformer_blocks.3.act_fn.proj.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.ff.net.0.proj.weight": "blocks.31.transformer_blocks.3.act_fn.proj.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.ff.net.2.bias": "blocks.31.transformer_blocks.3.ff.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.ff.net.2.weight": "blocks.31.transformer_blocks.3.ff.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.norm1.bias": "blocks.31.transformer_blocks.3.norm1.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.norm1.weight": "blocks.31.transformer_blocks.3.norm1.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.norm2.bias": "blocks.31.transformer_blocks.3.norm2.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.norm2.weight": "blocks.31.transformer_blocks.3.norm2.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.norm3.bias": "blocks.31.transformer_blocks.3.norm3.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.3.norm3.weight": "blocks.31.transformer_blocks.3.norm3.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn1.to_k.weight": "blocks.31.transformer_blocks.4.attn1.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn1.to_out.0.bias": "blocks.31.transformer_blocks.4.attn1.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn1.to_out.0.weight": "blocks.31.transformer_blocks.4.attn1.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn1.to_q.weight": "blocks.31.transformer_blocks.4.attn1.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn1.to_v.weight": "blocks.31.transformer_blocks.4.attn1.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_k.weight": "blocks.31.transformer_blocks.4.attn2.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_out.0.bias": "blocks.31.transformer_blocks.4.attn2.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_out.0.weight": "blocks.31.transformer_blocks.4.attn2.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_q.weight": "blocks.31.transformer_blocks.4.attn2.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_v.weight": "blocks.31.transformer_blocks.4.attn2.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.ff.net.0.proj.bias": "blocks.31.transformer_blocks.4.act_fn.proj.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.ff.net.0.proj.weight": "blocks.31.transformer_blocks.4.act_fn.proj.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.ff.net.2.bias": "blocks.31.transformer_blocks.4.ff.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.ff.net.2.weight": "blocks.31.transformer_blocks.4.ff.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.norm1.bias": "blocks.31.transformer_blocks.4.norm1.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.norm1.weight": "blocks.31.transformer_blocks.4.norm1.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.norm2.bias": "blocks.31.transformer_blocks.4.norm2.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.norm2.weight": "blocks.31.transformer_blocks.4.norm2.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.norm3.bias": "blocks.31.transformer_blocks.4.norm3.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.4.norm3.weight": "blocks.31.transformer_blocks.4.norm3.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn1.to_k.weight": "blocks.31.transformer_blocks.5.attn1.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn1.to_out.0.bias": "blocks.31.transformer_blocks.5.attn1.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn1.to_out.0.weight": "blocks.31.transformer_blocks.5.attn1.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn1.to_q.weight": "blocks.31.transformer_blocks.5.attn1.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn1.to_v.weight": "blocks.31.transformer_blocks.5.attn1.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_k.weight": "blocks.31.transformer_blocks.5.attn2.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_out.0.bias": "blocks.31.transformer_blocks.5.attn2.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_out.0.weight": "blocks.31.transformer_blocks.5.attn2.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_q.weight": "blocks.31.transformer_blocks.5.attn2.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_v.weight": "blocks.31.transformer_blocks.5.attn2.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.ff.net.0.proj.bias": "blocks.31.transformer_blocks.5.act_fn.proj.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.ff.net.0.proj.weight": "blocks.31.transformer_blocks.5.act_fn.proj.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.ff.net.2.bias": "blocks.31.transformer_blocks.5.ff.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.ff.net.2.weight": "blocks.31.transformer_blocks.5.ff.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.norm1.bias": "blocks.31.transformer_blocks.5.norm1.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.norm1.weight": "blocks.31.transformer_blocks.5.norm1.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.norm2.bias": "blocks.31.transformer_blocks.5.norm2.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.norm2.weight": "blocks.31.transformer_blocks.5.norm2.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.norm3.bias": "blocks.31.transformer_blocks.5.norm3.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.5.norm3.weight": "blocks.31.transformer_blocks.5.norm3.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn1.to_k.weight": "blocks.31.transformer_blocks.6.attn1.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn1.to_out.0.bias": "blocks.31.transformer_blocks.6.attn1.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn1.to_out.0.weight": "blocks.31.transformer_blocks.6.attn1.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn1.to_q.weight": "blocks.31.transformer_blocks.6.attn1.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn1.to_v.weight": "blocks.31.transformer_blocks.6.attn1.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_k.weight": "blocks.31.transformer_blocks.6.attn2.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_out.0.bias": "blocks.31.transformer_blocks.6.attn2.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_out.0.weight": "blocks.31.transformer_blocks.6.attn2.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_q.weight": "blocks.31.transformer_blocks.6.attn2.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_v.weight": "blocks.31.transformer_blocks.6.attn2.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.ff.net.0.proj.bias": "blocks.31.transformer_blocks.6.act_fn.proj.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.ff.net.0.proj.weight": "blocks.31.transformer_blocks.6.act_fn.proj.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.ff.net.2.bias": "blocks.31.transformer_blocks.6.ff.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.ff.net.2.weight": "blocks.31.transformer_blocks.6.ff.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.norm1.bias": "blocks.31.transformer_blocks.6.norm1.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.norm1.weight": "blocks.31.transformer_blocks.6.norm1.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.norm2.bias": "blocks.31.transformer_blocks.6.norm2.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.norm2.weight": "blocks.31.transformer_blocks.6.norm2.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.norm3.bias": "blocks.31.transformer_blocks.6.norm3.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.6.norm3.weight": "blocks.31.transformer_blocks.6.norm3.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn1.to_k.weight": "blocks.31.transformer_blocks.7.attn1.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn1.to_out.0.bias": "blocks.31.transformer_blocks.7.attn1.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn1.to_out.0.weight": "blocks.31.transformer_blocks.7.attn1.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn1.to_q.weight": "blocks.31.transformer_blocks.7.attn1.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn1.to_v.weight": "blocks.31.transformer_blocks.7.attn1.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_k.weight": "blocks.31.transformer_blocks.7.attn2.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_out.0.bias": "blocks.31.transformer_blocks.7.attn2.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_out.0.weight": "blocks.31.transformer_blocks.7.attn2.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_q.weight": "blocks.31.transformer_blocks.7.attn2.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_v.weight": "blocks.31.transformer_blocks.7.attn2.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.ff.net.0.proj.bias": "blocks.31.transformer_blocks.7.act_fn.proj.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.ff.net.0.proj.weight": "blocks.31.transformer_blocks.7.act_fn.proj.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.ff.net.2.bias": "blocks.31.transformer_blocks.7.ff.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.ff.net.2.weight": "blocks.31.transformer_blocks.7.ff.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.norm1.bias": "blocks.31.transformer_blocks.7.norm1.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.norm1.weight": "blocks.31.transformer_blocks.7.norm1.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.norm2.bias": "blocks.31.transformer_blocks.7.norm2.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.norm2.weight": "blocks.31.transformer_blocks.7.norm2.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.norm3.bias": "blocks.31.transformer_blocks.7.norm3.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.7.norm3.weight": "blocks.31.transformer_blocks.7.norm3.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn1.to_k.weight": "blocks.31.transformer_blocks.8.attn1.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn1.to_out.0.bias": "blocks.31.transformer_blocks.8.attn1.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn1.to_out.0.weight": "blocks.31.transformer_blocks.8.attn1.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn1.to_q.weight": "blocks.31.transformer_blocks.8.attn1.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn1.to_v.weight": "blocks.31.transformer_blocks.8.attn1.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_k.weight": "blocks.31.transformer_blocks.8.attn2.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_out.0.bias": "blocks.31.transformer_blocks.8.attn2.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_out.0.weight": "blocks.31.transformer_blocks.8.attn2.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_q.weight": "blocks.31.transformer_blocks.8.attn2.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_v.weight": "blocks.31.transformer_blocks.8.attn2.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.ff.net.0.proj.bias": "blocks.31.transformer_blocks.8.act_fn.proj.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.ff.net.0.proj.weight": "blocks.31.transformer_blocks.8.act_fn.proj.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.ff.net.2.bias": "blocks.31.transformer_blocks.8.ff.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.ff.net.2.weight": "blocks.31.transformer_blocks.8.ff.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.norm1.bias": "blocks.31.transformer_blocks.8.norm1.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.norm1.weight": "blocks.31.transformer_blocks.8.norm1.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.norm2.bias": "blocks.31.transformer_blocks.8.norm2.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.norm2.weight": "blocks.31.transformer_blocks.8.norm2.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.norm3.bias": "blocks.31.transformer_blocks.8.norm3.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.8.norm3.weight": "blocks.31.transformer_blocks.8.norm3.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn1.to_k.weight": "blocks.31.transformer_blocks.9.attn1.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn1.to_out.0.bias": "blocks.31.transformer_blocks.9.attn1.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn1.to_out.0.weight": "blocks.31.transformer_blocks.9.attn1.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn1.to_q.weight": "blocks.31.transformer_blocks.9.attn1.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn1.to_v.weight": "blocks.31.transformer_blocks.9.attn1.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_k.weight": "blocks.31.transformer_blocks.9.attn2.to_k.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_out.0.bias": "blocks.31.transformer_blocks.9.attn2.to_out.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_out.0.weight": "blocks.31.transformer_blocks.9.attn2.to_out.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_q.weight": "blocks.31.transformer_blocks.9.attn2.to_q.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_v.weight": "blocks.31.transformer_blocks.9.attn2.to_v.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.ff.net.0.proj.bias": "blocks.31.transformer_blocks.9.act_fn.proj.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.ff.net.0.proj.weight": "blocks.31.transformer_blocks.9.act_fn.proj.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.ff.net.2.bias": "blocks.31.transformer_blocks.9.ff.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.ff.net.2.weight": "blocks.31.transformer_blocks.9.ff.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.norm1.bias": "blocks.31.transformer_blocks.9.norm1.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.norm1.weight": "blocks.31.transformer_blocks.9.norm1.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.norm2.bias": "blocks.31.transformer_blocks.9.norm2.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.norm2.weight": "blocks.31.transformer_blocks.9.norm2.weight", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.norm3.bias": "blocks.31.transformer_blocks.9.norm3.bias", - "model.diffusion_model.output_blocks.2.1.transformer_blocks.9.norm3.weight": "blocks.31.transformer_blocks.9.norm3.weight", - "model.diffusion_model.output_blocks.2.2.conv.bias": "blocks.32.conv.bias", - "model.diffusion_model.output_blocks.2.2.conv.weight": "blocks.32.conv.weight", - "model.diffusion_model.output_blocks.3.0.emb_layers.1.bias": "blocks.34.time_emb_proj.bias", - "model.diffusion_model.output_blocks.3.0.emb_layers.1.weight": "blocks.34.time_emb_proj.weight", - "model.diffusion_model.output_blocks.3.0.in_layers.0.bias": "blocks.34.norm1.bias", - "model.diffusion_model.output_blocks.3.0.in_layers.0.weight": "blocks.34.norm1.weight", - "model.diffusion_model.output_blocks.3.0.in_layers.2.bias": "blocks.34.conv1.bias", - "model.diffusion_model.output_blocks.3.0.in_layers.2.weight": "blocks.34.conv1.weight", - "model.diffusion_model.output_blocks.3.0.out_layers.0.bias": "blocks.34.norm2.bias", - "model.diffusion_model.output_blocks.3.0.out_layers.0.weight": "blocks.34.norm2.weight", - "model.diffusion_model.output_blocks.3.0.out_layers.3.bias": "blocks.34.conv2.bias", - "model.diffusion_model.output_blocks.3.0.out_layers.3.weight": "blocks.34.conv2.weight", - "model.diffusion_model.output_blocks.3.0.skip_connection.bias": "blocks.34.conv_shortcut.bias", - "model.diffusion_model.output_blocks.3.0.skip_connection.weight": "blocks.34.conv_shortcut.weight", - "model.diffusion_model.output_blocks.3.1.norm.bias": "blocks.35.norm.bias", - "model.diffusion_model.output_blocks.3.1.norm.weight": "blocks.35.norm.weight", - "model.diffusion_model.output_blocks.3.1.proj_in.bias": "blocks.35.proj_in.bias", - "model.diffusion_model.output_blocks.3.1.proj_in.weight": "blocks.35.proj_in.weight", - "model.diffusion_model.output_blocks.3.1.proj_out.bias": "blocks.35.proj_out.bias", - "model.diffusion_model.output_blocks.3.1.proj_out.weight": "blocks.35.proj_out.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k.weight": "blocks.35.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.35.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.35.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q.weight": "blocks.35.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v.weight": "blocks.35.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight": "blocks.35.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.35.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.35.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q.weight": "blocks.35.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight": "blocks.35.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.35.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.35.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.bias": "blocks.35.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.weight": "blocks.35.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.bias": "blocks.35.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.weight": "blocks.35.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.bias": "blocks.35.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight": "blocks.35.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.bias": "blocks.35.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.weight": "blocks.35.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.attn1.to_k.weight": "blocks.35.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.35.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.35.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.attn1.to_q.weight": "blocks.35.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.attn1.to_v.weight": "blocks.35.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.attn2.to_k.weight": "blocks.35.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.35.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.35.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.attn2.to_q.weight": "blocks.35.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.attn2.to_v.weight": "blocks.35.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.35.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.35.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.ff.net.2.bias": "blocks.35.transformer_blocks.1.ff.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.ff.net.2.weight": "blocks.35.transformer_blocks.1.ff.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.norm1.bias": "blocks.35.transformer_blocks.1.norm1.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.norm1.weight": "blocks.35.transformer_blocks.1.norm1.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.norm2.bias": "blocks.35.transformer_blocks.1.norm2.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.norm2.weight": "blocks.35.transformer_blocks.1.norm2.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.norm3.bias": "blocks.35.transformer_blocks.1.norm3.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.1.norm3.weight": "blocks.35.transformer_blocks.1.norm3.weight", - "model.diffusion_model.output_blocks.4.0.emb_layers.1.bias": "blocks.37.time_emb_proj.bias", - "model.diffusion_model.output_blocks.4.0.emb_layers.1.weight": "blocks.37.time_emb_proj.weight", - "model.diffusion_model.output_blocks.4.0.in_layers.0.bias": "blocks.37.norm1.bias", - "model.diffusion_model.output_blocks.4.0.in_layers.0.weight": "blocks.37.norm1.weight", - "model.diffusion_model.output_blocks.4.0.in_layers.2.bias": "blocks.37.conv1.bias", - "model.diffusion_model.output_blocks.4.0.in_layers.2.weight": "blocks.37.conv1.weight", - "model.diffusion_model.output_blocks.4.0.out_layers.0.bias": "blocks.37.norm2.bias", - "model.diffusion_model.output_blocks.4.0.out_layers.0.weight": "blocks.37.norm2.weight", - "model.diffusion_model.output_blocks.4.0.out_layers.3.bias": "blocks.37.conv2.bias", - "model.diffusion_model.output_blocks.4.0.out_layers.3.weight": "blocks.37.conv2.weight", - "model.diffusion_model.output_blocks.4.0.skip_connection.bias": "blocks.37.conv_shortcut.bias", - "model.diffusion_model.output_blocks.4.0.skip_connection.weight": "blocks.37.conv_shortcut.weight", - "model.diffusion_model.output_blocks.4.1.norm.bias": "blocks.38.norm.bias", - "model.diffusion_model.output_blocks.4.1.norm.weight": "blocks.38.norm.weight", - "model.diffusion_model.output_blocks.4.1.proj_in.bias": "blocks.38.proj_in.bias", - "model.diffusion_model.output_blocks.4.1.proj_in.weight": "blocks.38.proj_in.weight", - "model.diffusion_model.output_blocks.4.1.proj_out.bias": "blocks.38.proj_out.bias", - "model.diffusion_model.output_blocks.4.1.proj_out.weight": "blocks.38.proj_out.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.38.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.38.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.38.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.38.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.38.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.38.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.38.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.38.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.38.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.38.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.38.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.38.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.38.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.38.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.38.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.38.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.38.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.38.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.38.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.38.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.attn1.to_k.weight": "blocks.38.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.38.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.38.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.attn1.to_q.weight": "blocks.38.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.attn1.to_v.weight": "blocks.38.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.attn2.to_k.weight": "blocks.38.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.38.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.38.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.attn2.to_q.weight": "blocks.38.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.attn2.to_v.weight": "blocks.38.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.38.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.38.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.ff.net.2.bias": "blocks.38.transformer_blocks.1.ff.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.ff.net.2.weight": "blocks.38.transformer_blocks.1.ff.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.norm1.bias": "blocks.38.transformer_blocks.1.norm1.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.norm1.weight": "blocks.38.transformer_blocks.1.norm1.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.norm2.bias": "blocks.38.transformer_blocks.1.norm2.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.norm2.weight": "blocks.38.transformer_blocks.1.norm2.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.norm3.bias": "blocks.38.transformer_blocks.1.norm3.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.1.norm3.weight": "blocks.38.transformer_blocks.1.norm3.weight", - "model.diffusion_model.output_blocks.5.0.emb_layers.1.bias": "blocks.40.time_emb_proj.bias", - "model.diffusion_model.output_blocks.5.0.emb_layers.1.weight": "blocks.40.time_emb_proj.weight", - "model.diffusion_model.output_blocks.5.0.in_layers.0.bias": "blocks.40.norm1.bias", - "model.diffusion_model.output_blocks.5.0.in_layers.0.weight": "blocks.40.norm1.weight", - "model.diffusion_model.output_blocks.5.0.in_layers.2.bias": "blocks.40.conv1.bias", - "model.diffusion_model.output_blocks.5.0.in_layers.2.weight": "blocks.40.conv1.weight", - "model.diffusion_model.output_blocks.5.0.out_layers.0.bias": "blocks.40.norm2.bias", - "model.diffusion_model.output_blocks.5.0.out_layers.0.weight": "blocks.40.norm2.weight", - "model.diffusion_model.output_blocks.5.0.out_layers.3.bias": "blocks.40.conv2.bias", - "model.diffusion_model.output_blocks.5.0.out_layers.3.weight": "blocks.40.conv2.weight", - "model.diffusion_model.output_blocks.5.0.skip_connection.bias": "blocks.40.conv_shortcut.bias", - "model.diffusion_model.output_blocks.5.0.skip_connection.weight": "blocks.40.conv_shortcut.weight", - "model.diffusion_model.output_blocks.5.1.norm.bias": "blocks.41.norm.bias", - "model.diffusion_model.output_blocks.5.1.norm.weight": "blocks.41.norm.weight", - "model.diffusion_model.output_blocks.5.1.proj_in.bias": "blocks.41.proj_in.bias", - "model.diffusion_model.output_blocks.5.1.proj_in.weight": "blocks.41.proj_in.weight", - "model.diffusion_model.output_blocks.5.1.proj_out.bias": "blocks.41.proj_out.bias", - "model.diffusion_model.output_blocks.5.1.proj_out.weight": "blocks.41.proj_out.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.41.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.41.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.41.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.41.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.41.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.41.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.41.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.41.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.41.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.41.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.41.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.41.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.41.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.41.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.41.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.41.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.41.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.41.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.41.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.41.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.attn1.to_k.weight": "blocks.41.transformer_blocks.1.attn1.to_k.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.attn1.to_out.0.bias": "blocks.41.transformer_blocks.1.attn1.to_out.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.attn1.to_out.0.weight": "blocks.41.transformer_blocks.1.attn1.to_out.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.attn1.to_q.weight": "blocks.41.transformer_blocks.1.attn1.to_q.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.attn1.to_v.weight": "blocks.41.transformer_blocks.1.attn1.to_v.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.attn2.to_k.weight": "blocks.41.transformer_blocks.1.attn2.to_k.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.attn2.to_out.0.bias": "blocks.41.transformer_blocks.1.attn2.to_out.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.attn2.to_out.0.weight": "blocks.41.transformer_blocks.1.attn2.to_out.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.attn2.to_q.weight": "blocks.41.transformer_blocks.1.attn2.to_q.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.attn2.to_v.weight": "blocks.41.transformer_blocks.1.attn2.to_v.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.ff.net.0.proj.bias": "blocks.41.transformer_blocks.1.act_fn.proj.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.ff.net.0.proj.weight": "blocks.41.transformer_blocks.1.act_fn.proj.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.ff.net.2.bias": "blocks.41.transformer_blocks.1.ff.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.ff.net.2.weight": "blocks.41.transformer_blocks.1.ff.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.norm1.bias": "blocks.41.transformer_blocks.1.norm1.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.norm1.weight": "blocks.41.transformer_blocks.1.norm1.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.norm2.bias": "blocks.41.transformer_blocks.1.norm2.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.norm2.weight": "blocks.41.transformer_blocks.1.norm2.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.norm3.bias": "blocks.41.transformer_blocks.1.norm3.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.1.norm3.weight": "blocks.41.transformer_blocks.1.norm3.weight", - "model.diffusion_model.output_blocks.5.2.conv.bias": "blocks.42.conv.bias", - "model.diffusion_model.output_blocks.5.2.conv.weight": "blocks.42.conv.weight", - "model.diffusion_model.output_blocks.6.0.emb_layers.1.bias": "blocks.44.time_emb_proj.bias", - "model.diffusion_model.output_blocks.6.0.emb_layers.1.weight": "blocks.44.time_emb_proj.weight", - "model.diffusion_model.output_blocks.6.0.in_layers.0.bias": "blocks.44.norm1.bias", - "model.diffusion_model.output_blocks.6.0.in_layers.0.weight": "blocks.44.norm1.weight", - "model.diffusion_model.output_blocks.6.0.in_layers.2.bias": "blocks.44.conv1.bias", - "model.diffusion_model.output_blocks.6.0.in_layers.2.weight": "blocks.44.conv1.weight", - "model.diffusion_model.output_blocks.6.0.out_layers.0.bias": "blocks.44.norm2.bias", - "model.diffusion_model.output_blocks.6.0.out_layers.0.weight": "blocks.44.norm2.weight", - "model.diffusion_model.output_blocks.6.0.out_layers.3.bias": "blocks.44.conv2.bias", - "model.diffusion_model.output_blocks.6.0.out_layers.3.weight": "blocks.44.conv2.weight", - "model.diffusion_model.output_blocks.6.0.skip_connection.bias": "blocks.44.conv_shortcut.bias", - "model.diffusion_model.output_blocks.6.0.skip_connection.weight": "blocks.44.conv_shortcut.weight", - "model.diffusion_model.output_blocks.7.0.emb_layers.1.bias": "blocks.46.time_emb_proj.bias", - "model.diffusion_model.output_blocks.7.0.emb_layers.1.weight": "blocks.46.time_emb_proj.weight", - "model.diffusion_model.output_blocks.7.0.in_layers.0.bias": "blocks.46.norm1.bias", - "model.diffusion_model.output_blocks.7.0.in_layers.0.weight": "blocks.46.norm1.weight", - "model.diffusion_model.output_blocks.7.0.in_layers.2.bias": "blocks.46.conv1.bias", - "model.diffusion_model.output_blocks.7.0.in_layers.2.weight": "blocks.46.conv1.weight", - "model.diffusion_model.output_blocks.7.0.out_layers.0.bias": "blocks.46.norm2.bias", - "model.diffusion_model.output_blocks.7.0.out_layers.0.weight": "blocks.46.norm2.weight", - "model.diffusion_model.output_blocks.7.0.out_layers.3.bias": "blocks.46.conv2.bias", - "model.diffusion_model.output_blocks.7.0.out_layers.3.weight": "blocks.46.conv2.weight", - "model.diffusion_model.output_blocks.7.0.skip_connection.bias": "blocks.46.conv_shortcut.bias", - "model.diffusion_model.output_blocks.7.0.skip_connection.weight": "blocks.46.conv_shortcut.weight", - "model.diffusion_model.output_blocks.8.0.emb_layers.1.bias": "blocks.48.time_emb_proj.bias", - "model.diffusion_model.output_blocks.8.0.emb_layers.1.weight": "blocks.48.time_emb_proj.weight", - "model.diffusion_model.output_blocks.8.0.in_layers.0.bias": "blocks.48.norm1.bias", - "model.diffusion_model.output_blocks.8.0.in_layers.0.weight": "blocks.48.norm1.weight", - "model.diffusion_model.output_blocks.8.0.in_layers.2.bias": "blocks.48.conv1.bias", - "model.diffusion_model.output_blocks.8.0.in_layers.2.weight": "blocks.48.conv1.weight", - "model.diffusion_model.output_blocks.8.0.out_layers.0.bias": "blocks.48.norm2.bias", - "model.diffusion_model.output_blocks.8.0.out_layers.0.weight": "blocks.48.norm2.weight", - "model.diffusion_model.output_blocks.8.0.out_layers.3.bias": "blocks.48.conv2.bias", - "model.diffusion_model.output_blocks.8.0.out_layers.3.weight": "blocks.48.conv2.weight", - "model.diffusion_model.output_blocks.8.0.skip_connection.bias": "blocks.48.conv_shortcut.bias", - "model.diffusion_model.output_blocks.8.0.skip_connection.weight": "blocks.48.conv_shortcut.weight", - "model.diffusion_model.time_embed.0.bias": "time_embedding.0.bias", - "model.diffusion_model.time_embed.0.weight": "time_embedding.0.weight", - "model.diffusion_model.time_embed.2.bias": "time_embedding.2.bias", - "model.diffusion_model.time_embed.2.weight": "time_embedding.2.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if ".proj_in." in name or ".proj_out." in name: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - if "text_intermediate_proj.weight" in state_dict_: - return state_dict_, {"is_kolors": True} - else: - return state_dict_ diff --git a/diffsynth/models/sdxl_vae_decoder.py b/diffsynth/models/sdxl_vae_decoder.py deleted file mode 100644 index 290c7851e3619f61a1baa2ddb3ad77180809297d..0000000000000000000000000000000000000000 --- a/diffsynth/models/sdxl_vae_decoder.py +++ /dev/null @@ -1,24 +0,0 @@ -from .sd_vae_decoder import SDVAEDecoder, SDVAEDecoderStateDictConverter - - -class SDXLVAEDecoder(SDVAEDecoder): - def __init__(self, upcast_to_float32=True): - super().__init__() - self.scaling_factor = 0.13025 - - @staticmethod - def state_dict_converter(): - return SDXLVAEDecoderStateDictConverter() - - -class SDXLVAEDecoderStateDictConverter(SDVAEDecoderStateDictConverter): - def __init__(self): - super().__init__() - - def from_diffusers(self, state_dict): - state_dict = super().from_diffusers(state_dict) - return state_dict, {"upcast_to_float32": True} - - def from_civitai(self, state_dict): - state_dict = super().from_civitai(state_dict) - return state_dict, {"upcast_to_float32": True} diff --git a/diffsynth/models/sdxl_vae_encoder.py b/diffsynth/models/sdxl_vae_encoder.py deleted file mode 100644 index 14af09cd33c41452b9777daa6819115eb900b788..0000000000000000000000000000000000000000 --- a/diffsynth/models/sdxl_vae_encoder.py +++ /dev/null @@ -1,24 +0,0 @@ -from .sd_vae_encoder import SDVAEEncoderStateDictConverter, SDVAEEncoder - - -class SDXLVAEEncoder(SDVAEEncoder): - def __init__(self, upcast_to_float32=True): - super().__init__() - self.scaling_factor = 0.13025 - - @staticmethod - def state_dict_converter(): - return SDXLVAEEncoderStateDictConverter() - - -class SDXLVAEEncoderStateDictConverter(SDVAEEncoderStateDictConverter): - def __init__(self): - super().__init__() - - def from_diffusers(self, state_dict): - state_dict = super().from_diffusers(state_dict) - return state_dict, {"upcast_to_float32": True} - - def from_civitai(self, state_dict): - state_dict = super().from_civitai(state_dict) - return state_dict, {"upcast_to_float32": True} diff --git a/diffsynth/models/stepvideo_dit.py b/diffsynth/models/stepvideo_dit.py deleted file mode 100644 index 10576e77dbbcd9ac10e1e5b4ed8d52362e6ad82a..0000000000000000000000000000000000000000 --- a/diffsynth/models/stepvideo_dit.py +++ /dev/null @@ -1,940 +0,0 @@ -# Copyright 2025 StepFun Inc. All Rights Reserved. -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# ============================================================================== -from typing import Dict, Optional, Tuple, Union, List -import torch, math -from torch import nn -from einops import rearrange, repeat -from tqdm import tqdm - - -class RMSNorm(nn.Module): - def __init__( - self, - dim: int, - elementwise_affine=True, - eps: float = 1e-6, - device=None, - dtype=None, - ): - """ - Initialize the RMSNorm normalization layer. - - Args: - dim (int): The dimension of the input tensor. - eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. - - Attributes: - eps (float): A small value added to the denominator for numerical stability. - weight (nn.Parameter): Learnable scaling parameter. - - """ - factory_kwargs = {"device": device, "dtype": dtype} - super().__init__() - self.eps = eps - if elementwise_affine: - self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs)) - - def _norm(self, x): - """ - Apply the RMSNorm normalization to the input tensor. - - Args: - x (torch.Tensor): The input tensor. - - Returns: - torch.Tensor: The normalized tensor. - - """ - return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) - - def forward(self, x): - """ - Forward pass through the RMSNorm layer. - - Args: - x (torch.Tensor): The input tensor. - - Returns: - torch.Tensor: The output tensor after applying RMSNorm. - - """ - output = self._norm(x.float()).type_as(x) - if hasattr(self, "weight"): - output = output * self.weight - return output - - -ACTIVATION_FUNCTIONS = { - "swish": nn.SiLU(), - "silu": nn.SiLU(), - "mish": nn.Mish(), - "gelu": nn.GELU(), - "relu": nn.ReLU(), -} - - -def get_activation(act_fn: str) -> nn.Module: - """Helper function to get activation function from string. - - Args: - act_fn (str): Name of activation function. - - Returns: - nn.Module: Activation function. - """ - - act_fn = act_fn.lower() - if act_fn in ACTIVATION_FUNCTIONS: - return ACTIVATION_FUNCTIONS[act_fn] - else: - raise ValueError(f"Unsupported activation function: {act_fn}") - - -def get_timestep_embedding( - timesteps: torch.Tensor, - embedding_dim: int, - flip_sin_to_cos: bool = False, - downscale_freq_shift: float = 1, - scale: float = 1, - max_period: int = 10000, -): - """ - This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. - - :param timesteps: a 1-D Tensor of N indices, one per batch element. - These may be fractional. - :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the - embeddings. :return: an [N x dim] Tensor of positional embeddings. - """ - assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" - - half_dim = embedding_dim // 2 - exponent = -math.log(max_period) * torch.arange( - start=0, end=half_dim, dtype=torch.float32, device=timesteps.device - ) - exponent = exponent / (half_dim - downscale_freq_shift) - - emb = torch.exp(exponent) - emb = timesteps[:, None].float() * emb[None, :] - - # scale embeddings - emb = scale * emb - - # concat sine and cosine embeddings - emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) - - # flip sine and cosine embeddings - if flip_sin_to_cos: - emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) - - # zero pad - if embedding_dim % 2 == 1: - emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) - return emb - - -class Timesteps(nn.Module): - def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float): - super().__init__() - self.num_channels = num_channels - self.flip_sin_to_cos = flip_sin_to_cos - self.downscale_freq_shift = downscale_freq_shift - - def forward(self, timesteps): - t_emb = get_timestep_embedding( - timesteps, - self.num_channels, - flip_sin_to_cos=self.flip_sin_to_cos, - downscale_freq_shift=self.downscale_freq_shift, - ) - return t_emb - - -class TimestepEmbedding(nn.Module): - def __init__( - self, - in_channels: int, - time_embed_dim: int, - act_fn: str = "silu", - out_dim: int = None, - post_act_fn: Optional[str] = None, - cond_proj_dim=None, - sample_proj_bias=True - ): - super().__init__() - linear_cls = nn.Linear - - self.linear_1 = linear_cls( - in_channels, - time_embed_dim, - bias=sample_proj_bias, - ) - - if cond_proj_dim is not None: - self.cond_proj = linear_cls( - cond_proj_dim, - in_channels, - bias=False, - ) - else: - self.cond_proj = None - - self.act = get_activation(act_fn) - - if out_dim is not None: - time_embed_dim_out = out_dim - else: - time_embed_dim_out = time_embed_dim - - self.linear_2 = linear_cls( - time_embed_dim, - time_embed_dim_out, - bias=sample_proj_bias, - ) - - if post_act_fn is None: - self.post_act = None - else: - self.post_act = get_activation(post_act_fn) - - def forward(self, sample, condition=None): - if condition is not None: - sample = sample + self.cond_proj(condition) - sample = self.linear_1(sample) - - if self.act is not None: - sample = self.act(sample) - - sample = self.linear_2(sample) - - if self.post_act is not None: - sample = self.post_act(sample) - return sample - - -class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module): - def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): - super().__init__() - - self.outdim = size_emb_dim - self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) - self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) - - self.use_additional_conditions = use_additional_conditions - if self.use_additional_conditions: - self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) - self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) - self.nframe_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) - self.fps_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) - - def forward(self, timestep, resolution=None, nframe=None, fps=None): - hidden_dtype = timestep.dtype - - timesteps_proj = self.time_proj(timestep) - timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) - - if self.use_additional_conditions: - batch_size = timestep.shape[0] - resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype) - resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1) - nframe_emb = self.additional_condition_proj(nframe.flatten()).to(hidden_dtype) - nframe_emb = self.nframe_embedder(nframe_emb).reshape(batch_size, -1) - conditioning = timesteps_emb + resolution_emb + nframe_emb - - if fps is not None: - fps_emb = self.additional_condition_proj(fps.flatten()).to(hidden_dtype) - fps_emb = self.fps_embedder(fps_emb).reshape(batch_size, -1) - conditioning = conditioning + fps_emb - else: - conditioning = timesteps_emb - - return conditioning - - -class AdaLayerNormSingle(nn.Module): - r""" - Norm layer adaptive layer norm single (adaLN-single). - - As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). - - Parameters: - embedding_dim (`int`): The size of each embedding vector. - use_additional_conditions (`bool`): To use additional conditions for normalization or not. - """ - def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, time_step_rescale=1000): - super().__init__() - - self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings( - embedding_dim, size_emb_dim=embedding_dim // 2, use_additional_conditions=use_additional_conditions - ) - - self.silu = nn.SiLU() - self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) - - self.time_step_rescale = time_step_rescale ## timestep usually in [0, 1], we rescale it to [0,1000] for stability - - def forward( - self, - timestep: torch.Tensor, - added_cond_kwargs: Dict[str, torch.Tensor] = None, - ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: - embedded_timestep = self.emb(timestep*self.time_step_rescale, **added_cond_kwargs) - - out = self.linear(self.silu(embedded_timestep)) - - return out, embedded_timestep - - -class PixArtAlphaTextProjection(nn.Module): - """ - Projects caption embeddings. Also handles dropout for classifier-free guidance. - - Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py - """ - - def __init__(self, in_features, hidden_size): - super().__init__() - self.linear_1 = nn.Linear( - in_features, - hidden_size, - bias=True, - ) - self.act_1 = nn.GELU(approximate="tanh") - self.linear_2 = nn.Linear( - hidden_size, - hidden_size, - bias=True, - ) - - def forward(self, caption): - hidden_states = self.linear_1(caption) - hidden_states = self.act_1(hidden_states) - hidden_states = self.linear_2(hidden_states) - return hidden_states - - -class Attention(nn.Module): - def __init__(self): - super().__init__() - - def attn_processor(self, attn_type): - if attn_type == 'torch': - return self.torch_attn_func - elif attn_type == 'parallel': - return self.parallel_attn_func - else: - raise Exception('Not supported attention type...') - - def torch_attn_func( - self, - q, - k, - v, - attn_mask=None, - causal=False, - drop_rate=0.0, - **kwargs - ): - - if attn_mask is not None and attn_mask.dtype != torch.bool: - attn_mask = attn_mask.to(q.dtype) - - if attn_mask is not None and attn_mask.ndim == 3: ## no head - n_heads = q.shape[2] - attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) - - q, k, v = map(lambda x: rearrange(x, 'b s h d -> b h s d'), (q, k, v)) - if attn_mask is not None: - attn_mask = attn_mask.to(q.device) - x = torch.nn.functional.scaled_dot_product_attention( - q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal - ) - x = rearrange(x, 'b h s d -> b s h d') - return x - - -class RoPE1D: - def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0): - self.base = freq - self.F0 = F0 - self.scaling_factor = scaling_factor - self.cache = {} - - def get_cos_sin(self, D, seq_len, device, dtype): - if (D, seq_len, device, dtype) not in self.cache: - inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) - t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) - freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) - freqs = torch.cat((freqs, freqs), dim=-1) - cos = freqs.cos() # (Seq, Dim) - sin = freqs.sin() - self.cache[D, seq_len, device, dtype] = (cos, sin) - return self.cache[D, seq_len, device, dtype] - - @staticmethod - def rotate_half(x): - x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:] - return torch.cat((-x2, x1), dim=-1) - - def apply_rope1d(self, tokens, pos1d, cos, sin): - assert pos1d.ndim == 2 - cos = torch.nn.functional.embedding(pos1d, cos)[:, :, None, :] - sin = torch.nn.functional.embedding(pos1d, sin)[:, :, None, :] - return (tokens * cos) + (self.rotate_half(tokens) * sin) - - def __call__(self, tokens, positions): - """ - input: - * tokens: batch_size x ntokens x nheads x dim - * positions: batch_size x ntokens (t position of each token) - output: - * tokens after applying RoPE2D (batch_size x ntokens x nheads x dim) - """ - D = tokens.size(3) - assert positions.ndim == 2 # Batch, Seq - cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype) - tokens = self.apply_rope1d(tokens, positions, cos, sin) - return tokens - - -class RoPE3D(RoPE1D): - def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0): - super(RoPE3D, self).__init__(freq, F0, scaling_factor) - self.position_cache = {} - - def get_mesh_3d(self, rope_positions, bsz): - f, h, w = rope_positions - - if f"{f}-{h}-{w}" not in self.position_cache: - x = torch.arange(f, device='cpu') - y = torch.arange(h, device='cpu') - z = torch.arange(w, device='cpu') - self.position_cache[f"{f}-{h}-{w}"] = torch.cartesian_prod(x, y, z).view(1, f*h*w, 3).expand(bsz, -1, 3) - return self.position_cache[f"{f}-{h}-{w}"] - - def __call__(self, tokens, rope_positions, ch_split, parallel=False): - """ - input: - * tokens: batch_size x ntokens x nheads x dim - * rope_positions: list of (f, h, w) - output: - * tokens after applying RoPE2D (batch_size x ntokens x nheads x dim) - """ - assert sum(ch_split) == tokens.size(-1); - - mesh_grid = self.get_mesh_3d(rope_positions, bsz=tokens.shape[0]) - out = [] - for i, (D, x) in enumerate(zip(ch_split, torch.split(tokens, ch_split, dim=-1))): - cos, sin = self.get_cos_sin(D, int(mesh_grid.max()) + 1, tokens.device, tokens.dtype) - - if parallel: - pass - else: - mesh = mesh_grid[:, :, i].clone() - x = self.apply_rope1d(x, mesh.to(tokens.device), cos, sin) - out.append(x) - - tokens = torch.cat(out, dim=-1) - return tokens - - -class SelfAttention(Attention): - def __init__(self, hidden_dim, head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type='torch'): - super().__init__() - self.head_dim = head_dim - self.n_heads = hidden_dim // head_dim - - self.wqkv = nn.Linear(hidden_dim, hidden_dim*3, bias=bias) - self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias) - - self.with_rope = with_rope - self.with_qk_norm = with_qk_norm - if self.with_qk_norm: - self.q_norm = RMSNorm(head_dim, elementwise_affine=True) - self.k_norm = RMSNorm(head_dim, elementwise_affine=True) - - if self.with_rope: - self.rope_3d = RoPE3D(freq=1e4, F0=1.0, scaling_factor=1.0) - self.rope_ch_split = [64, 32, 32] - - self.core_attention = self.attn_processor(attn_type=attn_type) - self.parallel = attn_type=='parallel' - - def apply_rope3d(self, x, fhw_positions, rope_ch_split, parallel=True): - x = self.rope_3d(x, fhw_positions, rope_ch_split, parallel) - return x - - def forward( - self, - x, - cu_seqlens=None, - max_seqlen=None, - rope_positions=None, - attn_mask=None - ): - xqkv = self.wqkv(x) - xqkv = xqkv.view(*x.shape[:-1], self.n_heads, 3*self.head_dim) - - xq, xk, xv = torch.split(xqkv, [self.head_dim]*3, dim=-1) ## seq_len, n, dim - - if self.with_qk_norm: - xq = self.q_norm(xq) - xk = self.k_norm(xk) - - if self.with_rope: - xq = self.apply_rope3d(xq, rope_positions, self.rope_ch_split, parallel=self.parallel) - xk = self.apply_rope3d(xk, rope_positions, self.rope_ch_split, parallel=self.parallel) - - output = self.core_attention( - xq, - xk, - xv, - cu_seqlens=cu_seqlens, - max_seqlen=max_seqlen, - attn_mask=attn_mask - ) - output = rearrange(output, 'b s h d -> b s (h d)') - output = self.wo(output) - - return output - - -class CrossAttention(Attention): - def __init__(self, hidden_dim, head_dim, bias=False, with_qk_norm=True, attn_type='torch'): - super().__init__() - self.head_dim = head_dim - self.n_heads = hidden_dim // head_dim - - self.wq = nn.Linear(hidden_dim, hidden_dim, bias=bias) - self.wkv = nn.Linear(hidden_dim, hidden_dim*2, bias=bias) - self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias) - - self.with_qk_norm = with_qk_norm - if self.with_qk_norm: - self.q_norm = RMSNorm(head_dim, elementwise_affine=True) - self.k_norm = RMSNorm(head_dim, elementwise_affine=True) - - self.core_attention = self.attn_processor(attn_type=attn_type) - - def forward( - self, - x: torch.Tensor, - encoder_hidden_states: torch.Tensor, - attn_mask=None - ): - xq = self.wq(x) - xq = xq.view(*xq.shape[:-1], self.n_heads, self.head_dim) - - xkv = self.wkv(encoder_hidden_states) - xkv = xkv.view(*xkv.shape[:-1], self.n_heads, 2*self.head_dim) - - xk, xv = torch.split(xkv, [self.head_dim]*2, dim=-1) ## seq_len, n, dim - - if self.with_qk_norm: - xq = self.q_norm(xq) - xk = self.k_norm(xk) - - output = self.core_attention( - xq, - xk, - xv, - attn_mask=attn_mask - ) - - output = rearrange(output, 'b s h d -> b s (h d)') - output = self.wo(output) - - return output - - -class GELU(nn.Module): - r""" - GELU activation function with tanh approximation support with `approximate="tanh"`. - - Parameters: - dim_in (`int`): The number of channels in the input. - dim_out (`int`): The number of channels in the output. - approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation. - bias (`bool`, defaults to True): Whether to use a bias in the linear layer. - """ - - def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True): - super().__init__() - self.proj = nn.Linear(dim_in, dim_out, bias=bias) - self.approximate = approximate - - def gelu(self, gate: torch.Tensor) -> torch.Tensor: - return torch.nn.functional.gelu(gate, approximate=self.approximate) - - def forward(self, hidden_states): - hidden_states = self.proj(hidden_states) - hidden_states = self.gelu(hidden_states) - return hidden_states - - -class FeedForward(nn.Module): - def __init__( - self, - dim: int, - inner_dim: Optional[int] = None, - dim_out: Optional[int] = None, - mult: int = 4, - bias: bool = False, - ): - super().__init__() - inner_dim = dim*mult if inner_dim is None else inner_dim - dim_out = dim if dim_out is None else dim_out - self.net = nn.ModuleList([ - GELU(dim, inner_dim, approximate="tanh", bias=bias), - nn.Identity(), - nn.Linear(inner_dim, dim_out, bias=bias) - ]) - - - def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor: - for module in self.net: - hidden_states = module(hidden_states) - return hidden_states - - -def modulate(x, scale, shift): - x = x * (1 + scale) + shift - return x - - -def gate(x, gate): - x = gate * x - return x - - -class StepVideoTransformerBlock(nn.Module): - r""" - A basic Transformer block. - - Parameters: - dim (`int`): The number of channels in the input and output. - num_attention_heads (`int`): The number of heads to use for multi-head attention. - attention_head_dim (`int`): The number of channels in each head. - dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. - cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. - activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. - num_embeds_ada_norm (: - obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. - attention_bias (: - obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. - only_cross_attention (`bool`, *optional*): - Whether to use only cross-attention layers. In this case two cross attention layers are used. - double_self_attention (`bool`, *optional*): - Whether to use two self-attention layers. In this case no cross attention layers are used. - upcast_attention (`bool`, *optional*): - Whether to upcast the attention computation to float32. This is useful for mixed precision training. - norm_elementwise_affine (`bool`, *optional*, defaults to `True`): - Whether to use learnable elementwise affine parameters for normalization. - norm_type (`str`, *optional*, defaults to `"layer_norm"`): - The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. - final_dropout (`bool` *optional*, defaults to False): - Whether to apply a final dropout after the last feed-forward layer. - attention_type (`str`, *optional*, defaults to `"default"`): - The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. - positional_embeddings (`str`, *optional*, defaults to `None`): - The type of positional embeddings to apply to. - num_positional_embeddings (`int`, *optional*, defaults to `None`): - The maximum number of positional embeddings to apply. - """ - - def __init__( - self, - dim: int, - attention_head_dim: int, - norm_eps: float = 1e-5, - ff_inner_dim: Optional[int] = None, - ff_bias: bool = False, - attention_type: str = 'parallel' - ): - super().__init__() - self.dim = dim - self.norm1 = nn.LayerNorm(dim, eps=norm_eps) - self.attn1 = SelfAttention(dim, attention_head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type=attention_type) - - self.norm2 = nn.LayerNorm(dim, eps=norm_eps) - self.attn2 = CrossAttention(dim, attention_head_dim, bias=False, with_qk_norm=True, attn_type='torch') - - self.ff = FeedForward(dim=dim, inner_dim=ff_inner_dim, dim_out=dim, bias=ff_bias) - - self.scale_shift_table = nn.Parameter(torch.randn(6, dim) /dim**0.5) - - @torch.no_grad() - def forward( - self, - q: torch.Tensor, - kv: Optional[torch.Tensor] = None, - timestep: Optional[torch.LongTensor] = None, - attn_mask = None, - rope_positions: list = None, - ) -> torch.Tensor: - shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( - torch.clone(chunk) for chunk in (self.scale_shift_table[None].to(dtype=q.dtype, device=q.device) + timestep.reshape(-1, 6, self.dim)).chunk(6, dim=1) - ) - - scale_shift_q = modulate(self.norm1(q), scale_msa, shift_msa) - - attn_q = self.attn1( - scale_shift_q, - rope_positions=rope_positions - ) - - q = gate(attn_q, gate_msa) + q - - attn_q = self.attn2( - q, - kv, - attn_mask - ) - - q = attn_q + q - - scale_shift_q = modulate(self.norm2(q), scale_mlp, shift_mlp) - - ff_output = self.ff(scale_shift_q) - - q = gate(ff_output, gate_mlp) + q - - return q - - -class PatchEmbed(nn.Module): - """2D Image to Patch Embedding""" - - def __init__( - self, - patch_size=64, - in_channels=3, - embed_dim=768, - layer_norm=False, - flatten=True, - bias=True, - ): - super().__init__() - - self.flatten = flatten - self.layer_norm = layer_norm - - self.proj = nn.Conv2d( - in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias - ) - - def forward(self, latent): - latent = self.proj(latent).to(latent.dtype) - if self.flatten: - latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC - if self.layer_norm: - latent = self.norm(latent) - - return latent - - -class StepVideoModel(torch.nn.Module): - def __init__( - self, - num_attention_heads: int = 48, - attention_head_dim: int = 128, - in_channels: int = 64, - out_channels: Optional[int] = 64, - num_layers: int = 48, - dropout: float = 0.0, - patch_size: int = 1, - norm_type: str = "ada_norm_single", - norm_elementwise_affine: bool = False, - norm_eps: float = 1e-6, - use_additional_conditions: Optional[bool] = False, - caption_channels: Optional[Union[int, List, Tuple]] = [6144, 1024], - attention_type: Optional[str] = "torch", - ): - super().__init__() - - # Set some common variables used across the board. - self.inner_dim = num_attention_heads * attention_head_dim - self.out_channels = in_channels if out_channels is None else out_channels - - self.use_additional_conditions = use_additional_conditions - - self.pos_embed = PatchEmbed( - patch_size=patch_size, - in_channels=in_channels, - embed_dim=self.inner_dim, - ) - - self.transformer_blocks = nn.ModuleList( - [ - StepVideoTransformerBlock( - dim=self.inner_dim, - attention_head_dim=attention_head_dim, - attention_type=attention_type - ) - for _ in range(num_layers) - ] - ) - - # 3. Output blocks. - self.norm_out = nn.LayerNorm(self.inner_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) - self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) - self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels) - self.patch_size = patch_size - - self.adaln_single = AdaLayerNormSingle( - self.inner_dim, use_additional_conditions=self.use_additional_conditions - ) - - if isinstance(caption_channels, int): - caption_channel = caption_channels - else: - caption_channel, clip_channel = caption_channels - self.clip_projection = nn.Linear(clip_channel, self.inner_dim) - - self.caption_norm = nn.LayerNorm(caption_channel, eps=norm_eps, elementwise_affine=norm_elementwise_affine) - - self.caption_projection = PixArtAlphaTextProjection( - in_features=caption_channel, hidden_size=self.inner_dim - ) - - self.parallel = attention_type=='parallel' - - def patchfy(self, hidden_states): - hidden_states = rearrange(hidden_states, 'b f c h w -> (b f) c h w') - hidden_states = self.pos_embed(hidden_states) - return hidden_states - - def prepare_attn_mask(self, encoder_attention_mask, encoder_hidden_states, q_seqlen): - kv_seqlens = encoder_attention_mask.sum(dim=1).int() - mask = torch.zeros([len(kv_seqlens), q_seqlen, max(kv_seqlens)], dtype=torch.bool, device=encoder_attention_mask.device) - encoder_hidden_states = encoder_hidden_states[:,: max(kv_seqlens)] - for i, kv_len in enumerate(kv_seqlens): - mask[i, :, :kv_len] = 1 - return encoder_hidden_states, mask - - - def block_forward( - self, - hidden_states, - encoder_hidden_states=None, - timestep=None, - rope_positions=None, - attn_mask=None, - parallel=True - ): - for block in tqdm(self.transformer_blocks, desc="Transformer blocks"): - hidden_states = block( - hidden_states, - encoder_hidden_states, - timestep=timestep, - attn_mask=attn_mask, - rope_positions=rope_positions - ) - - return hidden_states - - - @torch.inference_mode() - def forward( - self, - hidden_states: torch.Tensor, - encoder_hidden_states: Optional[torch.Tensor] = None, - encoder_hidden_states_2: Optional[torch.Tensor] = None, - timestep: Optional[torch.LongTensor] = None, - added_cond_kwargs: Dict[str, torch.Tensor] = None, - encoder_attention_mask: Optional[torch.Tensor] = None, - fps: torch.Tensor=None, - return_dict: bool = False, - ): - assert hidden_states.ndim==5; "hidden_states's shape should be (bsz, f, ch, h ,w)" - - bsz, frame, _, height, width = hidden_states.shape - height, width = height // self.patch_size, width // self.patch_size - - hidden_states = self.patchfy(hidden_states) - len_frame = hidden_states.shape[1] - - if self.use_additional_conditions: - added_cond_kwargs = { - "resolution": torch.tensor([(height, width)]*bsz, device=hidden_states.device, dtype=hidden_states.dtype), - "nframe": torch.tensor([frame]*bsz, device=hidden_states.device, dtype=hidden_states.dtype), - "fps": fps - } - else: - added_cond_kwargs = {} - - timestep, embedded_timestep = self.adaln_single( - timestep, added_cond_kwargs=added_cond_kwargs - ) - - encoder_hidden_states = self.caption_projection(self.caption_norm(encoder_hidden_states)) - - if encoder_hidden_states_2 is not None and hasattr(self, 'clip_projection'): - clip_embedding = self.clip_projection(encoder_hidden_states_2) - encoder_hidden_states = torch.cat([clip_embedding, encoder_hidden_states], dim=1) - - hidden_states = rearrange(hidden_states, '(b f) l d-> b (f l) d', b=bsz, f=frame, l=len_frame).contiguous() - encoder_hidden_states, attn_mask = self.prepare_attn_mask(encoder_attention_mask, encoder_hidden_states, q_seqlen=frame*len_frame) - - hidden_states = self.block_forward( - hidden_states, - encoder_hidden_states, - timestep=timestep, - rope_positions=[frame, height, width], - attn_mask=attn_mask, - parallel=self.parallel - ) - - hidden_states = rearrange(hidden_states, 'b (f l) d -> (b f) l d', b=bsz, f=frame, l=len_frame) - - embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame).contiguous() - - shift, scale = (self.scale_shift_table[None].to(dtype=embedded_timestep.dtype, device=embedded_timestep.device) + embedded_timestep[:, None]).chunk(2, dim=1) - hidden_states = self.norm_out(hidden_states) - # Modulation - hidden_states = hidden_states * (1 + scale) + shift - hidden_states = self.proj_out(hidden_states) - - # unpatchify - hidden_states = hidden_states.reshape( - shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) - ) - - hidden_states = rearrange(hidden_states, 'n h w p q c -> n c h p w q') - output = hidden_states.reshape( - shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) - ) - - output = rearrange(output, '(b f) c h w -> b f c h w', f=frame) - - if return_dict: - return {'x': output} - return output - - @staticmethod - def state_dict_converter(): - return StepVideoDiTStateDictConverter() - - -class StepVideoDiTStateDictConverter: - def __init__(self): - super().__init__() - - def from_diffusers(self, state_dict): - return state_dict - - def from_civitai(self, state_dict): - return state_dict - - - \ No newline at end of file diff --git a/diffsynth/models/stepvideo_text_encoder.py b/diffsynth/models/stepvideo_text_encoder.py deleted file mode 100644 index 598825a9402ea15183c9ff1488943f3bb4e5a548..0000000000000000000000000000000000000000 --- a/diffsynth/models/stepvideo_text_encoder.py +++ /dev/null @@ -1,553 +0,0 @@ -# Copyright 2025 StepFun Inc. All Rights Reserved. -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# ============================================================================== -import os -from typing import Optional - -import torch -import torch.nn as nn -import torch.nn.functional as F -from .stepvideo_dit import RMSNorm -from safetensors.torch import load_file -from transformers.modeling_utils import PretrainedConfig, PreTrainedModel -from einops import rearrange -import json -from typing import List -from functools import wraps -import warnings - - - -class EmptyInitOnDevice(torch.overrides.TorchFunctionMode): - def __init__(self, device=None): - self.device = device - - def __torch_function__(self, func, types, args=(), kwargs=None): - kwargs = kwargs or {} - if getattr(func, '__module__', None) == 'torch.nn.init': - if 'tensor' in kwargs: - return kwargs['tensor'] - else: - return args[0] - if self.device is not None and func in torch.utils._device._device_constructors() and kwargs.get('device') is None: - kwargs['device'] = self.device - return func(*args, **kwargs) - - -def with_empty_init(func): - @wraps(func) - def wrapper(*args, **kwargs): - with EmptyInitOnDevice('cpu'): - return func(*args, **kwargs) - return wrapper - - - -class LLaMaEmbedding(nn.Module): - """Language model embeddings. - - Arguments: - hidden_size: hidden size - vocab_size: vocabulary size - max_sequence_length: maximum size of sequence. This - is used for positional embedding - embedding_dropout_prob: dropout probability for embeddings - init_method: weight initialization method - num_tokentypes: size of the token-type embeddings. 0 value - will ignore this embedding - """ - - def __init__(self, - cfg, - ): - super().__init__() - self.hidden_size = cfg.hidden_size - self.params_dtype = cfg.params_dtype - self.fp32_residual_connection = cfg.fp32_residual_connection - self.embedding_weights_in_fp32 = cfg.embedding_weights_in_fp32 - self.word_embeddings = torch.nn.Embedding( - cfg.padded_vocab_size, self.hidden_size, - ) - self.embedding_dropout = torch.nn.Dropout(cfg.hidden_dropout) - - def forward(self, input_ids): - # Embeddings. - if self.embedding_weights_in_fp32: - self.word_embeddings = self.word_embeddings.to(torch.float32) - embeddings = self.word_embeddings(input_ids) - if self.embedding_weights_in_fp32: - embeddings = embeddings.to(self.params_dtype) - self.word_embeddings = self.word_embeddings.to(self.params_dtype) - - # Data format change to avoid explicit transposes : [b s h] --> [s b h]. - embeddings = embeddings.transpose(0, 1).contiguous() - - # If the input flag for fp32 residual connection is set, convert for float. - if self.fp32_residual_connection: - embeddings = embeddings.float() - - # Dropout. - embeddings = self.embedding_dropout(embeddings) - - return embeddings - - - -class StepChatTokenizer: - """Step Chat Tokenizer""" - - def __init__( - self, model_file, name="StepChatTokenizer", - bot_token="<|BOT|>", # Begin of Turn - eot_token="<|EOT|>", # End of Turn - call_start_token="<|CALL_START|>", # Call Start - call_end_token="<|CALL_END|>", # Call End - think_start_token="<|THINK_START|>", # Think Start - think_end_token="<|THINK_END|>", # Think End - mask_start_token="<|MASK_1e69f|>", # Mask start - mask_end_token="<|UNMASK_1e69f|>", # Mask end - ): - import sentencepiece - - self._tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file) - - self._vocab = {} - self._inv_vocab = {} - - self._special_tokens = {} - self._inv_special_tokens = {} - - self._t5_tokens = [] - - for idx in range(self._tokenizer.get_piece_size()): - text = self._tokenizer.id_to_piece(idx) - self._inv_vocab[idx] = text - self._vocab[text] = idx - - if self._tokenizer.is_control(idx) or self._tokenizer.is_unknown(idx): - self._special_tokens[text] = idx - self._inv_special_tokens[idx] = text - - self._unk_id = self._tokenizer.unk_id() - self._bos_id = self._tokenizer.bos_id() - self._eos_id = self._tokenizer.eos_id() - - for token in [ - bot_token, eot_token, call_start_token, call_end_token, - think_start_token, think_end_token - ]: - assert token in self._vocab, f"Token '{token}' not found in tokenizer" - assert token in self._special_tokens, f"Token '{token}' is not a special token" - - for token in [mask_start_token, mask_end_token]: - assert token in self._vocab, f"Token '{token}' not found in tokenizer" - - self._bot_id = self._tokenizer.piece_to_id(bot_token) - self._eot_id = self._tokenizer.piece_to_id(eot_token) - self._call_start_id = self._tokenizer.piece_to_id(call_start_token) - self._call_end_id = self._tokenizer.piece_to_id(call_end_token) - self._think_start_id = self._tokenizer.piece_to_id(think_start_token) - self._think_end_id = self._tokenizer.piece_to_id(think_end_token) - self._mask_start_id = self._tokenizer.piece_to_id(mask_start_token) - self._mask_end_id = self._tokenizer.piece_to_id(mask_end_token) - - self._underline_id = self._tokenizer.piece_to_id("\u2581") - - @property - def vocab(self): - return self._vocab - - @property - def inv_vocab(self): - return self._inv_vocab - - @property - def vocab_size(self): - return self._tokenizer.vocab_size() - - def tokenize(self, text: str) -> List[int]: - return self._tokenizer.encode_as_ids(text) - - def detokenize(self, token_ids: List[int]) -> str: - return self._tokenizer.decode_ids(token_ids) - - -class Tokens: - def __init__(self, input_ids, cu_input_ids, attention_mask, cu_seqlens, max_seq_len) -> None: - self.input_ids = input_ids - self.attention_mask = attention_mask - self.cu_input_ids = cu_input_ids - self.cu_seqlens = cu_seqlens - self.max_seq_len = max_seq_len - def to(self, device): - self.input_ids = self.input_ids.to(device) - self.attention_mask = self.attention_mask.to(device) - self.cu_input_ids = self.cu_input_ids.to(device) - self.cu_seqlens = self.cu_seqlens.to(device) - return self - -class Wrapped_StepChatTokenizer(StepChatTokenizer): - def __call__(self, text, max_length=320, padding="max_length", truncation=True, return_tensors="pt"): - # [bos, ..., eos, pad, pad, ..., pad] - self.BOS = 1 - self.EOS = 2 - self.PAD = 2 - out_tokens = [] - attn_mask = [] - if len(text) == 0: - part_tokens = [self.BOS] + [self.EOS] - valid_size = len(part_tokens) - if len(part_tokens) < max_length: - part_tokens += [self.PAD] * (max_length - valid_size) - out_tokens.append(part_tokens) - attn_mask.append([1]*valid_size+[0]*(max_length-valid_size)) - else: - for part in text: - part_tokens = self.tokenize(part) - part_tokens = part_tokens[:(max_length - 2)] # leave 2 space for bos and eos - part_tokens = [self.BOS] + part_tokens + [self.EOS] - valid_size = len(part_tokens) - if len(part_tokens) < max_length: - part_tokens += [self.PAD] * (max_length - valid_size) - out_tokens.append(part_tokens) - attn_mask.append([1]*valid_size+[0]*(max_length-valid_size)) - - out_tokens = torch.tensor(out_tokens, dtype=torch.long) - attn_mask = torch.tensor(attn_mask, dtype=torch.long) - - # padding y based on tp size - padded_len = 0 - padded_flag = True if padded_len > 0 else False - if padded_flag: - pad_tokens = torch.tensor([[self.PAD] * max_length], device=out_tokens.device) - pad_attn_mask = torch.tensor([[1]*padded_len+[0]*(max_length-padded_len)], device=attn_mask.device) - out_tokens = torch.cat([out_tokens, pad_tokens], dim=0) - attn_mask = torch.cat([attn_mask, pad_attn_mask], dim=0) - - # cu_seqlens - cu_out_tokens = out_tokens.masked_select(attn_mask != 0).unsqueeze(0) - seqlen = attn_mask.sum(dim=1).tolist() - cu_seqlens = torch.cumsum(torch.tensor([0]+seqlen), 0).to(device=out_tokens.device,dtype=torch.int32) - max_seq_len = max(seqlen) - return Tokens(out_tokens, cu_out_tokens, attn_mask, cu_seqlens, max_seq_len) - - - -def flash_attn_func(q, k, v, dropout_p=0.0, softmax_scale=None, causal=True, - return_attn_probs=False, tp_group_rank=0, tp_group_size=1): - softmax_scale = q.size(-1) ** (-0.5) if softmax_scale is None else softmax_scale - if hasattr(torch.ops.Optimus, "fwd"): - results = torch.ops.Optimus.fwd(q, k, v, None, dropout_p, softmax_scale, causal, return_attn_probs, None, tp_group_rank, tp_group_size)[0] - else: - warnings.warn("Cannot load `torch.ops.Optimus.fwd`. Using `torch.nn.functional.scaled_dot_product_attention` instead.") - results = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True, scale=softmax_scale).transpose(1, 2) - return results - - -class FlashSelfAttention(torch.nn.Module): - def __init__( - self, - attention_dropout=0.0, - ): - super().__init__() - self.dropout_p = attention_dropout - - - def forward(self, q, k, v, cu_seqlens=None, max_seq_len=None): - if cu_seqlens is None: - output = flash_attn_func(q, k, v, dropout_p=self.dropout_p) - else: - raise ValueError('cu_seqlens is not supported!') - - return output - - - -def safediv(n, d): - q, r = divmod(n, d) - assert r == 0 - return q - - -class MultiQueryAttention(nn.Module): - def __init__(self, cfg, layer_id=None): - super().__init__() - - self.head_dim = cfg.hidden_size // cfg.num_attention_heads - self.max_seq_len = cfg.seq_length - self.use_flash_attention = cfg.use_flash_attn - assert self.use_flash_attention, 'FlashAttention is required!' - - self.n_groups = cfg.num_attention_groups - self.tp_size = 1 - self.n_local_heads = cfg.num_attention_heads - self.n_local_groups = self.n_groups - - self.wqkv = nn.Linear( - cfg.hidden_size, - cfg.hidden_size + self.head_dim * 2 * self.n_groups, - bias=False, - ) - self.wo = nn.Linear( - cfg.hidden_size, - cfg.hidden_size, - bias=False, - ) - - assert self.use_flash_attention, 'non-Flash attention not supported yet.' - self.core_attention = FlashSelfAttention(attention_dropout=cfg.attention_dropout) - - self.layer_id = layer_id - - def forward( - self, - x: torch.Tensor, - mask: Optional[torch.Tensor], - cu_seqlens: Optional[torch.Tensor], - max_seq_len: Optional[torch.Tensor], - ): - seqlen, bsz, dim = x.shape - xqkv = self.wqkv(x) - - xq, xkv = torch.split( - xqkv, - (dim // self.tp_size, - self.head_dim*2*self.n_groups // self.tp_size - ), - dim=-1, - ) - - # gather on 1st dimension - xq = xq.view(seqlen, bsz, self.n_local_heads, self.head_dim) - xkv = xkv.view(seqlen, bsz, self.n_local_groups, 2 * self.head_dim) - xk, xv = xkv.chunk(2, -1) - - # rotary embedding + flash attn - xq = rearrange(xq, "s b h d -> b s h d") - xk = rearrange(xk, "s b h d -> b s h d") - xv = rearrange(xv, "s b h d -> b s h d") - - q_per_kv = self.n_local_heads // self.n_local_groups - if q_per_kv > 1: - b, s, h, d = xk.size() - if h == 1: - xk = xk.expand(b, s, q_per_kv, d) - xv = xv.expand(b, s, q_per_kv, d) - else: - ''' To cover the cases where h > 1, we have - the following implementation, which is equivalent to: - xk = xk.repeat_interleave(q_per_kv, dim=-2) - xv = xv.repeat_interleave(q_per_kv, dim=-2) - but can avoid calling aten::item() that involves cpu. - ''' - idx = torch.arange(q_per_kv * h, device=xk.device).reshape(q_per_kv, -1).permute(1, 0).flatten() - xk = torch.index_select(xk.repeat(1, 1, q_per_kv, 1), 2, idx).contiguous() - xv = torch.index_select(xv.repeat(1, 1, q_per_kv, 1), 2, idx).contiguous() - - if self.use_flash_attention: - output = self.core_attention(xq, xk, xv, - cu_seqlens=cu_seqlens, - max_seq_len=max_seq_len) - # reduce-scatter only support first dimension now - output = rearrange(output, "b s h d -> s b (h d)").contiguous() - else: - xq, xk, xv = [ - rearrange(x, "b s ... -> s b ...").contiguous() - for x in (xq, xk, xv) - ] - output = self.core_attention(xq, xk, xv, mask) - output = self.wo(output) - return output - - - -class FeedForward(nn.Module): - def __init__( - self, - cfg, - dim: int, - hidden_dim: int, - layer_id: int, - multiple_of: int=256, - ): - super().__init__() - - hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) - def swiglu(x): - x = torch.chunk(x, 2, dim=-1) - return F.silu(x[0]) * x[1] - self.swiglu = swiglu - - self.w1 = nn.Linear( - dim, - 2 * hidden_dim, - bias=False, - ) - self.w2 = nn.Linear( - hidden_dim, - dim, - bias=False, - ) - - def forward(self, x): - x = self.swiglu(self.w1(x)) - output = self.w2(x) - return output - - - -class TransformerBlock(nn.Module): - def __init__( - self, cfg, layer_id: int - ): - super().__init__() - - self.n_heads = cfg.num_attention_heads - self.dim = cfg.hidden_size - self.head_dim = cfg.hidden_size // cfg.num_attention_heads - self.attention = MultiQueryAttention( - cfg, - layer_id=layer_id, - ) - - self.feed_forward = FeedForward( - cfg, - dim=cfg.hidden_size, - hidden_dim=cfg.ffn_hidden_size, - layer_id=layer_id, - ) - self.layer_id = layer_id - self.attention_norm = RMSNorm( - cfg.hidden_size, - eps=cfg.layernorm_epsilon, - ) - self.ffn_norm = RMSNorm( - cfg.hidden_size, - eps=cfg.layernorm_epsilon, - ) - - def forward( - self, - x: torch.Tensor, - mask: Optional[torch.Tensor], - cu_seqlens: Optional[torch.Tensor], - max_seq_len: Optional[torch.Tensor], - ): - residual = self.attention.forward( - self.attention_norm(x), mask, - cu_seqlens, max_seq_len - ) - h = x + residual - ffn_res = self.feed_forward.forward(self.ffn_norm(h)) - out = h + ffn_res - return out - - -class Transformer(nn.Module): - def __init__( - self, - config, - max_seq_size=8192, - ): - super().__init__() - self.num_layers = config.num_layers - self.layers = self._build_layers(config) - - def _build_layers(self, config): - layers = torch.nn.ModuleList() - for layer_id in range(self.num_layers): - layers.append( - TransformerBlock( - config, - layer_id=layer_id + 1 , - ) - ) - return layers - - def forward( - self, - hidden_states, - attention_mask, - cu_seqlens=None, - max_seq_len=None, - ): - - if max_seq_len is not None and not isinstance(max_seq_len, torch.Tensor): - max_seq_len = torch.tensor(max_seq_len, dtype=torch.int32, device="cpu") - - for lid, layer in enumerate(self.layers): - hidden_states = layer( - hidden_states, - attention_mask, - cu_seqlens, - max_seq_len, - ) - return hidden_states - - -class Step1Model(PreTrainedModel): - config_class=PretrainedConfig - @with_empty_init - def __init__( - self, - config, - ): - super().__init__(config) - self.tok_embeddings = LLaMaEmbedding(config) - self.transformer = Transformer(config) - - def forward( - self, - input_ids=None, - attention_mask=None, - ): - - hidden_states = self.tok_embeddings(input_ids) - - hidden_states = self.transformer( - hidden_states, - attention_mask, - ) - return hidden_states - - - -class STEP1TextEncoder(torch.nn.Module): - def __init__(self, model_dir, max_length=320): - super(STEP1TextEncoder, self).__init__() - self.max_length = max_length - self.text_tokenizer = Wrapped_StepChatTokenizer(os.path.join(model_dir, 'step1_chat_tokenizer.model')) - text_encoder = Step1Model.from_pretrained(model_dir) - self.text_encoder = text_encoder.eval().to(torch.bfloat16) - - @staticmethod - def from_pretrained(path, torch_dtype=torch.bfloat16): - model = STEP1TextEncoder(path).to(torch_dtype) - return model - - @torch.no_grad - def forward(self, prompts, with_mask=True, max_length=None, device="cuda"): - self.device = device - with torch.no_grad(), torch.amp.autocast(dtype=torch.bfloat16, device_type=device): - if type(prompts) is str: - prompts = [prompts] - - txt_tokens = self.text_tokenizer( - prompts, max_length=max_length or self.max_length, padding="max_length", truncation=True, return_tensors="pt" - ) - y = self.text_encoder( - txt_tokens.input_ids.to(self.device), - attention_mask=txt_tokens.attention_mask.to(self.device) if with_mask else None - ) - y_mask = txt_tokens.attention_mask - return y.transpose(0,1), y_mask - diff --git a/diffsynth/models/stepvideo_vae.py b/diffsynth/models/stepvideo_vae.py deleted file mode 100644 index db244c00de53c29f87de67956e472fabad17256b..0000000000000000000000000000000000000000 --- a/diffsynth/models/stepvideo_vae.py +++ /dev/null @@ -1,1132 +0,0 @@ -# Copyright 2025 StepFun Inc. All Rights Reserved. -# -# Permission is hereby granted, free of charge, to any person obtaining a copy -# of this software and associated documentation files (the "Software"), to deal -# in the Software without restriction, including without limitation the rights -# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -# copies of the Software, and to permit persons to whom the Software is -# furnished to do so, subject to the following conditions: -# -# The above copyright notice and this permission notice shall be included in all -# copies or substantial portions of the Software. -# ============================================================================== -import torch -from einops import rearrange -from torch import nn -from torch.nn import functional as F -from tqdm import tqdm -from einops import repeat - - -class BaseGroupNorm(nn.GroupNorm): - def __init__(self, num_groups, num_channels): - super().__init__(num_groups=num_groups, num_channels=num_channels) - - def forward(self, x, zero_pad=False, **kwargs): - if zero_pad: - return base_group_norm_with_zero_pad(x, self, **kwargs) - else: - return base_group_norm(x, self, **kwargs) - - -def base_group_norm(x, norm_layer, act_silu=False, channel_last=False): - if hasattr(base_group_norm, 'spatial') and base_group_norm.spatial: - assert channel_last == True - x_shape = x.shape - x = x.flatten(0, 1) - if channel_last: - # Permute to NCHW format - x = x.permute(0, 3, 1, 2) - - out = F.group_norm(x.contiguous(), norm_layer.num_groups, norm_layer.weight, norm_layer.bias, norm_layer.eps) - if act_silu: - out = F.silu(out) - - if channel_last: - # Permute back to NHWC format - out = out.permute(0, 2, 3, 1) - - out = out.view(x_shape) - else: - if channel_last: - # Permute to NCHW format - x = x.permute(0, 3, 1, 2) - out = F.group_norm(x.contiguous(), norm_layer.num_groups, norm_layer.weight, norm_layer.bias, norm_layer.eps) - if act_silu: - out = F.silu(out) - if channel_last: - # Permute back to NHWC format - out = out.permute(0, 2, 3, 1) - return out - -def base_conv2d(x, conv_layer, channel_last=False, residual=None): - if channel_last: - x = x.permute(0, 3, 1, 2) # NHWC to NCHW - out = F.conv2d(x, conv_layer.weight, conv_layer.bias, stride=conv_layer.stride, padding=conv_layer.padding) - if residual is not None: - if channel_last: - residual = residual.permute(0, 3, 1, 2) # NHWC to NCHW - out += residual - if channel_last: - out = out.permute(0, 2, 3, 1) # NCHW to NHWC - return out - -def base_conv3d(x, conv_layer, channel_last=False, residual=None, only_return_output=False): - if only_return_output: - size = cal_outsize(x.shape, conv_layer.weight.shape, conv_layer.stride, conv_layer.padding) - return torch.empty(size, device=x.device, dtype=x.dtype) - if channel_last: - x = x.permute(0, 4, 1, 2, 3) # NDHWC to NCDHW - out = F.conv3d(x, conv_layer.weight, conv_layer.bias, stride=conv_layer.stride, padding=conv_layer.padding) - if residual is not None: - if channel_last: - residual = residual.permute(0, 4, 1, 2, 3) # NDHWC to NCDHW - out += residual - if channel_last: - out = out.permute(0, 2, 3, 4, 1) # NCDHW to NDHWC - return out - - -def cal_outsize(input_sizes, kernel_sizes, stride, padding): - stride_d, stride_h, stride_w = stride - padding_d, padding_h, padding_w = padding - dilation_d, dilation_h, dilation_w = 1, 1, 1 - - in_d = input_sizes[1] - in_h = input_sizes[2] - in_w = input_sizes[3] - in_channel = input_sizes[4] - - - kernel_d = kernel_sizes[2] - kernel_h = kernel_sizes[3] - kernel_w = kernel_sizes[4] - out_channels = kernel_sizes[0] - - out_d = calc_out_(in_d, padding_d, dilation_d, kernel_d, stride_d) - out_h = calc_out_(in_h, padding_h, dilation_h, kernel_h, stride_h) - out_w = calc_out_(in_w, padding_w, dilation_w, kernel_w, stride_w) - size = [input_sizes[0], out_d, out_h, out_w, out_channels] - return size - - - - -def calc_out_(in_size, padding, dilation, kernel, stride): - return (in_size + 2 * padding - dilation * (kernel - 1) - 1) // stride + 1 - - - -def base_conv3d_channel_last(x, conv_layer, residual=None): - in_numel = x.numel() - out_numel = int(x.numel() * conv_layer.out_channels / conv_layer.in_channels) - if (in_numel >= 2**30) or (out_numel >= 2**30): - assert conv_layer.stride[0] == 1, "time split asks time stride = 1" - - B,T,H,W,C = x.shape - K = conv_layer.kernel_size[0] - - chunks = 4 - chunk_size = T // chunks - - if residual is None: - out_nhwc = base_conv3d(x, conv_layer, channel_last=True, residual=residual, only_return_output=True) - else: - out_nhwc = residual - - assert B == 1 - outs = [] - for i in range(chunks): - if i == chunks-1: - xi = x[:1,chunk_size*i:] - out_nhwci = out_nhwc[:1,chunk_size*i:] - else: - xi = x[:1,chunk_size*i:chunk_size*(i+1)+K-1] - out_nhwci = out_nhwc[:1,chunk_size*i:chunk_size*(i+1)] - if residual is not None: - if i == chunks-1: - ri = residual[:1,chunk_size*i:] - else: - ri = residual[:1,chunk_size*i:chunk_size*(i+1)] - else: - ri = None - out_nhwci.copy_(base_conv3d(xi, conv_layer, channel_last=True, residual=ri)) - else: - out_nhwc = base_conv3d(x, conv_layer, channel_last=True, residual=residual) - return out_nhwc - - - -class Upsample2D(nn.Module): - def __init__(self, - channels, - use_conv=False, - use_conv_transpose=False, - out_channels=None): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.use_conv_transpose = use_conv_transpose - - if use_conv: - self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) - else: - assert "Not Supported" - self.conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) - - def forward(self, x, output_size=None): - assert x.shape[-1] == self.channels - - if self.use_conv_transpose: - return self.conv(x) - - if output_size is None: - x = F.interpolate( - x.permute(0,3,1,2).to(memory_format=torch.channels_last), - scale_factor=2.0, mode='nearest').permute(0,2,3,1).contiguous() - else: - x = F.interpolate( - x.permute(0,3,1,2).to(memory_format=torch.channels_last), - size=output_size, mode='nearest').permute(0,2,3,1).contiguous() - - # x = self.conv(x) - x = base_conv2d(x, self.conv, channel_last=True) - return x - - -class Downsample2D(nn.Module): - def __init__(self, channels, use_conv=False, out_channels=None, padding=1): - super().__init__() - self.channels = channels - self.out_channels = out_channels or channels - self.use_conv = use_conv - self.padding = padding - stride = 2 - - if use_conv: - self.conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding) - else: - assert self.channels == self.out_channels - self.conv = nn.AvgPool2d(kernel_size=stride, stride=stride) - - def forward(self, x): - assert x.shape[-1] == self.channels - if self.use_conv and self.padding == 0: - pad = (0, 0, 0, 1, 0, 1) - x = F.pad(x, pad, mode="constant", value=0) - - assert x.shape[-1] == self.channels - # x = self.conv(x) - x = base_conv2d(x, self.conv, channel_last=True) - return x - - - -class CausalConv(nn.Module): - def __init__(self, - chan_in, - chan_out, - kernel_size, - **kwargs - ): - super().__init__() - - if isinstance(kernel_size, int): - kernel_size = kernel_size if isinstance(kernel_size, tuple) else ((kernel_size,) * 3) - time_kernel_size, height_kernel_size, width_kernel_size = kernel_size - - self.dilation = kwargs.pop('dilation', 1) - self.stride = kwargs.pop('stride', 1) - if isinstance(self.stride, int): - self.stride = (self.stride, 1, 1) - time_pad = self.dilation * (time_kernel_size - 1) + max((1 - self.stride[0]), 0) - height_pad = height_kernel_size // 2 - width_pad = width_kernel_size // 2 - self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) - self.time_uncausal_padding = (width_pad, width_pad, height_pad, height_pad, 0, 0) - - self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, **kwargs) - self.is_first_run = True - - def forward(self, x, is_init=True, residual=None): - x = nn.functional.pad(x, - self.time_causal_padding if is_init else self.time_uncausal_padding) - - x = self.conv(x) - if residual is not None: - x.add_(residual) - return x - - -class ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - factor: int, - ): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.factor = factor - assert out_channels * factor**3 % in_channels == 0 - self.repeats = out_channels * factor**3 // in_channels - - def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: - x = x.repeat_interleave(self.repeats, dim=1) - x = x.view(x.size(0), self.out_channels, self.factor, self.factor, self.factor, x.size(2), x.size(3), x.size(4)) - x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous() - x = x.view(x.size(0), self.out_channels, x.size(2)*self.factor, x.size(4)*self.factor, x.size(6)*self.factor) - x = x[:, :, self.factor - 1:, :, :] - return x - -class ConvPixelShuffleUpSampleLayer3D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - kernel_size: int, - factor: int, - ): - super().__init__() - self.factor = factor - out_ratio = factor**3 - self.conv = CausalConv( - in_channels, - out_channels * out_ratio, - kernel_size=kernel_size - ) - - def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: - x = self.conv(x, is_init) - x = self.pixel_shuffle_3d(x, self.factor) - return x - - @staticmethod - def pixel_shuffle_3d(x: torch.Tensor, factor: int) -> torch.Tensor: - batch_size, channels, depth, height, width = x.size() - new_channels = channels // (factor ** 3) - new_depth = depth * factor - new_height = height * factor - new_width = width * factor - - x = x.view(batch_size, new_channels, factor, factor, factor, depth, height, width) - x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous() - x = x.view(batch_size, new_channels, new_depth, new_height, new_width) - x = x[:, :, factor - 1:, :, :] - return x - -class ConvPixelUnshuffleDownSampleLayer3D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - kernel_size: int, - factor: int, - ): - super().__init__() - self.factor = factor - out_ratio = factor**3 - assert out_channels % out_ratio == 0 - self.conv = CausalConv( - in_channels, - out_channels // out_ratio, - kernel_size=kernel_size - ) - - def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: - x = self.conv(x, is_init) - x = self.pixel_unshuffle_3d(x, self.factor) - return x - - @staticmethod - def pixel_unshuffle_3d(x: torch.Tensor, factor: int) -> torch.Tensor: - pad = (0, 0, 0, 0, factor-1, 0) # (left, right, top, bottom, front, back) - x = F.pad(x, pad) - B, C, D, H, W = x.shape - x = x.view(B, C, D // factor, factor, H // factor, factor, W // factor, factor) - x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() - x = x.view(B, C * factor**3, D // factor, H // factor, W // factor) - return x - -class PixelUnshuffleChannelAveragingDownSampleLayer3D(nn.Module): - def __init__( - self, - in_channels: int, - out_channels: int, - factor: int, - ): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.factor = factor - assert in_channels * factor**3 % out_channels == 0 - self.group_size = in_channels * factor**3 // out_channels - - def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: - pad = (0, 0, 0, 0, self.factor-1, 0) # (left, right, top, bottom, front, back) - x = F.pad(x, pad) - B, C, D, H, W = x.shape - x = x.view(B, C, D // self.factor, self.factor, H // self.factor, self.factor, W // self.factor, self.factor) - x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() - x = x.view(B, C * self.factor**3, D // self.factor, H // self.factor, W // self.factor) - x = x.view(B, self.out_channels, self.group_size, D // self.factor, H // self.factor, W // self.factor) - x = x.mean(dim=2) - return x - - def __init__( - self, - in_channels: int, - out_channels: int, - factor: int, - ): - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.factor = factor - assert in_channels * factor**3 % out_channels == 0 - self.group_size = in_channels * factor**3 // out_channels - - def forward(self, x: torch.Tensor, is_init=True) -> torch.Tensor: - pad = (0, 0, 0, 0, self.factor-1, 0) # (left, right, top, bottom, front, back) - x = F.pad(x, pad) - B, C, D, H, W = x.shape - x = x.view(B, C, D // self.factor, self.factor, H // self.factor, self.factor, W // self.factor, self.factor) - x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() - x = x.view(B, C * self.factor**3, D // self.factor, H // self.factor, W // self.factor) - x = x.view(B, self.out_channels, self.group_size, D // self.factor, H // self.factor, W // self.factor) - x = x.mean(dim=2) - return x - - - - -def base_group_norm_with_zero_pad(x, norm_layer, act_silu=True, pad_size=2): - out_shape = list(x.shape) - out_shape[1] += pad_size - out = torch.empty(out_shape, dtype=x.dtype, device=x.device) - out[:, pad_size:] = base_group_norm(x, norm_layer, act_silu=act_silu, channel_last=True) - out[:, :pad_size] = 0 - return out - - -class CausalConvChannelLast(CausalConv): - def __init__(self, - chan_in, - chan_out, - kernel_size, - **kwargs - ): - super().__init__( - chan_in, chan_out, kernel_size, **kwargs) - - self.time_causal_padding = (0, 0) + self.time_causal_padding - self.time_uncausal_padding = (0, 0) + self.time_uncausal_padding - - def forward(self, x, is_init=True, residual=None): - if self.is_first_run: - self.is_first_run = False - # self.conv.weight = nn.Parameter(self.conv.weight.permute(0,2,3,4,1).contiguous()) - - x = nn.functional.pad(x, - self.time_causal_padding if is_init else self.time_uncausal_padding) - - x = base_conv3d_channel_last(x, self.conv, residual=residual) - return x - -class CausalConvAfterNorm(CausalConv): - def __init__(self, - chan_in, - chan_out, - kernel_size, - **kwargs - ): - super().__init__( - chan_in, chan_out, kernel_size, **kwargs) - - if self.time_causal_padding == (1, 1, 1, 1, 2, 0): - self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, padding=(0, 1, 1), **kwargs) - else: - self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=self.stride, dilation=self.dilation, **kwargs) - self.is_first_run = True - - def forward(self, x, is_init=True, residual=None): - if self.is_first_run: - self.is_first_run = False - - if self.time_causal_padding == (1, 1, 1, 1, 2, 0): - pass - else: - x = nn.functional.pad(x, self.time_causal_padding).contiguous() - - x = base_conv3d_channel_last(x, self.conv, residual=residual) - return x - -class AttnBlock(nn.Module): - def __init__(self, - in_channels - ): - super().__init__() - - self.norm = BaseGroupNorm(num_groups=32, num_channels=in_channels) - self.q = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) - self.k = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) - self.v = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) - self.proj_out = CausalConvChannelLast(in_channels, in_channels, kernel_size=1) - - def attention(self, x, is_init=True): - x = self.norm(x, act_silu=False, channel_last=True) - q = self.q(x, is_init) - k = self.k(x, is_init) - v = self.v(x, is_init) - - b, t, h, w, c = q.shape - q, k, v = map(lambda x: rearrange(x, "b t h w c -> b 1 (t h w) c"), (q, k, v)) - x = nn.functional.scaled_dot_product_attention(q, k, v, is_causal=True) - x = rearrange(x, "b 1 (t h w) c -> b t h w c", t=t, h=h, w=w) - - return x - - def forward(self, x): - x = x.permute(0,2,3,4,1).contiguous() - h = self.attention(x) - x = self.proj_out(h, residual=x) - x = x.permute(0,4,1,2,3) - return x - -class Resnet3DBlock(nn.Module): - def __init__(self, - in_channels, - out_channels=None, - temb_channels=512, - conv_shortcut=False, - ): - super().__init__() - - self.in_channels = in_channels - out_channels = in_channels if out_channels is None else out_channels - self.out_channels = out_channels - - self.norm1 = BaseGroupNorm(num_groups=32, num_channels=in_channels) - self.conv1 = CausalConvAfterNorm(in_channels, out_channels, kernel_size=3) - if temb_channels > 0: - self.temb_proj = nn.Linear(temb_channels, out_channels) - - self.norm2 = BaseGroupNorm(num_groups=32, num_channels=out_channels) - self.conv2 = CausalConvAfterNorm(out_channels, out_channels, kernel_size=3) - - assert conv_shortcut is False - self.use_conv_shortcut = conv_shortcut - if self.in_channels != self.out_channels: - if self.use_conv_shortcut: - self.conv_shortcut = CausalConvAfterNorm(in_channels, out_channels, kernel_size=3) - else: - self.nin_shortcut = CausalConvAfterNorm(in_channels, out_channels, kernel_size=1) - - def forward(self, x, temb=None, is_init=True): - x = x.permute(0,2,3,4,1).contiguous() - - h = self.norm1(x, zero_pad=True, act_silu=True, pad_size=2) - h = self.conv1(h) - if temb is not None: - h = h + self.temb_proj(nn.functional.silu(temb))[:, :, None, None] - - x = self.nin_shortcut(x) if self.in_channels != self.out_channels else x - - h = self.norm2(h, zero_pad=True, act_silu=True, pad_size=2) - x = self.conv2(h, residual=x) - - x = x.permute(0,4,1,2,3) - return x - - -class Downsample3D(nn.Module): - def __init__(self, - in_channels, - with_conv, - stride - ): - super().__init__() - - self.with_conv = with_conv - if with_conv: - self.conv = CausalConv(in_channels, in_channels, kernel_size=3, stride=stride) - - def forward(self, x, is_init=True): - if self.with_conv: - x = self.conv(x, is_init) - else: - x = nn.functional.avg_pool3d(x, kernel_size=2, stride=2) - return x - -class VideoEncoder(nn.Module): - def __init__(self, - ch=32, - ch_mult=(4, 8, 16, 16), - num_res_blocks=2, - in_channels=3, - z_channels=16, - double_z=True, - down_sampling_layer=[1, 2], - resamp_with_conv=True, - version=1, - ): - super().__init__() - - temb_ch = 0 - - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - - # downsampling - self.conv_in = CausalConv(in_channels, ch, kernel_size=3) - self.down_sampling_layer = down_sampling_layer - - in_ch_mult = (1,) + tuple(ch_mult) - self.down = nn.ModuleList() - for i_level in range(self.num_resolutions): - block = nn.ModuleList() - attn = nn.ModuleList() - block_in = ch * in_ch_mult[i_level] - block_out = ch * ch_mult[i_level] - for i_block in range(self.num_res_blocks): - block.append( - Resnet3DBlock(in_channels=block_in, out_channels=block_out, temb_channels=temb_ch)) - block_in = block_out - down = nn.Module() - down.block = block - down.attn = attn - if i_level != self.num_resolutions - 1: - if i_level in self.down_sampling_layer: - down.downsample = Downsample3D(block_in, resamp_with_conv, stride=(2, 2, 2)) - else: - down.downsample = Downsample2D(block_in, resamp_with_conv, padding=0) #DIFF - self.down.append(down) - - # middle - self.mid = nn.Module() - self.mid.block_1 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) - self.mid.attn_1 = AttnBlock(block_in) - self.mid.block_2 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) - - # end - self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in) - self.version = version - if version == 2: - channels = 4 * z_channels * 2 ** 3 - self.conv_patchify = ConvPixelUnshuffleDownSampleLayer3D(block_in, channels, kernel_size=3, factor=2) - self.shortcut_pathify = PixelUnshuffleChannelAveragingDownSampleLayer3D(block_in, channels, 2) - self.shortcut_out = PixelUnshuffleChannelAveragingDownSampleLayer3D(channels, 2 * z_channels if double_z else z_channels, 1) - self.conv_out = CausalConvChannelLast(channels, 2 * z_channels if double_z else z_channels, kernel_size=3) - else: - self.conv_out = CausalConvAfterNorm(block_in, 2 * z_channels if double_z else z_channels, kernel_size=3) - - @torch.inference_mode() - def forward(self, x, video_frame_num, is_init=True): - # timestep embedding - temb = None - - t = video_frame_num - - # downsampling - h = self.conv_in(x, is_init) - - # make it real channel last, but behave like normal layout - h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) - - for i_level in range(self.num_resolutions): - for i_block in range(self.num_res_blocks): - h = self.down[i_level].block[i_block](h, temb, is_init) - if len(self.down[i_level].attn) > 0: - h = self.down[i_level].attn[i_block](h) - - if i_level != self.num_resolutions - 1: - if isinstance(self.down[i_level].downsample, Downsample2D): - _, _, t, _, _ = h.shape - h = rearrange(h, "b c t h w -> (b t) h w c", t=t) - h = self.down[i_level].downsample(h) - h = rearrange(h, "(b t) h w c -> b c t h w", t=t) - else: - h = self.down[i_level].downsample(h, is_init) - - h = self.mid.block_1(h, temb, is_init) - h = self.mid.attn_1(h) - h = self.mid.block_2(h, temb, is_init) - - h = h.permute(0,2,3,4,1).contiguous() # b c l h w -> b l h w c - if self.version == 2: - h = base_group_norm(h, self.norm_out, act_silu=True, channel_last=True) - h = h.permute(0,4,1,2,3).contiguous() - shortcut = self.shortcut_pathify(h, is_init) - h = self.conv_patchify(h, is_init) - h = h.add_(shortcut) - shortcut = self.shortcut_out(h, is_init).permute(0,2,3,4,1) - h = self.conv_out(h.permute(0,2,3,4,1).contiguous(), is_init) - h = h.add_(shortcut) - else: - h = base_group_norm_with_zero_pad(h, self.norm_out, act_silu=True, pad_size=2) - h = self.conv_out(h, is_init) - h = h.permute(0,4,1,2,3) # b l h w c -> b c l h w - - h = rearrange(h, "b c t h w -> b t c h w") - return h - - -class Res3DBlockUpsample(nn.Module): - def __init__(self, - input_filters, - num_filters, - down_sampling_stride, - down_sampling=False - ): - super().__init__() - - self.input_filters = input_filters - self.num_filters = num_filters - - self.act_ = nn.SiLU(inplace=True) - - self.conv1 = CausalConvChannelLast(num_filters, num_filters, kernel_size=[3, 3, 3]) - self.norm1 = BaseGroupNorm(32, num_filters) - - self.conv2 = CausalConvChannelLast(num_filters, num_filters, kernel_size=[3, 3, 3]) - self.norm2 = BaseGroupNorm(32, num_filters) - - self.down_sampling = down_sampling - if down_sampling: - self.down_sampling_stride = down_sampling_stride - else: - self.down_sampling_stride = [1, 1, 1] - - if num_filters != input_filters or down_sampling: - self.conv3 = CausalConvChannelLast(input_filters, num_filters, kernel_size=[1, 1, 1], stride=self.down_sampling_stride) - self.norm3 = BaseGroupNorm(32, num_filters) - - def forward(self, x, is_init=False): - x = x.permute(0,2,3,4,1).contiguous() - - residual = x - - h = self.conv1(x, is_init) - h = self.norm1(h, act_silu=True, channel_last=True) - - h = self.conv2(h, is_init) - h = self.norm2(h, act_silu=False, channel_last=True) - - if self.down_sampling or self.num_filters != self.input_filters: - x = self.conv3(x, is_init) - x = self.norm3(x, act_silu=False, channel_last=True) - - h.add_(x) - h = self.act_(h) - if residual is not None: - h.add_(residual) - - h = h.permute(0,4,1,2,3) - return h - -class Upsample3D(nn.Module): - def __init__(self, - in_channels, - scale_factor=2 - ): - super().__init__() - - self.scale_factor = scale_factor - self.conv3d = Res3DBlockUpsample(input_filters=in_channels, - num_filters=in_channels, - down_sampling_stride=(1, 1, 1), - down_sampling=False) - - def forward(self, x, is_init=True, is_split=True): - b, c, t, h, w = x.shape - - # x = x.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3).to(memory_format=torch.channels_last_3d) - if is_split: - split_size = c // 8 - x_slices = torch.split(x, split_size, dim=1) - x = [nn.functional.interpolate(x, scale_factor=self.scale_factor) for x in x_slices] - x = torch.cat(x, dim=1) - else: - x = nn.functional.interpolate(x, scale_factor=self.scale_factor) - - x = self.conv3d(x, is_init) - return x - -class VideoDecoder(nn.Module): - def __init__(self, - ch=128, - z_channels=16, - out_channels=3, - ch_mult=(1, 2, 4, 4), - num_res_blocks=2, - temporal_up_layers=[2, 3], - temporal_downsample=4, - resamp_with_conv=True, - version=1, - ): - super().__init__() - - temb_ch = 0 - - self.num_resolutions = len(ch_mult) - self.num_res_blocks = num_res_blocks - self.temporal_downsample = temporal_downsample - - block_in = ch * ch_mult[self.num_resolutions - 1] - self.version = version - if version == 2: - channels = 4 * z_channels * 2 ** 3 - self.conv_in = CausalConv(z_channels, channels, kernel_size=3) - self.shortcut_in = ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(z_channels, channels, 1) - self.conv_unpatchify = ConvPixelShuffleUpSampleLayer3D(channels, block_in, kernel_size=3, factor=2) - self.shortcut_unpathify = ChannelDuplicatingPixelUnshuffleUpSampleLayer3D(channels, block_in, 2) - else: - self.conv_in = CausalConv(z_channels, block_in, kernel_size=3) - - # middle - self.mid = nn.Module() - self.mid.block_1 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) - self.mid.attn_1 = AttnBlock(block_in) - self.mid.block_2 = Resnet3DBlock(in_channels=block_in, out_channels=block_in, temb_channels=temb_ch) - - # upsampling - self.up_id = len(temporal_up_layers) - self.video_frame_num = 1 - self.cur_video_frame_num = self.video_frame_num // 2 ** self.up_id + 1 - self.up = nn.ModuleList() - for i_level in reversed(range(self.num_resolutions)): - block = nn.ModuleList() - attn = nn.ModuleList() - block_out = ch * ch_mult[i_level] - for i_block in range(self.num_res_blocks + 1): - block.append( - Resnet3DBlock(in_channels=block_in, out_channels=block_out, temb_channels=temb_ch)) - block_in = block_out - up = nn.Module() - up.block = block - up.attn = attn - if i_level != 0: - if i_level in temporal_up_layers: - up.upsample = Upsample3D(block_in) - self.cur_video_frame_num = self.cur_video_frame_num * 2 - else: - up.upsample = Upsample2D(block_in, resamp_with_conv) - self.up.insert(0, up) # prepend to get consistent order - - # end - self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in) - self.conv_out = CausalConvAfterNorm(block_in, out_channels, kernel_size=3) - - @torch.inference_mode() - def forward(self, z, is_init=True): - z = rearrange(z, "b t c h w -> b c t h w") - - h = self.conv_in(z, is_init=is_init) - if self.version == 2: - shortcut = self.shortcut_in(z, is_init=is_init) - h = h.add_(shortcut) - shortcut = self.shortcut_unpathify(h, is_init=is_init) - h = self.conv_unpatchify(h, is_init=is_init) - h = h.add_(shortcut) - - temb = None - - h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) - h = self.mid.block_1(h, temb, is_init=is_init) - h = self.mid.attn_1(h) - h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) - h = self.mid.block_2(h, temb, is_init=is_init) - - # upsampling - for i_level in reversed(range(self.num_resolutions)): - for i_block in range(self.num_res_blocks + 1): - h = h.permute(0,2,3,4,1).contiguous().permute(0,4,1,2,3) - h = self.up[i_level].block[i_block](h, temb, is_init=is_init) - if len(self.up[i_level].attn) > 0: - h = self.up[i_level].attn[i_block](h) - if i_level != 0: - if isinstance(self.up[i_level].upsample, Upsample2D) or (hasattr(self.up[i_level].upsample, "module") and isinstance(self.up[i_level].upsample.module, Upsample2D)): - B = h.size(0) - h = h.permute(0,2,3,4,1).flatten(0,1) - h = self.up[i_level].upsample(h) - h = h.unflatten(0, (B, -1)).permute(0,4,1,2,3) - else: - h = self.up[i_level].upsample(h, is_init=is_init) - - # end - h = h.permute(0,2,3,4,1) # b c l h w -> b l h w c - self.norm_out.to(dtype=h.dtype, device=h.device) # To be updated - h = base_group_norm_with_zero_pad(h, self.norm_out, act_silu=True, pad_size=2) - h = self.conv_out(h) - h = h.permute(0,4,1,2,3) - - if is_init: - h = h[:, :, (self.temporal_downsample - 1):] - return h - - - -def rms_norm(input, normalized_shape, eps=1e-6): - dtype = input.dtype - input = input.to(torch.float32) - variance = input.pow(2).flatten(-len(normalized_shape)).mean(-1)[(...,) + (None,) * len(normalized_shape)] - input = input * torch.rsqrt(variance + eps) - return input.to(dtype) - -class DiagonalGaussianDistribution(object): - def __init__(self, parameters, deterministic=False, rms_norm_mean=False, only_return_mean=False): - self.parameters = parameters - self.mean, self.logvar = torch.chunk(parameters, 2, dim=-3) #N,[X],C,H,W - self.logvar = torch.clamp(self.logvar, -30.0, 20.0) - self.std = torch.exp(0.5 * self.logvar) - self.var = torch.exp(self.logvar) - self.deterministic = deterministic - if self.deterministic: - self.var = self.std = torch.zeros_like( - self.mean, - device=self.parameters.device, - dtype=self.parameters.dtype) - if rms_norm_mean: - self.mean = rms_norm(self.mean, self.mean.size()[1:]) - self.only_return_mean = only_return_mean - - def sample(self, generator=None): - # make sure sample is on the same device - # as the parameters and has same dtype - sample = torch.randn( - self.mean.shape, generator=generator, device=self.parameters.device) - sample = sample.to(dtype=self.parameters.dtype) - x = self.mean + self.std * sample - if self.only_return_mean: - return self.mean - else: - return x - - -class StepVideoVAE(nn.Module): - def __init__(self, - in_channels=3, - out_channels=3, - z_channels=64, - num_res_blocks=2, - model_path=None, - weight_dict={}, - world_size=1, - version=2, - ): - super().__init__() - - self.frame_len = 17 - self.latent_len = 3 if version == 2 else 5 - - base_group_norm.spatial = True if version == 2 else False - - self.encoder = VideoEncoder( - in_channels=in_channels, - z_channels=z_channels, - num_res_blocks=num_res_blocks, - version=version, - ) - - self.decoder = VideoDecoder( - z_channels=z_channels, - out_channels=out_channels, - num_res_blocks=num_res_blocks, - version=version, - ) - - if model_path is not None: - weight_dict = self.init_from_ckpt(model_path) - if len(weight_dict) != 0: - self.load_from_dict(weight_dict) - self.convert_channel_last() - - self.world_size = world_size - - def init_from_ckpt(self, model_path): - from safetensors import safe_open - p = {} - with safe_open(model_path, framework="pt", device="cpu") as f: - for k in f.keys(): - tensor = f.get_tensor(k) - if k.startswith("decoder.conv_out."): - k = k.replace("decoder.conv_out.", "decoder.conv_out.conv.") - p[k] = tensor - return p - - def load_from_dict(self, p): - self.load_state_dict(p) - - def convert_channel_last(self): - #Conv2d NCHW->NHWC - pass - - def naive_encode(self, x, is_init_image=True): - b, l, c, h, w = x.size() - x = rearrange(x, 'b l c h w -> b c l h w').contiguous() - z = self.encoder(x, l, True) # 下采样[1, 4, 8, 16, 16] - return z - - @torch.inference_mode() - def encode(self, x): - # b (nc cf) c h w -> (b nc) cf c h w -> encode -> (b nc) cf c h w -> b (nc cf) c h w - chunks = list(x.split(self.frame_len, dim=1)) - for i in range(len(chunks)): - chunks[i] = self.naive_encode(chunks[i], True) - z = torch.cat(chunks, dim=1) - - posterior = DiagonalGaussianDistribution(z) - return posterior.sample() - - def decode_naive(self, z, is_init=True): - z = z.to(next(self.decoder.parameters()).dtype) - dec = self.decoder(z, is_init) - return dec - - @torch.inference_mode() - def decode_original(self, z): - # b (nc cf) c h w -> (b nc) cf c h w -> decode -> (b nc) c cf h w -> b (nc cf) c h w - chunks = list(z.split(self.latent_len, dim=1)) - - if self.world_size > 1: - chunks_total_num = len(chunks) - max_num_per_rank = (chunks_total_num + self.world_size - 1) // self.world_size - rank = torch.distributed.get_rank() - chunks_ = chunks[max_num_per_rank * rank : max_num_per_rank * (rank + 1)] - if len(chunks_) < max_num_per_rank: - chunks_.extend(chunks[:max_num_per_rank-len(chunks_)]) - chunks = chunks_ - - for i in range(len(chunks)): - chunks[i] = self.decode_naive(chunks[i], True).permute(0,2,1,3,4) - x = torch.cat(chunks, dim=1) - - if self.world_size > 1: - x_ = torch.empty([x.size(0), (self.world_size * max_num_per_rank) * self.frame_len, *x.shape[2:]], dtype=x.dtype, device=x.device) - torch.distributed.all_gather_into_tensor(x_, x) - x = x_[:, : chunks_total_num * self.frame_len] - - x = self.mix(x) - return x - - def mix(self, x, smooth_scale = 0.6): - remain_scale = smooth_scale - mix_scale = 1. - remain_scale - front = slice(self.frame_len - 1, x.size(1) - 1, self.frame_len) - back = slice(self.frame_len, x.size(1), self.frame_len) - x[:, front], x[:, back] = ( - x[:, front] * remain_scale + x[:, back] * mix_scale, - x[:, back] * remain_scale + x[:, front] * mix_scale - ) - return x - - def single_decode(self, hidden_states, device): - chunks = list(hidden_states.split(self.latent_len, dim=1)) - for i in range(len(chunks)): - chunks[i] = self.decode_naive(chunks[i].to(device), True).permute(0,2,1,3,4).cpu() - x = torch.cat(chunks, dim=1) - return x - - def build_1d_mask(self, length, left_bound, right_bound, border_width): - x = torch.ones((length,)) - if not left_bound: - x[:border_width] = (torch.arange(border_width) + 1) / border_width - if not right_bound: - x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,)) - return x - - def build_mask(self, data, is_bound, border_width): - _, _, _, H, W = data.shape - h = self.build_1d_mask(H, is_bound[0], is_bound[1], border_width[0]) - w = self.build_1d_mask(W, is_bound[2], is_bound[3], border_width[1]) - - h = repeat(h, "H -> H W", H=H, W=W) - w = repeat(w, "W -> H W", H=H, W=W) - - mask = torch.stack([h, w]).min(dim=0).values - mask = rearrange(mask, "H W -> 1 1 1 H W") - return mask - - def tiled_decode(self, hidden_states, device, tile_size=(34, 34), tile_stride=(16, 16)): - B, T, C, H, W = hidden_states.shape - size_h, size_w = tile_size - stride_h, stride_w = tile_stride - - # Split tasks - tasks = [] - for t in range(0, T, 3): - for h in range(0, H, stride_h): - if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue - for w in range(0, W, stride_w): - if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue - t_, h_, w_ = t + 3, h + size_h, w + size_w - tasks.append((t, t_, h, h_, w, w_)) - - # Run - data_device = "cpu" - computation_device = device - - weight = torch.zeros((1, 1, T//3*17, H * 16, W * 16), dtype=hidden_states.dtype, device=data_device) - values = torch.zeros((B, 3, T//3*17, H * 16, W * 16), dtype=hidden_states.dtype, device=data_device) - - for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"): - hidden_states_batch = hidden_states[:, t:t_, :, h:h_, w:w_].to(computation_device) - hidden_states_batch = self.decode_naive(hidden_states_batch, True).to(data_device) - - mask = self.build_mask( - hidden_states_batch, - is_bound=(h==0, h_>=H, w==0, w_>=W), - border_width=((size_h - stride_h) * 16, (size_w - stride_w) * 16) - ).to(dtype=hidden_states.dtype, device=data_device) - - target_t = t // 3 * 17 - target_h = h * 16 - target_w = w * 16 - values[ - :, - :, - target_t: target_t + hidden_states_batch.shape[2], - target_h: target_h + hidden_states_batch.shape[3], - target_w: target_w + hidden_states_batch.shape[4], - ] += hidden_states_batch * mask - weight[ - :, - :, - target_t: target_t + hidden_states_batch.shape[2], - target_h: target_h + hidden_states_batch.shape[3], - target_w: target_w + hidden_states_batch.shape[4], - ] += mask - return values / weight - - def decode(self, hidden_states, device, tiled=False, tile_size=(34, 34), tile_stride=(16, 16), smooth_scale=0.6): - hidden_states = hidden_states.to("cpu") - if tiled: - video = self.tiled_decode(hidden_states, device, tile_size, tile_stride) - else: - video = self.single_decode(hidden_states, device) - video = self.mix(video, smooth_scale=smooth_scale) - return video - - @staticmethod - def state_dict_converter(): - return StepVideoVAEStateDictConverter() - - -class StepVideoVAEStateDictConverter: - def __init__(self): - super().__init__() - - def from_diffusers(self, state_dict): - return self.from_civitai(state_dict) - - def from_civitai(self, state_dict): - state_dict_ = {} - for name, param in state_dict.items(): - if name.startswith("decoder.conv_out."): - name_ = name.replace("decoder.conv_out.", "decoder.conv_out.conv.") - else: - name_ = name - state_dict_[name_] = param - return state_dict_ diff --git a/diffsynth/models/svd_image_encoder.py b/diffsynth/models/svd_image_encoder.py deleted file mode 100644 index 4ee79c863ec8da0185bf0e57ac0a286495b049ed..0000000000000000000000000000000000000000 --- a/diffsynth/models/svd_image_encoder.py +++ /dev/null @@ -1,505 +0,0 @@ -import torch -from .sd_text_encoder import CLIPEncoderLayer - - -class CLIPVisionEmbeddings(torch.nn.Module): - def __init__(self, embed_dim=1280, image_size=224, patch_size=14, num_channels=3): - super().__init__() - - # class_embeds (This is a fixed tensor) - self.class_embedding = torch.nn.Parameter(torch.randn(1, 1, embed_dim)) - - # position_embeds - self.patch_embedding = torch.nn.Conv2d(in_channels=num_channels, out_channels=embed_dim, kernel_size=patch_size, stride=patch_size, bias=False) - - # position_embeds (This is a fixed tensor) - self.position_embeds = torch.nn.Parameter(torch.zeros(1, (image_size // patch_size) ** 2 + 1, embed_dim)) - - def forward(self, pixel_values): - batch_size = pixel_values.shape[0] - patch_embeds = self.patch_embedding(pixel_values) - patch_embeds = patch_embeds.flatten(2).transpose(1, 2) - class_embeds = self.class_embedding.repeat(batch_size, 1, 1) - embeddings = torch.cat([class_embeds, patch_embeds], dim=1) + self.position_embeds - return embeddings - - -class SVDImageEncoder(torch.nn.Module): - def __init__(self, embed_dim=1280, layer_norm_eps=1e-5, num_encoder_layers=32, encoder_intermediate_size=5120, projection_dim=1024, num_heads=16, head_dim=80): - super().__init__() - self.embeddings = CLIPVisionEmbeddings(embed_dim=embed_dim) - self.pre_layernorm = torch.nn.LayerNorm(embed_dim, eps=layer_norm_eps) - self.encoders = torch.nn.ModuleList([ - CLIPEncoderLayer(embed_dim, encoder_intermediate_size, num_heads=num_heads, head_dim=head_dim, use_quick_gelu=False) - for _ in range(num_encoder_layers)]) - self.post_layernorm = torch.nn.LayerNorm(embed_dim, eps=layer_norm_eps) - self.visual_projection = torch.nn.Linear(embed_dim, projection_dim, bias=False) - - def forward(self, pixel_values): - embeds = self.embeddings(pixel_values) - embeds = self.pre_layernorm(embeds) - for encoder_id, encoder in enumerate(self.encoders): - embeds = encoder(embeds) - embeds = self.post_layernorm(embeds[:, 0, :]) - embeds = self.visual_projection(embeds) - return embeds - - @staticmethod - def state_dict_converter(): - return SVDImageEncoderStateDictConverter() - - -class SVDImageEncoderStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - rename_dict = { - "vision_model.embeddings.patch_embedding.weight": "embeddings.patch_embedding.weight", - "vision_model.embeddings.class_embedding": "embeddings.class_embedding", - "vision_model.embeddings.position_embedding.weight": "embeddings.position_embeds", - "vision_model.pre_layrnorm.weight": "pre_layernorm.weight", - "vision_model.pre_layrnorm.bias": "pre_layernorm.bias", - "vision_model.post_layernorm.weight": "post_layernorm.weight", - "vision_model.post_layernorm.bias": "post_layernorm.bias", - "visual_projection.weight": "visual_projection.weight" - } - attn_rename_dict = { - "self_attn.q_proj": "attn.to_q", - "self_attn.k_proj": "attn.to_k", - "self_attn.v_proj": "attn.to_v", - "self_attn.out_proj": "attn.to_out", - "layer_norm1": "layer_norm1", - "layer_norm2": "layer_norm2", - "mlp.fc1": "fc1", - "mlp.fc2": "fc2", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "vision_model.embeddings.class_embedding": - param = state_dict[name].view(1, 1, -1) - elif name == "vision_model.embeddings.position_embedding.weight": - param = state_dict[name].unsqueeze(0) - state_dict_[rename_dict[name]] = param - elif name.startswith("vision_model.encoder.layers."): - param = state_dict[name] - names = name.split(".") - layer_id, layer_type, tail = names[3], ".".join(names[4:-1]), names[-1] - name_ = ".".join(["encoders", layer_id, attn_rename_dict[layer_type], tail]) - state_dict_[name_] = param - return state_dict_ - - def from_civitai(self, state_dict): - rename_dict = { - "conditioner.embedders.0.open_clip.model.visual.class_embedding": "embeddings.class_embedding", - "conditioner.embedders.0.open_clip.model.visual.conv1.weight": "embeddings.patch_embedding.weight", - "conditioner.embedders.0.open_clip.model.visual.ln_post.bias": "post_layernorm.bias", - "conditioner.embedders.0.open_clip.model.visual.ln_post.weight": "post_layernorm.weight", - "conditioner.embedders.0.open_clip.model.visual.ln_pre.bias": "pre_layernorm.bias", - "conditioner.embedders.0.open_clip.model.visual.ln_pre.weight": "pre_layernorm.weight", - "conditioner.embedders.0.open_clip.model.visual.positional_embedding": "embeddings.position_embeds", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.attn.in_proj_bias": ['encoders.0.attn.to_q.bias', 'encoders.0.attn.to_k.bias', 'encoders.0.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.attn.in_proj_weight": ['encoders.0.attn.to_q.weight', 'encoders.0.attn.to_k.weight', 'encoders.0.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.attn.out_proj.bias": "encoders.0.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.attn.out_proj.weight": "encoders.0.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.ln_1.bias": "encoders.0.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.ln_1.weight": "encoders.0.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.ln_2.bias": "encoders.0.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.ln_2.weight": "encoders.0.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.mlp.c_fc.bias": "encoders.0.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.mlp.c_fc.weight": "encoders.0.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.mlp.c_proj.bias": "encoders.0.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.0.mlp.c_proj.weight": "encoders.0.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.attn.in_proj_bias": ['encoders.1.attn.to_q.bias', 'encoders.1.attn.to_k.bias', 'encoders.1.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.attn.in_proj_weight": ['encoders.1.attn.to_q.weight', 'encoders.1.attn.to_k.weight', 'encoders.1.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.attn.out_proj.bias": "encoders.1.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.attn.out_proj.weight": "encoders.1.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.ln_1.bias": "encoders.1.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.ln_1.weight": "encoders.1.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.ln_2.bias": "encoders.1.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.ln_2.weight": "encoders.1.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.mlp.c_fc.bias": "encoders.1.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.mlp.c_fc.weight": "encoders.1.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.mlp.c_proj.bias": "encoders.1.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.1.mlp.c_proj.weight": "encoders.1.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.attn.in_proj_bias": ['encoders.10.attn.to_q.bias', 'encoders.10.attn.to_k.bias', 'encoders.10.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.attn.in_proj_weight": ['encoders.10.attn.to_q.weight', 'encoders.10.attn.to_k.weight', 'encoders.10.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.attn.out_proj.bias": "encoders.10.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.attn.out_proj.weight": "encoders.10.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.ln_1.bias": "encoders.10.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.ln_1.weight": "encoders.10.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.ln_2.bias": "encoders.10.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.ln_2.weight": "encoders.10.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.mlp.c_fc.bias": "encoders.10.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.mlp.c_fc.weight": "encoders.10.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.mlp.c_proj.bias": "encoders.10.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.10.mlp.c_proj.weight": "encoders.10.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.attn.in_proj_bias": ['encoders.11.attn.to_q.bias', 'encoders.11.attn.to_k.bias', 'encoders.11.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.attn.in_proj_weight": ['encoders.11.attn.to_q.weight', 'encoders.11.attn.to_k.weight', 'encoders.11.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.attn.out_proj.bias": "encoders.11.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.attn.out_proj.weight": "encoders.11.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.ln_1.bias": "encoders.11.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.ln_1.weight": "encoders.11.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.ln_2.bias": "encoders.11.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.ln_2.weight": "encoders.11.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.mlp.c_fc.bias": "encoders.11.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.mlp.c_fc.weight": "encoders.11.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.mlp.c_proj.bias": "encoders.11.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.11.mlp.c_proj.weight": "encoders.11.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.attn.in_proj_bias": ['encoders.12.attn.to_q.bias', 'encoders.12.attn.to_k.bias', 'encoders.12.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.attn.in_proj_weight": ['encoders.12.attn.to_q.weight', 'encoders.12.attn.to_k.weight', 'encoders.12.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.attn.out_proj.bias": "encoders.12.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.attn.out_proj.weight": "encoders.12.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.ln_1.bias": "encoders.12.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.ln_1.weight": "encoders.12.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.ln_2.bias": "encoders.12.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.ln_2.weight": "encoders.12.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.mlp.c_fc.bias": "encoders.12.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.mlp.c_fc.weight": "encoders.12.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.mlp.c_proj.bias": "encoders.12.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.12.mlp.c_proj.weight": "encoders.12.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.attn.in_proj_bias": ['encoders.13.attn.to_q.bias', 'encoders.13.attn.to_k.bias', 'encoders.13.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.attn.in_proj_weight": ['encoders.13.attn.to_q.weight', 'encoders.13.attn.to_k.weight', 'encoders.13.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.attn.out_proj.bias": "encoders.13.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.attn.out_proj.weight": "encoders.13.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.ln_1.bias": "encoders.13.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.ln_1.weight": "encoders.13.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.ln_2.bias": "encoders.13.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.ln_2.weight": "encoders.13.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.mlp.c_fc.bias": "encoders.13.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.mlp.c_fc.weight": "encoders.13.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.mlp.c_proj.bias": "encoders.13.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.13.mlp.c_proj.weight": "encoders.13.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.attn.in_proj_bias": ['encoders.14.attn.to_q.bias', 'encoders.14.attn.to_k.bias', 'encoders.14.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.attn.in_proj_weight": ['encoders.14.attn.to_q.weight', 'encoders.14.attn.to_k.weight', 'encoders.14.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.attn.out_proj.bias": "encoders.14.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.attn.out_proj.weight": "encoders.14.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.ln_1.bias": "encoders.14.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.ln_1.weight": "encoders.14.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.ln_2.bias": "encoders.14.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.ln_2.weight": "encoders.14.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.mlp.c_fc.bias": "encoders.14.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.mlp.c_fc.weight": "encoders.14.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.mlp.c_proj.bias": "encoders.14.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.14.mlp.c_proj.weight": "encoders.14.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.attn.in_proj_bias": ['encoders.15.attn.to_q.bias', 'encoders.15.attn.to_k.bias', 'encoders.15.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.attn.in_proj_weight": ['encoders.15.attn.to_q.weight', 'encoders.15.attn.to_k.weight', 'encoders.15.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.attn.out_proj.bias": "encoders.15.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.attn.out_proj.weight": "encoders.15.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.ln_1.bias": "encoders.15.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.ln_1.weight": "encoders.15.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.ln_2.bias": "encoders.15.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.ln_2.weight": "encoders.15.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.mlp.c_fc.bias": "encoders.15.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.mlp.c_fc.weight": "encoders.15.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.mlp.c_proj.bias": "encoders.15.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.15.mlp.c_proj.weight": "encoders.15.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.attn.in_proj_bias": ['encoders.16.attn.to_q.bias', 'encoders.16.attn.to_k.bias', 'encoders.16.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.attn.in_proj_weight": ['encoders.16.attn.to_q.weight', 'encoders.16.attn.to_k.weight', 'encoders.16.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.attn.out_proj.bias": "encoders.16.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.attn.out_proj.weight": "encoders.16.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.ln_1.bias": "encoders.16.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.ln_1.weight": "encoders.16.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.ln_2.bias": "encoders.16.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.ln_2.weight": "encoders.16.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.mlp.c_fc.bias": "encoders.16.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.mlp.c_fc.weight": "encoders.16.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.mlp.c_proj.bias": "encoders.16.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.16.mlp.c_proj.weight": "encoders.16.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.attn.in_proj_bias": ['encoders.17.attn.to_q.bias', 'encoders.17.attn.to_k.bias', 'encoders.17.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.attn.in_proj_weight": ['encoders.17.attn.to_q.weight', 'encoders.17.attn.to_k.weight', 'encoders.17.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.attn.out_proj.bias": "encoders.17.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.attn.out_proj.weight": "encoders.17.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.ln_1.bias": "encoders.17.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.ln_1.weight": "encoders.17.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.ln_2.bias": "encoders.17.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.ln_2.weight": "encoders.17.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.mlp.c_fc.bias": "encoders.17.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.mlp.c_fc.weight": "encoders.17.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.mlp.c_proj.bias": "encoders.17.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.17.mlp.c_proj.weight": "encoders.17.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.attn.in_proj_bias": ['encoders.18.attn.to_q.bias', 'encoders.18.attn.to_k.bias', 'encoders.18.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.attn.in_proj_weight": ['encoders.18.attn.to_q.weight', 'encoders.18.attn.to_k.weight', 'encoders.18.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.attn.out_proj.bias": "encoders.18.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.attn.out_proj.weight": "encoders.18.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.ln_1.bias": "encoders.18.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.ln_1.weight": "encoders.18.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.ln_2.bias": "encoders.18.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.ln_2.weight": "encoders.18.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.mlp.c_fc.bias": "encoders.18.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.mlp.c_fc.weight": "encoders.18.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.mlp.c_proj.bias": "encoders.18.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.18.mlp.c_proj.weight": "encoders.18.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.attn.in_proj_bias": ['encoders.19.attn.to_q.bias', 'encoders.19.attn.to_k.bias', 'encoders.19.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.attn.in_proj_weight": ['encoders.19.attn.to_q.weight', 'encoders.19.attn.to_k.weight', 'encoders.19.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.attn.out_proj.bias": "encoders.19.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.attn.out_proj.weight": "encoders.19.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.ln_1.bias": "encoders.19.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.ln_1.weight": "encoders.19.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.ln_2.bias": "encoders.19.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.ln_2.weight": "encoders.19.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.mlp.c_fc.bias": "encoders.19.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.mlp.c_fc.weight": "encoders.19.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.mlp.c_proj.bias": "encoders.19.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.19.mlp.c_proj.weight": "encoders.19.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.attn.in_proj_bias": ['encoders.2.attn.to_q.bias', 'encoders.2.attn.to_k.bias', 'encoders.2.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.attn.in_proj_weight": ['encoders.2.attn.to_q.weight', 'encoders.2.attn.to_k.weight', 'encoders.2.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.attn.out_proj.bias": "encoders.2.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.attn.out_proj.weight": "encoders.2.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.ln_1.bias": "encoders.2.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.ln_1.weight": "encoders.2.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.ln_2.bias": "encoders.2.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.ln_2.weight": "encoders.2.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.mlp.c_fc.bias": "encoders.2.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.mlp.c_fc.weight": "encoders.2.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.mlp.c_proj.bias": "encoders.2.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.2.mlp.c_proj.weight": "encoders.2.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.attn.in_proj_bias": ['encoders.20.attn.to_q.bias', 'encoders.20.attn.to_k.bias', 'encoders.20.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.attn.in_proj_weight": ['encoders.20.attn.to_q.weight', 'encoders.20.attn.to_k.weight', 'encoders.20.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.attn.out_proj.bias": "encoders.20.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.attn.out_proj.weight": "encoders.20.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.ln_1.bias": "encoders.20.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.ln_1.weight": "encoders.20.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.ln_2.bias": "encoders.20.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.ln_2.weight": "encoders.20.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.mlp.c_fc.bias": "encoders.20.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.mlp.c_fc.weight": "encoders.20.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.mlp.c_proj.bias": "encoders.20.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.20.mlp.c_proj.weight": "encoders.20.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.attn.in_proj_bias": ['encoders.21.attn.to_q.bias', 'encoders.21.attn.to_k.bias', 'encoders.21.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.attn.in_proj_weight": ['encoders.21.attn.to_q.weight', 'encoders.21.attn.to_k.weight', 'encoders.21.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.attn.out_proj.bias": "encoders.21.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.attn.out_proj.weight": "encoders.21.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.ln_1.bias": "encoders.21.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.ln_1.weight": "encoders.21.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.ln_2.bias": "encoders.21.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.ln_2.weight": "encoders.21.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.mlp.c_fc.bias": "encoders.21.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.mlp.c_fc.weight": "encoders.21.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.mlp.c_proj.bias": "encoders.21.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.21.mlp.c_proj.weight": "encoders.21.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.attn.in_proj_bias": ['encoders.22.attn.to_q.bias', 'encoders.22.attn.to_k.bias', 'encoders.22.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.attn.in_proj_weight": ['encoders.22.attn.to_q.weight', 'encoders.22.attn.to_k.weight', 'encoders.22.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.attn.out_proj.bias": "encoders.22.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.attn.out_proj.weight": "encoders.22.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.ln_1.bias": "encoders.22.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.ln_1.weight": "encoders.22.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.ln_2.bias": "encoders.22.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.ln_2.weight": "encoders.22.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.mlp.c_fc.bias": "encoders.22.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.mlp.c_fc.weight": "encoders.22.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.mlp.c_proj.bias": "encoders.22.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.22.mlp.c_proj.weight": "encoders.22.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.attn.in_proj_bias": ['encoders.23.attn.to_q.bias', 'encoders.23.attn.to_k.bias', 'encoders.23.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.attn.in_proj_weight": ['encoders.23.attn.to_q.weight', 'encoders.23.attn.to_k.weight', 'encoders.23.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.attn.out_proj.bias": "encoders.23.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.attn.out_proj.weight": "encoders.23.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.ln_1.bias": "encoders.23.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.ln_1.weight": "encoders.23.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.ln_2.bias": "encoders.23.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.ln_2.weight": "encoders.23.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.mlp.c_fc.bias": "encoders.23.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.mlp.c_fc.weight": "encoders.23.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.mlp.c_proj.bias": "encoders.23.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.23.mlp.c_proj.weight": "encoders.23.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.attn.in_proj_bias": ['encoders.24.attn.to_q.bias', 'encoders.24.attn.to_k.bias', 'encoders.24.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.attn.in_proj_weight": ['encoders.24.attn.to_q.weight', 'encoders.24.attn.to_k.weight', 'encoders.24.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.attn.out_proj.bias": "encoders.24.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.attn.out_proj.weight": "encoders.24.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.ln_1.bias": "encoders.24.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.ln_1.weight": "encoders.24.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.ln_2.bias": "encoders.24.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.ln_2.weight": "encoders.24.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.mlp.c_fc.bias": "encoders.24.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.mlp.c_fc.weight": "encoders.24.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.mlp.c_proj.bias": "encoders.24.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.24.mlp.c_proj.weight": "encoders.24.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.attn.in_proj_bias": ['encoders.25.attn.to_q.bias', 'encoders.25.attn.to_k.bias', 'encoders.25.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.attn.in_proj_weight": ['encoders.25.attn.to_q.weight', 'encoders.25.attn.to_k.weight', 'encoders.25.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.attn.out_proj.bias": "encoders.25.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.attn.out_proj.weight": "encoders.25.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.ln_1.bias": "encoders.25.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.ln_1.weight": "encoders.25.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.ln_2.bias": "encoders.25.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.ln_2.weight": "encoders.25.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.mlp.c_fc.bias": "encoders.25.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.mlp.c_fc.weight": "encoders.25.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.mlp.c_proj.bias": "encoders.25.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.25.mlp.c_proj.weight": "encoders.25.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.attn.in_proj_bias": ['encoders.26.attn.to_q.bias', 'encoders.26.attn.to_k.bias', 'encoders.26.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.attn.in_proj_weight": ['encoders.26.attn.to_q.weight', 'encoders.26.attn.to_k.weight', 'encoders.26.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.attn.out_proj.bias": "encoders.26.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.attn.out_proj.weight": "encoders.26.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.ln_1.bias": "encoders.26.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.ln_1.weight": "encoders.26.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.ln_2.bias": "encoders.26.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.ln_2.weight": "encoders.26.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.mlp.c_fc.bias": "encoders.26.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.mlp.c_fc.weight": "encoders.26.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.mlp.c_proj.bias": "encoders.26.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.26.mlp.c_proj.weight": "encoders.26.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.attn.in_proj_bias": ['encoders.27.attn.to_q.bias', 'encoders.27.attn.to_k.bias', 'encoders.27.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.attn.in_proj_weight": ['encoders.27.attn.to_q.weight', 'encoders.27.attn.to_k.weight', 'encoders.27.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.attn.out_proj.bias": "encoders.27.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.attn.out_proj.weight": "encoders.27.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.ln_1.bias": "encoders.27.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.ln_1.weight": "encoders.27.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.ln_2.bias": "encoders.27.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.ln_2.weight": "encoders.27.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.mlp.c_fc.bias": "encoders.27.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.mlp.c_fc.weight": "encoders.27.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.mlp.c_proj.bias": "encoders.27.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.27.mlp.c_proj.weight": "encoders.27.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.attn.in_proj_bias": ['encoders.28.attn.to_q.bias', 'encoders.28.attn.to_k.bias', 'encoders.28.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.attn.in_proj_weight": ['encoders.28.attn.to_q.weight', 'encoders.28.attn.to_k.weight', 'encoders.28.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.attn.out_proj.bias": "encoders.28.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.attn.out_proj.weight": "encoders.28.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.ln_1.bias": "encoders.28.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.ln_1.weight": "encoders.28.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.ln_2.bias": "encoders.28.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.ln_2.weight": "encoders.28.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.mlp.c_fc.bias": "encoders.28.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.mlp.c_fc.weight": "encoders.28.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.mlp.c_proj.bias": "encoders.28.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.28.mlp.c_proj.weight": "encoders.28.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.attn.in_proj_bias": ['encoders.29.attn.to_q.bias', 'encoders.29.attn.to_k.bias', 'encoders.29.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.attn.in_proj_weight": ['encoders.29.attn.to_q.weight', 'encoders.29.attn.to_k.weight', 'encoders.29.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.attn.out_proj.bias": "encoders.29.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.attn.out_proj.weight": "encoders.29.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.ln_1.bias": "encoders.29.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.ln_1.weight": "encoders.29.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.ln_2.bias": "encoders.29.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.ln_2.weight": "encoders.29.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.mlp.c_fc.bias": "encoders.29.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.mlp.c_fc.weight": "encoders.29.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.mlp.c_proj.bias": "encoders.29.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.29.mlp.c_proj.weight": "encoders.29.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.attn.in_proj_bias": ['encoders.3.attn.to_q.bias', 'encoders.3.attn.to_k.bias', 'encoders.3.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.attn.in_proj_weight": ['encoders.3.attn.to_q.weight', 'encoders.3.attn.to_k.weight', 'encoders.3.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.attn.out_proj.bias": "encoders.3.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.attn.out_proj.weight": "encoders.3.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.ln_1.bias": "encoders.3.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.ln_1.weight": "encoders.3.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.ln_2.bias": "encoders.3.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.ln_2.weight": "encoders.3.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.mlp.c_fc.bias": "encoders.3.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.mlp.c_fc.weight": "encoders.3.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.mlp.c_proj.bias": "encoders.3.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.3.mlp.c_proj.weight": "encoders.3.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.attn.in_proj_bias": ['encoders.30.attn.to_q.bias', 'encoders.30.attn.to_k.bias', 'encoders.30.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.attn.in_proj_weight": ['encoders.30.attn.to_q.weight', 'encoders.30.attn.to_k.weight', 'encoders.30.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.attn.out_proj.bias": "encoders.30.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.attn.out_proj.weight": "encoders.30.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.ln_1.bias": "encoders.30.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.ln_1.weight": "encoders.30.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.ln_2.bias": "encoders.30.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.ln_2.weight": "encoders.30.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.mlp.c_fc.bias": "encoders.30.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.mlp.c_fc.weight": "encoders.30.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.mlp.c_proj.bias": "encoders.30.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.30.mlp.c_proj.weight": "encoders.30.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.attn.in_proj_bias": ['encoders.31.attn.to_q.bias', 'encoders.31.attn.to_k.bias', 'encoders.31.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.attn.in_proj_weight": ['encoders.31.attn.to_q.weight', 'encoders.31.attn.to_k.weight', 'encoders.31.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.attn.out_proj.bias": "encoders.31.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.attn.out_proj.weight": "encoders.31.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.ln_1.bias": "encoders.31.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.ln_1.weight": "encoders.31.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.ln_2.bias": "encoders.31.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.ln_2.weight": "encoders.31.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.mlp.c_fc.bias": "encoders.31.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.mlp.c_fc.weight": "encoders.31.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.mlp.c_proj.bias": "encoders.31.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.31.mlp.c_proj.weight": "encoders.31.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.attn.in_proj_bias": ['encoders.4.attn.to_q.bias', 'encoders.4.attn.to_k.bias', 'encoders.4.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.attn.in_proj_weight": ['encoders.4.attn.to_q.weight', 'encoders.4.attn.to_k.weight', 'encoders.4.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.attn.out_proj.bias": "encoders.4.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.attn.out_proj.weight": "encoders.4.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.ln_1.bias": "encoders.4.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.ln_1.weight": "encoders.4.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.ln_2.bias": "encoders.4.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.ln_2.weight": "encoders.4.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.mlp.c_fc.bias": "encoders.4.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.mlp.c_fc.weight": "encoders.4.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.mlp.c_proj.bias": "encoders.4.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.4.mlp.c_proj.weight": "encoders.4.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.attn.in_proj_bias": ['encoders.5.attn.to_q.bias', 'encoders.5.attn.to_k.bias', 'encoders.5.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.attn.in_proj_weight": ['encoders.5.attn.to_q.weight', 'encoders.5.attn.to_k.weight', 'encoders.5.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.attn.out_proj.bias": "encoders.5.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.attn.out_proj.weight": "encoders.5.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.ln_1.bias": "encoders.5.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.ln_1.weight": "encoders.5.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.ln_2.bias": "encoders.5.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.ln_2.weight": "encoders.5.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.mlp.c_fc.bias": "encoders.5.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.mlp.c_fc.weight": "encoders.5.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.mlp.c_proj.bias": "encoders.5.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.5.mlp.c_proj.weight": "encoders.5.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.attn.in_proj_bias": ['encoders.6.attn.to_q.bias', 'encoders.6.attn.to_k.bias', 'encoders.6.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.attn.in_proj_weight": ['encoders.6.attn.to_q.weight', 'encoders.6.attn.to_k.weight', 'encoders.6.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.attn.out_proj.bias": "encoders.6.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.attn.out_proj.weight": "encoders.6.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.ln_1.bias": "encoders.6.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.ln_1.weight": "encoders.6.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.ln_2.bias": "encoders.6.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.ln_2.weight": "encoders.6.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.mlp.c_fc.bias": "encoders.6.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.mlp.c_fc.weight": "encoders.6.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.mlp.c_proj.bias": "encoders.6.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.6.mlp.c_proj.weight": "encoders.6.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.attn.in_proj_bias": ['encoders.7.attn.to_q.bias', 'encoders.7.attn.to_k.bias', 'encoders.7.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.attn.in_proj_weight": ['encoders.7.attn.to_q.weight', 'encoders.7.attn.to_k.weight', 'encoders.7.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.attn.out_proj.bias": "encoders.7.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.attn.out_proj.weight": "encoders.7.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.ln_1.bias": "encoders.7.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.ln_1.weight": "encoders.7.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.ln_2.bias": "encoders.7.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.ln_2.weight": "encoders.7.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.mlp.c_fc.bias": "encoders.7.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.mlp.c_fc.weight": "encoders.7.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.mlp.c_proj.bias": "encoders.7.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.7.mlp.c_proj.weight": "encoders.7.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.attn.in_proj_bias": ['encoders.8.attn.to_q.bias', 'encoders.8.attn.to_k.bias', 'encoders.8.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.attn.in_proj_weight": ['encoders.8.attn.to_q.weight', 'encoders.8.attn.to_k.weight', 'encoders.8.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.attn.out_proj.bias": "encoders.8.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.attn.out_proj.weight": "encoders.8.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.ln_1.bias": "encoders.8.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.ln_1.weight": "encoders.8.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.ln_2.bias": "encoders.8.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.ln_2.weight": "encoders.8.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.mlp.c_fc.bias": "encoders.8.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.mlp.c_fc.weight": "encoders.8.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.mlp.c_proj.bias": "encoders.8.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.8.mlp.c_proj.weight": "encoders.8.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.attn.in_proj_bias": ['encoders.9.attn.to_q.bias', 'encoders.9.attn.to_k.bias', 'encoders.9.attn.to_v.bias'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.attn.in_proj_weight": ['encoders.9.attn.to_q.weight', 'encoders.9.attn.to_k.weight', 'encoders.9.attn.to_v.weight'], - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.attn.out_proj.bias": "encoders.9.attn.to_out.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.attn.out_proj.weight": "encoders.9.attn.to_out.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.ln_1.bias": "encoders.9.layer_norm1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.ln_1.weight": "encoders.9.layer_norm1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.ln_2.bias": "encoders.9.layer_norm2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.ln_2.weight": "encoders.9.layer_norm2.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.mlp.c_fc.bias": "encoders.9.fc1.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.mlp.c_fc.weight": "encoders.9.fc1.weight", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.mlp.c_proj.bias": "encoders.9.fc2.bias", - "conditioner.embedders.0.open_clip.model.visual.transformer.resblocks.9.mlp.c_proj.weight": "encoders.9.fc2.weight", - "conditioner.embedders.0.open_clip.model.visual.proj": "visual_projection.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if name == "conditioner.embedders.0.open_clip.model.visual.class_embedding": - param = param.reshape((1, 1, param.shape[0])) - elif name == "conditioner.embedders.0.open_clip.model.visual.positional_embedding": - param = param.reshape((1, param.shape[0], param.shape[1])) - elif name == "conditioner.embedders.0.open_clip.model.visual.proj": - param = param.T - if isinstance(rename_dict[name], str): - state_dict_[rename_dict[name]] = param - else: - length = param.shape[0] // 3 - for i, rename in enumerate(rename_dict[name]): - state_dict_[rename] = param[i*length: i*length+length] - return state_dict_ diff --git a/diffsynth/models/svd_unet.py b/diffsynth/models/svd_unet.py deleted file mode 100644 index 19c540a926914eea4f827cfb1aa460a098c61025..0000000000000000000000000000000000000000 --- a/diffsynth/models/svd_unet.py +++ /dev/null @@ -1,2007 +0,0 @@ -import torch, math -from einops import rearrange, repeat -from .sd_unet import Timesteps, PushBlock, PopBlock, Attention, GEGLU, ResnetBlock, AttentionBlock, DownSampler, UpSampler - - -class TemporalResnetBlock(torch.nn.Module): - def __init__(self, in_channels, out_channels, temb_channels=None, groups=32, eps=1e-5): - super().__init__() - self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) - self.conv1 = torch.nn.Conv3d(in_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0)) - if temb_channels is not None: - self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) - self.norm2 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True) - self.conv2 = torch.nn.Conv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0)) - self.nonlinearity = torch.nn.SiLU() - self.conv_shortcut = None - if in_channels != out_channels: - self.conv_shortcut = torch.nn.Conv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True) - - def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): - x = rearrange(hidden_states, "f c h w -> 1 c f h w") - x = self.norm1(x) - x = self.nonlinearity(x) - x = self.conv1(x) - if time_emb is not None: - emb = self.nonlinearity(time_emb) - emb = self.time_emb_proj(emb) - emb = repeat(emb, "b c -> b c f 1 1", f=hidden_states.shape[0]) - x = x + emb - x = self.norm2(x) - x = self.nonlinearity(x) - x = self.conv2(x) - if self.conv_shortcut is not None: - hidden_states = self.conv_shortcut(hidden_states) - x = rearrange(x[0], "c f h w -> f c h w") - hidden_states = hidden_states + x - return hidden_states, time_emb, text_emb, res_stack - - -def get_timestep_embedding( - timesteps: torch.Tensor, - embedding_dim: int, - flip_sin_to_cos: bool = False, - downscale_freq_shift: float = 1, - scale: float = 1, - max_period: int = 10000, - computation_device = None, -): - """ - This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. - - :param timesteps: a 1-D Tensor of N indices, one per batch element. - These may be fractional. - :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the - embeddings. :return: an [N x dim] Tensor of positional embeddings. - """ - assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" - - half_dim = embedding_dim // 2 - exponent = -math.log(max_period) * torch.arange( - start=0, end=half_dim, dtype=torch.float32, device=timesteps.device if computation_device is None else computation_device - ) - exponent = exponent / (half_dim - downscale_freq_shift) - - emb = torch.exp(exponent).to(timesteps.device) - emb = timesteps[:, None].float() * emb[None, :] - - # scale embeddings - emb = scale * emb - - # concat sine and cosine embeddings - emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) - - # flip sine and cosine embeddings - if flip_sin_to_cos: - emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) - - # zero pad - if embedding_dim % 2 == 1: - emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) - return emb - - -class TemporalTimesteps(torch.nn.Module): - def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, computation_device = None): - super().__init__() - self.num_channels = num_channels - self.flip_sin_to_cos = flip_sin_to_cos - self.downscale_freq_shift = downscale_freq_shift - self.computation_device = computation_device - - def forward(self, timesteps): - t_emb = get_timestep_embedding( - timesteps, - self.num_channels, - flip_sin_to_cos=self.flip_sin_to_cos, - downscale_freq_shift=self.downscale_freq_shift, - computation_device=self.computation_device, - ) - return t_emb - - -class TrainableTemporalTimesteps(torch.nn.Module): - def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, num_frames: int): - super().__init__() - timesteps = PositionalID()(num_frames) - embeddings = get_timestep_embedding(timesteps, num_channels, flip_sin_to_cos, downscale_freq_shift) - self.embeddings = torch.nn.Parameter(embeddings) - - def forward(self, timesteps): - t_emb = self.embeddings[timesteps] - return t_emb - - -class PositionalID(torch.nn.Module): - def __init__(self, max_id=25, repeat_length=20): - super().__init__() - self.max_id = max_id - self.repeat_length = repeat_length - - def frame_id_to_position_id(self, frame_id): - if frame_id < self.max_id: - position_id = frame_id - else: - position_id = (frame_id - self.max_id) % (self.repeat_length * 2) - if position_id < self.repeat_length: - position_id = self.max_id - 2 - position_id - else: - position_id = self.max_id - 2 * self.repeat_length + position_id - return position_id - - def forward(self, num_frames, pivot_frame_id=0): - position_ids = [self.frame_id_to_position_id(abs(i-pivot_frame_id)) for i in range(num_frames)] - position_ids = torch.IntTensor(position_ids) - return position_ids - - -class TemporalAttentionBlock(torch.nn.Module): - - def __init__(self, num_attention_heads, attention_head_dim, in_channels, cross_attention_dim=None, add_positional_conv=None): - super().__init__() - - self.positional_embedding_proj = torch.nn.Sequential( - torch.nn.Linear(in_channels, in_channels * 4), - torch.nn.SiLU(), - torch.nn.Linear(in_channels * 4, in_channels) - ) - if add_positional_conv is not None: - self.positional_embedding = TrainableTemporalTimesteps(in_channels, True, 0, add_positional_conv) - self.positional_conv = torch.nn.Conv3d(in_channels, in_channels, kernel_size=3, padding=1, padding_mode="reflect") - else: - self.positional_embedding = TemporalTimesteps(in_channels, True, 0) - self.positional_conv = None - - self.norm_in = torch.nn.LayerNorm(in_channels) - self.act_fn_in = GEGLU(in_channels, in_channels * 4) - self.ff_in = torch.nn.Linear(in_channels * 4, in_channels) - - self.norm1 = torch.nn.LayerNorm(in_channels) - self.attn1 = Attention( - q_dim=in_channels, - num_heads=num_attention_heads, - head_dim=attention_head_dim, - bias_out=True - ) - - self.norm2 = torch.nn.LayerNorm(in_channels) - self.attn2 = Attention( - q_dim=in_channels, - kv_dim=cross_attention_dim, - num_heads=num_attention_heads, - head_dim=attention_head_dim, - bias_out=True - ) - - self.norm_out = torch.nn.LayerNorm(in_channels) - self.act_fn_out = GEGLU(in_channels, in_channels * 4) - self.ff_out = torch.nn.Linear(in_channels * 4, in_channels) - - def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): - - batch, inner_dim, height, width = hidden_states.shape - pos_emb = torch.arange(batch) - pos_emb = self.positional_embedding(pos_emb).to(dtype=hidden_states.dtype, device=hidden_states.device) - pos_emb = self.positional_embedding_proj(pos_emb) - - hidden_states = rearrange(hidden_states, "T C H W -> 1 C T H W") + rearrange(pos_emb, "T C -> 1 C T 1 1") - if self.positional_conv is not None: - hidden_states = self.positional_conv(hidden_states) - hidden_states = rearrange(hidden_states[0], "C T H W -> (H W) T C") - - residual = hidden_states - hidden_states = self.norm_in(hidden_states) - hidden_states = self.act_fn_in(hidden_states) - hidden_states = self.ff_in(hidden_states) - hidden_states = hidden_states + residual - - norm_hidden_states = self.norm1(hidden_states) - attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) - hidden_states = attn_output + hidden_states - - norm_hidden_states = self.norm2(hidden_states) - attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=text_emb.repeat(height * width, 1)) - hidden_states = attn_output + hidden_states - - residual = hidden_states - hidden_states = self.norm_out(hidden_states) - hidden_states = self.act_fn_out(hidden_states) - hidden_states = self.ff_out(hidden_states) - hidden_states = hidden_states + residual - - hidden_states = hidden_states.reshape(height, width, batch, inner_dim).permute(2, 3, 0, 1) - - return hidden_states, time_emb, text_emb, res_stack - - -class PopMixBlock(torch.nn.Module): - def __init__(self, in_channels=None): - super().__init__() - self.mix_factor = torch.nn.Parameter(torch.Tensor([0.5])) - self.need_proj = in_channels is not None - if self.need_proj: - self.proj = torch.nn.Linear(in_channels, in_channels) - - def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): - res_hidden_states = res_stack.pop() - alpha = torch.sigmoid(self.mix_factor) - hidden_states = alpha * res_hidden_states + (1 - alpha) * hidden_states - if self.need_proj: - hidden_states = hidden_states.permute(0, 2, 3, 1) - hidden_states = self.proj(hidden_states) - hidden_states = hidden_states.permute(0, 3, 1, 2) - res_hidden_states = res_stack.pop() - hidden_states = hidden_states + res_hidden_states - return hidden_states, time_emb, text_emb, res_stack - - -class SVDUNet(torch.nn.Module): - def __init__(self, add_positional_conv=None): - super().__init__() - self.time_proj = Timesteps(320) - self.time_embedding = torch.nn.Sequential( - torch.nn.Linear(320, 1280), - torch.nn.SiLU(), - torch.nn.Linear(1280, 1280) - ) - self.add_time_proj = Timesteps(256) - self.add_time_embedding = torch.nn.Sequential( - torch.nn.Linear(768, 1280), - torch.nn.SiLU(), - torch.nn.Linear(1280, 1280) - ) - self.conv_in = torch.nn.Conv2d(8, 320, kernel_size=3, padding=1) - - self.blocks = torch.nn.ModuleList([ - # CrossAttnDownBlockSpatioTemporal - ResnetBlock(320, 320, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024, add_positional_conv), PopMixBlock(320), PushBlock(), - ResnetBlock(320, 320, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024, add_positional_conv), PopMixBlock(320), PushBlock(), - DownSampler(320), PushBlock(), - # CrossAttnDownBlockSpatioTemporal - ResnetBlock(320, 640, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024, add_positional_conv), PopMixBlock(640), PushBlock(), - ResnetBlock(640, 640, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024, add_positional_conv), PopMixBlock(640), PushBlock(), - DownSampler(640), PushBlock(), - # CrossAttnDownBlockSpatioTemporal - ResnetBlock(640, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280), PushBlock(), - ResnetBlock(1280, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280), PushBlock(), - DownSampler(1280), PushBlock(), - # DownBlockSpatioTemporal - ResnetBlock(1280, 1280, 1280, eps=1e-5), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(), PushBlock(), - ResnetBlock(1280, 1280, 1280, eps=1e-5), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(), PushBlock(), - # UNetMidBlockSpatioTemporal - ResnetBlock(1280, 1280, 1280, eps=1e-5), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(), PushBlock(), - AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280), - ResnetBlock(1280, 1280, 1280, eps=1e-5), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(), - # UpBlockSpatioTemporal - PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(), - PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(), - PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-5), PopMixBlock(), - UpSampler(1280), - # CrossAttnUpBlockSpatioTemporal - PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280), - PopBlock(), ResnetBlock(2560, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280), - PopBlock(), ResnetBlock(1920, 1280, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(1280, 1280, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(20, 64, 1280, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(20, 64, 1280, 1024, add_positional_conv), PopMixBlock(1280), - UpSampler(1280), - # CrossAttnUpBlockSpatioTemporal - PopBlock(), ResnetBlock(1920, 640, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024, add_positional_conv), PopMixBlock(640), - PopBlock(), ResnetBlock(1280, 640, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024, add_positional_conv), PopMixBlock(640), - PopBlock(), ResnetBlock(960, 640, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(640, 640, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(10, 64, 640, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(10, 64, 640, 1024, add_positional_conv), PopMixBlock(640), - UpSampler(640), - # CrossAttnUpBlockSpatioTemporal - PopBlock(), ResnetBlock(960, 320, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024, add_positional_conv), PopMixBlock(320), - PopBlock(), ResnetBlock(640, 320, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024, add_positional_conv), PopMixBlock(320), - PopBlock(), ResnetBlock(640, 320, 1280, eps=1e-6), PushBlock(), TemporalResnetBlock(320, 320, 1280, eps=1e-6), PopMixBlock(), PushBlock(), - AttentionBlock(5, 64, 320, 1, 1024, need_proj_out=False), PushBlock(), TemporalAttentionBlock(5, 64, 320, 1024, add_positional_conv), PopMixBlock(320), - ]) - - self.conv_norm_out = torch.nn.GroupNorm(32, 320, eps=1e-05, affine=True) - self.conv_act = torch.nn.SiLU() - self.conv_out = torch.nn.Conv2d(320, 4, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) - - - def build_mask(self, data, is_bound): - T, C, H, W = data.shape - t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W) - h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W) - w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W) - border_width = (T + H + W) // 6 - pad = torch.ones_like(t) * border_width - mask = torch.stack([ - pad if is_bound[0] else t + 1, - pad if is_bound[1] else T - t, - pad if is_bound[2] else h + 1, - pad if is_bound[3] else H - h, - pad if is_bound[4] else w + 1, - pad if is_bound[5] else W - w - ]).min(dim=0).values - mask = mask.clip(1, border_width) - mask = (mask / border_width).to(dtype=data.dtype, device=data.device) - mask = rearrange(mask, "T H W -> T 1 H W") - return mask - - - def tiled_forward( - self, sample, timestep, encoder_hidden_states, add_time_id, - batch_time=25, batch_height=128, batch_width=128, - stride_time=5, stride_height=64, stride_width=64, - progress_bar=lambda x:x - ): - data_device = sample.device - computation_device = self.conv_in.weight.device - torch_dtype = sample.dtype - T, C, H, W = sample.shape - - weight = torch.zeros((T, 1, H, W), dtype=torch_dtype, device=data_device) - values = torch.zeros((T, 4, H, W), dtype=torch_dtype, device=data_device) - - # Split tasks - tasks = [] - for t in range(0, T, stride_time): - for h in range(0, H, stride_height): - for w in range(0, W, stride_width): - if (t-stride_time >= 0 and t-stride_time+batch_time >= T)\ - or (h-stride_height >= 0 and h-stride_height+batch_height >= H)\ - or (w-stride_width >= 0 and w-stride_width+batch_width >= W): - continue - tasks.append((t, t+batch_time, h, h+batch_height, w, w+batch_width)) - - # Run - for tl, tr, hl, hr, wl, wr in progress_bar(tasks): - sample_batch = sample[tl:tr, :, hl:hr, wl:wr].to(computation_device) - sample_batch = self.forward(sample_batch, timestep, encoder_hidden_states, add_time_id).to(data_device) - mask = self.build_mask(sample_batch, is_bound=(tl==0, tr>=T, hl==0, hr>=H, wl==0, wr>=W)) - values[tl:tr, :, hl:hr, wl:wr] += sample_batch * mask - weight[tl:tr, :, hl:hr, wl:wr] += mask - values /= weight - return values - - - def forward(self, sample, timestep, encoder_hidden_states, add_time_id, use_gradient_checkpointing=False, **kwargs): - # 1. time - timestep = torch.tensor((timestep,)).to(sample.device) - t_emb = self.time_proj(timestep).to(sample.dtype) - t_emb = self.time_embedding(t_emb) - - add_embeds = self.add_time_proj(add_time_id.flatten()).to(sample.dtype) - add_embeds = add_embeds.reshape((-1, 768)) - add_embeds = self.add_time_embedding(add_embeds) - - time_emb = t_emb + add_embeds - - # 2. pre-process - height, width = sample.shape[2], sample.shape[3] - hidden_states = self.conv_in(sample) - text_emb = encoder_hidden_states - res_stack = [hidden_states] - - # 3. blocks - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - return custom_forward - for i, block in enumerate(self.blocks): - if self.training and use_gradient_checkpointing and not (isinstance(block, PushBlock) or isinstance(block, PopBlock) or isinstance(block, PopMixBlock)): - hidden_states, time_emb, text_emb, res_stack = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - hidden_states, time_emb, text_emb, res_stack, - use_reentrant=False, - ) - else: - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - - # 4. output - hidden_states = self.conv_norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - - return hidden_states - - @staticmethod - def state_dict_converter(): - return SVDUNetStateDictConverter() - - - -class SVDUNetStateDictConverter: - def __init__(self): - pass - - def get_block_name(self, names): - if names[0] in ["down_blocks", "mid_block", "up_blocks"]: - if names[4] in ["norm", "proj_in"]: - return ".".join(names[:4] + ["transformer_blocks"]) - elif names[4] in ["time_pos_embed"]: - return ".".join(names[:4] + ["temporal_transformer_blocks"]) - elif names[4] in ["proj_out"]: - return ".".join(names[:4] + ["time_mixer"]) - else: - return ".".join(names[:5]) - return "" - - def from_diffusers(self, state_dict): - rename_dict = { - "time_embedding.linear_1": "time_embedding.0", - "time_embedding.linear_2": "time_embedding.2", - "add_embedding.linear_1": "add_time_embedding.0", - "add_embedding.linear_2": "add_time_embedding.2", - "conv_in": "conv_in", - "conv_norm_out": "conv_norm_out", - "conv_out": "conv_out", - } - blocks_rename_dict = [ - "down_blocks.0.resnets.0.spatial_res_block", None, "down_blocks.0.resnets.0.temporal_res_block", "down_blocks.0.resnets.0.time_mixer", None, - "down_blocks.0.attentions.0.transformer_blocks", None, "down_blocks.0.attentions.0.temporal_transformer_blocks", "down_blocks.0.attentions.0.time_mixer", None, - "down_blocks.0.resnets.1.spatial_res_block", None, "down_blocks.0.resnets.1.temporal_res_block", "down_blocks.0.resnets.1.time_mixer", None, - "down_blocks.0.attentions.1.transformer_blocks", None, "down_blocks.0.attentions.1.temporal_transformer_blocks", "down_blocks.0.attentions.1.time_mixer", None, - "down_blocks.0.downsamplers.0.conv", None, - "down_blocks.1.resnets.0.spatial_res_block", None, "down_blocks.1.resnets.0.temporal_res_block", "down_blocks.1.resnets.0.time_mixer", None, - "down_blocks.1.attentions.0.transformer_blocks", None, "down_blocks.1.attentions.0.temporal_transformer_blocks", "down_blocks.1.attentions.0.time_mixer", None, - "down_blocks.1.resnets.1.spatial_res_block", None, "down_blocks.1.resnets.1.temporal_res_block", "down_blocks.1.resnets.1.time_mixer", None, - "down_blocks.1.attentions.1.transformer_blocks", None, "down_blocks.1.attentions.1.temporal_transformer_blocks", "down_blocks.1.attentions.1.time_mixer", None, - "down_blocks.1.downsamplers.0.conv", None, - "down_blocks.2.resnets.0.spatial_res_block", None, "down_blocks.2.resnets.0.temporal_res_block", "down_blocks.2.resnets.0.time_mixer", None, - "down_blocks.2.attentions.0.transformer_blocks", None, "down_blocks.2.attentions.0.temporal_transformer_blocks", "down_blocks.2.attentions.0.time_mixer", None, - "down_blocks.2.resnets.1.spatial_res_block", None, "down_blocks.2.resnets.1.temporal_res_block", "down_blocks.2.resnets.1.time_mixer", None, - "down_blocks.2.attentions.1.transformer_blocks", None, "down_blocks.2.attentions.1.temporal_transformer_blocks", "down_blocks.2.attentions.1.time_mixer", None, - "down_blocks.2.downsamplers.0.conv", None, - "down_blocks.3.resnets.0.spatial_res_block", None, "down_blocks.3.resnets.0.temporal_res_block", "down_blocks.3.resnets.0.time_mixer", None, - "down_blocks.3.resnets.1.spatial_res_block", None, "down_blocks.3.resnets.1.temporal_res_block", "down_blocks.3.resnets.1.time_mixer", None, - "mid_block.mid_block.resnets.0.spatial_res_block", None, "mid_block.mid_block.resnets.0.temporal_res_block", "mid_block.mid_block.resnets.0.time_mixer", None, - "mid_block.mid_block.attentions.0.transformer_blocks", None, "mid_block.mid_block.attentions.0.temporal_transformer_blocks", "mid_block.mid_block.attentions.0.time_mixer", - "mid_block.mid_block.resnets.1.spatial_res_block", None, "mid_block.mid_block.resnets.1.temporal_res_block", "mid_block.mid_block.resnets.1.time_mixer", - None, "up_blocks.0.resnets.0.spatial_res_block", None, "up_blocks.0.resnets.0.temporal_res_block", "up_blocks.0.resnets.0.time_mixer", - None, "up_blocks.0.resnets.1.spatial_res_block", None, "up_blocks.0.resnets.1.temporal_res_block", "up_blocks.0.resnets.1.time_mixer", - None, "up_blocks.0.resnets.2.spatial_res_block", None, "up_blocks.0.resnets.2.temporal_res_block", "up_blocks.0.resnets.2.time_mixer", - "up_blocks.0.upsamplers.0.conv", - None, "up_blocks.1.resnets.0.spatial_res_block", None, "up_blocks.1.resnets.0.temporal_res_block", "up_blocks.1.resnets.0.time_mixer", None, - "up_blocks.1.attentions.0.transformer_blocks", None, "up_blocks.1.attentions.0.temporal_transformer_blocks", "up_blocks.1.attentions.0.time_mixer", - None, "up_blocks.1.resnets.1.spatial_res_block", None, "up_blocks.1.resnets.1.temporal_res_block", "up_blocks.1.resnets.1.time_mixer", None, - "up_blocks.1.attentions.1.transformer_blocks", None, "up_blocks.1.attentions.1.temporal_transformer_blocks", "up_blocks.1.attentions.1.time_mixer", - None, "up_blocks.1.resnets.2.spatial_res_block", None, "up_blocks.1.resnets.2.temporal_res_block", "up_blocks.1.resnets.2.time_mixer", None, - "up_blocks.1.attentions.2.transformer_blocks", None, "up_blocks.1.attentions.2.temporal_transformer_blocks", "up_blocks.1.attentions.2.time_mixer", - "up_blocks.1.upsamplers.0.conv", - None, "up_blocks.2.resnets.0.spatial_res_block", None, "up_blocks.2.resnets.0.temporal_res_block", "up_blocks.2.resnets.0.time_mixer", None, - "up_blocks.2.attentions.0.transformer_blocks", None, "up_blocks.2.attentions.0.temporal_transformer_blocks", "up_blocks.2.attentions.0.time_mixer", - None, "up_blocks.2.resnets.1.spatial_res_block", None, "up_blocks.2.resnets.1.temporal_res_block", "up_blocks.2.resnets.1.time_mixer", None, - "up_blocks.2.attentions.1.transformer_blocks", None, "up_blocks.2.attentions.1.temporal_transformer_blocks", "up_blocks.2.attentions.1.time_mixer", - None, "up_blocks.2.resnets.2.spatial_res_block", None, "up_blocks.2.resnets.2.temporal_res_block", "up_blocks.2.resnets.2.time_mixer", None, - "up_blocks.2.attentions.2.transformer_blocks", None, "up_blocks.2.attentions.2.temporal_transformer_blocks", "up_blocks.2.attentions.2.time_mixer", - "up_blocks.2.upsamplers.0.conv", - None, "up_blocks.3.resnets.0.spatial_res_block", None, "up_blocks.3.resnets.0.temporal_res_block", "up_blocks.3.resnets.0.time_mixer", None, - "up_blocks.3.attentions.0.transformer_blocks", None, "up_blocks.3.attentions.0.temporal_transformer_blocks", "up_blocks.3.attentions.0.time_mixer", - None, "up_blocks.3.resnets.1.spatial_res_block", None, "up_blocks.3.resnets.1.temporal_res_block", "up_blocks.3.resnets.1.time_mixer", None, - "up_blocks.3.attentions.1.transformer_blocks", None, "up_blocks.3.attentions.1.temporal_transformer_blocks", "up_blocks.3.attentions.1.time_mixer", - None, "up_blocks.3.resnets.2.spatial_res_block", None, "up_blocks.3.resnets.2.temporal_res_block", "up_blocks.3.resnets.2.time_mixer", None, - "up_blocks.3.attentions.2.transformer_blocks", None, "up_blocks.3.attentions.2.temporal_transformer_blocks", "up_blocks.3.attentions.2.time_mixer", - ] - blocks_rename_dict = {i:j for j,i in enumerate(blocks_rename_dict) if i is not None} - state_dict_ = {} - for name, param in sorted(state_dict.items()): - names = name.split(".") - if names[0] == "mid_block": - names = ["mid_block"] + names - if names[-1] in ["weight", "bias"]: - name_prefix = ".".join(names[:-1]) - if name_prefix in rename_dict: - state_dict_[rename_dict[name_prefix] + "." + names[-1]] = param - else: - block_name = self.get_block_name(names) - if "resnets" in block_name and block_name in blocks_rename_dict: - rename = ".".join(["blocks", str(blocks_rename_dict[block_name])] + names[5:]) - state_dict_[rename] = param - elif ("downsamplers" in block_name or "upsamplers" in block_name) and block_name in blocks_rename_dict: - rename = ".".join(["blocks", str(blocks_rename_dict[block_name])] + names[-2:]) - state_dict_[rename] = param - elif "attentions" in block_name and block_name in blocks_rename_dict: - attention_id = names[5] - if "transformer_blocks" in names: - suffix_dict = { - "attn1.to_out.0": "attn1.to_out", - "attn2.to_out.0": "attn2.to_out", - "ff.net.0.proj": "act_fn.proj", - "ff.net.2": "ff", - } - suffix = ".".join(names[6:-1]) - suffix = suffix_dict.get(suffix, suffix) - rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), "transformer_blocks", attention_id, suffix, names[-1]]) - elif "temporal_transformer_blocks" in names: - suffix_dict = { - "attn1.to_out.0": "attn1.to_out", - "attn2.to_out.0": "attn2.to_out", - "ff_in.net.0.proj": "act_fn_in.proj", - "ff_in.net.2": "ff_in", - "ff.net.0.proj": "act_fn_out.proj", - "ff.net.2": "ff_out", - "norm3": "norm_out", - } - suffix = ".".join(names[6:-1]) - suffix = suffix_dict.get(suffix, suffix) - rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), suffix, names[-1]]) - elif "time_mixer" in block_name: - rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), "proj", names[-1]]) - else: - suffix_dict = { - "linear_1": "positional_embedding_proj.0", - "linear_2": "positional_embedding_proj.2", - } - suffix = names[-2] - suffix = suffix_dict.get(suffix, suffix) - rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), suffix, names[-1]]) - state_dict_[rename] = param - else: - print(name) - else: - block_name = self.get_block_name(names) - if len(block_name)>0 and block_name in blocks_rename_dict: - rename = ".".join(["blocks", str(blocks_rename_dict[block_name]), names[-1]]) - state_dict_[rename] = param - return state_dict_ - - - def from_civitai(self, state_dict, add_positional_conv=None): - rename_dict = { - "model.diffusion_model.input_blocks.0.0.bias": "conv_in.bias", - "model.diffusion_model.input_blocks.0.0.weight": "conv_in.weight", - "model.diffusion_model.input_blocks.1.0.emb_layers.1.bias": "blocks.0.time_emb_proj.bias", - "model.diffusion_model.input_blocks.1.0.emb_layers.1.weight": "blocks.0.time_emb_proj.weight", - "model.diffusion_model.input_blocks.1.0.in_layers.0.bias": "blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.1.0.in_layers.0.weight": "blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.1.0.in_layers.2.bias": "blocks.0.conv1.bias", - "model.diffusion_model.input_blocks.1.0.in_layers.2.weight": "blocks.0.conv1.weight", - "model.diffusion_model.input_blocks.1.0.out_layers.0.bias": "blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.1.0.out_layers.0.weight": "blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.1.0.out_layers.3.bias": "blocks.0.conv2.bias", - "model.diffusion_model.input_blocks.1.0.out_layers.3.weight": "blocks.0.conv2.weight", - "model.diffusion_model.input_blocks.1.0.time_mixer.mix_factor": "blocks.3.mix_factor", - "model.diffusion_model.input_blocks.1.0.time_stack.emb_layers.1.bias": "blocks.2.time_emb_proj.bias", - "model.diffusion_model.input_blocks.1.0.time_stack.emb_layers.1.weight": "blocks.2.time_emb_proj.weight", - "model.diffusion_model.input_blocks.1.0.time_stack.in_layers.0.bias": "blocks.2.norm1.bias", - "model.diffusion_model.input_blocks.1.0.time_stack.in_layers.0.weight": "blocks.2.norm1.weight", - "model.diffusion_model.input_blocks.1.0.time_stack.in_layers.2.bias": "blocks.2.conv1.bias", - "model.diffusion_model.input_blocks.1.0.time_stack.in_layers.2.weight": "blocks.2.conv1.weight", - "model.diffusion_model.input_blocks.1.0.time_stack.out_layers.0.bias": "blocks.2.norm2.bias", - "model.diffusion_model.input_blocks.1.0.time_stack.out_layers.0.weight": "blocks.2.norm2.weight", - "model.diffusion_model.input_blocks.1.0.time_stack.out_layers.3.bias": "blocks.2.conv2.bias", - "model.diffusion_model.input_blocks.1.0.time_stack.out_layers.3.weight": "blocks.2.conv2.weight", - "model.diffusion_model.input_blocks.1.1.norm.bias": "blocks.5.norm.bias", - "model.diffusion_model.input_blocks.1.1.norm.weight": "blocks.5.norm.weight", - "model.diffusion_model.input_blocks.1.1.proj_in.bias": "blocks.5.proj_in.bias", - "model.diffusion_model.input_blocks.1.1.proj_in.weight": "blocks.5.proj_in.weight", - "model.diffusion_model.input_blocks.1.1.proj_out.bias": "blocks.8.proj.bias", - "model.diffusion_model.input_blocks.1.1.proj_out.weight": "blocks.8.proj.weight", - "model.diffusion_model.input_blocks.1.1.time_mixer.mix_factor": "blocks.8.mix_factor", - "model.diffusion_model.input_blocks.1.1.time_pos_embed.0.bias": "blocks.7.positional_embedding_proj.0.bias", - "model.diffusion_model.input_blocks.1.1.time_pos_embed.0.weight": "blocks.7.positional_embedding_proj.0.weight", - "model.diffusion_model.input_blocks.1.1.time_pos_embed.2.bias": "blocks.7.positional_embedding_proj.2.bias", - "model.diffusion_model.input_blocks.1.1.time_pos_embed.2.weight": "blocks.7.positional_embedding_proj.2.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.attn1.to_k.weight": "blocks.7.attn1.to_k.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.attn1.to_out.0.bias": "blocks.7.attn1.to_out.bias", - "model.diffusion_model.input_blocks.1.1.time_stack.0.attn1.to_out.0.weight": "blocks.7.attn1.to_out.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.attn1.to_q.weight": "blocks.7.attn1.to_q.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.attn1.to_v.weight": "blocks.7.attn1.to_v.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.attn2.to_k.weight": "blocks.7.attn2.to_k.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.attn2.to_out.0.bias": "blocks.7.attn2.to_out.bias", - "model.diffusion_model.input_blocks.1.1.time_stack.0.attn2.to_out.0.weight": "blocks.7.attn2.to_out.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.attn2.to_q.weight": "blocks.7.attn2.to_q.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.attn2.to_v.weight": "blocks.7.attn2.to_v.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.ff.net.0.proj.bias": "blocks.7.act_fn_out.proj.bias", - "model.diffusion_model.input_blocks.1.1.time_stack.0.ff.net.0.proj.weight": "blocks.7.act_fn_out.proj.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.ff.net.2.bias": "blocks.7.ff_out.bias", - "model.diffusion_model.input_blocks.1.1.time_stack.0.ff.net.2.weight": "blocks.7.ff_out.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.7.act_fn_in.proj.bias", - "model.diffusion_model.input_blocks.1.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.7.act_fn_in.proj.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.ff_in.net.2.bias": "blocks.7.ff_in.bias", - "model.diffusion_model.input_blocks.1.1.time_stack.0.ff_in.net.2.weight": "blocks.7.ff_in.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.norm1.bias": "blocks.7.norm1.bias", - "model.diffusion_model.input_blocks.1.1.time_stack.0.norm1.weight": "blocks.7.norm1.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.norm2.bias": "blocks.7.norm2.bias", - "model.diffusion_model.input_blocks.1.1.time_stack.0.norm2.weight": "blocks.7.norm2.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.norm3.bias": "blocks.7.norm_out.bias", - "model.diffusion_model.input_blocks.1.1.time_stack.0.norm3.weight": "blocks.7.norm_out.weight", - "model.diffusion_model.input_blocks.1.1.time_stack.0.norm_in.bias": "blocks.7.norm_in.bias", - "model.diffusion_model.input_blocks.1.1.time_stack.0.norm_in.weight": "blocks.7.norm_in.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k.weight": "blocks.5.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.5.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.5.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q.weight": "blocks.5.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v.weight": "blocks.5.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight": "blocks.5.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.5.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.5.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight": "blocks.5.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight": "blocks.5.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.5.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.5.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias": "blocks.5.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight": "blocks.5.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.bias": "blocks.5.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.weight": "blocks.5.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.bias": "blocks.5.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight": "blocks.5.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.bias": "blocks.5.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.weight": "blocks.5.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.10.0.emb_layers.1.bias": "blocks.66.time_emb_proj.bias", - "model.diffusion_model.input_blocks.10.0.emb_layers.1.weight": "blocks.66.time_emb_proj.weight", - "model.diffusion_model.input_blocks.10.0.in_layers.0.bias": "blocks.66.norm1.bias", - "model.diffusion_model.input_blocks.10.0.in_layers.0.weight": "blocks.66.norm1.weight", - "model.diffusion_model.input_blocks.10.0.in_layers.2.bias": "blocks.66.conv1.bias", - "model.diffusion_model.input_blocks.10.0.in_layers.2.weight": "blocks.66.conv1.weight", - "model.diffusion_model.input_blocks.10.0.out_layers.0.bias": "blocks.66.norm2.bias", - "model.diffusion_model.input_blocks.10.0.out_layers.0.weight": "blocks.66.norm2.weight", - "model.diffusion_model.input_blocks.10.0.out_layers.3.bias": "blocks.66.conv2.bias", - "model.diffusion_model.input_blocks.10.0.out_layers.3.weight": "blocks.66.conv2.weight", - "model.diffusion_model.input_blocks.10.0.time_mixer.mix_factor": "blocks.69.mix_factor", - "model.diffusion_model.input_blocks.10.0.time_stack.emb_layers.1.bias": "blocks.68.time_emb_proj.bias", - "model.diffusion_model.input_blocks.10.0.time_stack.emb_layers.1.weight": "blocks.68.time_emb_proj.weight", - "model.diffusion_model.input_blocks.10.0.time_stack.in_layers.0.bias": "blocks.68.norm1.bias", - "model.diffusion_model.input_blocks.10.0.time_stack.in_layers.0.weight": "blocks.68.norm1.weight", - "model.diffusion_model.input_blocks.10.0.time_stack.in_layers.2.bias": "blocks.68.conv1.bias", - "model.diffusion_model.input_blocks.10.0.time_stack.in_layers.2.weight": "blocks.68.conv1.weight", - "model.diffusion_model.input_blocks.10.0.time_stack.out_layers.0.bias": "blocks.68.norm2.bias", - "model.diffusion_model.input_blocks.10.0.time_stack.out_layers.0.weight": "blocks.68.norm2.weight", - "model.diffusion_model.input_blocks.10.0.time_stack.out_layers.3.bias": "blocks.68.conv2.bias", - "model.diffusion_model.input_blocks.10.0.time_stack.out_layers.3.weight": "blocks.68.conv2.weight", - "model.diffusion_model.input_blocks.11.0.emb_layers.1.bias": "blocks.71.time_emb_proj.bias", - "model.diffusion_model.input_blocks.11.0.emb_layers.1.weight": "blocks.71.time_emb_proj.weight", - "model.diffusion_model.input_blocks.11.0.in_layers.0.bias": "blocks.71.norm1.bias", - "model.diffusion_model.input_blocks.11.0.in_layers.0.weight": "blocks.71.norm1.weight", - "model.diffusion_model.input_blocks.11.0.in_layers.2.bias": "blocks.71.conv1.bias", - "model.diffusion_model.input_blocks.11.0.in_layers.2.weight": "blocks.71.conv1.weight", - "model.diffusion_model.input_blocks.11.0.out_layers.0.bias": "blocks.71.norm2.bias", - "model.diffusion_model.input_blocks.11.0.out_layers.0.weight": "blocks.71.norm2.weight", - "model.diffusion_model.input_blocks.11.0.out_layers.3.bias": "blocks.71.conv2.bias", - "model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "blocks.71.conv2.weight", - "model.diffusion_model.input_blocks.11.0.time_mixer.mix_factor": "blocks.74.mix_factor", - "model.diffusion_model.input_blocks.11.0.time_stack.emb_layers.1.bias": "blocks.73.time_emb_proj.bias", - "model.diffusion_model.input_blocks.11.0.time_stack.emb_layers.1.weight": "blocks.73.time_emb_proj.weight", - "model.diffusion_model.input_blocks.11.0.time_stack.in_layers.0.bias": "blocks.73.norm1.bias", - "model.diffusion_model.input_blocks.11.0.time_stack.in_layers.0.weight": "blocks.73.norm1.weight", - "model.diffusion_model.input_blocks.11.0.time_stack.in_layers.2.bias": "blocks.73.conv1.bias", - "model.diffusion_model.input_blocks.11.0.time_stack.in_layers.2.weight": "blocks.73.conv1.weight", - "model.diffusion_model.input_blocks.11.0.time_stack.out_layers.0.bias": "blocks.73.norm2.bias", - "model.diffusion_model.input_blocks.11.0.time_stack.out_layers.0.weight": "blocks.73.norm2.weight", - "model.diffusion_model.input_blocks.11.0.time_stack.out_layers.3.bias": "blocks.73.conv2.bias", - "model.diffusion_model.input_blocks.11.0.time_stack.out_layers.3.weight": "blocks.73.conv2.weight", - "model.diffusion_model.input_blocks.2.0.emb_layers.1.bias": "blocks.10.time_emb_proj.bias", - "model.diffusion_model.input_blocks.2.0.emb_layers.1.weight": "blocks.10.time_emb_proj.weight", - "model.diffusion_model.input_blocks.2.0.in_layers.0.bias": "blocks.10.norm1.bias", - "model.diffusion_model.input_blocks.2.0.in_layers.0.weight": "blocks.10.norm1.weight", - "model.diffusion_model.input_blocks.2.0.in_layers.2.bias": "blocks.10.conv1.bias", - "model.diffusion_model.input_blocks.2.0.in_layers.2.weight": "blocks.10.conv1.weight", - "model.diffusion_model.input_blocks.2.0.out_layers.0.bias": "blocks.10.norm2.bias", - "model.diffusion_model.input_blocks.2.0.out_layers.0.weight": "blocks.10.norm2.weight", - "model.diffusion_model.input_blocks.2.0.out_layers.3.bias": "blocks.10.conv2.bias", - "model.diffusion_model.input_blocks.2.0.out_layers.3.weight": "blocks.10.conv2.weight", - "model.diffusion_model.input_blocks.2.0.time_mixer.mix_factor": "blocks.13.mix_factor", - "model.diffusion_model.input_blocks.2.0.time_stack.emb_layers.1.bias": "blocks.12.time_emb_proj.bias", - "model.diffusion_model.input_blocks.2.0.time_stack.emb_layers.1.weight": "blocks.12.time_emb_proj.weight", - "model.diffusion_model.input_blocks.2.0.time_stack.in_layers.0.bias": "blocks.12.norm1.bias", - "model.diffusion_model.input_blocks.2.0.time_stack.in_layers.0.weight": "blocks.12.norm1.weight", - "model.diffusion_model.input_blocks.2.0.time_stack.in_layers.2.bias": "blocks.12.conv1.bias", - "model.diffusion_model.input_blocks.2.0.time_stack.in_layers.2.weight": "blocks.12.conv1.weight", - "model.diffusion_model.input_blocks.2.0.time_stack.out_layers.0.bias": "blocks.12.norm2.bias", - "model.diffusion_model.input_blocks.2.0.time_stack.out_layers.0.weight": "blocks.12.norm2.weight", - "model.diffusion_model.input_blocks.2.0.time_stack.out_layers.3.bias": "blocks.12.conv2.bias", - "model.diffusion_model.input_blocks.2.0.time_stack.out_layers.3.weight": "blocks.12.conv2.weight", - "model.diffusion_model.input_blocks.2.1.norm.bias": "blocks.15.norm.bias", - "model.diffusion_model.input_blocks.2.1.norm.weight": "blocks.15.norm.weight", - "model.diffusion_model.input_blocks.2.1.proj_in.bias": "blocks.15.proj_in.bias", - "model.diffusion_model.input_blocks.2.1.proj_in.weight": "blocks.15.proj_in.weight", - "model.diffusion_model.input_blocks.2.1.proj_out.bias": "blocks.18.proj.bias", - "model.diffusion_model.input_blocks.2.1.proj_out.weight": "blocks.18.proj.weight", - "model.diffusion_model.input_blocks.2.1.time_mixer.mix_factor": "blocks.18.mix_factor", - "model.diffusion_model.input_blocks.2.1.time_pos_embed.0.bias": "blocks.17.positional_embedding_proj.0.bias", - "model.diffusion_model.input_blocks.2.1.time_pos_embed.0.weight": "blocks.17.positional_embedding_proj.0.weight", - "model.diffusion_model.input_blocks.2.1.time_pos_embed.2.bias": "blocks.17.positional_embedding_proj.2.bias", - "model.diffusion_model.input_blocks.2.1.time_pos_embed.2.weight": "blocks.17.positional_embedding_proj.2.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.attn1.to_k.weight": "blocks.17.attn1.to_k.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.attn1.to_out.0.bias": "blocks.17.attn1.to_out.bias", - "model.diffusion_model.input_blocks.2.1.time_stack.0.attn1.to_out.0.weight": "blocks.17.attn1.to_out.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.attn1.to_q.weight": "blocks.17.attn1.to_q.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.attn1.to_v.weight": "blocks.17.attn1.to_v.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.attn2.to_k.weight": "blocks.17.attn2.to_k.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.attn2.to_out.0.bias": "blocks.17.attn2.to_out.bias", - "model.diffusion_model.input_blocks.2.1.time_stack.0.attn2.to_out.0.weight": "blocks.17.attn2.to_out.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.attn2.to_q.weight": "blocks.17.attn2.to_q.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.attn2.to_v.weight": "blocks.17.attn2.to_v.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.ff.net.0.proj.bias": "blocks.17.act_fn_out.proj.bias", - "model.diffusion_model.input_blocks.2.1.time_stack.0.ff.net.0.proj.weight": "blocks.17.act_fn_out.proj.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.ff.net.2.bias": "blocks.17.ff_out.bias", - "model.diffusion_model.input_blocks.2.1.time_stack.0.ff.net.2.weight": "blocks.17.ff_out.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.17.act_fn_in.proj.bias", - "model.diffusion_model.input_blocks.2.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.17.act_fn_in.proj.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.ff_in.net.2.bias": "blocks.17.ff_in.bias", - "model.diffusion_model.input_blocks.2.1.time_stack.0.ff_in.net.2.weight": "blocks.17.ff_in.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.norm1.bias": "blocks.17.norm1.bias", - "model.diffusion_model.input_blocks.2.1.time_stack.0.norm1.weight": "blocks.17.norm1.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.norm2.bias": "blocks.17.norm2.bias", - "model.diffusion_model.input_blocks.2.1.time_stack.0.norm2.weight": "blocks.17.norm2.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.norm3.bias": "blocks.17.norm_out.bias", - "model.diffusion_model.input_blocks.2.1.time_stack.0.norm3.weight": "blocks.17.norm_out.weight", - "model.diffusion_model.input_blocks.2.1.time_stack.0.norm_in.bias": "blocks.17.norm_in.bias", - "model.diffusion_model.input_blocks.2.1.time_stack.0.norm_in.weight": "blocks.17.norm_in.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k.weight": "blocks.15.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.15.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.15.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q.weight": "blocks.15.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v.weight": "blocks.15.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight": "blocks.15.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.15.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.15.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight": "blocks.15.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight": "blocks.15.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.15.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.15.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias": "blocks.15.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight": "blocks.15.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.bias": "blocks.15.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.weight": "blocks.15.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.bias": "blocks.15.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.weight": "blocks.15.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.bias": "blocks.15.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.weight": "blocks.15.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.3.0.op.bias": "blocks.20.conv.bias", - "model.diffusion_model.input_blocks.3.0.op.weight": "blocks.20.conv.weight", - "model.diffusion_model.input_blocks.4.0.emb_layers.1.bias": "blocks.22.time_emb_proj.bias", - "model.diffusion_model.input_blocks.4.0.emb_layers.1.weight": "blocks.22.time_emb_proj.weight", - "model.diffusion_model.input_blocks.4.0.in_layers.0.bias": "blocks.22.norm1.bias", - "model.diffusion_model.input_blocks.4.0.in_layers.0.weight": "blocks.22.norm1.weight", - "model.diffusion_model.input_blocks.4.0.in_layers.2.bias": "blocks.22.conv1.bias", - "model.diffusion_model.input_blocks.4.0.in_layers.2.weight": "blocks.22.conv1.weight", - "model.diffusion_model.input_blocks.4.0.out_layers.0.bias": "blocks.22.norm2.bias", - "model.diffusion_model.input_blocks.4.0.out_layers.0.weight": "blocks.22.norm2.weight", - "model.diffusion_model.input_blocks.4.0.out_layers.3.bias": "blocks.22.conv2.bias", - "model.diffusion_model.input_blocks.4.0.out_layers.3.weight": "blocks.22.conv2.weight", - "model.diffusion_model.input_blocks.4.0.skip_connection.bias": "blocks.22.conv_shortcut.bias", - "model.diffusion_model.input_blocks.4.0.skip_connection.weight": "blocks.22.conv_shortcut.weight", - "model.diffusion_model.input_blocks.4.0.time_mixer.mix_factor": "blocks.25.mix_factor", - "model.diffusion_model.input_blocks.4.0.time_stack.emb_layers.1.bias": "blocks.24.time_emb_proj.bias", - "model.diffusion_model.input_blocks.4.0.time_stack.emb_layers.1.weight": "blocks.24.time_emb_proj.weight", - "model.diffusion_model.input_blocks.4.0.time_stack.in_layers.0.bias": "blocks.24.norm1.bias", - "model.diffusion_model.input_blocks.4.0.time_stack.in_layers.0.weight": "blocks.24.norm1.weight", - "model.diffusion_model.input_blocks.4.0.time_stack.in_layers.2.bias": "blocks.24.conv1.bias", - "model.diffusion_model.input_blocks.4.0.time_stack.in_layers.2.weight": "blocks.24.conv1.weight", - "model.diffusion_model.input_blocks.4.0.time_stack.out_layers.0.bias": "blocks.24.norm2.bias", - "model.diffusion_model.input_blocks.4.0.time_stack.out_layers.0.weight": "blocks.24.norm2.weight", - "model.diffusion_model.input_blocks.4.0.time_stack.out_layers.3.bias": "blocks.24.conv2.bias", - "model.diffusion_model.input_blocks.4.0.time_stack.out_layers.3.weight": "blocks.24.conv2.weight", - "model.diffusion_model.input_blocks.4.1.norm.bias": "blocks.27.norm.bias", - "model.diffusion_model.input_blocks.4.1.norm.weight": "blocks.27.norm.weight", - "model.diffusion_model.input_blocks.4.1.proj_in.bias": "blocks.27.proj_in.bias", - "model.diffusion_model.input_blocks.4.1.proj_in.weight": "blocks.27.proj_in.weight", - "model.diffusion_model.input_blocks.4.1.proj_out.bias": "blocks.30.proj.bias", - "model.diffusion_model.input_blocks.4.1.proj_out.weight": "blocks.30.proj.weight", - "model.diffusion_model.input_blocks.4.1.time_mixer.mix_factor": "blocks.30.mix_factor", - "model.diffusion_model.input_blocks.4.1.time_pos_embed.0.bias": "blocks.29.positional_embedding_proj.0.bias", - "model.diffusion_model.input_blocks.4.1.time_pos_embed.0.weight": "blocks.29.positional_embedding_proj.0.weight", - "model.diffusion_model.input_blocks.4.1.time_pos_embed.2.bias": "blocks.29.positional_embedding_proj.2.bias", - "model.diffusion_model.input_blocks.4.1.time_pos_embed.2.weight": "blocks.29.positional_embedding_proj.2.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.attn1.to_k.weight": "blocks.29.attn1.to_k.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.attn1.to_out.0.bias": "blocks.29.attn1.to_out.bias", - "model.diffusion_model.input_blocks.4.1.time_stack.0.attn1.to_out.0.weight": "blocks.29.attn1.to_out.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.attn1.to_q.weight": "blocks.29.attn1.to_q.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.attn1.to_v.weight": "blocks.29.attn1.to_v.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.attn2.to_k.weight": "blocks.29.attn2.to_k.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.attn2.to_out.0.bias": "blocks.29.attn2.to_out.bias", - "model.diffusion_model.input_blocks.4.1.time_stack.0.attn2.to_out.0.weight": "blocks.29.attn2.to_out.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.attn2.to_q.weight": "blocks.29.attn2.to_q.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.attn2.to_v.weight": "blocks.29.attn2.to_v.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.ff.net.0.proj.bias": "blocks.29.act_fn_out.proj.bias", - "model.diffusion_model.input_blocks.4.1.time_stack.0.ff.net.0.proj.weight": "blocks.29.act_fn_out.proj.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.ff.net.2.bias": "blocks.29.ff_out.bias", - "model.diffusion_model.input_blocks.4.1.time_stack.0.ff.net.2.weight": "blocks.29.ff_out.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.29.act_fn_in.proj.bias", - "model.diffusion_model.input_blocks.4.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.29.act_fn_in.proj.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.ff_in.net.2.bias": "blocks.29.ff_in.bias", - "model.diffusion_model.input_blocks.4.1.time_stack.0.ff_in.net.2.weight": "blocks.29.ff_in.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.norm1.bias": "blocks.29.norm1.bias", - "model.diffusion_model.input_blocks.4.1.time_stack.0.norm1.weight": "blocks.29.norm1.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.norm2.bias": "blocks.29.norm2.bias", - "model.diffusion_model.input_blocks.4.1.time_stack.0.norm2.weight": "blocks.29.norm2.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.norm3.bias": "blocks.29.norm_out.bias", - "model.diffusion_model.input_blocks.4.1.time_stack.0.norm3.weight": "blocks.29.norm_out.weight", - "model.diffusion_model.input_blocks.4.1.time_stack.0.norm_in.bias": "blocks.29.norm_in.bias", - "model.diffusion_model.input_blocks.4.1.time_stack.0.norm_in.weight": "blocks.29.norm_in.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.27.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.27.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.27.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.27.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.27.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.27.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.27.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.27.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.27.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.27.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.27.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.27.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.27.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.27.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.27.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.27.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.27.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.27.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.27.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.27.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.5.0.emb_layers.1.bias": "blocks.32.time_emb_proj.bias", - "model.diffusion_model.input_blocks.5.0.emb_layers.1.weight": "blocks.32.time_emb_proj.weight", - "model.diffusion_model.input_blocks.5.0.in_layers.0.bias": "blocks.32.norm1.bias", - "model.diffusion_model.input_blocks.5.0.in_layers.0.weight": "blocks.32.norm1.weight", - "model.diffusion_model.input_blocks.5.0.in_layers.2.bias": "blocks.32.conv1.bias", - "model.diffusion_model.input_blocks.5.0.in_layers.2.weight": "blocks.32.conv1.weight", - "model.diffusion_model.input_blocks.5.0.out_layers.0.bias": "blocks.32.norm2.bias", - "model.diffusion_model.input_blocks.5.0.out_layers.0.weight": "blocks.32.norm2.weight", - "model.diffusion_model.input_blocks.5.0.out_layers.3.bias": "blocks.32.conv2.bias", - "model.diffusion_model.input_blocks.5.0.out_layers.3.weight": "blocks.32.conv2.weight", - "model.diffusion_model.input_blocks.5.0.time_mixer.mix_factor": "blocks.35.mix_factor", - "model.diffusion_model.input_blocks.5.0.time_stack.emb_layers.1.bias": "blocks.34.time_emb_proj.bias", - "model.diffusion_model.input_blocks.5.0.time_stack.emb_layers.1.weight": "blocks.34.time_emb_proj.weight", - "model.diffusion_model.input_blocks.5.0.time_stack.in_layers.0.bias": "blocks.34.norm1.bias", - "model.diffusion_model.input_blocks.5.0.time_stack.in_layers.0.weight": "blocks.34.norm1.weight", - "model.diffusion_model.input_blocks.5.0.time_stack.in_layers.2.bias": "blocks.34.conv1.bias", - "model.diffusion_model.input_blocks.5.0.time_stack.in_layers.2.weight": "blocks.34.conv1.weight", - "model.diffusion_model.input_blocks.5.0.time_stack.out_layers.0.bias": "blocks.34.norm2.bias", - "model.diffusion_model.input_blocks.5.0.time_stack.out_layers.0.weight": "blocks.34.norm2.weight", - "model.diffusion_model.input_blocks.5.0.time_stack.out_layers.3.bias": "blocks.34.conv2.bias", - "model.diffusion_model.input_blocks.5.0.time_stack.out_layers.3.weight": "blocks.34.conv2.weight", - "model.diffusion_model.input_blocks.5.1.norm.bias": "blocks.37.norm.bias", - "model.diffusion_model.input_blocks.5.1.norm.weight": "blocks.37.norm.weight", - "model.diffusion_model.input_blocks.5.1.proj_in.bias": "blocks.37.proj_in.bias", - "model.diffusion_model.input_blocks.5.1.proj_in.weight": "blocks.37.proj_in.weight", - "model.diffusion_model.input_blocks.5.1.proj_out.bias": "blocks.40.proj.bias", - "model.diffusion_model.input_blocks.5.1.proj_out.weight": "blocks.40.proj.weight", - "model.diffusion_model.input_blocks.5.1.time_mixer.mix_factor": "blocks.40.mix_factor", - "model.diffusion_model.input_blocks.5.1.time_pos_embed.0.bias": "blocks.39.positional_embedding_proj.0.bias", - "model.diffusion_model.input_blocks.5.1.time_pos_embed.0.weight": "blocks.39.positional_embedding_proj.0.weight", - "model.diffusion_model.input_blocks.5.1.time_pos_embed.2.bias": "blocks.39.positional_embedding_proj.2.bias", - "model.diffusion_model.input_blocks.5.1.time_pos_embed.2.weight": "blocks.39.positional_embedding_proj.2.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.attn1.to_k.weight": "blocks.39.attn1.to_k.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.attn1.to_out.0.bias": "blocks.39.attn1.to_out.bias", - "model.diffusion_model.input_blocks.5.1.time_stack.0.attn1.to_out.0.weight": "blocks.39.attn1.to_out.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.attn1.to_q.weight": "blocks.39.attn1.to_q.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.attn1.to_v.weight": "blocks.39.attn1.to_v.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.attn2.to_k.weight": "blocks.39.attn2.to_k.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.attn2.to_out.0.bias": "blocks.39.attn2.to_out.bias", - "model.diffusion_model.input_blocks.5.1.time_stack.0.attn2.to_out.0.weight": "blocks.39.attn2.to_out.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.attn2.to_q.weight": "blocks.39.attn2.to_q.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.attn2.to_v.weight": "blocks.39.attn2.to_v.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.ff.net.0.proj.bias": "blocks.39.act_fn_out.proj.bias", - "model.diffusion_model.input_blocks.5.1.time_stack.0.ff.net.0.proj.weight": "blocks.39.act_fn_out.proj.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.ff.net.2.bias": "blocks.39.ff_out.bias", - "model.diffusion_model.input_blocks.5.1.time_stack.0.ff.net.2.weight": "blocks.39.ff_out.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.39.act_fn_in.proj.bias", - "model.diffusion_model.input_blocks.5.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.39.act_fn_in.proj.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.ff_in.net.2.bias": "blocks.39.ff_in.bias", - "model.diffusion_model.input_blocks.5.1.time_stack.0.ff_in.net.2.weight": "blocks.39.ff_in.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.norm1.bias": "blocks.39.norm1.bias", - "model.diffusion_model.input_blocks.5.1.time_stack.0.norm1.weight": "blocks.39.norm1.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.norm2.bias": "blocks.39.norm2.bias", - "model.diffusion_model.input_blocks.5.1.time_stack.0.norm2.weight": "blocks.39.norm2.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.norm3.bias": "blocks.39.norm_out.bias", - "model.diffusion_model.input_blocks.5.1.time_stack.0.norm3.weight": "blocks.39.norm_out.weight", - "model.diffusion_model.input_blocks.5.1.time_stack.0.norm_in.bias": "blocks.39.norm_in.bias", - "model.diffusion_model.input_blocks.5.1.time_stack.0.norm_in.weight": "blocks.39.norm_in.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.37.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.37.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.37.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.37.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.37.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.37.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.37.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.37.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.37.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.37.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.37.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.37.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.37.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.37.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.37.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.37.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.37.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.37.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.37.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.37.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.6.0.op.bias": "blocks.42.conv.bias", - "model.diffusion_model.input_blocks.6.0.op.weight": "blocks.42.conv.weight", - "model.diffusion_model.input_blocks.7.0.emb_layers.1.bias": "blocks.44.time_emb_proj.bias", - "model.diffusion_model.input_blocks.7.0.emb_layers.1.weight": "blocks.44.time_emb_proj.weight", - "model.diffusion_model.input_blocks.7.0.in_layers.0.bias": "blocks.44.norm1.bias", - "model.diffusion_model.input_blocks.7.0.in_layers.0.weight": "blocks.44.norm1.weight", - "model.diffusion_model.input_blocks.7.0.in_layers.2.bias": "blocks.44.conv1.bias", - "model.diffusion_model.input_blocks.7.0.in_layers.2.weight": "blocks.44.conv1.weight", - "model.diffusion_model.input_blocks.7.0.out_layers.0.bias": "blocks.44.norm2.bias", - "model.diffusion_model.input_blocks.7.0.out_layers.0.weight": "blocks.44.norm2.weight", - "model.diffusion_model.input_blocks.7.0.out_layers.3.bias": "blocks.44.conv2.bias", - "model.diffusion_model.input_blocks.7.0.out_layers.3.weight": "blocks.44.conv2.weight", - "model.diffusion_model.input_blocks.7.0.skip_connection.bias": "blocks.44.conv_shortcut.bias", - "model.diffusion_model.input_blocks.7.0.skip_connection.weight": "blocks.44.conv_shortcut.weight", - "model.diffusion_model.input_blocks.7.0.time_mixer.mix_factor": "blocks.47.mix_factor", - "model.diffusion_model.input_blocks.7.0.time_stack.emb_layers.1.bias": "blocks.46.time_emb_proj.bias", - "model.diffusion_model.input_blocks.7.0.time_stack.emb_layers.1.weight": "blocks.46.time_emb_proj.weight", - "model.diffusion_model.input_blocks.7.0.time_stack.in_layers.0.bias": "blocks.46.norm1.bias", - "model.diffusion_model.input_blocks.7.0.time_stack.in_layers.0.weight": "blocks.46.norm1.weight", - "model.diffusion_model.input_blocks.7.0.time_stack.in_layers.2.bias": "blocks.46.conv1.bias", - "model.diffusion_model.input_blocks.7.0.time_stack.in_layers.2.weight": "blocks.46.conv1.weight", - "model.diffusion_model.input_blocks.7.0.time_stack.out_layers.0.bias": "blocks.46.norm2.bias", - "model.diffusion_model.input_blocks.7.0.time_stack.out_layers.0.weight": "blocks.46.norm2.weight", - "model.diffusion_model.input_blocks.7.0.time_stack.out_layers.3.bias": "blocks.46.conv2.bias", - "model.diffusion_model.input_blocks.7.0.time_stack.out_layers.3.weight": "blocks.46.conv2.weight", - "model.diffusion_model.input_blocks.7.1.norm.bias": "blocks.49.norm.bias", - "model.diffusion_model.input_blocks.7.1.norm.weight": "blocks.49.norm.weight", - "model.diffusion_model.input_blocks.7.1.proj_in.bias": "blocks.49.proj_in.bias", - "model.diffusion_model.input_blocks.7.1.proj_in.weight": "blocks.49.proj_in.weight", - "model.diffusion_model.input_blocks.7.1.proj_out.bias": "blocks.52.proj.bias", - "model.diffusion_model.input_blocks.7.1.proj_out.weight": "blocks.52.proj.weight", - "model.diffusion_model.input_blocks.7.1.time_mixer.mix_factor": "blocks.52.mix_factor", - "model.diffusion_model.input_blocks.7.1.time_pos_embed.0.bias": "blocks.51.positional_embedding_proj.0.bias", - "model.diffusion_model.input_blocks.7.1.time_pos_embed.0.weight": "blocks.51.positional_embedding_proj.0.weight", - "model.diffusion_model.input_blocks.7.1.time_pos_embed.2.bias": "blocks.51.positional_embedding_proj.2.bias", - "model.diffusion_model.input_blocks.7.1.time_pos_embed.2.weight": "blocks.51.positional_embedding_proj.2.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.attn1.to_k.weight": "blocks.51.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.attn1.to_out.0.bias": "blocks.51.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.time_stack.0.attn1.to_out.0.weight": "blocks.51.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.attn1.to_q.weight": "blocks.51.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.attn1.to_v.weight": "blocks.51.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.attn2.to_k.weight": "blocks.51.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.attn2.to_out.0.bias": "blocks.51.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.time_stack.0.attn2.to_out.0.weight": "blocks.51.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.attn2.to_q.weight": "blocks.51.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.attn2.to_v.weight": "blocks.51.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.ff.net.0.proj.bias": "blocks.51.act_fn_out.proj.bias", - "model.diffusion_model.input_blocks.7.1.time_stack.0.ff.net.0.proj.weight": "blocks.51.act_fn_out.proj.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.ff.net.2.bias": "blocks.51.ff_out.bias", - "model.diffusion_model.input_blocks.7.1.time_stack.0.ff.net.2.weight": "blocks.51.ff_out.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.51.act_fn_in.proj.bias", - "model.diffusion_model.input_blocks.7.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.51.act_fn_in.proj.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.ff_in.net.2.bias": "blocks.51.ff_in.bias", - "model.diffusion_model.input_blocks.7.1.time_stack.0.ff_in.net.2.weight": "blocks.51.ff_in.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.norm1.bias": "blocks.51.norm1.bias", - "model.diffusion_model.input_blocks.7.1.time_stack.0.norm1.weight": "blocks.51.norm1.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.norm2.bias": "blocks.51.norm2.bias", - "model.diffusion_model.input_blocks.7.1.time_stack.0.norm2.weight": "blocks.51.norm2.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.norm3.bias": "blocks.51.norm_out.bias", - "model.diffusion_model.input_blocks.7.1.time_stack.0.norm3.weight": "blocks.51.norm_out.weight", - "model.diffusion_model.input_blocks.7.1.time_stack.0.norm_in.bias": "blocks.51.norm_in.bias", - "model.diffusion_model.input_blocks.7.1.time_stack.0.norm_in.weight": "blocks.51.norm_in.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.49.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.49.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.49.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.49.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.49.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.49.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.49.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.49.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.49.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.49.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.49.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.49.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.49.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.49.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.49.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.49.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.49.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.49.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.49.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.49.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.8.0.emb_layers.1.bias": "blocks.54.time_emb_proj.bias", - "model.diffusion_model.input_blocks.8.0.emb_layers.1.weight": "blocks.54.time_emb_proj.weight", - "model.diffusion_model.input_blocks.8.0.in_layers.0.bias": "blocks.54.norm1.bias", - "model.diffusion_model.input_blocks.8.0.in_layers.0.weight": "blocks.54.norm1.weight", - "model.diffusion_model.input_blocks.8.0.in_layers.2.bias": "blocks.54.conv1.bias", - "model.diffusion_model.input_blocks.8.0.in_layers.2.weight": "blocks.54.conv1.weight", - "model.diffusion_model.input_blocks.8.0.out_layers.0.bias": "blocks.54.norm2.bias", - "model.diffusion_model.input_blocks.8.0.out_layers.0.weight": "blocks.54.norm2.weight", - "model.diffusion_model.input_blocks.8.0.out_layers.3.bias": "blocks.54.conv2.bias", - "model.diffusion_model.input_blocks.8.0.out_layers.3.weight": "blocks.54.conv2.weight", - "model.diffusion_model.input_blocks.8.0.time_mixer.mix_factor": "blocks.57.mix_factor", - "model.diffusion_model.input_blocks.8.0.time_stack.emb_layers.1.bias": "blocks.56.time_emb_proj.bias", - "model.diffusion_model.input_blocks.8.0.time_stack.emb_layers.1.weight": "blocks.56.time_emb_proj.weight", - "model.diffusion_model.input_blocks.8.0.time_stack.in_layers.0.bias": "blocks.56.norm1.bias", - "model.diffusion_model.input_blocks.8.0.time_stack.in_layers.0.weight": "blocks.56.norm1.weight", - "model.diffusion_model.input_blocks.8.0.time_stack.in_layers.2.bias": "blocks.56.conv1.bias", - "model.diffusion_model.input_blocks.8.0.time_stack.in_layers.2.weight": "blocks.56.conv1.weight", - "model.diffusion_model.input_blocks.8.0.time_stack.out_layers.0.bias": "blocks.56.norm2.bias", - "model.diffusion_model.input_blocks.8.0.time_stack.out_layers.0.weight": "blocks.56.norm2.weight", - "model.diffusion_model.input_blocks.8.0.time_stack.out_layers.3.bias": "blocks.56.conv2.bias", - "model.diffusion_model.input_blocks.8.0.time_stack.out_layers.3.weight": "blocks.56.conv2.weight", - "model.diffusion_model.input_blocks.8.1.norm.bias": "blocks.59.norm.bias", - "model.diffusion_model.input_blocks.8.1.norm.weight": "blocks.59.norm.weight", - "model.diffusion_model.input_blocks.8.1.proj_in.bias": "blocks.59.proj_in.bias", - "model.diffusion_model.input_blocks.8.1.proj_in.weight": "blocks.59.proj_in.weight", - "model.diffusion_model.input_blocks.8.1.proj_out.bias": "blocks.62.proj.bias", - "model.diffusion_model.input_blocks.8.1.proj_out.weight": "blocks.62.proj.weight", - "model.diffusion_model.input_blocks.8.1.time_mixer.mix_factor": "blocks.62.mix_factor", - "model.diffusion_model.input_blocks.8.1.time_pos_embed.0.bias": "blocks.61.positional_embedding_proj.0.bias", - "model.diffusion_model.input_blocks.8.1.time_pos_embed.0.weight": "blocks.61.positional_embedding_proj.0.weight", - "model.diffusion_model.input_blocks.8.1.time_pos_embed.2.bias": "blocks.61.positional_embedding_proj.2.bias", - "model.diffusion_model.input_blocks.8.1.time_pos_embed.2.weight": "blocks.61.positional_embedding_proj.2.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.attn1.to_k.weight": "blocks.61.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.attn1.to_out.0.bias": "blocks.61.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.time_stack.0.attn1.to_out.0.weight": "blocks.61.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.attn1.to_q.weight": "blocks.61.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.attn1.to_v.weight": "blocks.61.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.attn2.to_k.weight": "blocks.61.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.attn2.to_out.0.bias": "blocks.61.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.time_stack.0.attn2.to_out.0.weight": "blocks.61.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.attn2.to_q.weight": "blocks.61.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.attn2.to_v.weight": "blocks.61.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.ff.net.0.proj.bias": "blocks.61.act_fn_out.proj.bias", - "model.diffusion_model.input_blocks.8.1.time_stack.0.ff.net.0.proj.weight": "blocks.61.act_fn_out.proj.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.ff.net.2.bias": "blocks.61.ff_out.bias", - "model.diffusion_model.input_blocks.8.1.time_stack.0.ff.net.2.weight": "blocks.61.ff_out.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.61.act_fn_in.proj.bias", - "model.diffusion_model.input_blocks.8.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.61.act_fn_in.proj.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.ff_in.net.2.bias": "blocks.61.ff_in.bias", - "model.diffusion_model.input_blocks.8.1.time_stack.0.ff_in.net.2.weight": "blocks.61.ff_in.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.norm1.bias": "blocks.61.norm1.bias", - "model.diffusion_model.input_blocks.8.1.time_stack.0.norm1.weight": "blocks.61.norm1.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.norm2.bias": "blocks.61.norm2.bias", - "model.diffusion_model.input_blocks.8.1.time_stack.0.norm2.weight": "blocks.61.norm2.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.norm3.bias": "blocks.61.norm_out.bias", - "model.diffusion_model.input_blocks.8.1.time_stack.0.norm3.weight": "blocks.61.norm_out.weight", - "model.diffusion_model.input_blocks.8.1.time_stack.0.norm_in.bias": "blocks.61.norm_in.bias", - "model.diffusion_model.input_blocks.8.1.time_stack.0.norm_in.weight": "blocks.61.norm_in.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.59.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.59.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.59.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.59.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.59.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.59.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.59.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.59.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.59.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.59.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.59.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.59.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.59.transformer_blocks.0.ff.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.59.transformer_blocks.0.ff.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.59.transformer_blocks.0.norm1.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.59.transformer_blocks.0.norm1.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.59.transformer_blocks.0.norm2.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.59.transformer_blocks.0.norm2.weight", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.59.transformer_blocks.0.norm3.bias", - "model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.59.transformer_blocks.0.norm3.weight", - "model.diffusion_model.input_blocks.9.0.op.bias": "blocks.64.conv.bias", - "model.diffusion_model.input_blocks.9.0.op.weight": "blocks.64.conv.weight", - "model.diffusion_model.label_emb.0.0.bias": "add_time_embedding.0.bias", - "model.diffusion_model.label_emb.0.0.weight": "add_time_embedding.0.weight", - "model.diffusion_model.label_emb.0.2.bias": "add_time_embedding.2.bias", - "model.diffusion_model.label_emb.0.2.weight": "add_time_embedding.2.weight", - "model.diffusion_model.middle_block.0.emb_layers.1.bias": "blocks.76.time_emb_proj.bias", - "model.diffusion_model.middle_block.0.emb_layers.1.weight": "blocks.76.time_emb_proj.weight", - "model.diffusion_model.middle_block.0.in_layers.0.bias": "blocks.76.norm1.bias", - "model.diffusion_model.middle_block.0.in_layers.0.weight": "blocks.76.norm1.weight", - "model.diffusion_model.middle_block.0.in_layers.2.bias": "blocks.76.conv1.bias", - "model.diffusion_model.middle_block.0.in_layers.2.weight": "blocks.76.conv1.weight", - "model.diffusion_model.middle_block.0.out_layers.0.bias": "blocks.76.norm2.bias", - "model.diffusion_model.middle_block.0.out_layers.0.weight": "blocks.76.norm2.weight", - "model.diffusion_model.middle_block.0.out_layers.3.bias": "blocks.76.conv2.bias", - "model.diffusion_model.middle_block.0.out_layers.3.weight": "blocks.76.conv2.weight", - "model.diffusion_model.middle_block.0.time_mixer.mix_factor": "blocks.79.mix_factor", - "model.diffusion_model.middle_block.0.time_stack.emb_layers.1.bias": "blocks.78.time_emb_proj.bias", - "model.diffusion_model.middle_block.0.time_stack.emb_layers.1.weight": "blocks.78.time_emb_proj.weight", - "model.diffusion_model.middle_block.0.time_stack.in_layers.0.bias": "blocks.78.norm1.bias", - "model.diffusion_model.middle_block.0.time_stack.in_layers.0.weight": "blocks.78.norm1.weight", - "model.diffusion_model.middle_block.0.time_stack.in_layers.2.bias": "blocks.78.conv1.bias", - "model.diffusion_model.middle_block.0.time_stack.in_layers.2.weight": "blocks.78.conv1.weight", - "model.diffusion_model.middle_block.0.time_stack.out_layers.0.bias": "blocks.78.norm2.bias", - "model.diffusion_model.middle_block.0.time_stack.out_layers.0.weight": "blocks.78.norm2.weight", - "model.diffusion_model.middle_block.0.time_stack.out_layers.3.bias": "blocks.78.conv2.bias", - "model.diffusion_model.middle_block.0.time_stack.out_layers.3.weight": "blocks.78.conv2.weight", - "model.diffusion_model.middle_block.1.norm.bias": "blocks.81.norm.bias", - "model.diffusion_model.middle_block.1.norm.weight": "blocks.81.norm.weight", - "model.diffusion_model.middle_block.1.proj_in.bias": "blocks.81.proj_in.bias", - "model.diffusion_model.middle_block.1.proj_in.weight": "blocks.81.proj_in.weight", - "model.diffusion_model.middle_block.1.proj_out.bias": "blocks.84.proj.bias", - "model.diffusion_model.middle_block.1.proj_out.weight": "blocks.84.proj.weight", - "model.diffusion_model.middle_block.1.time_mixer.mix_factor": "blocks.84.mix_factor", - "model.diffusion_model.middle_block.1.time_pos_embed.0.bias": "blocks.83.positional_embedding_proj.0.bias", - "model.diffusion_model.middle_block.1.time_pos_embed.0.weight": "blocks.83.positional_embedding_proj.0.weight", - "model.diffusion_model.middle_block.1.time_pos_embed.2.bias": "blocks.83.positional_embedding_proj.2.bias", - "model.diffusion_model.middle_block.1.time_pos_embed.2.weight": "blocks.83.positional_embedding_proj.2.weight", - "model.diffusion_model.middle_block.1.time_stack.0.attn1.to_k.weight": "blocks.83.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.time_stack.0.attn1.to_out.0.bias": "blocks.83.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.time_stack.0.attn1.to_out.0.weight": "blocks.83.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.time_stack.0.attn1.to_q.weight": "blocks.83.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.time_stack.0.attn1.to_v.weight": "blocks.83.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.time_stack.0.attn2.to_k.weight": "blocks.83.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.time_stack.0.attn2.to_out.0.bias": "blocks.83.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.time_stack.0.attn2.to_out.0.weight": "blocks.83.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.time_stack.0.attn2.to_q.weight": "blocks.83.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.time_stack.0.attn2.to_v.weight": "blocks.83.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.time_stack.0.ff.net.0.proj.bias": "blocks.83.act_fn_out.proj.bias", - "model.diffusion_model.middle_block.1.time_stack.0.ff.net.0.proj.weight": "blocks.83.act_fn_out.proj.weight", - "model.diffusion_model.middle_block.1.time_stack.0.ff.net.2.bias": "blocks.83.ff_out.bias", - "model.diffusion_model.middle_block.1.time_stack.0.ff.net.2.weight": "blocks.83.ff_out.weight", - "model.diffusion_model.middle_block.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.83.act_fn_in.proj.bias", - "model.diffusion_model.middle_block.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.83.act_fn_in.proj.weight", - "model.diffusion_model.middle_block.1.time_stack.0.ff_in.net.2.bias": "blocks.83.ff_in.bias", - "model.diffusion_model.middle_block.1.time_stack.0.ff_in.net.2.weight": "blocks.83.ff_in.weight", - "model.diffusion_model.middle_block.1.time_stack.0.norm1.bias": "blocks.83.norm1.bias", - "model.diffusion_model.middle_block.1.time_stack.0.norm1.weight": "blocks.83.norm1.weight", - "model.diffusion_model.middle_block.1.time_stack.0.norm2.bias": "blocks.83.norm2.bias", - "model.diffusion_model.middle_block.1.time_stack.0.norm2.weight": "blocks.83.norm2.weight", - "model.diffusion_model.middle_block.1.time_stack.0.norm3.bias": "blocks.83.norm_out.bias", - "model.diffusion_model.middle_block.1.time_stack.0.norm3.weight": "blocks.83.norm_out.weight", - "model.diffusion_model.middle_block.1.time_stack.0.norm_in.bias": "blocks.83.norm_in.bias", - "model.diffusion_model.middle_block.1.time_stack.0.norm_in.weight": "blocks.83.norm_in.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k.weight": "blocks.81.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.81.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.81.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight": "blocks.81.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight": "blocks.81.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight": "blocks.81.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.81.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.81.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight": "blocks.81.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight": "blocks.81.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.81.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.81.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.bias": "blocks.81.transformer_blocks.0.ff.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.weight": "blocks.81.transformer_blocks.0.ff.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.bias": "blocks.81.transformer_blocks.0.norm1.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.weight": "blocks.81.transformer_blocks.0.norm1.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.bias": "blocks.81.transformer_blocks.0.norm2.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight": "blocks.81.transformer_blocks.0.norm2.weight", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.bias": "blocks.81.transformer_blocks.0.norm3.bias", - "model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.weight": "blocks.81.transformer_blocks.0.norm3.weight", - "model.diffusion_model.middle_block.2.emb_layers.1.bias": "blocks.85.time_emb_proj.bias", - "model.diffusion_model.middle_block.2.emb_layers.1.weight": "blocks.85.time_emb_proj.weight", - "model.diffusion_model.middle_block.2.in_layers.0.bias": "blocks.85.norm1.bias", - "model.diffusion_model.middle_block.2.in_layers.0.weight": "blocks.85.norm1.weight", - "model.diffusion_model.middle_block.2.in_layers.2.bias": "blocks.85.conv1.bias", - "model.diffusion_model.middle_block.2.in_layers.2.weight": "blocks.85.conv1.weight", - "model.diffusion_model.middle_block.2.out_layers.0.bias": "blocks.85.norm2.bias", - "model.diffusion_model.middle_block.2.out_layers.0.weight": "blocks.85.norm2.weight", - "model.diffusion_model.middle_block.2.out_layers.3.bias": "blocks.85.conv2.bias", - "model.diffusion_model.middle_block.2.out_layers.3.weight": "blocks.85.conv2.weight", - "model.diffusion_model.middle_block.2.time_mixer.mix_factor": "blocks.88.mix_factor", - "model.diffusion_model.middle_block.2.time_stack.emb_layers.1.bias": "blocks.87.time_emb_proj.bias", - "model.diffusion_model.middle_block.2.time_stack.emb_layers.1.weight": "blocks.87.time_emb_proj.weight", - "model.diffusion_model.middle_block.2.time_stack.in_layers.0.bias": "blocks.87.norm1.bias", - "model.diffusion_model.middle_block.2.time_stack.in_layers.0.weight": "blocks.87.norm1.weight", - "model.diffusion_model.middle_block.2.time_stack.in_layers.2.bias": "blocks.87.conv1.bias", - "model.diffusion_model.middle_block.2.time_stack.in_layers.2.weight": "blocks.87.conv1.weight", - "model.diffusion_model.middle_block.2.time_stack.out_layers.0.bias": "blocks.87.norm2.bias", - "model.diffusion_model.middle_block.2.time_stack.out_layers.0.weight": "blocks.87.norm2.weight", - "model.diffusion_model.middle_block.2.time_stack.out_layers.3.bias": "blocks.87.conv2.bias", - "model.diffusion_model.middle_block.2.time_stack.out_layers.3.weight": "blocks.87.conv2.weight", - "model.diffusion_model.out.0.bias": "conv_norm_out.bias", - "model.diffusion_model.out.0.weight": "conv_norm_out.weight", - "model.diffusion_model.out.2.bias": "conv_out.bias", - "model.diffusion_model.out.2.weight": "conv_out.weight", - "model.diffusion_model.output_blocks.0.0.emb_layers.1.bias": "blocks.90.time_emb_proj.bias", - "model.diffusion_model.output_blocks.0.0.emb_layers.1.weight": "blocks.90.time_emb_proj.weight", - "model.diffusion_model.output_blocks.0.0.in_layers.0.bias": "blocks.90.norm1.bias", - "model.diffusion_model.output_blocks.0.0.in_layers.0.weight": "blocks.90.norm1.weight", - "model.diffusion_model.output_blocks.0.0.in_layers.2.bias": "blocks.90.conv1.bias", - "model.diffusion_model.output_blocks.0.0.in_layers.2.weight": "blocks.90.conv1.weight", - "model.diffusion_model.output_blocks.0.0.out_layers.0.bias": "blocks.90.norm2.bias", - "model.diffusion_model.output_blocks.0.0.out_layers.0.weight": "blocks.90.norm2.weight", - "model.diffusion_model.output_blocks.0.0.out_layers.3.bias": "blocks.90.conv2.bias", - "model.diffusion_model.output_blocks.0.0.out_layers.3.weight": "blocks.90.conv2.weight", - "model.diffusion_model.output_blocks.0.0.skip_connection.bias": "blocks.90.conv_shortcut.bias", - "model.diffusion_model.output_blocks.0.0.skip_connection.weight": "blocks.90.conv_shortcut.weight", - "model.diffusion_model.output_blocks.0.0.time_mixer.mix_factor": "blocks.93.mix_factor", - "model.diffusion_model.output_blocks.0.0.time_stack.emb_layers.1.bias": "blocks.92.time_emb_proj.bias", - "model.diffusion_model.output_blocks.0.0.time_stack.emb_layers.1.weight": "blocks.92.time_emb_proj.weight", - "model.diffusion_model.output_blocks.0.0.time_stack.in_layers.0.bias": "blocks.92.norm1.bias", - "model.diffusion_model.output_blocks.0.0.time_stack.in_layers.0.weight": "blocks.92.norm1.weight", - "model.diffusion_model.output_blocks.0.0.time_stack.in_layers.2.bias": "blocks.92.conv1.bias", - "model.diffusion_model.output_blocks.0.0.time_stack.in_layers.2.weight": "blocks.92.conv1.weight", - "model.diffusion_model.output_blocks.0.0.time_stack.out_layers.0.bias": "blocks.92.norm2.bias", - "model.diffusion_model.output_blocks.0.0.time_stack.out_layers.0.weight": "blocks.92.norm2.weight", - "model.diffusion_model.output_blocks.0.0.time_stack.out_layers.3.bias": "blocks.92.conv2.bias", - "model.diffusion_model.output_blocks.0.0.time_stack.out_layers.3.weight": "blocks.92.conv2.weight", - "model.diffusion_model.output_blocks.1.0.emb_layers.1.bias": "blocks.95.time_emb_proj.bias", - "model.diffusion_model.output_blocks.1.0.emb_layers.1.weight": "blocks.95.time_emb_proj.weight", - "model.diffusion_model.output_blocks.1.0.in_layers.0.bias": "blocks.95.norm1.bias", - "model.diffusion_model.output_blocks.1.0.in_layers.0.weight": "blocks.95.norm1.weight", - "model.diffusion_model.output_blocks.1.0.in_layers.2.bias": "blocks.95.conv1.bias", - "model.diffusion_model.output_blocks.1.0.in_layers.2.weight": "blocks.95.conv1.weight", - "model.diffusion_model.output_blocks.1.0.out_layers.0.bias": "blocks.95.norm2.bias", - "model.diffusion_model.output_blocks.1.0.out_layers.0.weight": "blocks.95.norm2.weight", - "model.diffusion_model.output_blocks.1.0.out_layers.3.bias": "blocks.95.conv2.bias", - "model.diffusion_model.output_blocks.1.0.out_layers.3.weight": "blocks.95.conv2.weight", - "model.diffusion_model.output_blocks.1.0.skip_connection.bias": "blocks.95.conv_shortcut.bias", - "model.diffusion_model.output_blocks.1.0.skip_connection.weight": "blocks.95.conv_shortcut.weight", - "model.diffusion_model.output_blocks.1.0.time_mixer.mix_factor": "blocks.98.mix_factor", - "model.diffusion_model.output_blocks.1.0.time_stack.emb_layers.1.bias": "blocks.97.time_emb_proj.bias", - "model.diffusion_model.output_blocks.1.0.time_stack.emb_layers.1.weight": "blocks.97.time_emb_proj.weight", - "model.diffusion_model.output_blocks.1.0.time_stack.in_layers.0.bias": "blocks.97.norm1.bias", - "model.diffusion_model.output_blocks.1.0.time_stack.in_layers.0.weight": "blocks.97.norm1.weight", - "model.diffusion_model.output_blocks.1.0.time_stack.in_layers.2.bias": "blocks.97.conv1.bias", - "model.diffusion_model.output_blocks.1.0.time_stack.in_layers.2.weight": "blocks.97.conv1.weight", - "model.diffusion_model.output_blocks.1.0.time_stack.out_layers.0.bias": "blocks.97.norm2.bias", - "model.diffusion_model.output_blocks.1.0.time_stack.out_layers.0.weight": "blocks.97.norm2.weight", - "model.diffusion_model.output_blocks.1.0.time_stack.out_layers.3.bias": "blocks.97.conv2.bias", - "model.diffusion_model.output_blocks.1.0.time_stack.out_layers.3.weight": "blocks.97.conv2.weight", - "model.diffusion_model.output_blocks.10.0.emb_layers.1.bias": "blocks.178.time_emb_proj.bias", - "model.diffusion_model.output_blocks.10.0.emb_layers.1.weight": "blocks.178.time_emb_proj.weight", - "model.diffusion_model.output_blocks.10.0.in_layers.0.bias": "blocks.178.norm1.bias", - "model.diffusion_model.output_blocks.10.0.in_layers.0.weight": "blocks.178.norm1.weight", - "model.diffusion_model.output_blocks.10.0.in_layers.2.bias": "blocks.178.conv1.bias", - "model.diffusion_model.output_blocks.10.0.in_layers.2.weight": "blocks.178.conv1.weight", - "model.diffusion_model.output_blocks.10.0.out_layers.0.bias": "blocks.178.norm2.bias", - "model.diffusion_model.output_blocks.10.0.out_layers.0.weight": "blocks.178.norm2.weight", - "model.diffusion_model.output_blocks.10.0.out_layers.3.bias": "blocks.178.conv2.bias", - "model.diffusion_model.output_blocks.10.0.out_layers.3.weight": "blocks.178.conv2.weight", - "model.diffusion_model.output_blocks.10.0.skip_connection.bias": "blocks.178.conv_shortcut.bias", - "model.diffusion_model.output_blocks.10.0.skip_connection.weight": "blocks.178.conv_shortcut.weight", - "model.diffusion_model.output_blocks.10.0.time_mixer.mix_factor": "blocks.181.mix_factor", - "model.diffusion_model.output_blocks.10.0.time_stack.emb_layers.1.bias": "blocks.180.time_emb_proj.bias", - "model.diffusion_model.output_blocks.10.0.time_stack.emb_layers.1.weight": "blocks.180.time_emb_proj.weight", - "model.diffusion_model.output_blocks.10.0.time_stack.in_layers.0.bias": "blocks.180.norm1.bias", - "model.diffusion_model.output_blocks.10.0.time_stack.in_layers.0.weight": "blocks.180.norm1.weight", - "model.diffusion_model.output_blocks.10.0.time_stack.in_layers.2.bias": "blocks.180.conv1.bias", - "model.diffusion_model.output_blocks.10.0.time_stack.in_layers.2.weight": "blocks.180.conv1.weight", - "model.diffusion_model.output_blocks.10.0.time_stack.out_layers.0.bias": "blocks.180.norm2.bias", - "model.diffusion_model.output_blocks.10.0.time_stack.out_layers.0.weight": "blocks.180.norm2.weight", - "model.diffusion_model.output_blocks.10.0.time_stack.out_layers.3.bias": "blocks.180.conv2.bias", - "model.diffusion_model.output_blocks.10.0.time_stack.out_layers.3.weight": "blocks.180.conv2.weight", - "model.diffusion_model.output_blocks.10.1.norm.bias": "blocks.183.norm.bias", - "model.diffusion_model.output_blocks.10.1.norm.weight": "blocks.183.norm.weight", - "model.diffusion_model.output_blocks.10.1.proj_in.bias": "blocks.183.proj_in.bias", - "model.diffusion_model.output_blocks.10.1.proj_in.weight": "blocks.183.proj_in.weight", - "model.diffusion_model.output_blocks.10.1.proj_out.bias": "blocks.186.proj.bias", - "model.diffusion_model.output_blocks.10.1.proj_out.weight": "blocks.186.proj.weight", - "model.diffusion_model.output_blocks.10.1.time_mixer.mix_factor": "blocks.186.mix_factor", - "model.diffusion_model.output_blocks.10.1.time_pos_embed.0.bias": "blocks.185.positional_embedding_proj.0.bias", - "model.diffusion_model.output_blocks.10.1.time_pos_embed.0.weight": "blocks.185.positional_embedding_proj.0.weight", - "model.diffusion_model.output_blocks.10.1.time_pos_embed.2.bias": "blocks.185.positional_embedding_proj.2.bias", - "model.diffusion_model.output_blocks.10.1.time_pos_embed.2.weight": "blocks.185.positional_embedding_proj.2.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.attn1.to_k.weight": "blocks.185.attn1.to_k.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.attn1.to_out.0.bias": "blocks.185.attn1.to_out.bias", - "model.diffusion_model.output_blocks.10.1.time_stack.0.attn1.to_out.0.weight": "blocks.185.attn1.to_out.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.attn1.to_q.weight": "blocks.185.attn1.to_q.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.attn1.to_v.weight": "blocks.185.attn1.to_v.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.attn2.to_k.weight": "blocks.185.attn2.to_k.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.attn2.to_out.0.bias": "blocks.185.attn2.to_out.bias", - "model.diffusion_model.output_blocks.10.1.time_stack.0.attn2.to_out.0.weight": "blocks.185.attn2.to_out.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.attn2.to_q.weight": "blocks.185.attn2.to_q.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.attn2.to_v.weight": "blocks.185.attn2.to_v.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.ff.net.0.proj.bias": "blocks.185.act_fn_out.proj.bias", - "model.diffusion_model.output_blocks.10.1.time_stack.0.ff.net.0.proj.weight": "blocks.185.act_fn_out.proj.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.ff.net.2.bias": "blocks.185.ff_out.bias", - "model.diffusion_model.output_blocks.10.1.time_stack.0.ff.net.2.weight": "blocks.185.ff_out.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.185.act_fn_in.proj.bias", - "model.diffusion_model.output_blocks.10.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.185.act_fn_in.proj.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.ff_in.net.2.bias": "blocks.185.ff_in.bias", - "model.diffusion_model.output_blocks.10.1.time_stack.0.ff_in.net.2.weight": "blocks.185.ff_in.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.norm1.bias": "blocks.185.norm1.bias", - "model.diffusion_model.output_blocks.10.1.time_stack.0.norm1.weight": "blocks.185.norm1.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.norm2.bias": "blocks.185.norm2.bias", - "model.diffusion_model.output_blocks.10.1.time_stack.0.norm2.weight": "blocks.185.norm2.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.norm3.bias": "blocks.185.norm_out.bias", - "model.diffusion_model.output_blocks.10.1.time_stack.0.norm3.weight": "blocks.185.norm_out.weight", - "model.diffusion_model.output_blocks.10.1.time_stack.0.norm_in.bias": "blocks.185.norm_in.bias", - "model.diffusion_model.output_blocks.10.1.time_stack.0.norm_in.weight": "blocks.185.norm_in.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k.weight": "blocks.183.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.183.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.183.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q.weight": "blocks.183.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v.weight": "blocks.183.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight": "blocks.183.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.183.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.183.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q.weight": "blocks.183.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight": "blocks.183.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.183.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.183.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.bias": "blocks.183.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.weight": "blocks.183.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.bias": "blocks.183.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.weight": "blocks.183.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.bias": "blocks.183.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight": "blocks.183.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.bias": "blocks.183.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.weight": "blocks.183.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.11.0.emb_layers.1.bias": "blocks.188.time_emb_proj.bias", - "model.diffusion_model.output_blocks.11.0.emb_layers.1.weight": "blocks.188.time_emb_proj.weight", - "model.diffusion_model.output_blocks.11.0.in_layers.0.bias": "blocks.188.norm1.bias", - "model.diffusion_model.output_blocks.11.0.in_layers.0.weight": "blocks.188.norm1.weight", - "model.diffusion_model.output_blocks.11.0.in_layers.2.bias": "blocks.188.conv1.bias", - "model.diffusion_model.output_blocks.11.0.in_layers.2.weight": "blocks.188.conv1.weight", - "model.diffusion_model.output_blocks.11.0.out_layers.0.bias": "blocks.188.norm2.bias", - "model.diffusion_model.output_blocks.11.0.out_layers.0.weight": "blocks.188.norm2.weight", - "model.diffusion_model.output_blocks.11.0.out_layers.3.bias": "blocks.188.conv2.bias", - "model.diffusion_model.output_blocks.11.0.out_layers.3.weight": "blocks.188.conv2.weight", - "model.diffusion_model.output_blocks.11.0.skip_connection.bias": "blocks.188.conv_shortcut.bias", - "model.diffusion_model.output_blocks.11.0.skip_connection.weight": "blocks.188.conv_shortcut.weight", - "model.diffusion_model.output_blocks.11.0.time_mixer.mix_factor": "blocks.191.mix_factor", - "model.diffusion_model.output_blocks.11.0.time_stack.emb_layers.1.bias": "blocks.190.time_emb_proj.bias", - "model.diffusion_model.output_blocks.11.0.time_stack.emb_layers.1.weight": "blocks.190.time_emb_proj.weight", - "model.diffusion_model.output_blocks.11.0.time_stack.in_layers.0.bias": "blocks.190.norm1.bias", - "model.diffusion_model.output_blocks.11.0.time_stack.in_layers.0.weight": "blocks.190.norm1.weight", - "model.diffusion_model.output_blocks.11.0.time_stack.in_layers.2.bias": "blocks.190.conv1.bias", - "model.diffusion_model.output_blocks.11.0.time_stack.in_layers.2.weight": "blocks.190.conv1.weight", - "model.diffusion_model.output_blocks.11.0.time_stack.out_layers.0.bias": "blocks.190.norm2.bias", - "model.diffusion_model.output_blocks.11.0.time_stack.out_layers.0.weight": "blocks.190.norm2.weight", - "model.diffusion_model.output_blocks.11.0.time_stack.out_layers.3.bias": "blocks.190.conv2.bias", - "model.diffusion_model.output_blocks.11.0.time_stack.out_layers.3.weight": "blocks.190.conv2.weight", - "model.diffusion_model.output_blocks.11.1.norm.bias": "blocks.193.norm.bias", - "model.diffusion_model.output_blocks.11.1.norm.weight": "blocks.193.norm.weight", - "model.diffusion_model.output_blocks.11.1.proj_in.bias": "blocks.193.proj_in.bias", - "model.diffusion_model.output_blocks.11.1.proj_in.weight": "blocks.193.proj_in.weight", - "model.diffusion_model.output_blocks.11.1.proj_out.bias": "blocks.196.proj.bias", - "model.diffusion_model.output_blocks.11.1.proj_out.weight": "blocks.196.proj.weight", - "model.diffusion_model.output_blocks.11.1.time_mixer.mix_factor": "blocks.196.mix_factor", - "model.diffusion_model.output_blocks.11.1.time_pos_embed.0.bias": "blocks.195.positional_embedding_proj.0.bias", - "model.diffusion_model.output_blocks.11.1.time_pos_embed.0.weight": "blocks.195.positional_embedding_proj.0.weight", - "model.diffusion_model.output_blocks.11.1.time_pos_embed.2.bias": "blocks.195.positional_embedding_proj.2.bias", - "model.diffusion_model.output_blocks.11.1.time_pos_embed.2.weight": "blocks.195.positional_embedding_proj.2.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.attn1.to_k.weight": "blocks.195.attn1.to_k.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.attn1.to_out.0.bias": "blocks.195.attn1.to_out.bias", - "model.diffusion_model.output_blocks.11.1.time_stack.0.attn1.to_out.0.weight": "blocks.195.attn1.to_out.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.attn1.to_q.weight": "blocks.195.attn1.to_q.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.attn1.to_v.weight": "blocks.195.attn1.to_v.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.attn2.to_k.weight": "blocks.195.attn2.to_k.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.attn2.to_out.0.bias": "blocks.195.attn2.to_out.bias", - "model.diffusion_model.output_blocks.11.1.time_stack.0.attn2.to_out.0.weight": "blocks.195.attn2.to_out.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.attn2.to_q.weight": "blocks.195.attn2.to_q.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.attn2.to_v.weight": "blocks.195.attn2.to_v.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.ff.net.0.proj.bias": "blocks.195.act_fn_out.proj.bias", - "model.diffusion_model.output_blocks.11.1.time_stack.0.ff.net.0.proj.weight": "blocks.195.act_fn_out.proj.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.ff.net.2.bias": "blocks.195.ff_out.bias", - "model.diffusion_model.output_blocks.11.1.time_stack.0.ff.net.2.weight": "blocks.195.ff_out.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.195.act_fn_in.proj.bias", - "model.diffusion_model.output_blocks.11.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.195.act_fn_in.proj.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.ff_in.net.2.bias": "blocks.195.ff_in.bias", - "model.diffusion_model.output_blocks.11.1.time_stack.0.ff_in.net.2.weight": "blocks.195.ff_in.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.norm1.bias": "blocks.195.norm1.bias", - "model.diffusion_model.output_blocks.11.1.time_stack.0.norm1.weight": "blocks.195.norm1.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.norm2.bias": "blocks.195.norm2.bias", - "model.diffusion_model.output_blocks.11.1.time_stack.0.norm2.weight": "blocks.195.norm2.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.norm3.bias": "blocks.195.norm_out.bias", - "model.diffusion_model.output_blocks.11.1.time_stack.0.norm3.weight": "blocks.195.norm_out.weight", - "model.diffusion_model.output_blocks.11.1.time_stack.0.norm_in.bias": "blocks.195.norm_in.bias", - "model.diffusion_model.output_blocks.11.1.time_stack.0.norm_in.weight": "blocks.195.norm_in.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k.weight": "blocks.193.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.193.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.193.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q.weight": "blocks.193.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v.weight": "blocks.193.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight": "blocks.193.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.193.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.193.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q.weight": "blocks.193.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight": "blocks.193.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.193.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.193.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.bias": "blocks.193.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.weight": "blocks.193.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias": "blocks.193.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.weight": "blocks.193.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.bias": "blocks.193.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight": "blocks.193.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.bias": "blocks.193.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.weight": "blocks.193.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.2.0.emb_layers.1.bias": "blocks.100.time_emb_proj.bias", - "model.diffusion_model.output_blocks.2.0.emb_layers.1.weight": "blocks.100.time_emb_proj.weight", - "model.diffusion_model.output_blocks.2.0.in_layers.0.bias": "blocks.100.norm1.bias", - "model.diffusion_model.output_blocks.2.0.in_layers.0.weight": "blocks.100.norm1.weight", - "model.diffusion_model.output_blocks.2.0.in_layers.2.bias": "blocks.100.conv1.bias", - "model.diffusion_model.output_blocks.2.0.in_layers.2.weight": "blocks.100.conv1.weight", - "model.diffusion_model.output_blocks.2.0.out_layers.0.bias": "blocks.100.norm2.bias", - "model.diffusion_model.output_blocks.2.0.out_layers.0.weight": "blocks.100.norm2.weight", - "model.diffusion_model.output_blocks.2.0.out_layers.3.bias": "blocks.100.conv2.bias", - "model.diffusion_model.output_blocks.2.0.out_layers.3.weight": "blocks.100.conv2.weight", - "model.diffusion_model.output_blocks.2.0.skip_connection.bias": "blocks.100.conv_shortcut.bias", - "model.diffusion_model.output_blocks.2.0.skip_connection.weight": "blocks.100.conv_shortcut.weight", - "model.diffusion_model.output_blocks.2.0.time_mixer.mix_factor": "blocks.103.mix_factor", - "model.diffusion_model.output_blocks.2.0.time_stack.emb_layers.1.bias": "blocks.102.time_emb_proj.bias", - "model.diffusion_model.output_blocks.2.0.time_stack.emb_layers.1.weight": "blocks.102.time_emb_proj.weight", - "model.diffusion_model.output_blocks.2.0.time_stack.in_layers.0.bias": "blocks.102.norm1.bias", - "model.diffusion_model.output_blocks.2.0.time_stack.in_layers.0.weight": "blocks.102.norm1.weight", - "model.diffusion_model.output_blocks.2.0.time_stack.in_layers.2.bias": "blocks.102.conv1.bias", - "model.diffusion_model.output_blocks.2.0.time_stack.in_layers.2.weight": "blocks.102.conv1.weight", - "model.diffusion_model.output_blocks.2.0.time_stack.out_layers.0.bias": "blocks.102.norm2.bias", - "model.diffusion_model.output_blocks.2.0.time_stack.out_layers.0.weight": "blocks.102.norm2.weight", - "model.diffusion_model.output_blocks.2.0.time_stack.out_layers.3.bias": "blocks.102.conv2.bias", - "model.diffusion_model.output_blocks.2.0.time_stack.out_layers.3.weight": "blocks.102.conv2.weight", - "model.diffusion_model.output_blocks.2.1.conv.bias": "blocks.104.conv.bias", - "model.diffusion_model.output_blocks.2.1.conv.weight": "blocks.104.conv.weight", - "model.diffusion_model.output_blocks.3.0.emb_layers.1.bias": "blocks.106.time_emb_proj.bias", - "model.diffusion_model.output_blocks.3.0.emb_layers.1.weight": "blocks.106.time_emb_proj.weight", - "model.diffusion_model.output_blocks.3.0.in_layers.0.bias": "blocks.106.norm1.bias", - "model.diffusion_model.output_blocks.3.0.in_layers.0.weight": "blocks.106.norm1.weight", - "model.diffusion_model.output_blocks.3.0.in_layers.2.bias": "blocks.106.conv1.bias", - "model.diffusion_model.output_blocks.3.0.in_layers.2.weight": "blocks.106.conv1.weight", - "model.diffusion_model.output_blocks.3.0.out_layers.0.bias": "blocks.106.norm2.bias", - "model.diffusion_model.output_blocks.3.0.out_layers.0.weight": "blocks.106.norm2.weight", - "model.diffusion_model.output_blocks.3.0.out_layers.3.bias": "blocks.106.conv2.bias", - "model.diffusion_model.output_blocks.3.0.out_layers.3.weight": "blocks.106.conv2.weight", - "model.diffusion_model.output_blocks.3.0.skip_connection.bias": "blocks.106.conv_shortcut.bias", - "model.diffusion_model.output_blocks.3.0.skip_connection.weight": "blocks.106.conv_shortcut.weight", - "model.diffusion_model.output_blocks.3.0.time_mixer.mix_factor": "blocks.109.mix_factor", - "model.diffusion_model.output_blocks.3.0.time_stack.emb_layers.1.bias": "blocks.108.time_emb_proj.bias", - "model.diffusion_model.output_blocks.3.0.time_stack.emb_layers.1.weight": "blocks.108.time_emb_proj.weight", - "model.diffusion_model.output_blocks.3.0.time_stack.in_layers.0.bias": "blocks.108.norm1.bias", - "model.diffusion_model.output_blocks.3.0.time_stack.in_layers.0.weight": "blocks.108.norm1.weight", - "model.diffusion_model.output_blocks.3.0.time_stack.in_layers.2.bias": "blocks.108.conv1.bias", - "model.diffusion_model.output_blocks.3.0.time_stack.in_layers.2.weight": "blocks.108.conv1.weight", - "model.diffusion_model.output_blocks.3.0.time_stack.out_layers.0.bias": "blocks.108.norm2.bias", - "model.diffusion_model.output_blocks.3.0.time_stack.out_layers.0.weight": "blocks.108.norm2.weight", - "model.diffusion_model.output_blocks.3.0.time_stack.out_layers.3.bias": "blocks.108.conv2.bias", - "model.diffusion_model.output_blocks.3.0.time_stack.out_layers.3.weight": "blocks.108.conv2.weight", - "model.diffusion_model.output_blocks.3.1.norm.bias": "blocks.111.norm.bias", - "model.diffusion_model.output_blocks.3.1.norm.weight": "blocks.111.norm.weight", - "model.diffusion_model.output_blocks.3.1.proj_in.bias": "blocks.111.proj_in.bias", - "model.diffusion_model.output_blocks.3.1.proj_in.weight": "blocks.111.proj_in.weight", - "model.diffusion_model.output_blocks.3.1.proj_out.bias": "blocks.114.proj.bias", - "model.diffusion_model.output_blocks.3.1.proj_out.weight": "blocks.114.proj.weight", - "model.diffusion_model.output_blocks.3.1.time_mixer.mix_factor": "blocks.114.mix_factor", - "model.diffusion_model.output_blocks.3.1.time_pos_embed.0.bias": "blocks.113.positional_embedding_proj.0.bias", - "model.diffusion_model.output_blocks.3.1.time_pos_embed.0.weight": "blocks.113.positional_embedding_proj.0.weight", - "model.diffusion_model.output_blocks.3.1.time_pos_embed.2.bias": "blocks.113.positional_embedding_proj.2.bias", - "model.diffusion_model.output_blocks.3.1.time_pos_embed.2.weight": "blocks.113.positional_embedding_proj.2.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.attn1.to_k.weight": "blocks.113.attn1.to_k.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.attn1.to_out.0.bias": "blocks.113.attn1.to_out.bias", - "model.diffusion_model.output_blocks.3.1.time_stack.0.attn1.to_out.0.weight": "blocks.113.attn1.to_out.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.attn1.to_q.weight": "blocks.113.attn1.to_q.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.attn1.to_v.weight": "blocks.113.attn1.to_v.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.attn2.to_k.weight": "blocks.113.attn2.to_k.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.attn2.to_out.0.bias": "blocks.113.attn2.to_out.bias", - "model.diffusion_model.output_blocks.3.1.time_stack.0.attn2.to_out.0.weight": "blocks.113.attn2.to_out.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.attn2.to_q.weight": "blocks.113.attn2.to_q.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.attn2.to_v.weight": "blocks.113.attn2.to_v.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.ff.net.0.proj.bias": "blocks.113.act_fn_out.proj.bias", - "model.diffusion_model.output_blocks.3.1.time_stack.0.ff.net.0.proj.weight": "blocks.113.act_fn_out.proj.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.ff.net.2.bias": "blocks.113.ff_out.bias", - "model.diffusion_model.output_blocks.3.1.time_stack.0.ff.net.2.weight": "blocks.113.ff_out.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.113.act_fn_in.proj.bias", - "model.diffusion_model.output_blocks.3.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.113.act_fn_in.proj.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.ff_in.net.2.bias": "blocks.113.ff_in.bias", - "model.diffusion_model.output_blocks.3.1.time_stack.0.ff_in.net.2.weight": "blocks.113.ff_in.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.norm1.bias": "blocks.113.norm1.bias", - "model.diffusion_model.output_blocks.3.1.time_stack.0.norm1.weight": "blocks.113.norm1.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.norm2.bias": "blocks.113.norm2.bias", - "model.diffusion_model.output_blocks.3.1.time_stack.0.norm2.weight": "blocks.113.norm2.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.norm3.bias": "blocks.113.norm_out.bias", - "model.diffusion_model.output_blocks.3.1.time_stack.0.norm3.weight": "blocks.113.norm_out.weight", - "model.diffusion_model.output_blocks.3.1.time_stack.0.norm_in.bias": "blocks.113.norm_in.bias", - "model.diffusion_model.output_blocks.3.1.time_stack.0.norm_in.weight": "blocks.113.norm_in.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k.weight": "blocks.111.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.111.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.111.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q.weight": "blocks.111.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v.weight": "blocks.111.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight": "blocks.111.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.111.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.111.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q.weight": "blocks.111.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight": "blocks.111.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.111.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.111.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.bias": "blocks.111.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.weight": "blocks.111.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.bias": "blocks.111.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.weight": "blocks.111.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.bias": "blocks.111.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight": "blocks.111.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.bias": "blocks.111.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.weight": "blocks.111.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.4.0.emb_layers.1.bias": "blocks.116.time_emb_proj.bias", - "model.diffusion_model.output_blocks.4.0.emb_layers.1.weight": "blocks.116.time_emb_proj.weight", - "model.diffusion_model.output_blocks.4.0.in_layers.0.bias": "blocks.116.norm1.bias", - "model.diffusion_model.output_blocks.4.0.in_layers.0.weight": "blocks.116.norm1.weight", - "model.diffusion_model.output_blocks.4.0.in_layers.2.bias": "blocks.116.conv1.bias", - "model.diffusion_model.output_blocks.4.0.in_layers.2.weight": "blocks.116.conv1.weight", - "model.diffusion_model.output_blocks.4.0.out_layers.0.bias": "blocks.116.norm2.bias", - "model.diffusion_model.output_blocks.4.0.out_layers.0.weight": "blocks.116.norm2.weight", - "model.diffusion_model.output_blocks.4.0.out_layers.3.bias": "blocks.116.conv2.bias", - "model.diffusion_model.output_blocks.4.0.out_layers.3.weight": "blocks.116.conv2.weight", - "model.diffusion_model.output_blocks.4.0.skip_connection.bias": "blocks.116.conv_shortcut.bias", - "model.diffusion_model.output_blocks.4.0.skip_connection.weight": "blocks.116.conv_shortcut.weight", - "model.diffusion_model.output_blocks.4.0.time_mixer.mix_factor": "blocks.119.mix_factor", - "model.diffusion_model.output_blocks.4.0.time_stack.emb_layers.1.bias": "blocks.118.time_emb_proj.bias", - "model.diffusion_model.output_blocks.4.0.time_stack.emb_layers.1.weight": "blocks.118.time_emb_proj.weight", - "model.diffusion_model.output_blocks.4.0.time_stack.in_layers.0.bias": "blocks.118.norm1.bias", - "model.diffusion_model.output_blocks.4.0.time_stack.in_layers.0.weight": "blocks.118.norm1.weight", - "model.diffusion_model.output_blocks.4.0.time_stack.in_layers.2.bias": "blocks.118.conv1.bias", - "model.diffusion_model.output_blocks.4.0.time_stack.in_layers.2.weight": "blocks.118.conv1.weight", - "model.diffusion_model.output_blocks.4.0.time_stack.out_layers.0.bias": "blocks.118.norm2.bias", - "model.diffusion_model.output_blocks.4.0.time_stack.out_layers.0.weight": "blocks.118.norm2.weight", - "model.diffusion_model.output_blocks.4.0.time_stack.out_layers.3.bias": "blocks.118.conv2.bias", - "model.diffusion_model.output_blocks.4.0.time_stack.out_layers.3.weight": "blocks.118.conv2.weight", - "model.diffusion_model.output_blocks.4.1.norm.bias": "blocks.121.norm.bias", - "model.diffusion_model.output_blocks.4.1.norm.weight": "blocks.121.norm.weight", - "model.diffusion_model.output_blocks.4.1.proj_in.bias": "blocks.121.proj_in.bias", - "model.diffusion_model.output_blocks.4.1.proj_in.weight": "blocks.121.proj_in.weight", - "model.diffusion_model.output_blocks.4.1.proj_out.bias": "blocks.124.proj.bias", - "model.diffusion_model.output_blocks.4.1.proj_out.weight": "blocks.124.proj.weight", - "model.diffusion_model.output_blocks.4.1.time_mixer.mix_factor": "blocks.124.mix_factor", - "model.diffusion_model.output_blocks.4.1.time_pos_embed.0.bias": "blocks.123.positional_embedding_proj.0.bias", - "model.diffusion_model.output_blocks.4.1.time_pos_embed.0.weight": "blocks.123.positional_embedding_proj.0.weight", - "model.diffusion_model.output_blocks.4.1.time_pos_embed.2.bias": "blocks.123.positional_embedding_proj.2.bias", - "model.diffusion_model.output_blocks.4.1.time_pos_embed.2.weight": "blocks.123.positional_embedding_proj.2.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.attn1.to_k.weight": "blocks.123.attn1.to_k.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.attn1.to_out.0.bias": "blocks.123.attn1.to_out.bias", - "model.diffusion_model.output_blocks.4.1.time_stack.0.attn1.to_out.0.weight": "blocks.123.attn1.to_out.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.attn1.to_q.weight": "blocks.123.attn1.to_q.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.attn1.to_v.weight": "blocks.123.attn1.to_v.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.attn2.to_k.weight": "blocks.123.attn2.to_k.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.attn2.to_out.0.bias": "blocks.123.attn2.to_out.bias", - "model.diffusion_model.output_blocks.4.1.time_stack.0.attn2.to_out.0.weight": "blocks.123.attn2.to_out.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.attn2.to_q.weight": "blocks.123.attn2.to_q.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.attn2.to_v.weight": "blocks.123.attn2.to_v.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.ff.net.0.proj.bias": "blocks.123.act_fn_out.proj.bias", - "model.diffusion_model.output_blocks.4.1.time_stack.0.ff.net.0.proj.weight": "blocks.123.act_fn_out.proj.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.ff.net.2.bias": "blocks.123.ff_out.bias", - "model.diffusion_model.output_blocks.4.1.time_stack.0.ff.net.2.weight": "blocks.123.ff_out.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.123.act_fn_in.proj.bias", - "model.diffusion_model.output_blocks.4.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.123.act_fn_in.proj.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.ff_in.net.2.bias": "blocks.123.ff_in.bias", - "model.diffusion_model.output_blocks.4.1.time_stack.0.ff_in.net.2.weight": "blocks.123.ff_in.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.norm1.bias": "blocks.123.norm1.bias", - "model.diffusion_model.output_blocks.4.1.time_stack.0.norm1.weight": "blocks.123.norm1.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.norm2.bias": "blocks.123.norm2.bias", - "model.diffusion_model.output_blocks.4.1.time_stack.0.norm2.weight": "blocks.123.norm2.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.norm3.bias": "blocks.123.norm_out.bias", - "model.diffusion_model.output_blocks.4.1.time_stack.0.norm3.weight": "blocks.123.norm_out.weight", - "model.diffusion_model.output_blocks.4.1.time_stack.0.norm_in.bias": "blocks.123.norm_in.bias", - "model.diffusion_model.output_blocks.4.1.time_stack.0.norm_in.weight": "blocks.123.norm_in.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.121.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.121.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.121.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.121.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.121.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.121.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.121.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.121.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.121.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.121.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.121.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.121.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.121.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.121.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.121.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.121.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.121.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.121.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.121.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.121.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.5.0.emb_layers.1.bias": "blocks.126.time_emb_proj.bias", - "model.diffusion_model.output_blocks.5.0.emb_layers.1.weight": "blocks.126.time_emb_proj.weight", - "model.diffusion_model.output_blocks.5.0.in_layers.0.bias": "blocks.126.norm1.bias", - "model.diffusion_model.output_blocks.5.0.in_layers.0.weight": "blocks.126.norm1.weight", - "model.diffusion_model.output_blocks.5.0.in_layers.2.bias": "blocks.126.conv1.bias", - "model.diffusion_model.output_blocks.5.0.in_layers.2.weight": "blocks.126.conv1.weight", - "model.diffusion_model.output_blocks.5.0.out_layers.0.bias": "blocks.126.norm2.bias", - "model.diffusion_model.output_blocks.5.0.out_layers.0.weight": "blocks.126.norm2.weight", - "model.diffusion_model.output_blocks.5.0.out_layers.3.bias": "blocks.126.conv2.bias", - "model.diffusion_model.output_blocks.5.0.out_layers.3.weight": "blocks.126.conv2.weight", - "model.diffusion_model.output_blocks.5.0.skip_connection.bias": "blocks.126.conv_shortcut.bias", - "model.diffusion_model.output_blocks.5.0.skip_connection.weight": "blocks.126.conv_shortcut.weight", - "model.diffusion_model.output_blocks.5.0.time_mixer.mix_factor": "blocks.129.mix_factor", - "model.diffusion_model.output_blocks.5.0.time_stack.emb_layers.1.bias": "blocks.128.time_emb_proj.bias", - "model.diffusion_model.output_blocks.5.0.time_stack.emb_layers.1.weight": "blocks.128.time_emb_proj.weight", - "model.diffusion_model.output_blocks.5.0.time_stack.in_layers.0.bias": "blocks.128.norm1.bias", - "model.diffusion_model.output_blocks.5.0.time_stack.in_layers.0.weight": "blocks.128.norm1.weight", - "model.diffusion_model.output_blocks.5.0.time_stack.in_layers.2.bias": "blocks.128.conv1.bias", - "model.diffusion_model.output_blocks.5.0.time_stack.in_layers.2.weight": "blocks.128.conv1.weight", - "model.diffusion_model.output_blocks.5.0.time_stack.out_layers.0.bias": "blocks.128.norm2.bias", - "model.diffusion_model.output_blocks.5.0.time_stack.out_layers.0.weight": "blocks.128.norm2.weight", - "model.diffusion_model.output_blocks.5.0.time_stack.out_layers.3.bias": "blocks.128.conv2.bias", - "model.diffusion_model.output_blocks.5.0.time_stack.out_layers.3.weight": "blocks.128.conv2.weight", - "model.diffusion_model.output_blocks.5.1.norm.bias": "blocks.131.norm.bias", - "model.diffusion_model.output_blocks.5.1.norm.weight": "blocks.131.norm.weight", - "model.diffusion_model.output_blocks.5.1.proj_in.bias": "blocks.131.proj_in.bias", - "model.diffusion_model.output_blocks.5.1.proj_in.weight": "blocks.131.proj_in.weight", - "model.diffusion_model.output_blocks.5.1.proj_out.bias": "blocks.134.proj.bias", - "model.diffusion_model.output_blocks.5.1.proj_out.weight": "blocks.134.proj.weight", - "model.diffusion_model.output_blocks.5.1.time_mixer.mix_factor": "blocks.134.mix_factor", - "model.diffusion_model.output_blocks.5.1.time_pos_embed.0.bias": "blocks.133.positional_embedding_proj.0.bias", - "model.diffusion_model.output_blocks.5.1.time_pos_embed.0.weight": "blocks.133.positional_embedding_proj.0.weight", - "model.diffusion_model.output_blocks.5.1.time_pos_embed.2.bias": "blocks.133.positional_embedding_proj.2.bias", - "model.diffusion_model.output_blocks.5.1.time_pos_embed.2.weight": "blocks.133.positional_embedding_proj.2.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.attn1.to_k.weight": "blocks.133.attn1.to_k.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.attn1.to_out.0.bias": "blocks.133.attn1.to_out.bias", - "model.diffusion_model.output_blocks.5.1.time_stack.0.attn1.to_out.0.weight": "blocks.133.attn1.to_out.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.attn1.to_q.weight": "blocks.133.attn1.to_q.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.attn1.to_v.weight": "blocks.133.attn1.to_v.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.attn2.to_k.weight": "blocks.133.attn2.to_k.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.attn2.to_out.0.bias": "blocks.133.attn2.to_out.bias", - "model.diffusion_model.output_blocks.5.1.time_stack.0.attn2.to_out.0.weight": "blocks.133.attn2.to_out.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.attn2.to_q.weight": "blocks.133.attn2.to_q.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.attn2.to_v.weight": "blocks.133.attn2.to_v.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.ff.net.0.proj.bias": "blocks.133.act_fn_out.proj.bias", - "model.diffusion_model.output_blocks.5.1.time_stack.0.ff.net.0.proj.weight": "blocks.133.act_fn_out.proj.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.ff.net.2.bias": "blocks.133.ff_out.bias", - "model.diffusion_model.output_blocks.5.1.time_stack.0.ff.net.2.weight": "blocks.133.ff_out.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.133.act_fn_in.proj.bias", - "model.diffusion_model.output_blocks.5.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.133.act_fn_in.proj.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.ff_in.net.2.bias": "blocks.133.ff_in.bias", - "model.diffusion_model.output_blocks.5.1.time_stack.0.ff_in.net.2.weight": "blocks.133.ff_in.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.norm1.bias": "blocks.133.norm1.bias", - "model.diffusion_model.output_blocks.5.1.time_stack.0.norm1.weight": "blocks.133.norm1.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.norm2.bias": "blocks.133.norm2.bias", - "model.diffusion_model.output_blocks.5.1.time_stack.0.norm2.weight": "blocks.133.norm2.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.norm3.bias": "blocks.133.norm_out.bias", - "model.diffusion_model.output_blocks.5.1.time_stack.0.norm3.weight": "blocks.133.norm_out.weight", - "model.diffusion_model.output_blocks.5.1.time_stack.0.norm_in.bias": "blocks.133.norm_in.bias", - "model.diffusion_model.output_blocks.5.1.time_stack.0.norm_in.weight": "blocks.133.norm_in.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.131.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.131.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.131.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.131.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.131.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.131.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.131.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.131.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.131.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.131.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.131.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.131.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.131.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.131.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.131.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.131.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.131.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.131.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.131.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.131.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.5.2.conv.bias": "blocks.135.conv.bias", - "model.diffusion_model.output_blocks.5.2.conv.weight": "blocks.135.conv.weight", - "model.diffusion_model.output_blocks.6.0.emb_layers.1.bias": "blocks.137.time_emb_proj.bias", - "model.diffusion_model.output_blocks.6.0.emb_layers.1.weight": "blocks.137.time_emb_proj.weight", - "model.diffusion_model.output_blocks.6.0.in_layers.0.bias": "blocks.137.norm1.bias", - "model.diffusion_model.output_blocks.6.0.in_layers.0.weight": "blocks.137.norm1.weight", - "model.diffusion_model.output_blocks.6.0.in_layers.2.bias": "blocks.137.conv1.bias", - "model.diffusion_model.output_blocks.6.0.in_layers.2.weight": "blocks.137.conv1.weight", - "model.diffusion_model.output_blocks.6.0.out_layers.0.bias": "blocks.137.norm2.bias", - "model.diffusion_model.output_blocks.6.0.out_layers.0.weight": "blocks.137.norm2.weight", - "model.diffusion_model.output_blocks.6.0.out_layers.3.bias": "blocks.137.conv2.bias", - "model.diffusion_model.output_blocks.6.0.out_layers.3.weight": "blocks.137.conv2.weight", - "model.diffusion_model.output_blocks.6.0.skip_connection.bias": "blocks.137.conv_shortcut.bias", - "model.diffusion_model.output_blocks.6.0.skip_connection.weight": "blocks.137.conv_shortcut.weight", - "model.diffusion_model.output_blocks.6.0.time_mixer.mix_factor": "blocks.140.mix_factor", - "model.diffusion_model.output_blocks.6.0.time_stack.emb_layers.1.bias": "blocks.139.time_emb_proj.bias", - "model.diffusion_model.output_blocks.6.0.time_stack.emb_layers.1.weight": "blocks.139.time_emb_proj.weight", - "model.diffusion_model.output_blocks.6.0.time_stack.in_layers.0.bias": "blocks.139.norm1.bias", - "model.diffusion_model.output_blocks.6.0.time_stack.in_layers.0.weight": "blocks.139.norm1.weight", - "model.diffusion_model.output_blocks.6.0.time_stack.in_layers.2.bias": "blocks.139.conv1.bias", - "model.diffusion_model.output_blocks.6.0.time_stack.in_layers.2.weight": "blocks.139.conv1.weight", - "model.diffusion_model.output_blocks.6.0.time_stack.out_layers.0.bias": "blocks.139.norm2.bias", - "model.diffusion_model.output_blocks.6.0.time_stack.out_layers.0.weight": "blocks.139.norm2.weight", - "model.diffusion_model.output_blocks.6.0.time_stack.out_layers.3.bias": "blocks.139.conv2.bias", - "model.diffusion_model.output_blocks.6.0.time_stack.out_layers.3.weight": "blocks.139.conv2.weight", - "model.diffusion_model.output_blocks.6.1.norm.bias": "blocks.142.norm.bias", - "model.diffusion_model.output_blocks.6.1.norm.weight": "blocks.142.norm.weight", - "model.diffusion_model.output_blocks.6.1.proj_in.bias": "blocks.142.proj_in.bias", - "model.diffusion_model.output_blocks.6.1.proj_in.weight": "blocks.142.proj_in.weight", - "model.diffusion_model.output_blocks.6.1.proj_out.bias": "blocks.145.proj.bias", - "model.diffusion_model.output_blocks.6.1.proj_out.weight": "blocks.145.proj.weight", - "model.diffusion_model.output_blocks.6.1.time_mixer.mix_factor": "blocks.145.mix_factor", - "model.diffusion_model.output_blocks.6.1.time_pos_embed.0.bias": "blocks.144.positional_embedding_proj.0.bias", - "model.diffusion_model.output_blocks.6.1.time_pos_embed.0.weight": "blocks.144.positional_embedding_proj.0.weight", - "model.diffusion_model.output_blocks.6.1.time_pos_embed.2.bias": "blocks.144.positional_embedding_proj.2.bias", - "model.diffusion_model.output_blocks.6.1.time_pos_embed.2.weight": "blocks.144.positional_embedding_proj.2.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.attn1.to_k.weight": "blocks.144.attn1.to_k.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.attn1.to_out.0.bias": "blocks.144.attn1.to_out.bias", - "model.diffusion_model.output_blocks.6.1.time_stack.0.attn1.to_out.0.weight": "blocks.144.attn1.to_out.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.attn1.to_q.weight": "blocks.144.attn1.to_q.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.attn1.to_v.weight": "blocks.144.attn1.to_v.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.attn2.to_k.weight": "blocks.144.attn2.to_k.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.attn2.to_out.0.bias": "blocks.144.attn2.to_out.bias", - "model.diffusion_model.output_blocks.6.1.time_stack.0.attn2.to_out.0.weight": "blocks.144.attn2.to_out.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.attn2.to_q.weight": "blocks.144.attn2.to_q.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.attn2.to_v.weight": "blocks.144.attn2.to_v.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.ff.net.0.proj.bias": "blocks.144.act_fn_out.proj.bias", - "model.diffusion_model.output_blocks.6.1.time_stack.0.ff.net.0.proj.weight": "blocks.144.act_fn_out.proj.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.ff.net.2.bias": "blocks.144.ff_out.bias", - "model.diffusion_model.output_blocks.6.1.time_stack.0.ff.net.2.weight": "blocks.144.ff_out.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.144.act_fn_in.proj.bias", - "model.diffusion_model.output_blocks.6.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.144.act_fn_in.proj.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.ff_in.net.2.bias": "blocks.144.ff_in.bias", - "model.diffusion_model.output_blocks.6.1.time_stack.0.ff_in.net.2.weight": "blocks.144.ff_in.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.norm1.bias": "blocks.144.norm1.bias", - "model.diffusion_model.output_blocks.6.1.time_stack.0.norm1.weight": "blocks.144.norm1.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.norm2.bias": "blocks.144.norm2.bias", - "model.diffusion_model.output_blocks.6.1.time_stack.0.norm2.weight": "blocks.144.norm2.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.norm3.bias": "blocks.144.norm_out.bias", - "model.diffusion_model.output_blocks.6.1.time_stack.0.norm3.weight": "blocks.144.norm_out.weight", - "model.diffusion_model.output_blocks.6.1.time_stack.0.norm_in.bias": "blocks.144.norm_in.bias", - "model.diffusion_model.output_blocks.6.1.time_stack.0.norm_in.weight": "blocks.144.norm_in.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k.weight": "blocks.142.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.142.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.142.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q.weight": "blocks.142.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v.weight": "blocks.142.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight": "blocks.142.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.142.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.142.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q.weight": "blocks.142.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight": "blocks.142.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.142.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.142.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.bias": "blocks.142.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.weight": "blocks.142.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.bias": "blocks.142.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.weight": "blocks.142.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.bias": "blocks.142.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight": "blocks.142.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.bias": "blocks.142.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.weight": "blocks.142.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.7.0.emb_layers.1.bias": "blocks.147.time_emb_proj.bias", - "model.diffusion_model.output_blocks.7.0.emb_layers.1.weight": "blocks.147.time_emb_proj.weight", - "model.diffusion_model.output_blocks.7.0.in_layers.0.bias": "blocks.147.norm1.bias", - "model.diffusion_model.output_blocks.7.0.in_layers.0.weight": "blocks.147.norm1.weight", - "model.diffusion_model.output_blocks.7.0.in_layers.2.bias": "blocks.147.conv1.bias", - "model.diffusion_model.output_blocks.7.0.in_layers.2.weight": "blocks.147.conv1.weight", - "model.diffusion_model.output_blocks.7.0.out_layers.0.bias": "blocks.147.norm2.bias", - "model.diffusion_model.output_blocks.7.0.out_layers.0.weight": "blocks.147.norm2.weight", - "model.diffusion_model.output_blocks.7.0.out_layers.3.bias": "blocks.147.conv2.bias", - "model.diffusion_model.output_blocks.7.0.out_layers.3.weight": "blocks.147.conv2.weight", - "model.diffusion_model.output_blocks.7.0.skip_connection.bias": "blocks.147.conv_shortcut.bias", - "model.diffusion_model.output_blocks.7.0.skip_connection.weight": "blocks.147.conv_shortcut.weight", - "model.diffusion_model.output_blocks.7.0.time_mixer.mix_factor": "blocks.150.mix_factor", - "model.diffusion_model.output_blocks.7.0.time_stack.emb_layers.1.bias": "blocks.149.time_emb_proj.bias", - "model.diffusion_model.output_blocks.7.0.time_stack.emb_layers.1.weight": "blocks.149.time_emb_proj.weight", - "model.diffusion_model.output_blocks.7.0.time_stack.in_layers.0.bias": "blocks.149.norm1.bias", - "model.diffusion_model.output_blocks.7.0.time_stack.in_layers.0.weight": "blocks.149.norm1.weight", - "model.diffusion_model.output_blocks.7.0.time_stack.in_layers.2.bias": "blocks.149.conv1.bias", - "model.diffusion_model.output_blocks.7.0.time_stack.in_layers.2.weight": "blocks.149.conv1.weight", - "model.diffusion_model.output_blocks.7.0.time_stack.out_layers.0.bias": "blocks.149.norm2.bias", - "model.diffusion_model.output_blocks.7.0.time_stack.out_layers.0.weight": "blocks.149.norm2.weight", - "model.diffusion_model.output_blocks.7.0.time_stack.out_layers.3.bias": "blocks.149.conv2.bias", - "model.diffusion_model.output_blocks.7.0.time_stack.out_layers.3.weight": "blocks.149.conv2.weight", - "model.diffusion_model.output_blocks.7.1.norm.bias": "blocks.152.norm.bias", - "model.diffusion_model.output_blocks.7.1.norm.weight": "blocks.152.norm.weight", - "model.diffusion_model.output_blocks.7.1.proj_in.bias": "blocks.152.proj_in.bias", - "model.diffusion_model.output_blocks.7.1.proj_in.weight": "blocks.152.proj_in.weight", - "model.diffusion_model.output_blocks.7.1.proj_out.bias": "blocks.155.proj.bias", - "model.diffusion_model.output_blocks.7.1.proj_out.weight": "blocks.155.proj.weight", - "model.diffusion_model.output_blocks.7.1.time_mixer.mix_factor": "blocks.155.mix_factor", - "model.diffusion_model.output_blocks.7.1.time_pos_embed.0.bias": "blocks.154.positional_embedding_proj.0.bias", - "model.diffusion_model.output_blocks.7.1.time_pos_embed.0.weight": "blocks.154.positional_embedding_proj.0.weight", - "model.diffusion_model.output_blocks.7.1.time_pos_embed.2.bias": "blocks.154.positional_embedding_proj.2.bias", - "model.diffusion_model.output_blocks.7.1.time_pos_embed.2.weight": "blocks.154.positional_embedding_proj.2.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.attn1.to_k.weight": "blocks.154.attn1.to_k.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.attn1.to_out.0.bias": "blocks.154.attn1.to_out.bias", - "model.diffusion_model.output_blocks.7.1.time_stack.0.attn1.to_out.0.weight": "blocks.154.attn1.to_out.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.attn1.to_q.weight": "blocks.154.attn1.to_q.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.attn1.to_v.weight": "blocks.154.attn1.to_v.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.attn2.to_k.weight": "blocks.154.attn2.to_k.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.attn2.to_out.0.bias": "blocks.154.attn2.to_out.bias", - "model.diffusion_model.output_blocks.7.1.time_stack.0.attn2.to_out.0.weight": "blocks.154.attn2.to_out.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.attn2.to_q.weight": "blocks.154.attn2.to_q.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.attn2.to_v.weight": "blocks.154.attn2.to_v.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.ff.net.0.proj.bias": "blocks.154.act_fn_out.proj.bias", - "model.diffusion_model.output_blocks.7.1.time_stack.0.ff.net.0.proj.weight": "blocks.154.act_fn_out.proj.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.ff.net.2.bias": "blocks.154.ff_out.bias", - "model.diffusion_model.output_blocks.7.1.time_stack.0.ff.net.2.weight": "blocks.154.ff_out.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.154.act_fn_in.proj.bias", - "model.diffusion_model.output_blocks.7.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.154.act_fn_in.proj.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.ff_in.net.2.bias": "blocks.154.ff_in.bias", - "model.diffusion_model.output_blocks.7.1.time_stack.0.ff_in.net.2.weight": "blocks.154.ff_in.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.norm1.bias": "blocks.154.norm1.bias", - "model.diffusion_model.output_blocks.7.1.time_stack.0.norm1.weight": "blocks.154.norm1.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.norm2.bias": "blocks.154.norm2.bias", - "model.diffusion_model.output_blocks.7.1.time_stack.0.norm2.weight": "blocks.154.norm2.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.norm3.bias": "blocks.154.norm_out.bias", - "model.diffusion_model.output_blocks.7.1.time_stack.0.norm3.weight": "blocks.154.norm_out.weight", - "model.diffusion_model.output_blocks.7.1.time_stack.0.norm_in.bias": "blocks.154.norm_in.bias", - "model.diffusion_model.output_blocks.7.1.time_stack.0.norm_in.weight": "blocks.154.norm_in.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.152.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.152.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.152.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.152.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.152.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.152.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.152.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.152.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.152.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.152.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.152.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.152.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.152.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.152.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.152.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.152.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.152.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.152.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.152.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.152.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.8.0.emb_layers.1.bias": "blocks.157.time_emb_proj.bias", - "model.diffusion_model.output_blocks.8.0.emb_layers.1.weight": "blocks.157.time_emb_proj.weight", - "model.diffusion_model.output_blocks.8.0.in_layers.0.bias": "blocks.157.norm1.bias", - "model.diffusion_model.output_blocks.8.0.in_layers.0.weight": "blocks.157.norm1.weight", - "model.diffusion_model.output_blocks.8.0.in_layers.2.bias": "blocks.157.conv1.bias", - "model.diffusion_model.output_blocks.8.0.in_layers.2.weight": "blocks.157.conv1.weight", - "model.diffusion_model.output_blocks.8.0.out_layers.0.bias": "blocks.157.norm2.bias", - "model.diffusion_model.output_blocks.8.0.out_layers.0.weight": "blocks.157.norm2.weight", - "model.diffusion_model.output_blocks.8.0.out_layers.3.bias": "blocks.157.conv2.bias", - "model.diffusion_model.output_blocks.8.0.out_layers.3.weight": "blocks.157.conv2.weight", - "model.diffusion_model.output_blocks.8.0.skip_connection.bias": "blocks.157.conv_shortcut.bias", - "model.diffusion_model.output_blocks.8.0.skip_connection.weight": "blocks.157.conv_shortcut.weight", - "model.diffusion_model.output_blocks.8.0.time_mixer.mix_factor": "blocks.160.mix_factor", - "model.diffusion_model.output_blocks.8.0.time_stack.emb_layers.1.bias": "blocks.159.time_emb_proj.bias", - "model.diffusion_model.output_blocks.8.0.time_stack.emb_layers.1.weight": "blocks.159.time_emb_proj.weight", - "model.diffusion_model.output_blocks.8.0.time_stack.in_layers.0.bias": "blocks.159.norm1.bias", - "model.diffusion_model.output_blocks.8.0.time_stack.in_layers.0.weight": "blocks.159.norm1.weight", - "model.diffusion_model.output_blocks.8.0.time_stack.in_layers.2.bias": "blocks.159.conv1.bias", - "model.diffusion_model.output_blocks.8.0.time_stack.in_layers.2.weight": "blocks.159.conv1.weight", - "model.diffusion_model.output_blocks.8.0.time_stack.out_layers.0.bias": "blocks.159.norm2.bias", - "model.diffusion_model.output_blocks.8.0.time_stack.out_layers.0.weight": "blocks.159.norm2.weight", - "model.diffusion_model.output_blocks.8.0.time_stack.out_layers.3.bias": "blocks.159.conv2.bias", - "model.diffusion_model.output_blocks.8.0.time_stack.out_layers.3.weight": "blocks.159.conv2.weight", - "model.diffusion_model.output_blocks.8.1.norm.bias": "blocks.162.norm.bias", - "model.diffusion_model.output_blocks.8.1.norm.weight": "blocks.162.norm.weight", - "model.diffusion_model.output_blocks.8.1.proj_in.bias": "blocks.162.proj_in.bias", - "model.diffusion_model.output_blocks.8.1.proj_in.weight": "blocks.162.proj_in.weight", - "model.diffusion_model.output_blocks.8.1.proj_out.bias": "blocks.165.proj.bias", - "model.diffusion_model.output_blocks.8.1.proj_out.weight": "blocks.165.proj.weight", - "model.diffusion_model.output_blocks.8.1.time_mixer.mix_factor": "blocks.165.mix_factor", - "model.diffusion_model.output_blocks.8.1.time_pos_embed.0.bias": "blocks.164.positional_embedding_proj.0.bias", - "model.diffusion_model.output_blocks.8.1.time_pos_embed.0.weight": "blocks.164.positional_embedding_proj.0.weight", - "model.diffusion_model.output_blocks.8.1.time_pos_embed.2.bias": "blocks.164.positional_embedding_proj.2.bias", - "model.diffusion_model.output_blocks.8.1.time_pos_embed.2.weight": "blocks.164.positional_embedding_proj.2.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.attn1.to_k.weight": "blocks.164.attn1.to_k.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.attn1.to_out.0.bias": "blocks.164.attn1.to_out.bias", - "model.diffusion_model.output_blocks.8.1.time_stack.0.attn1.to_out.0.weight": "blocks.164.attn1.to_out.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.attn1.to_q.weight": "blocks.164.attn1.to_q.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.attn1.to_v.weight": "blocks.164.attn1.to_v.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.attn2.to_k.weight": "blocks.164.attn2.to_k.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.attn2.to_out.0.bias": "blocks.164.attn2.to_out.bias", - "model.diffusion_model.output_blocks.8.1.time_stack.0.attn2.to_out.0.weight": "blocks.164.attn2.to_out.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.attn2.to_q.weight": "blocks.164.attn2.to_q.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.attn2.to_v.weight": "blocks.164.attn2.to_v.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.ff.net.0.proj.bias": "blocks.164.act_fn_out.proj.bias", - "model.diffusion_model.output_blocks.8.1.time_stack.0.ff.net.0.proj.weight": "blocks.164.act_fn_out.proj.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.ff.net.2.bias": "blocks.164.ff_out.bias", - "model.diffusion_model.output_blocks.8.1.time_stack.0.ff.net.2.weight": "blocks.164.ff_out.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.164.act_fn_in.proj.bias", - "model.diffusion_model.output_blocks.8.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.164.act_fn_in.proj.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.ff_in.net.2.bias": "blocks.164.ff_in.bias", - "model.diffusion_model.output_blocks.8.1.time_stack.0.ff_in.net.2.weight": "blocks.164.ff_in.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.norm1.bias": "blocks.164.norm1.bias", - "model.diffusion_model.output_blocks.8.1.time_stack.0.norm1.weight": "blocks.164.norm1.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.norm2.bias": "blocks.164.norm2.bias", - "model.diffusion_model.output_blocks.8.1.time_stack.0.norm2.weight": "blocks.164.norm2.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.norm3.bias": "blocks.164.norm_out.bias", - "model.diffusion_model.output_blocks.8.1.time_stack.0.norm3.weight": "blocks.164.norm_out.weight", - "model.diffusion_model.output_blocks.8.1.time_stack.0.norm_in.bias": "blocks.164.norm_in.bias", - "model.diffusion_model.output_blocks.8.1.time_stack.0.norm_in.weight": "blocks.164.norm_in.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.162.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.162.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.162.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.162.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.162.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.162.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.162.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.162.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.162.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.162.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.162.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.162.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.162.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.162.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.162.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.162.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.162.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.162.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.162.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.162.transformer_blocks.0.norm3.weight", - "model.diffusion_model.output_blocks.8.2.conv.bias": "blocks.166.conv.bias", - "model.diffusion_model.output_blocks.8.2.conv.weight": "blocks.166.conv.weight", - "model.diffusion_model.output_blocks.9.0.emb_layers.1.bias": "blocks.168.time_emb_proj.bias", - "model.diffusion_model.output_blocks.9.0.emb_layers.1.weight": "blocks.168.time_emb_proj.weight", - "model.diffusion_model.output_blocks.9.0.in_layers.0.bias": "blocks.168.norm1.bias", - "model.diffusion_model.output_blocks.9.0.in_layers.0.weight": "blocks.168.norm1.weight", - "model.diffusion_model.output_blocks.9.0.in_layers.2.bias": "blocks.168.conv1.bias", - "model.diffusion_model.output_blocks.9.0.in_layers.2.weight": "blocks.168.conv1.weight", - "model.diffusion_model.output_blocks.9.0.out_layers.0.bias": "blocks.168.norm2.bias", - "model.diffusion_model.output_blocks.9.0.out_layers.0.weight": "blocks.168.norm2.weight", - "model.diffusion_model.output_blocks.9.0.out_layers.3.bias": "blocks.168.conv2.bias", - "model.diffusion_model.output_blocks.9.0.out_layers.3.weight": "blocks.168.conv2.weight", - "model.diffusion_model.output_blocks.9.0.skip_connection.bias": "blocks.168.conv_shortcut.bias", - "model.diffusion_model.output_blocks.9.0.skip_connection.weight": "blocks.168.conv_shortcut.weight", - "model.diffusion_model.output_blocks.9.0.time_mixer.mix_factor": "blocks.171.mix_factor", - "model.diffusion_model.output_blocks.9.0.time_stack.emb_layers.1.bias": "blocks.170.time_emb_proj.bias", - "model.diffusion_model.output_blocks.9.0.time_stack.emb_layers.1.weight": "blocks.170.time_emb_proj.weight", - "model.diffusion_model.output_blocks.9.0.time_stack.in_layers.0.bias": "blocks.170.norm1.bias", - "model.diffusion_model.output_blocks.9.0.time_stack.in_layers.0.weight": "blocks.170.norm1.weight", - "model.diffusion_model.output_blocks.9.0.time_stack.in_layers.2.bias": "blocks.170.conv1.bias", - "model.diffusion_model.output_blocks.9.0.time_stack.in_layers.2.weight": "blocks.170.conv1.weight", - "model.diffusion_model.output_blocks.9.0.time_stack.out_layers.0.bias": "blocks.170.norm2.bias", - "model.diffusion_model.output_blocks.9.0.time_stack.out_layers.0.weight": "blocks.170.norm2.weight", - "model.diffusion_model.output_blocks.9.0.time_stack.out_layers.3.bias": "blocks.170.conv2.bias", - "model.diffusion_model.output_blocks.9.0.time_stack.out_layers.3.weight": "blocks.170.conv2.weight", - "model.diffusion_model.output_blocks.9.1.norm.bias": "blocks.173.norm.bias", - "model.diffusion_model.output_blocks.9.1.norm.weight": "blocks.173.norm.weight", - "model.diffusion_model.output_blocks.9.1.proj_in.bias": "blocks.173.proj_in.bias", - "model.diffusion_model.output_blocks.9.1.proj_in.weight": "blocks.173.proj_in.weight", - "model.diffusion_model.output_blocks.9.1.proj_out.bias": "blocks.176.proj.bias", - "model.diffusion_model.output_blocks.9.1.proj_out.weight": "blocks.176.proj.weight", - "model.diffusion_model.output_blocks.9.1.time_mixer.mix_factor": "blocks.176.mix_factor", - "model.diffusion_model.output_blocks.9.1.time_pos_embed.0.bias": "blocks.175.positional_embedding_proj.0.bias", - "model.diffusion_model.output_blocks.9.1.time_pos_embed.0.weight": "blocks.175.positional_embedding_proj.0.weight", - "model.diffusion_model.output_blocks.9.1.time_pos_embed.2.bias": "blocks.175.positional_embedding_proj.2.bias", - "model.diffusion_model.output_blocks.9.1.time_pos_embed.2.weight": "blocks.175.positional_embedding_proj.2.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.attn1.to_k.weight": "blocks.175.attn1.to_k.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.attn1.to_out.0.bias": "blocks.175.attn1.to_out.bias", - "model.diffusion_model.output_blocks.9.1.time_stack.0.attn1.to_out.0.weight": "blocks.175.attn1.to_out.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.attn1.to_q.weight": "blocks.175.attn1.to_q.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.attn1.to_v.weight": "blocks.175.attn1.to_v.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.attn2.to_k.weight": "blocks.175.attn2.to_k.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.attn2.to_out.0.bias": "blocks.175.attn2.to_out.bias", - "model.diffusion_model.output_blocks.9.1.time_stack.0.attn2.to_out.0.weight": "blocks.175.attn2.to_out.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.attn2.to_q.weight": "blocks.175.attn2.to_q.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.attn2.to_v.weight": "blocks.175.attn2.to_v.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.ff.net.0.proj.bias": "blocks.175.act_fn_out.proj.bias", - "model.diffusion_model.output_blocks.9.1.time_stack.0.ff.net.0.proj.weight": "blocks.175.act_fn_out.proj.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.ff.net.2.bias": "blocks.175.ff_out.bias", - "model.diffusion_model.output_blocks.9.1.time_stack.0.ff.net.2.weight": "blocks.175.ff_out.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.ff_in.net.0.proj.bias": "blocks.175.act_fn_in.proj.bias", - "model.diffusion_model.output_blocks.9.1.time_stack.0.ff_in.net.0.proj.weight": "blocks.175.act_fn_in.proj.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.ff_in.net.2.bias": "blocks.175.ff_in.bias", - "model.diffusion_model.output_blocks.9.1.time_stack.0.ff_in.net.2.weight": "blocks.175.ff_in.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.norm1.bias": "blocks.175.norm1.bias", - "model.diffusion_model.output_blocks.9.1.time_stack.0.norm1.weight": "blocks.175.norm1.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.norm2.bias": "blocks.175.norm2.bias", - "model.diffusion_model.output_blocks.9.1.time_stack.0.norm2.weight": "blocks.175.norm2.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.norm3.bias": "blocks.175.norm_out.bias", - "model.diffusion_model.output_blocks.9.1.time_stack.0.norm3.weight": "blocks.175.norm_out.weight", - "model.diffusion_model.output_blocks.9.1.time_stack.0.norm_in.bias": "blocks.175.norm_in.bias", - "model.diffusion_model.output_blocks.9.1.time_stack.0.norm_in.weight": "blocks.175.norm_in.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k.weight": "blocks.173.transformer_blocks.0.attn1.to_k.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.173.transformer_blocks.0.attn1.to_out.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.173.transformer_blocks.0.attn1.to_out.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q.weight": "blocks.173.transformer_blocks.0.attn1.to_q.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v.weight": "blocks.173.transformer_blocks.0.attn1.to_v.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight": "blocks.173.transformer_blocks.0.attn2.to_k.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.173.transformer_blocks.0.attn2.to_out.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.173.transformer_blocks.0.attn2.to_out.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q.weight": "blocks.173.transformer_blocks.0.attn2.to_q.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight": "blocks.173.transformer_blocks.0.attn2.to_v.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.173.transformer_blocks.0.act_fn.proj.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.173.transformer_blocks.0.act_fn.proj.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.bias": "blocks.173.transformer_blocks.0.ff.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.weight": "blocks.173.transformer_blocks.0.ff.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.bias": "blocks.173.transformer_blocks.0.norm1.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.weight": "blocks.173.transformer_blocks.0.norm1.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.bias": "blocks.173.transformer_blocks.0.norm2.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.weight": "blocks.173.transformer_blocks.0.norm2.weight", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.bias": "blocks.173.transformer_blocks.0.norm3.bias", - "model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight": "blocks.173.transformer_blocks.0.norm3.weight", - "model.diffusion_model.time_embed.0.bias": "time_embedding.0.bias", - "model.diffusion_model.time_embed.0.weight": "time_embedding.0.weight", - "model.diffusion_model.time_embed.2.bias": "time_embedding.2.bias", - "model.diffusion_model.time_embed.2.weight": "time_embedding.2.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if ".proj_in." in name or ".proj_out." in name: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - if add_positional_conv is not None: - extra_names = [ - "blocks.7.positional_conv", "blocks.17.positional_conv", "blocks.29.positional_conv", "blocks.39.positional_conv", - "blocks.51.positional_conv", "blocks.61.positional_conv", "blocks.83.positional_conv", "blocks.113.positional_conv", - "blocks.123.positional_conv", "blocks.133.positional_conv", "blocks.144.positional_conv", "blocks.154.positional_conv", - "blocks.164.positional_conv", "blocks.175.positional_conv", "blocks.185.positional_conv", "blocks.195.positional_conv", - ] - extra_channels = [320, 320, 640, 640, 1280, 1280, 1280, 1280, 1280, 1280, 640, 640, 640, 320, 320, 320] - for name, channels in zip(extra_names, extra_channels): - weight = torch.zeros((channels, channels, 3, 3, 3)) - weight[:,:,1,1,1] = torch.eye(channels, channels) - bias = torch.zeros((channels,)) - state_dict_[name + ".weight"] = weight - state_dict_[name + ".bias"] = bias - return state_dict_ diff --git a/diffsynth/models/svd_vae_decoder.py b/diffsynth/models/svd_vae_decoder.py deleted file mode 100644 index a4815961136820dc1b863573a559076b68fd785a..0000000000000000000000000000000000000000 --- a/diffsynth/models/svd_vae_decoder.py +++ /dev/null @@ -1,578 +0,0 @@ -import torch -from .attention import Attention -from .sd_unet import ResnetBlock, UpSampler -from .tiler import TileWorker -from einops import rearrange, repeat - - -class VAEAttentionBlock(torch.nn.Module): - - def __init__(self, num_attention_heads, attention_head_dim, in_channels, num_layers=1, norm_num_groups=32, eps=1e-5): - super().__init__() - inner_dim = num_attention_heads * attention_head_dim - - self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True) - - self.transformer_blocks = torch.nn.ModuleList([ - Attention( - inner_dim, - num_attention_heads, - attention_head_dim, - bias_q=True, - bias_kv=True, - bias_out=True - ) - for d in range(num_layers) - ]) - - def forward(self, hidden_states, time_emb, text_emb, res_stack): - batch, _, height, width = hidden_states.shape - residual = hidden_states - - hidden_states = self.norm(hidden_states) - inner_dim = hidden_states.shape[1] - hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) - - for block in self.transformer_blocks: - hidden_states = block(hidden_states) - - hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() - hidden_states = hidden_states + residual - - return hidden_states, time_emb, text_emb, res_stack - - -class TemporalResnetBlock(torch.nn.Module): - - def __init__(self, in_channels, out_channels, groups=32, eps=1e-5): - super().__init__() - self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) - self.conv1 = torch.nn.Conv3d(in_channels, out_channels, kernel_size=(3, 1, 1), stride=1, padding=(1, 0, 0)) - self.norm2 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True) - self.conv2 = torch.nn.Conv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=1, padding=(1, 0, 0)) - self.nonlinearity = torch.nn.SiLU() - self.mix_factor = torch.nn.Parameter(torch.Tensor([0.5])) - - def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): - x_spatial = hidden_states - x = rearrange(hidden_states, "T C H W -> 1 C T H W") - x = self.norm1(x) - x = self.nonlinearity(x) - x = self.conv1(x) - x = self.norm2(x) - x = self.nonlinearity(x) - x = self.conv2(x) - x_temporal = hidden_states + x[0].permute(1, 0, 2, 3) - alpha = torch.sigmoid(self.mix_factor) - hidden_states = alpha * x_temporal + (1 - alpha) * x_spatial - return hidden_states, time_emb, text_emb, res_stack - - -class SVDVAEDecoder(torch.nn.Module): - def __init__(self): - super().__init__() - self.scaling_factor = 0.18215 - self.conv_in = torch.nn.Conv2d(4, 512, kernel_size=3, padding=1) - - self.blocks = torch.nn.ModuleList([ - # UNetMidBlock - ResnetBlock(512, 512, eps=1e-6), - TemporalResnetBlock(512, 512, eps=1e-6), - VAEAttentionBlock(1, 512, 512, 1, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - TemporalResnetBlock(512, 512, eps=1e-6), - # UpDecoderBlock - ResnetBlock(512, 512, eps=1e-6), - TemporalResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - TemporalResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - TemporalResnetBlock(512, 512, eps=1e-6), - UpSampler(512), - # UpDecoderBlock - ResnetBlock(512, 512, eps=1e-6), - TemporalResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - TemporalResnetBlock(512, 512, eps=1e-6), - ResnetBlock(512, 512, eps=1e-6), - TemporalResnetBlock(512, 512, eps=1e-6), - UpSampler(512), - # UpDecoderBlock - ResnetBlock(512, 256, eps=1e-6), - TemporalResnetBlock(256, 256, eps=1e-6), - ResnetBlock(256, 256, eps=1e-6), - TemporalResnetBlock(256, 256, eps=1e-6), - ResnetBlock(256, 256, eps=1e-6), - TemporalResnetBlock(256, 256, eps=1e-6), - UpSampler(256), - # UpDecoderBlock - ResnetBlock(256, 128, eps=1e-6), - TemporalResnetBlock(128, 128, eps=1e-6), - ResnetBlock(128, 128, eps=1e-6), - TemporalResnetBlock(128, 128, eps=1e-6), - ResnetBlock(128, 128, eps=1e-6), - TemporalResnetBlock(128, 128, eps=1e-6), - ]) - - self.conv_norm_out = torch.nn.GroupNorm(num_channels=128, num_groups=32, eps=1e-5) - self.conv_act = torch.nn.SiLU() - self.conv_out = torch.nn.Conv2d(128, 3, kernel_size=3, padding=1) - self.time_conv_out = torch.nn.Conv3d(3, 3, kernel_size=(3, 1, 1), padding=(1, 0, 0)) - - - def forward(self, sample): - # 1. pre-process - hidden_states = rearrange(sample, "C T H W -> T C H W") - hidden_states = hidden_states / self.scaling_factor - hidden_states = self.conv_in(hidden_states) - time_emb, text_emb, res_stack = None, None, None - - # 2. blocks - for i, block in enumerate(self.blocks): - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - - # 3. output - hidden_states = self.conv_norm_out(hidden_states) - hidden_states = self.conv_act(hidden_states) - hidden_states = self.conv_out(hidden_states) - hidden_states = rearrange(hidden_states, "T C H W -> C T H W") - hidden_states = self.time_conv_out(hidden_states) - - return hidden_states - - - def build_mask(self, data, is_bound): - _, T, H, W = data.shape - t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W) - h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W) - w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W) - border_width = (T + H + W) // 6 - pad = torch.ones_like(t) * border_width - mask = torch.stack([ - pad if is_bound[0] else t + 1, - pad if is_bound[1] else T - t, - pad if is_bound[2] else h + 1, - pad if is_bound[3] else H - h, - pad if is_bound[4] else w + 1, - pad if is_bound[5] else W - w - ]).min(dim=0).values - mask = mask.clip(1, border_width) - mask = (mask / border_width).to(dtype=data.dtype, device=data.device) - mask = rearrange(mask, "T H W -> 1 T H W") - return mask - - - def decode_video( - self, sample, - batch_time=8, batch_height=128, batch_width=128, - stride_time=4, stride_height=32, stride_width=32, - progress_bar=lambda x:x - ): - sample = sample.permute(1, 0, 2, 3) - data_device = sample.device - computation_device = self.conv_in.weight.device - torch_dtype = sample.dtype - _, T, H, W = sample.shape - - weight = torch.zeros((1, T, H*8, W*8), dtype=torch_dtype, device=data_device) - values = torch.zeros((3, T, H*8, W*8), dtype=torch_dtype, device=data_device) - - # Split tasks - tasks = [] - for t in range(0, T, stride_time): - for h in range(0, H, stride_height): - for w in range(0, W, stride_width): - if (t-stride_time >= 0 and t-stride_time+batch_time >= T)\ - or (h-stride_height >= 0 and h-stride_height+batch_height >= H)\ - or (w-stride_width >= 0 and w-stride_width+batch_width >= W): - continue - tasks.append((t, t+batch_time, h, h+batch_height, w, w+batch_width)) - - # Run - for tl, tr, hl, hr, wl, wr in progress_bar(tasks): - sample_batch = sample[:, tl:tr, hl:hr, wl:wr].to(computation_device) - sample_batch = self.forward(sample_batch).to(data_device) - mask = self.build_mask(sample_batch, is_bound=(tl==0, tr>=T, hl==0, hr>=H, wl==0, wr>=W)) - values[:, tl:tr, hl*8:hr*8, wl*8:wr*8] += sample_batch * mask - weight[:, tl:tr, hl*8:hr*8, wl*8:wr*8] += mask - values /= weight - return values - - - @staticmethod - def state_dict_converter(): - return SVDVAEDecoderStateDictConverter() - - -class SVDVAEDecoderStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - static_rename_dict = { - "decoder.conv_in": "conv_in", - "decoder.mid_block.attentions.0.group_norm": "blocks.2.norm", - "decoder.mid_block.attentions.0.to_q": "blocks.2.transformer_blocks.0.to_q", - "decoder.mid_block.attentions.0.to_k": "blocks.2.transformer_blocks.0.to_k", - "decoder.mid_block.attentions.0.to_v": "blocks.2.transformer_blocks.0.to_v", - "decoder.mid_block.attentions.0.to_out.0": "blocks.2.transformer_blocks.0.to_out", - "decoder.up_blocks.0.upsamplers.0.conv": "blocks.11.conv", - "decoder.up_blocks.1.upsamplers.0.conv": "blocks.18.conv", - "decoder.up_blocks.2.upsamplers.0.conv": "blocks.25.conv", - "decoder.conv_norm_out": "conv_norm_out", - "decoder.conv_out": "conv_out", - "decoder.time_conv_out": "time_conv_out" - } - prefix_rename_dict = { - "decoder.mid_block.resnets.0.spatial_res_block": "blocks.0", - "decoder.mid_block.resnets.0.temporal_res_block": "blocks.1", - "decoder.mid_block.resnets.0.time_mixer": "blocks.1", - "decoder.mid_block.resnets.1.spatial_res_block": "blocks.3", - "decoder.mid_block.resnets.1.temporal_res_block": "blocks.4", - "decoder.mid_block.resnets.1.time_mixer": "blocks.4", - - "decoder.up_blocks.0.resnets.0.spatial_res_block": "blocks.5", - "decoder.up_blocks.0.resnets.0.temporal_res_block": "blocks.6", - "decoder.up_blocks.0.resnets.0.time_mixer": "blocks.6", - "decoder.up_blocks.0.resnets.1.spatial_res_block": "blocks.7", - "decoder.up_blocks.0.resnets.1.temporal_res_block": "blocks.8", - "decoder.up_blocks.0.resnets.1.time_mixer": "blocks.8", - "decoder.up_blocks.0.resnets.2.spatial_res_block": "blocks.9", - "decoder.up_blocks.0.resnets.2.temporal_res_block": "blocks.10", - "decoder.up_blocks.0.resnets.2.time_mixer": "blocks.10", - - "decoder.up_blocks.1.resnets.0.spatial_res_block": "blocks.12", - "decoder.up_blocks.1.resnets.0.temporal_res_block": "blocks.13", - "decoder.up_blocks.1.resnets.0.time_mixer": "blocks.13", - "decoder.up_blocks.1.resnets.1.spatial_res_block": "blocks.14", - "decoder.up_blocks.1.resnets.1.temporal_res_block": "blocks.15", - "decoder.up_blocks.1.resnets.1.time_mixer": "blocks.15", - "decoder.up_blocks.1.resnets.2.spatial_res_block": "blocks.16", - "decoder.up_blocks.1.resnets.2.temporal_res_block": "blocks.17", - "decoder.up_blocks.1.resnets.2.time_mixer": "blocks.17", - - "decoder.up_blocks.2.resnets.0.spatial_res_block": "blocks.19", - "decoder.up_blocks.2.resnets.0.temporal_res_block": "blocks.20", - "decoder.up_blocks.2.resnets.0.time_mixer": "blocks.20", - "decoder.up_blocks.2.resnets.1.spatial_res_block": "blocks.21", - "decoder.up_blocks.2.resnets.1.temporal_res_block": "blocks.22", - "decoder.up_blocks.2.resnets.1.time_mixer": "blocks.22", - "decoder.up_blocks.2.resnets.2.spatial_res_block": "blocks.23", - "decoder.up_blocks.2.resnets.2.temporal_res_block": "blocks.24", - "decoder.up_blocks.2.resnets.2.time_mixer": "blocks.24", - - "decoder.up_blocks.3.resnets.0.spatial_res_block": "blocks.26", - "decoder.up_blocks.3.resnets.0.temporal_res_block": "blocks.27", - "decoder.up_blocks.3.resnets.0.time_mixer": "blocks.27", - "decoder.up_blocks.3.resnets.1.spatial_res_block": "blocks.28", - "decoder.up_blocks.3.resnets.1.temporal_res_block": "blocks.29", - "decoder.up_blocks.3.resnets.1.time_mixer": "blocks.29", - "decoder.up_blocks.3.resnets.2.spatial_res_block": "blocks.30", - "decoder.up_blocks.3.resnets.2.temporal_res_block": "blocks.31", - "decoder.up_blocks.3.resnets.2.time_mixer": "blocks.31", - } - suffix_rename_dict = { - "norm1.weight": "norm1.weight", - "conv1.weight": "conv1.weight", - "norm2.weight": "norm2.weight", - "conv2.weight": "conv2.weight", - "conv_shortcut.weight": "conv_shortcut.weight", - "norm1.bias": "norm1.bias", - "conv1.bias": "conv1.bias", - "norm2.bias": "norm2.bias", - "conv2.bias": "conv2.bias", - "conv_shortcut.bias": "conv_shortcut.bias", - "mix_factor": "mix_factor", - } - - state_dict_ = {} - for name in static_rename_dict: - state_dict_[static_rename_dict[name] + ".weight"] = state_dict[name + ".weight"] - state_dict_[static_rename_dict[name] + ".bias"] = state_dict[name + ".bias"] - for prefix_name in prefix_rename_dict: - for suffix_name in suffix_rename_dict: - name = prefix_name + "." + suffix_name - name_ = prefix_rename_dict[prefix_name] + "." + suffix_rename_dict[suffix_name] - if name in state_dict: - state_dict_[name_] = state_dict[name] - - return state_dict_ - - - def from_civitai(self, state_dict): - rename_dict = { - "first_stage_model.decoder.conv_in.bias": "conv_in.bias", - "first_stage_model.decoder.conv_in.weight": "conv_in.weight", - "first_stage_model.decoder.conv_out.bias": "conv_out.bias", - "first_stage_model.decoder.conv_out.time_mix_conv.bias": "time_conv_out.bias", - "first_stage_model.decoder.conv_out.time_mix_conv.weight": "time_conv_out.weight", - "first_stage_model.decoder.conv_out.weight": "conv_out.weight", - "first_stage_model.decoder.mid.attn_1.k.bias": "blocks.2.transformer_blocks.0.to_k.bias", - "first_stage_model.decoder.mid.attn_1.k.weight": "blocks.2.transformer_blocks.0.to_k.weight", - "first_stage_model.decoder.mid.attn_1.norm.bias": "blocks.2.norm.bias", - "first_stage_model.decoder.mid.attn_1.norm.weight": "blocks.2.norm.weight", - "first_stage_model.decoder.mid.attn_1.proj_out.bias": "blocks.2.transformer_blocks.0.to_out.bias", - "first_stage_model.decoder.mid.attn_1.proj_out.weight": "blocks.2.transformer_blocks.0.to_out.weight", - "first_stage_model.decoder.mid.attn_1.q.bias": "blocks.2.transformer_blocks.0.to_q.bias", - "first_stage_model.decoder.mid.attn_1.q.weight": "blocks.2.transformer_blocks.0.to_q.weight", - "first_stage_model.decoder.mid.attn_1.v.bias": "blocks.2.transformer_blocks.0.to_v.bias", - "first_stage_model.decoder.mid.attn_1.v.weight": "blocks.2.transformer_blocks.0.to_v.weight", - "first_stage_model.decoder.mid.block_1.conv1.bias": "blocks.0.conv1.bias", - "first_stage_model.decoder.mid.block_1.conv1.weight": "blocks.0.conv1.weight", - "first_stage_model.decoder.mid.block_1.conv2.bias": "blocks.0.conv2.bias", - "first_stage_model.decoder.mid.block_1.conv2.weight": "blocks.0.conv2.weight", - "first_stage_model.decoder.mid.block_1.mix_factor": "blocks.1.mix_factor", - "first_stage_model.decoder.mid.block_1.norm1.bias": "blocks.0.norm1.bias", - "first_stage_model.decoder.mid.block_1.norm1.weight": "blocks.0.norm1.weight", - "first_stage_model.decoder.mid.block_1.norm2.bias": "blocks.0.norm2.bias", - "first_stage_model.decoder.mid.block_1.norm2.weight": "blocks.0.norm2.weight", - "first_stage_model.decoder.mid.block_1.time_stack.in_layers.0.bias": "blocks.1.norm1.bias", - "first_stage_model.decoder.mid.block_1.time_stack.in_layers.0.weight": "blocks.1.norm1.weight", - "first_stage_model.decoder.mid.block_1.time_stack.in_layers.2.bias": "blocks.1.conv1.bias", - "first_stage_model.decoder.mid.block_1.time_stack.in_layers.2.weight": "blocks.1.conv1.weight", - "first_stage_model.decoder.mid.block_1.time_stack.out_layers.0.bias": "blocks.1.norm2.bias", - "first_stage_model.decoder.mid.block_1.time_stack.out_layers.0.weight": "blocks.1.norm2.weight", - "first_stage_model.decoder.mid.block_1.time_stack.out_layers.3.bias": "blocks.1.conv2.bias", - "first_stage_model.decoder.mid.block_1.time_stack.out_layers.3.weight": "blocks.1.conv2.weight", - "first_stage_model.decoder.mid.block_2.conv1.bias": "blocks.3.conv1.bias", - "first_stage_model.decoder.mid.block_2.conv1.weight": "blocks.3.conv1.weight", - "first_stage_model.decoder.mid.block_2.conv2.bias": "blocks.3.conv2.bias", - "first_stage_model.decoder.mid.block_2.conv2.weight": "blocks.3.conv2.weight", - "first_stage_model.decoder.mid.block_2.mix_factor": "blocks.4.mix_factor", - "first_stage_model.decoder.mid.block_2.norm1.bias": "blocks.3.norm1.bias", - "first_stage_model.decoder.mid.block_2.norm1.weight": "blocks.3.norm1.weight", - "first_stage_model.decoder.mid.block_2.norm2.bias": "blocks.3.norm2.bias", - "first_stage_model.decoder.mid.block_2.norm2.weight": "blocks.3.norm2.weight", - "first_stage_model.decoder.mid.block_2.time_stack.in_layers.0.bias": "blocks.4.norm1.bias", - "first_stage_model.decoder.mid.block_2.time_stack.in_layers.0.weight": "blocks.4.norm1.weight", - "first_stage_model.decoder.mid.block_2.time_stack.in_layers.2.bias": "blocks.4.conv1.bias", - "first_stage_model.decoder.mid.block_2.time_stack.in_layers.2.weight": "blocks.4.conv1.weight", - "first_stage_model.decoder.mid.block_2.time_stack.out_layers.0.bias": "blocks.4.norm2.bias", - "first_stage_model.decoder.mid.block_2.time_stack.out_layers.0.weight": "blocks.4.norm2.weight", - "first_stage_model.decoder.mid.block_2.time_stack.out_layers.3.bias": "blocks.4.conv2.bias", - "first_stage_model.decoder.mid.block_2.time_stack.out_layers.3.weight": "blocks.4.conv2.weight", - "first_stage_model.decoder.norm_out.bias": "conv_norm_out.bias", - "first_stage_model.decoder.norm_out.weight": "conv_norm_out.weight", - "first_stage_model.decoder.up.0.block.0.conv1.bias": "blocks.26.conv1.bias", - "first_stage_model.decoder.up.0.block.0.conv1.weight": "blocks.26.conv1.weight", - "first_stage_model.decoder.up.0.block.0.conv2.bias": "blocks.26.conv2.bias", - "first_stage_model.decoder.up.0.block.0.conv2.weight": "blocks.26.conv2.weight", - "first_stage_model.decoder.up.0.block.0.mix_factor": "blocks.27.mix_factor", - "first_stage_model.decoder.up.0.block.0.nin_shortcut.bias": "blocks.26.conv_shortcut.bias", - "first_stage_model.decoder.up.0.block.0.nin_shortcut.weight": "blocks.26.conv_shortcut.weight", - "first_stage_model.decoder.up.0.block.0.norm1.bias": "blocks.26.norm1.bias", - "first_stage_model.decoder.up.0.block.0.norm1.weight": "blocks.26.norm1.weight", - "first_stage_model.decoder.up.0.block.0.norm2.bias": "blocks.26.norm2.bias", - "first_stage_model.decoder.up.0.block.0.norm2.weight": "blocks.26.norm2.weight", - "first_stage_model.decoder.up.0.block.0.time_stack.in_layers.0.bias": "blocks.27.norm1.bias", - "first_stage_model.decoder.up.0.block.0.time_stack.in_layers.0.weight": "blocks.27.norm1.weight", - "first_stage_model.decoder.up.0.block.0.time_stack.in_layers.2.bias": "blocks.27.conv1.bias", - "first_stage_model.decoder.up.0.block.0.time_stack.in_layers.2.weight": "blocks.27.conv1.weight", - "first_stage_model.decoder.up.0.block.0.time_stack.out_layers.0.bias": "blocks.27.norm2.bias", - "first_stage_model.decoder.up.0.block.0.time_stack.out_layers.0.weight": "blocks.27.norm2.weight", - "first_stage_model.decoder.up.0.block.0.time_stack.out_layers.3.bias": "blocks.27.conv2.bias", - "first_stage_model.decoder.up.0.block.0.time_stack.out_layers.3.weight": "blocks.27.conv2.weight", - "first_stage_model.decoder.up.0.block.1.conv1.bias": "blocks.28.conv1.bias", - "first_stage_model.decoder.up.0.block.1.conv1.weight": "blocks.28.conv1.weight", - "first_stage_model.decoder.up.0.block.1.conv2.bias": "blocks.28.conv2.bias", - "first_stage_model.decoder.up.0.block.1.conv2.weight": "blocks.28.conv2.weight", - "first_stage_model.decoder.up.0.block.1.mix_factor": "blocks.29.mix_factor", - "first_stage_model.decoder.up.0.block.1.norm1.bias": "blocks.28.norm1.bias", - "first_stage_model.decoder.up.0.block.1.norm1.weight": "blocks.28.norm1.weight", - "first_stage_model.decoder.up.0.block.1.norm2.bias": "blocks.28.norm2.bias", - "first_stage_model.decoder.up.0.block.1.norm2.weight": "blocks.28.norm2.weight", - "first_stage_model.decoder.up.0.block.1.time_stack.in_layers.0.bias": "blocks.29.norm1.bias", - "first_stage_model.decoder.up.0.block.1.time_stack.in_layers.0.weight": "blocks.29.norm1.weight", - "first_stage_model.decoder.up.0.block.1.time_stack.in_layers.2.bias": "blocks.29.conv1.bias", - "first_stage_model.decoder.up.0.block.1.time_stack.in_layers.2.weight": "blocks.29.conv1.weight", - "first_stage_model.decoder.up.0.block.1.time_stack.out_layers.0.bias": "blocks.29.norm2.bias", - "first_stage_model.decoder.up.0.block.1.time_stack.out_layers.0.weight": "blocks.29.norm2.weight", - "first_stage_model.decoder.up.0.block.1.time_stack.out_layers.3.bias": "blocks.29.conv2.bias", - "first_stage_model.decoder.up.0.block.1.time_stack.out_layers.3.weight": "blocks.29.conv2.weight", - "first_stage_model.decoder.up.0.block.2.conv1.bias": "blocks.30.conv1.bias", - "first_stage_model.decoder.up.0.block.2.conv1.weight": "blocks.30.conv1.weight", - "first_stage_model.decoder.up.0.block.2.conv2.bias": "blocks.30.conv2.bias", - "first_stage_model.decoder.up.0.block.2.conv2.weight": "blocks.30.conv2.weight", - "first_stage_model.decoder.up.0.block.2.mix_factor": "blocks.31.mix_factor", - "first_stage_model.decoder.up.0.block.2.norm1.bias": "blocks.30.norm1.bias", - "first_stage_model.decoder.up.0.block.2.norm1.weight": "blocks.30.norm1.weight", - "first_stage_model.decoder.up.0.block.2.norm2.bias": "blocks.30.norm2.bias", - "first_stage_model.decoder.up.0.block.2.norm2.weight": "blocks.30.norm2.weight", - "first_stage_model.decoder.up.0.block.2.time_stack.in_layers.0.bias": "blocks.31.norm1.bias", - "first_stage_model.decoder.up.0.block.2.time_stack.in_layers.0.weight": "blocks.31.norm1.weight", - "first_stage_model.decoder.up.0.block.2.time_stack.in_layers.2.bias": "blocks.31.conv1.bias", - "first_stage_model.decoder.up.0.block.2.time_stack.in_layers.2.weight": "blocks.31.conv1.weight", - "first_stage_model.decoder.up.0.block.2.time_stack.out_layers.0.bias": "blocks.31.norm2.bias", - "first_stage_model.decoder.up.0.block.2.time_stack.out_layers.0.weight": "blocks.31.norm2.weight", - "first_stage_model.decoder.up.0.block.2.time_stack.out_layers.3.bias": "blocks.31.conv2.bias", - "first_stage_model.decoder.up.0.block.2.time_stack.out_layers.3.weight": "blocks.31.conv2.weight", - "first_stage_model.decoder.up.1.block.0.conv1.bias": "blocks.19.conv1.bias", - "first_stage_model.decoder.up.1.block.0.conv1.weight": "blocks.19.conv1.weight", - "first_stage_model.decoder.up.1.block.0.conv2.bias": "blocks.19.conv2.bias", - "first_stage_model.decoder.up.1.block.0.conv2.weight": "blocks.19.conv2.weight", - "first_stage_model.decoder.up.1.block.0.mix_factor": "blocks.20.mix_factor", - "first_stage_model.decoder.up.1.block.0.nin_shortcut.bias": "blocks.19.conv_shortcut.bias", - "first_stage_model.decoder.up.1.block.0.nin_shortcut.weight": "blocks.19.conv_shortcut.weight", - "first_stage_model.decoder.up.1.block.0.norm1.bias": "blocks.19.norm1.bias", - "first_stage_model.decoder.up.1.block.0.norm1.weight": "blocks.19.norm1.weight", - "first_stage_model.decoder.up.1.block.0.norm2.bias": "blocks.19.norm2.bias", - "first_stage_model.decoder.up.1.block.0.norm2.weight": "blocks.19.norm2.weight", - "first_stage_model.decoder.up.1.block.0.time_stack.in_layers.0.bias": "blocks.20.norm1.bias", - "first_stage_model.decoder.up.1.block.0.time_stack.in_layers.0.weight": "blocks.20.norm1.weight", - "first_stage_model.decoder.up.1.block.0.time_stack.in_layers.2.bias": "blocks.20.conv1.bias", - "first_stage_model.decoder.up.1.block.0.time_stack.in_layers.2.weight": "blocks.20.conv1.weight", - "first_stage_model.decoder.up.1.block.0.time_stack.out_layers.0.bias": "blocks.20.norm2.bias", - "first_stage_model.decoder.up.1.block.0.time_stack.out_layers.0.weight": "blocks.20.norm2.weight", - "first_stage_model.decoder.up.1.block.0.time_stack.out_layers.3.bias": "blocks.20.conv2.bias", - "first_stage_model.decoder.up.1.block.0.time_stack.out_layers.3.weight": "blocks.20.conv2.weight", - "first_stage_model.decoder.up.1.block.1.conv1.bias": "blocks.21.conv1.bias", - "first_stage_model.decoder.up.1.block.1.conv1.weight": "blocks.21.conv1.weight", - "first_stage_model.decoder.up.1.block.1.conv2.bias": "blocks.21.conv2.bias", - "first_stage_model.decoder.up.1.block.1.conv2.weight": "blocks.21.conv2.weight", - "first_stage_model.decoder.up.1.block.1.mix_factor": "blocks.22.mix_factor", - "first_stage_model.decoder.up.1.block.1.norm1.bias": "blocks.21.norm1.bias", - "first_stage_model.decoder.up.1.block.1.norm1.weight": "blocks.21.norm1.weight", - "first_stage_model.decoder.up.1.block.1.norm2.bias": "blocks.21.norm2.bias", - "first_stage_model.decoder.up.1.block.1.norm2.weight": "blocks.21.norm2.weight", - "first_stage_model.decoder.up.1.block.1.time_stack.in_layers.0.bias": "blocks.22.norm1.bias", - "first_stage_model.decoder.up.1.block.1.time_stack.in_layers.0.weight": "blocks.22.norm1.weight", - "first_stage_model.decoder.up.1.block.1.time_stack.in_layers.2.bias": "blocks.22.conv1.bias", - "first_stage_model.decoder.up.1.block.1.time_stack.in_layers.2.weight": "blocks.22.conv1.weight", - "first_stage_model.decoder.up.1.block.1.time_stack.out_layers.0.bias": "blocks.22.norm2.bias", - "first_stage_model.decoder.up.1.block.1.time_stack.out_layers.0.weight": "blocks.22.norm2.weight", - "first_stage_model.decoder.up.1.block.1.time_stack.out_layers.3.bias": "blocks.22.conv2.bias", - "first_stage_model.decoder.up.1.block.1.time_stack.out_layers.3.weight": "blocks.22.conv2.weight", - "first_stage_model.decoder.up.1.block.2.conv1.bias": "blocks.23.conv1.bias", - "first_stage_model.decoder.up.1.block.2.conv1.weight": "blocks.23.conv1.weight", - "first_stage_model.decoder.up.1.block.2.conv2.bias": "blocks.23.conv2.bias", - "first_stage_model.decoder.up.1.block.2.conv2.weight": "blocks.23.conv2.weight", - "first_stage_model.decoder.up.1.block.2.mix_factor": "blocks.24.mix_factor", - "first_stage_model.decoder.up.1.block.2.norm1.bias": "blocks.23.norm1.bias", - "first_stage_model.decoder.up.1.block.2.norm1.weight": "blocks.23.norm1.weight", - "first_stage_model.decoder.up.1.block.2.norm2.bias": "blocks.23.norm2.bias", - "first_stage_model.decoder.up.1.block.2.norm2.weight": "blocks.23.norm2.weight", - "first_stage_model.decoder.up.1.block.2.time_stack.in_layers.0.bias": "blocks.24.norm1.bias", - "first_stage_model.decoder.up.1.block.2.time_stack.in_layers.0.weight": "blocks.24.norm1.weight", - "first_stage_model.decoder.up.1.block.2.time_stack.in_layers.2.bias": "blocks.24.conv1.bias", - "first_stage_model.decoder.up.1.block.2.time_stack.in_layers.2.weight": "blocks.24.conv1.weight", - "first_stage_model.decoder.up.1.block.2.time_stack.out_layers.0.bias": "blocks.24.norm2.bias", - "first_stage_model.decoder.up.1.block.2.time_stack.out_layers.0.weight": "blocks.24.norm2.weight", - "first_stage_model.decoder.up.1.block.2.time_stack.out_layers.3.bias": "blocks.24.conv2.bias", - "first_stage_model.decoder.up.1.block.2.time_stack.out_layers.3.weight": "blocks.24.conv2.weight", - "first_stage_model.decoder.up.1.upsample.conv.bias": "blocks.25.conv.bias", - "first_stage_model.decoder.up.1.upsample.conv.weight": "blocks.25.conv.weight", - "first_stage_model.decoder.up.2.block.0.conv1.bias": "blocks.12.conv1.bias", - "first_stage_model.decoder.up.2.block.0.conv1.weight": "blocks.12.conv1.weight", - "first_stage_model.decoder.up.2.block.0.conv2.bias": "blocks.12.conv2.bias", - "first_stage_model.decoder.up.2.block.0.conv2.weight": "blocks.12.conv2.weight", - "first_stage_model.decoder.up.2.block.0.mix_factor": "blocks.13.mix_factor", - "first_stage_model.decoder.up.2.block.0.norm1.bias": "blocks.12.norm1.bias", - "first_stage_model.decoder.up.2.block.0.norm1.weight": "blocks.12.norm1.weight", - "first_stage_model.decoder.up.2.block.0.norm2.bias": "blocks.12.norm2.bias", - "first_stage_model.decoder.up.2.block.0.norm2.weight": "blocks.12.norm2.weight", - "first_stage_model.decoder.up.2.block.0.time_stack.in_layers.0.bias": "blocks.13.norm1.bias", - "first_stage_model.decoder.up.2.block.0.time_stack.in_layers.0.weight": "blocks.13.norm1.weight", - "first_stage_model.decoder.up.2.block.0.time_stack.in_layers.2.bias": "blocks.13.conv1.bias", - "first_stage_model.decoder.up.2.block.0.time_stack.in_layers.2.weight": "blocks.13.conv1.weight", - "first_stage_model.decoder.up.2.block.0.time_stack.out_layers.0.bias": "blocks.13.norm2.bias", - "first_stage_model.decoder.up.2.block.0.time_stack.out_layers.0.weight": "blocks.13.norm2.weight", - "first_stage_model.decoder.up.2.block.0.time_stack.out_layers.3.bias": "blocks.13.conv2.bias", - "first_stage_model.decoder.up.2.block.0.time_stack.out_layers.3.weight": "blocks.13.conv2.weight", - "first_stage_model.decoder.up.2.block.1.conv1.bias": "blocks.14.conv1.bias", - "first_stage_model.decoder.up.2.block.1.conv1.weight": "blocks.14.conv1.weight", - "first_stage_model.decoder.up.2.block.1.conv2.bias": "blocks.14.conv2.bias", - "first_stage_model.decoder.up.2.block.1.conv2.weight": "blocks.14.conv2.weight", - "first_stage_model.decoder.up.2.block.1.mix_factor": "blocks.15.mix_factor", - "first_stage_model.decoder.up.2.block.1.norm1.bias": "blocks.14.norm1.bias", - "first_stage_model.decoder.up.2.block.1.norm1.weight": "blocks.14.norm1.weight", - "first_stage_model.decoder.up.2.block.1.norm2.bias": "blocks.14.norm2.bias", - "first_stage_model.decoder.up.2.block.1.norm2.weight": "blocks.14.norm2.weight", - "first_stage_model.decoder.up.2.block.1.time_stack.in_layers.0.bias": "blocks.15.norm1.bias", - "first_stage_model.decoder.up.2.block.1.time_stack.in_layers.0.weight": "blocks.15.norm1.weight", - "first_stage_model.decoder.up.2.block.1.time_stack.in_layers.2.bias": "blocks.15.conv1.bias", - "first_stage_model.decoder.up.2.block.1.time_stack.in_layers.2.weight": "blocks.15.conv1.weight", - "first_stage_model.decoder.up.2.block.1.time_stack.out_layers.0.bias": "blocks.15.norm2.bias", - "first_stage_model.decoder.up.2.block.1.time_stack.out_layers.0.weight": "blocks.15.norm2.weight", - "first_stage_model.decoder.up.2.block.1.time_stack.out_layers.3.bias": "blocks.15.conv2.bias", - "first_stage_model.decoder.up.2.block.1.time_stack.out_layers.3.weight": "blocks.15.conv2.weight", - "first_stage_model.decoder.up.2.block.2.conv1.bias": "blocks.16.conv1.bias", - "first_stage_model.decoder.up.2.block.2.conv1.weight": "blocks.16.conv1.weight", - "first_stage_model.decoder.up.2.block.2.conv2.bias": "blocks.16.conv2.bias", - "first_stage_model.decoder.up.2.block.2.conv2.weight": "blocks.16.conv2.weight", - "first_stage_model.decoder.up.2.block.2.mix_factor": "blocks.17.mix_factor", - "first_stage_model.decoder.up.2.block.2.norm1.bias": "blocks.16.norm1.bias", - "first_stage_model.decoder.up.2.block.2.norm1.weight": "blocks.16.norm1.weight", - "first_stage_model.decoder.up.2.block.2.norm2.bias": "blocks.16.norm2.bias", - "first_stage_model.decoder.up.2.block.2.norm2.weight": "blocks.16.norm2.weight", - "first_stage_model.decoder.up.2.block.2.time_stack.in_layers.0.bias": "blocks.17.norm1.bias", - "first_stage_model.decoder.up.2.block.2.time_stack.in_layers.0.weight": "blocks.17.norm1.weight", - "first_stage_model.decoder.up.2.block.2.time_stack.in_layers.2.bias": "blocks.17.conv1.bias", - "first_stage_model.decoder.up.2.block.2.time_stack.in_layers.2.weight": "blocks.17.conv1.weight", - "first_stage_model.decoder.up.2.block.2.time_stack.out_layers.0.bias": "blocks.17.norm2.bias", - "first_stage_model.decoder.up.2.block.2.time_stack.out_layers.0.weight": "blocks.17.norm2.weight", - "first_stage_model.decoder.up.2.block.2.time_stack.out_layers.3.bias": "blocks.17.conv2.bias", - "first_stage_model.decoder.up.2.block.2.time_stack.out_layers.3.weight": "blocks.17.conv2.weight", - "first_stage_model.decoder.up.2.upsample.conv.bias": "blocks.18.conv.bias", - "first_stage_model.decoder.up.2.upsample.conv.weight": "blocks.18.conv.weight", - "first_stage_model.decoder.up.3.block.0.conv1.bias": "blocks.5.conv1.bias", - "first_stage_model.decoder.up.3.block.0.conv1.weight": "blocks.5.conv1.weight", - "first_stage_model.decoder.up.3.block.0.conv2.bias": "blocks.5.conv2.bias", - "first_stage_model.decoder.up.3.block.0.conv2.weight": "blocks.5.conv2.weight", - "first_stage_model.decoder.up.3.block.0.mix_factor": "blocks.6.mix_factor", - "first_stage_model.decoder.up.3.block.0.norm1.bias": "blocks.5.norm1.bias", - "first_stage_model.decoder.up.3.block.0.norm1.weight": "blocks.5.norm1.weight", - "first_stage_model.decoder.up.3.block.0.norm2.bias": "blocks.5.norm2.bias", - "first_stage_model.decoder.up.3.block.0.norm2.weight": "blocks.5.norm2.weight", - "first_stage_model.decoder.up.3.block.0.time_stack.in_layers.0.bias": "blocks.6.norm1.bias", - "first_stage_model.decoder.up.3.block.0.time_stack.in_layers.0.weight": "blocks.6.norm1.weight", - "first_stage_model.decoder.up.3.block.0.time_stack.in_layers.2.bias": "blocks.6.conv1.bias", - "first_stage_model.decoder.up.3.block.0.time_stack.in_layers.2.weight": "blocks.6.conv1.weight", - "first_stage_model.decoder.up.3.block.0.time_stack.out_layers.0.bias": "blocks.6.norm2.bias", - "first_stage_model.decoder.up.3.block.0.time_stack.out_layers.0.weight": "blocks.6.norm2.weight", - "first_stage_model.decoder.up.3.block.0.time_stack.out_layers.3.bias": "blocks.6.conv2.bias", - "first_stage_model.decoder.up.3.block.0.time_stack.out_layers.3.weight": "blocks.6.conv2.weight", - "first_stage_model.decoder.up.3.block.1.conv1.bias": "blocks.7.conv1.bias", - "first_stage_model.decoder.up.3.block.1.conv1.weight": "blocks.7.conv1.weight", - "first_stage_model.decoder.up.3.block.1.conv2.bias": "blocks.7.conv2.bias", - "first_stage_model.decoder.up.3.block.1.conv2.weight": "blocks.7.conv2.weight", - "first_stage_model.decoder.up.3.block.1.mix_factor": "blocks.8.mix_factor", - "first_stage_model.decoder.up.3.block.1.norm1.bias": "blocks.7.norm1.bias", - "first_stage_model.decoder.up.3.block.1.norm1.weight": "blocks.7.norm1.weight", - "first_stage_model.decoder.up.3.block.1.norm2.bias": "blocks.7.norm2.bias", - "first_stage_model.decoder.up.3.block.1.norm2.weight": "blocks.7.norm2.weight", - "first_stage_model.decoder.up.3.block.1.time_stack.in_layers.0.bias": "blocks.8.norm1.bias", - "first_stage_model.decoder.up.3.block.1.time_stack.in_layers.0.weight": "blocks.8.norm1.weight", - "first_stage_model.decoder.up.3.block.1.time_stack.in_layers.2.bias": "blocks.8.conv1.bias", - "first_stage_model.decoder.up.3.block.1.time_stack.in_layers.2.weight": "blocks.8.conv1.weight", - "first_stage_model.decoder.up.3.block.1.time_stack.out_layers.0.bias": "blocks.8.norm2.bias", - "first_stage_model.decoder.up.3.block.1.time_stack.out_layers.0.weight": "blocks.8.norm2.weight", - "first_stage_model.decoder.up.3.block.1.time_stack.out_layers.3.bias": "blocks.8.conv2.bias", - "first_stage_model.decoder.up.3.block.1.time_stack.out_layers.3.weight": "blocks.8.conv2.weight", - "first_stage_model.decoder.up.3.block.2.conv1.bias": "blocks.9.conv1.bias", - "first_stage_model.decoder.up.3.block.2.conv1.weight": "blocks.9.conv1.weight", - "first_stage_model.decoder.up.3.block.2.conv2.bias": "blocks.9.conv2.bias", - "first_stage_model.decoder.up.3.block.2.conv2.weight": "blocks.9.conv2.weight", - "first_stage_model.decoder.up.3.block.2.mix_factor": "blocks.10.mix_factor", - "first_stage_model.decoder.up.3.block.2.norm1.bias": "blocks.9.norm1.bias", - "first_stage_model.decoder.up.3.block.2.norm1.weight": "blocks.9.norm1.weight", - "first_stage_model.decoder.up.3.block.2.norm2.bias": "blocks.9.norm2.bias", - "first_stage_model.decoder.up.3.block.2.norm2.weight": "blocks.9.norm2.weight", - "first_stage_model.decoder.up.3.block.2.time_stack.in_layers.0.bias": "blocks.10.norm1.bias", - "first_stage_model.decoder.up.3.block.2.time_stack.in_layers.0.weight": "blocks.10.norm1.weight", - "first_stage_model.decoder.up.3.block.2.time_stack.in_layers.2.bias": "blocks.10.conv1.bias", - "first_stage_model.decoder.up.3.block.2.time_stack.in_layers.2.weight": "blocks.10.conv1.weight", - "first_stage_model.decoder.up.3.block.2.time_stack.out_layers.0.bias": "blocks.10.norm2.bias", - "first_stage_model.decoder.up.3.block.2.time_stack.out_layers.0.weight": "blocks.10.norm2.weight", - "first_stage_model.decoder.up.3.block.2.time_stack.out_layers.3.bias": "blocks.10.conv2.bias", - "first_stage_model.decoder.up.3.block.2.time_stack.out_layers.3.weight": "blocks.10.conv2.weight", - "first_stage_model.decoder.up.3.upsample.conv.bias": "blocks.11.conv.bias", - "first_stage_model.decoder.up.3.upsample.conv.weight": "blocks.11.conv.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if "blocks.2.transformer_blocks.0" in rename_dict[name]: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - return state_dict_ diff --git a/diffsynth/models/svd_vae_encoder.py b/diffsynth/models/svd_vae_encoder.py deleted file mode 100644 index 04a543a22c2794095d5f56089b2ca60d445fbc4e..0000000000000000000000000000000000000000 --- a/diffsynth/models/svd_vae_encoder.py +++ /dev/null @@ -1,139 +0,0 @@ -from .sd_vae_encoder import SDVAEEncoderStateDictConverter, SDVAEEncoder - - -class SVDVAEEncoder(SDVAEEncoder): - def __init__(self): - super().__init__() - self.scaling_factor = 0.13025 - - @staticmethod - def state_dict_converter(): - return SVDVAEEncoderStateDictConverter() - - -class SVDVAEEncoderStateDictConverter(SDVAEEncoderStateDictConverter): - def __init__(self): - super().__init__() - - def from_diffusers(self, state_dict): - return super().from_diffusers(state_dict) - - def from_civitai(self, state_dict): - rename_dict = { - "conditioner.embedders.3.encoder.encoder.conv_in.bias": "conv_in.bias", - "conditioner.embedders.3.encoder.encoder.conv_in.weight": "conv_in.weight", - "conditioner.embedders.3.encoder.encoder.conv_out.bias": "conv_out.bias", - "conditioner.embedders.3.encoder.encoder.conv_out.weight": "conv_out.weight", - "conditioner.embedders.3.encoder.encoder.down.0.block.0.conv1.bias": "blocks.0.conv1.bias", - "conditioner.embedders.3.encoder.encoder.down.0.block.0.conv1.weight": "blocks.0.conv1.weight", - "conditioner.embedders.3.encoder.encoder.down.0.block.0.conv2.bias": "blocks.0.conv2.bias", - "conditioner.embedders.3.encoder.encoder.down.0.block.0.conv2.weight": "blocks.0.conv2.weight", - "conditioner.embedders.3.encoder.encoder.down.0.block.0.norm1.bias": "blocks.0.norm1.bias", - "conditioner.embedders.3.encoder.encoder.down.0.block.0.norm1.weight": "blocks.0.norm1.weight", - "conditioner.embedders.3.encoder.encoder.down.0.block.0.norm2.bias": "blocks.0.norm2.bias", - "conditioner.embedders.3.encoder.encoder.down.0.block.0.norm2.weight": "blocks.0.norm2.weight", - "conditioner.embedders.3.encoder.encoder.down.0.block.1.conv1.bias": "blocks.1.conv1.bias", - "conditioner.embedders.3.encoder.encoder.down.0.block.1.conv1.weight": "blocks.1.conv1.weight", - "conditioner.embedders.3.encoder.encoder.down.0.block.1.conv2.bias": "blocks.1.conv2.bias", - "conditioner.embedders.3.encoder.encoder.down.0.block.1.conv2.weight": "blocks.1.conv2.weight", - "conditioner.embedders.3.encoder.encoder.down.0.block.1.norm1.bias": "blocks.1.norm1.bias", - "conditioner.embedders.3.encoder.encoder.down.0.block.1.norm1.weight": "blocks.1.norm1.weight", - "conditioner.embedders.3.encoder.encoder.down.0.block.1.norm2.bias": "blocks.1.norm2.bias", - "conditioner.embedders.3.encoder.encoder.down.0.block.1.norm2.weight": "blocks.1.norm2.weight", - "conditioner.embedders.3.encoder.encoder.down.0.downsample.conv.bias": "blocks.2.conv.bias", - "conditioner.embedders.3.encoder.encoder.down.0.downsample.conv.weight": "blocks.2.conv.weight", - "conditioner.embedders.3.encoder.encoder.down.1.block.0.conv1.bias": "blocks.3.conv1.bias", - "conditioner.embedders.3.encoder.encoder.down.1.block.0.conv1.weight": "blocks.3.conv1.weight", - "conditioner.embedders.3.encoder.encoder.down.1.block.0.conv2.bias": "blocks.3.conv2.bias", - "conditioner.embedders.3.encoder.encoder.down.1.block.0.conv2.weight": "blocks.3.conv2.weight", - "conditioner.embedders.3.encoder.encoder.down.1.block.0.nin_shortcut.bias": "blocks.3.conv_shortcut.bias", - "conditioner.embedders.3.encoder.encoder.down.1.block.0.nin_shortcut.weight": "blocks.3.conv_shortcut.weight", - "conditioner.embedders.3.encoder.encoder.down.1.block.0.norm1.bias": "blocks.3.norm1.bias", - "conditioner.embedders.3.encoder.encoder.down.1.block.0.norm1.weight": "blocks.3.norm1.weight", - "conditioner.embedders.3.encoder.encoder.down.1.block.0.norm2.bias": "blocks.3.norm2.bias", - "conditioner.embedders.3.encoder.encoder.down.1.block.0.norm2.weight": "blocks.3.norm2.weight", - "conditioner.embedders.3.encoder.encoder.down.1.block.1.conv1.bias": "blocks.4.conv1.bias", - "conditioner.embedders.3.encoder.encoder.down.1.block.1.conv1.weight": "blocks.4.conv1.weight", - "conditioner.embedders.3.encoder.encoder.down.1.block.1.conv2.bias": "blocks.4.conv2.bias", - "conditioner.embedders.3.encoder.encoder.down.1.block.1.conv2.weight": "blocks.4.conv2.weight", - "conditioner.embedders.3.encoder.encoder.down.1.block.1.norm1.bias": "blocks.4.norm1.bias", - "conditioner.embedders.3.encoder.encoder.down.1.block.1.norm1.weight": "blocks.4.norm1.weight", - "conditioner.embedders.3.encoder.encoder.down.1.block.1.norm2.bias": "blocks.4.norm2.bias", - "conditioner.embedders.3.encoder.encoder.down.1.block.1.norm2.weight": "blocks.4.norm2.weight", - "conditioner.embedders.3.encoder.encoder.down.1.downsample.conv.bias": "blocks.5.conv.bias", - "conditioner.embedders.3.encoder.encoder.down.1.downsample.conv.weight": "blocks.5.conv.weight", - "conditioner.embedders.3.encoder.encoder.down.2.block.0.conv1.bias": "blocks.6.conv1.bias", - "conditioner.embedders.3.encoder.encoder.down.2.block.0.conv1.weight": "blocks.6.conv1.weight", - "conditioner.embedders.3.encoder.encoder.down.2.block.0.conv2.bias": "blocks.6.conv2.bias", - "conditioner.embedders.3.encoder.encoder.down.2.block.0.conv2.weight": "blocks.6.conv2.weight", - "conditioner.embedders.3.encoder.encoder.down.2.block.0.nin_shortcut.bias": "blocks.6.conv_shortcut.bias", - "conditioner.embedders.3.encoder.encoder.down.2.block.0.nin_shortcut.weight": "blocks.6.conv_shortcut.weight", - "conditioner.embedders.3.encoder.encoder.down.2.block.0.norm1.bias": "blocks.6.norm1.bias", - "conditioner.embedders.3.encoder.encoder.down.2.block.0.norm1.weight": "blocks.6.norm1.weight", - "conditioner.embedders.3.encoder.encoder.down.2.block.0.norm2.bias": "blocks.6.norm2.bias", - "conditioner.embedders.3.encoder.encoder.down.2.block.0.norm2.weight": "blocks.6.norm2.weight", - "conditioner.embedders.3.encoder.encoder.down.2.block.1.conv1.bias": "blocks.7.conv1.bias", - "conditioner.embedders.3.encoder.encoder.down.2.block.1.conv1.weight": "blocks.7.conv1.weight", - "conditioner.embedders.3.encoder.encoder.down.2.block.1.conv2.bias": "blocks.7.conv2.bias", - "conditioner.embedders.3.encoder.encoder.down.2.block.1.conv2.weight": "blocks.7.conv2.weight", - "conditioner.embedders.3.encoder.encoder.down.2.block.1.norm1.bias": "blocks.7.norm1.bias", - "conditioner.embedders.3.encoder.encoder.down.2.block.1.norm1.weight": "blocks.7.norm1.weight", - "conditioner.embedders.3.encoder.encoder.down.2.block.1.norm2.bias": "blocks.7.norm2.bias", - "conditioner.embedders.3.encoder.encoder.down.2.block.1.norm2.weight": "blocks.7.norm2.weight", - "conditioner.embedders.3.encoder.encoder.down.2.downsample.conv.bias": "blocks.8.conv.bias", - "conditioner.embedders.3.encoder.encoder.down.2.downsample.conv.weight": "blocks.8.conv.weight", - "conditioner.embedders.3.encoder.encoder.down.3.block.0.conv1.bias": "blocks.9.conv1.bias", - "conditioner.embedders.3.encoder.encoder.down.3.block.0.conv1.weight": "blocks.9.conv1.weight", - "conditioner.embedders.3.encoder.encoder.down.3.block.0.conv2.bias": "blocks.9.conv2.bias", - "conditioner.embedders.3.encoder.encoder.down.3.block.0.conv2.weight": "blocks.9.conv2.weight", - "conditioner.embedders.3.encoder.encoder.down.3.block.0.norm1.bias": "blocks.9.norm1.bias", - "conditioner.embedders.3.encoder.encoder.down.3.block.0.norm1.weight": "blocks.9.norm1.weight", - "conditioner.embedders.3.encoder.encoder.down.3.block.0.norm2.bias": "blocks.9.norm2.bias", - "conditioner.embedders.3.encoder.encoder.down.3.block.0.norm2.weight": "blocks.9.norm2.weight", - "conditioner.embedders.3.encoder.encoder.down.3.block.1.conv1.bias": "blocks.10.conv1.bias", - "conditioner.embedders.3.encoder.encoder.down.3.block.1.conv1.weight": "blocks.10.conv1.weight", - "conditioner.embedders.3.encoder.encoder.down.3.block.1.conv2.bias": "blocks.10.conv2.bias", - "conditioner.embedders.3.encoder.encoder.down.3.block.1.conv2.weight": "blocks.10.conv2.weight", - "conditioner.embedders.3.encoder.encoder.down.3.block.1.norm1.bias": "blocks.10.norm1.bias", - "conditioner.embedders.3.encoder.encoder.down.3.block.1.norm1.weight": "blocks.10.norm1.weight", - "conditioner.embedders.3.encoder.encoder.down.3.block.1.norm2.bias": "blocks.10.norm2.bias", - "conditioner.embedders.3.encoder.encoder.down.3.block.1.norm2.weight": "blocks.10.norm2.weight", - "conditioner.embedders.3.encoder.encoder.mid.attn_1.k.bias": "blocks.12.transformer_blocks.0.to_k.bias", - "conditioner.embedders.3.encoder.encoder.mid.attn_1.k.weight": "blocks.12.transformer_blocks.0.to_k.weight", - "conditioner.embedders.3.encoder.encoder.mid.attn_1.norm.bias": "blocks.12.norm.bias", - "conditioner.embedders.3.encoder.encoder.mid.attn_1.norm.weight": "blocks.12.norm.weight", - "conditioner.embedders.3.encoder.encoder.mid.attn_1.proj_out.bias": "blocks.12.transformer_blocks.0.to_out.bias", - "conditioner.embedders.3.encoder.encoder.mid.attn_1.proj_out.weight": "blocks.12.transformer_blocks.0.to_out.weight", - "conditioner.embedders.3.encoder.encoder.mid.attn_1.q.bias": "blocks.12.transformer_blocks.0.to_q.bias", - "conditioner.embedders.3.encoder.encoder.mid.attn_1.q.weight": "blocks.12.transformer_blocks.0.to_q.weight", - "conditioner.embedders.3.encoder.encoder.mid.attn_1.v.bias": "blocks.12.transformer_blocks.0.to_v.bias", - "conditioner.embedders.3.encoder.encoder.mid.attn_1.v.weight": "blocks.12.transformer_blocks.0.to_v.weight", - "conditioner.embedders.3.encoder.encoder.mid.block_1.conv1.bias": "blocks.11.conv1.bias", - "conditioner.embedders.3.encoder.encoder.mid.block_1.conv1.weight": "blocks.11.conv1.weight", - "conditioner.embedders.3.encoder.encoder.mid.block_1.conv2.bias": "blocks.11.conv2.bias", - "conditioner.embedders.3.encoder.encoder.mid.block_1.conv2.weight": "blocks.11.conv2.weight", - "conditioner.embedders.3.encoder.encoder.mid.block_1.norm1.bias": "blocks.11.norm1.bias", - "conditioner.embedders.3.encoder.encoder.mid.block_1.norm1.weight": "blocks.11.norm1.weight", - "conditioner.embedders.3.encoder.encoder.mid.block_1.norm2.bias": "blocks.11.norm2.bias", - "conditioner.embedders.3.encoder.encoder.mid.block_1.norm2.weight": "blocks.11.norm2.weight", - "conditioner.embedders.3.encoder.encoder.mid.block_2.conv1.bias": "blocks.13.conv1.bias", - "conditioner.embedders.3.encoder.encoder.mid.block_2.conv1.weight": "blocks.13.conv1.weight", - "conditioner.embedders.3.encoder.encoder.mid.block_2.conv2.bias": "blocks.13.conv2.bias", - "conditioner.embedders.3.encoder.encoder.mid.block_2.conv2.weight": "blocks.13.conv2.weight", - "conditioner.embedders.3.encoder.encoder.mid.block_2.norm1.bias": "blocks.13.norm1.bias", - "conditioner.embedders.3.encoder.encoder.mid.block_2.norm1.weight": "blocks.13.norm1.weight", - "conditioner.embedders.3.encoder.encoder.mid.block_2.norm2.bias": "blocks.13.norm2.bias", - "conditioner.embedders.3.encoder.encoder.mid.block_2.norm2.weight": "blocks.13.norm2.weight", - "conditioner.embedders.3.encoder.encoder.norm_out.bias": "conv_norm_out.bias", - "conditioner.embedders.3.encoder.encoder.norm_out.weight": "conv_norm_out.weight", - "conditioner.embedders.3.encoder.quant_conv.bias": "quant_conv.bias", - "conditioner.embedders.3.encoder.quant_conv.weight": "quant_conv.weight", - } - state_dict_ = {} - for name in state_dict: - if name in rename_dict: - param = state_dict[name] - if "transformer_blocks" in rename_dict[name]: - param = param.squeeze() - state_dict_[rename_dict[name]] = param - return state_dict_ diff --git a/diffsynth/models/tiler.py b/diffsynth/models/tiler.py deleted file mode 100644 index dff5ebf2674b504f0b66a6ba7aba800e048f5099..0000000000000000000000000000000000000000 --- a/diffsynth/models/tiler.py +++ /dev/null @@ -1,234 +0,0 @@ -import torch -from einops import rearrange, repeat - - -class TileWorker: - def __init__(self): - pass - - - def mask(self, height, width, border_width): - # Create a mask with shape (height, width). - # The centre area is filled with 1, and the border line is filled with values in range (0, 1]. - x = torch.arange(height).repeat(width, 1).T - y = torch.arange(width).repeat(height, 1) - mask = torch.stack([x + 1, height - x, y + 1, width - y]).min(dim=0).values - mask = (mask / border_width).clip(0, 1) - return mask - - - def tile(self, model_input, tile_size, tile_stride, tile_device, tile_dtype): - # Convert a tensor (b, c, h, w) to (b, c, tile_size, tile_size, tile_num) - batch_size, channel, _, _ = model_input.shape - model_input = model_input.to(device=tile_device, dtype=tile_dtype) - unfold_operator = torch.nn.Unfold( - kernel_size=(tile_size, tile_size), - stride=(tile_stride, tile_stride) - ) - model_input = unfold_operator(model_input) - model_input = model_input.view((batch_size, channel, tile_size, tile_size, -1)) - - return model_input - - - def tiled_inference(self, forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype): - # Call y=forward_fn(x) for each tile - tile_num = model_input.shape[-1] - model_output_stack = [] - - for tile_id in range(0, tile_num, tile_batch_size): - - # process input - tile_id_ = min(tile_id + tile_batch_size, tile_num) - x = model_input[:, :, :, :, tile_id: tile_id_] - x = x.to(device=inference_device, dtype=inference_dtype) - x = rearrange(x, "b c h w n -> (n b) c h w") - - # process output - y = forward_fn(x) - y = rearrange(y, "(n b) c h w -> b c h w n", n=tile_id_-tile_id) - y = y.to(device=tile_device, dtype=tile_dtype) - model_output_stack.append(y) - - model_output = torch.concat(model_output_stack, dim=-1) - return model_output - - - def io_scale(self, model_output, tile_size): - # Determine the size modification happened in forward_fn - # We only consider the same scale on height and width. - io_scale = model_output.shape[2] / tile_size - return io_scale - - - def untile(self, model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype): - # The reversed function of tile - mask = self.mask(tile_size, tile_size, border_width) - mask = mask.to(device=tile_device, dtype=tile_dtype) - mask = rearrange(mask, "h w -> 1 1 h w 1") - model_output = model_output * mask - - fold_operator = torch.nn.Fold( - output_size=(height, width), - kernel_size=(tile_size, tile_size), - stride=(tile_stride, tile_stride) - ) - mask = repeat(mask[0, 0, :, :, 0], "h w -> 1 (h w) n", n=model_output.shape[-1]) - model_output = rearrange(model_output, "b c h w n -> b (c h w) n") - model_output = fold_operator(model_output) / fold_operator(mask) - - return model_output - - - def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_batch_size=1, tile_device="cpu", tile_dtype=torch.float32, border_width=None): - # Prepare - inference_device, inference_dtype = model_input.device, model_input.dtype - height, width = model_input.shape[2], model_input.shape[3] - border_width = int(tile_stride*0.5) if border_width is None else border_width - - # tile - model_input = self.tile(model_input, tile_size, tile_stride, tile_device, tile_dtype) - - # inference - model_output = self.tiled_inference(forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype) - - # resize - io_scale = self.io_scale(model_output, tile_size) - height, width = int(height*io_scale), int(width*io_scale) - tile_size, tile_stride = int(tile_size*io_scale), int(tile_stride*io_scale) - border_width = int(border_width*io_scale) - - # untile - model_output = self.untile(model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype) - - # Done! - model_output = model_output.to(device=inference_device, dtype=inference_dtype) - return model_output - - - -class FastTileWorker: - def __init__(self): - pass - - - def build_mask(self, data, is_bound): - _, _, H, W = data.shape - h = repeat(torch.arange(H), "H -> H W", H=H, W=W) - w = repeat(torch.arange(W), "W -> H W", H=H, W=W) - border_width = (H + W) // 4 - pad = torch.ones_like(h) * border_width - mask = torch.stack([ - pad if is_bound[0] else h + 1, - pad if is_bound[1] else H - h, - pad if is_bound[2] else w + 1, - pad if is_bound[3] else W - w - ]).min(dim=0).values - mask = mask.clip(1, border_width) - mask = (mask / border_width).to(dtype=data.dtype, device=data.device) - mask = rearrange(mask, "H W -> 1 H W") - return mask - - - def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_device="cpu", tile_dtype=torch.float32, border_width=None): - # Prepare - B, C, H, W = model_input.shape - border_width = int(tile_stride*0.5) if border_width is None else border_width - weight = torch.zeros((1, 1, H, W), dtype=tile_dtype, device=tile_device) - values = torch.zeros((B, C, H, W), dtype=tile_dtype, device=tile_device) - - # Split tasks - tasks = [] - for h in range(0, H, tile_stride): - for w in range(0, W, tile_stride): - if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W): - continue - h_, w_ = h + tile_size, w + tile_size - if h_ > H: h, h_ = H - tile_size, H - if w_ > W: w, w_ = W - tile_size, W - tasks.append((h, h_, w, w_)) - - # Run - for hl, hr, wl, wr in tasks: - # Forward - hidden_states_batch = forward_fn(hl, hr, wl, wr).to(dtype=tile_dtype, device=tile_device) - - mask = self.build_mask(hidden_states_batch, is_bound=(hl==0, hr>=H, wl==0, wr>=W)) - values[:, :, hl:hr, wl:wr] += hidden_states_batch * mask - weight[:, :, hl:hr, wl:wr] += mask - values /= weight - return values - - - -class TileWorker2Dto3D: - """ - Process 3D tensors, but only enable TileWorker on 2D. - """ - def __init__(self): - pass - - - def build_mask(self, T, H, W, dtype, device, is_bound, border_width): - t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W) - h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W) - w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W) - border_width = (H + W) // 4 if border_width is None else border_width - pad = torch.ones_like(h) * border_width - mask = torch.stack([ - pad if is_bound[0] else t + 1, - pad if is_bound[1] else T - t, - pad if is_bound[2] else h + 1, - pad if is_bound[3] else H - h, - pad if is_bound[4] else w + 1, - pad if is_bound[5] else W - w - ]).min(dim=0).values - mask = mask.clip(1, border_width) - mask = (mask / border_width).to(dtype=dtype, device=device) - mask = rearrange(mask, "T H W -> 1 1 T H W") - return mask - - - def tiled_forward( - self, - forward_fn, - model_input, - tile_size, tile_stride, - tile_device="cpu", tile_dtype=torch.float32, - computation_device="cuda", computation_dtype=torch.float32, - border_width=None, scales=[1, 1, 1, 1], - progress_bar=lambda x:x - ): - B, C, T, H, W = model_input.shape - scale_C, scale_T, scale_H, scale_W = scales - tile_size_H, tile_size_W = tile_size - tile_stride_H, tile_stride_W = tile_stride - - value = torch.zeros((B, int(C*scale_C), int(T*scale_T), int(H*scale_H), int(W*scale_W)), dtype=tile_dtype, device=tile_device) - weight = torch.zeros((1, 1, int(T*scale_T), int(H*scale_H), int(W*scale_W)), dtype=tile_dtype, device=tile_device) - - # Split tasks - tasks = [] - for h in range(0, H, tile_stride_H): - for w in range(0, W, tile_stride_W): - if (h-tile_stride_H >= 0 and h-tile_stride_H+tile_size_H >= H) or (w-tile_stride_W >= 0 and w-tile_stride_W+tile_size_W >= W): - continue - h_, w_ = h + tile_size_H, w + tile_size_W - if h_ > H: h, h_ = max(H - tile_size_H, 0), H - if w_ > W: w, w_ = max(W - tile_size_W, 0), W - tasks.append((h, h_, w, w_)) - - # Run - for hl, hr, wl, wr in progress_bar(tasks): - mask = self.build_mask( - int(T*scale_T), int((hr-hl)*scale_H), int((wr-wl)*scale_W), - tile_dtype, tile_device, - is_bound=(True, True, hl==0, hr>=H, wl==0, wr>=W), - border_width=border_width - ) - grid_input = model_input[:, :, :, hl:hr, wl:wr].to(dtype=computation_dtype, device=computation_device) - grid_output = forward_fn(grid_input).to(dtype=tile_dtype, device=tile_device) - value[:, :, :, int(hl*scale_H):int(hr*scale_H), int(wl*scale_W):int(wr*scale_W)] += grid_output * mask - weight[:, :, :, int(hl*scale_H):int(hr*scale_H), int(wl*scale_W):int(wr*scale_W)] += mask - value = value / weight - return value \ No newline at end of file diff --git a/diffsynth/models/utils.py b/diffsynth/models/utils.py deleted file mode 100644 index 99f5dee14b4f4b8b422a5d7f3c2ce7da7e3c20d6..0000000000000000000000000000000000000000 --- a/diffsynth/models/utils.py +++ /dev/null @@ -1,182 +0,0 @@ -import torch, os -from safetensors import safe_open -from contextlib import contextmanager -import hashlib - -@contextmanager -def init_weights_on_device(device = torch.device("meta"), include_buffers :bool = False): - - old_register_parameter = torch.nn.Module.register_parameter - if include_buffers: - old_register_buffer = torch.nn.Module.register_buffer - - def register_empty_parameter(module, name, param): - old_register_parameter(module, name, param) - if param is not None: - param_cls = type(module._parameters[name]) - kwargs = module._parameters[name].__dict__ - kwargs["requires_grad"] = param.requires_grad - module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs) - - def register_empty_buffer(module, name, buffer, persistent=True): - old_register_buffer(module, name, buffer, persistent=persistent) - if buffer is not None: - module._buffers[name] = module._buffers[name].to(device) - - def patch_tensor_constructor(fn): - def wrapper(*args, **kwargs): - kwargs["device"] = device - return fn(*args, **kwargs) - - return wrapper - - if include_buffers: - tensor_constructors_to_patch = { - torch_function_name: getattr(torch, torch_function_name) - for torch_function_name in ["empty", "zeros", "ones", "full"] - } - else: - tensor_constructors_to_patch = {} - - try: - torch.nn.Module.register_parameter = register_empty_parameter - if include_buffers: - torch.nn.Module.register_buffer = register_empty_buffer - for torch_function_name in tensor_constructors_to_patch.keys(): - setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name))) - yield - finally: - torch.nn.Module.register_parameter = old_register_parameter - if include_buffers: - torch.nn.Module.register_buffer = old_register_buffer - for torch_function_name, old_torch_function in tensor_constructors_to_patch.items(): - setattr(torch, torch_function_name, old_torch_function) - -def load_state_dict_from_folder(file_path, torch_dtype=None): - state_dict = {} - for file_name in os.listdir(file_path): - if "." in file_name and file_name.split(".")[-1] in [ - "safetensors", "bin", "ckpt", "pth", "pt" - ]: - state_dict.update(load_state_dict(os.path.join(file_path, file_name), torch_dtype=torch_dtype)) - return state_dict - - -def load_state_dict(file_path, torch_dtype=None): - if file_path.endswith(".safetensors"): - return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype) - else: - return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype) - - -def load_state_dict_from_safetensors(file_path, torch_dtype=None): - state_dict = {} - with safe_open(file_path, framework="pt", device="cpu") as f: - for k in f.keys(): - state_dict[k] = f.get_tensor(k) - if torch_dtype is not None: - state_dict[k] = state_dict[k].to(torch_dtype) - return state_dict - - -def load_state_dict_from_bin(file_path, torch_dtype=None): - state_dict = torch.load(file_path, map_location="cpu", weights_only=True) - if torch_dtype is not None: - for i in state_dict: - if isinstance(state_dict[i], torch.Tensor): - state_dict[i] = state_dict[i].to(torch_dtype) - return state_dict - - -def search_for_embeddings(state_dict): - embeddings = [] - for k in state_dict: - if isinstance(state_dict[k], torch.Tensor): - embeddings.append(state_dict[k]) - elif isinstance(state_dict[k], dict): - embeddings += search_for_embeddings(state_dict[k]) - return embeddings - - -def search_parameter(param, state_dict): - for name, param_ in state_dict.items(): - if param.numel() == param_.numel(): - if param.shape == param_.shape: - if torch.dist(param, param_) < 1e-3: - return name - else: - if torch.dist(param.flatten(), param_.flatten()) < 1e-3: - return name - return None - - -def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False): - matched_keys = set() - with torch.no_grad(): - for name in source_state_dict: - rename = search_parameter(source_state_dict[name], target_state_dict) - if rename is not None: - print(f'"{name}": "{rename}",') - matched_keys.add(rename) - elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0: - length = source_state_dict[name].shape[0] // 3 - rename = [] - for i in range(3): - rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict)) - if None not in rename: - print(f'"{name}": {rename},') - for rename_ in rename: - matched_keys.add(rename_) - for name in target_state_dict: - if name not in matched_keys: - print("Cannot find", name, target_state_dict[name].shape) - - -def search_for_files(folder, extensions): - files = [] - if os.path.isdir(folder): - for file in sorted(os.listdir(folder)): - files += search_for_files(os.path.join(folder, file), extensions) - elif os.path.isfile(folder): - for extension in extensions: - if folder.endswith(extension): - files.append(folder) - break - return files - - -def convert_state_dict_keys_to_single_str(state_dict, with_shape=True): - keys = [] - for key, value in state_dict.items(): - if isinstance(key, str): - if isinstance(value, torch.Tensor): - if with_shape: - shape = "_".join(map(str, list(value.shape))) - keys.append(key + ":" + shape) - keys.append(key) - elif isinstance(value, dict): - keys.append(key + "|" + convert_state_dict_keys_to_single_str(value, with_shape=with_shape)) - keys.sort() - keys_str = ",".join(keys) - return keys_str - - -def split_state_dict_with_prefix(state_dict): - keys = sorted([key for key in state_dict if isinstance(key, str)]) - prefix_dict = {} - for key in keys: - prefix = key if "." not in key else key.split(".")[0] - if prefix not in prefix_dict: - prefix_dict[prefix] = [] - prefix_dict[prefix].append(key) - state_dicts = [] - for prefix, keys in prefix_dict.items(): - sub_state_dict = {key: state_dict[key] for key in keys} - state_dicts.append(sub_state_dict) - return state_dicts - - -def hash_state_dict_keys(state_dict, with_shape=True): - keys_str = convert_state_dict_keys_to_single_str(state_dict, with_shape=with_shape) - keys_str = keys_str.encode(encoding="UTF-8") - return hashlib.md5(keys_str).hexdigest() \ No newline at end of file diff --git a/diffsynth/models/wan_video_dit.py b/diffsynth/models/wan_video_dit.py deleted file mode 100644 index 19bc1efa5fe16f6ce815e03ce6fbbada1a16020f..0000000000000000000000000000000000000000 --- a/diffsynth/models/wan_video_dit.py +++ /dev/null @@ -1,558 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F -import math -from typing import Tuple, Optional -from einops import rearrange -from .utils import hash_state_dict_keys -try: - import flash_attn_interface - FLASH_ATTN_3_AVAILABLE = True -except ModuleNotFoundError: - FLASH_ATTN_3_AVAILABLE = False - -try: - import flash_attn - FLASH_ATTN_2_AVAILABLE = True -except ModuleNotFoundError: - FLASH_ATTN_2_AVAILABLE = False - -try: - from sageattention import sageattn - SAGE_ATTN_AVAILABLE = True -except ModuleNotFoundError: - SAGE_ATTN_AVAILABLE = False - - -def flash_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, num_heads: int, compatibility_mode=False): - if compatibility_mode: - q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) - k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) - v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) - x = F.scaled_dot_product_attention(q, k, v) - x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) - elif FLASH_ATTN_3_AVAILABLE: - q = rearrange(q, "b s (n d) -> b s n d", n=num_heads) - k = rearrange(k, "b s (n d) -> b s n d", n=num_heads) - v = rearrange(v, "b s (n d) -> b s n d", n=num_heads) - x = flash_attn_interface.flash_attn_func(q, k, v) - x = rearrange(x, "b s n d -> b s (n d)", n=num_heads) - elif FLASH_ATTN_2_AVAILABLE: - q = rearrange(q, "b s (n d) -> b s n d", n=num_heads) - k = rearrange(k, "b s (n d) -> b s n d", n=num_heads) - v = rearrange(v, "b s (n d) -> b s n d", n=num_heads) - x = flash_attn.flash_attn_func(q, k, v) - x = rearrange(x, "b s n d -> b s (n d)", n=num_heads) - elif SAGE_ATTN_AVAILABLE: - q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) - k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) - v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) - x = sageattn(q, k, v) - x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) - else: - q = rearrange(q, "b s (n d) -> b n s d", n=num_heads) - k = rearrange(k, "b s (n d) -> b n s d", n=num_heads) - v = rearrange(v, "b s (n d) -> b n s d", n=num_heads) - x = F.scaled_dot_product_attention(q, k, v) - x = rearrange(x, "b n s d -> b s (n d)", n=num_heads) - return x - - -def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor): - return (x * (1 + scale) + shift) - - -def sinusoidal_embedding_1d(dim, position): - sinusoid = torch.outer(position.type(torch.float64), torch.pow( - 10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2))) - x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) - return x.to(position.dtype) - - -def precompute_freqs_cis_3d(dim: int, end: int = 1024, theta: float = 10000.0): - # 3d rope precompute - f_freqs_cis = precompute_freqs_cis(dim - 2 * (dim // 3), end, theta) - h_freqs_cis = precompute_freqs_cis(dim // 3, end, theta) - w_freqs_cis = precompute_freqs_cis(dim // 3, end, theta) - return f_freqs_cis, h_freqs_cis, w_freqs_cis - - -def precompute_freqs_cis(dim: int, end: int = 1024, theta: float = 10000.0): - # 1d rope precompute - freqs = 1.0 / (theta ** (torch.arange(0, dim, 2) - [: (dim // 2)].double() / dim)) - freqs = torch.outer(torch.arange(end, device=freqs.device), freqs) - freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 - return freqs_cis - - -def rope_apply(x, freqs, num_heads): - x = rearrange(x, "b s (n d) -> b s n d", n=num_heads) - x_out = torch.view_as_complex(x.to(torch.float64).reshape( - x.shape[0], x.shape[1], x.shape[2], -1, 2)) - x_out = torch.view_as_real(x_out * freqs).flatten(2) - return x_out.to(x.dtype) - - -class RMSNorm(nn.Module): - def __init__(self, dim, eps=1e-5): - super().__init__() - self.eps = eps - self.weight = nn.Parameter(torch.ones(dim)) - - def norm(self, x): - return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) - - def forward(self, x): - dtype = x.dtype - return self.norm(x.float()).to(dtype) * self.weight - - -class AttentionModule(nn.Module): - def __init__(self, num_heads): - super().__init__() - self.num_heads = num_heads - - def forward(self, q, k, v): - x = flash_attention(q=q, k=k, v=v, num_heads=self.num_heads) - return x - - -class SelfAttention(nn.Module): - def __init__(self, dim: int, num_heads: int, eps: float = 1e-6): - super().__init__() - self.dim = dim - self.num_heads = num_heads - self.head_dim = dim // num_heads - - self.q = nn.Linear(dim, dim) - self.k = nn.Linear(dim, dim) - self.v = nn.Linear(dim, dim) - self.o = nn.Linear(dim, dim) - - self.norm_q = RMSNorm(dim, eps=eps) - self.norm_k = RMSNorm(dim, eps=eps) - - self.attn = AttentionModule(self.num_heads) - - def forward(self, x, freqs): - q = self.norm_q(self.q(x)) - k = self.norm_k(self.k(x)) - v = self.v(x) - q = rope_apply(q, freqs, self.num_heads) - k = rope_apply(k, freqs, self.num_heads) - x = self.attn(q, k, v) - return self.o(x) - - -class CrossAttention(nn.Module): - def __init__(self, dim: int, num_heads: int, eps: float = 1e-6, has_image_input: bool = False): - super().__init__() - self.dim = dim - self.num_heads = num_heads - self.head_dim = dim // num_heads - - self.q = nn.Linear(dim, dim) - self.k = nn.Linear(dim, dim) - self.v = nn.Linear(dim, dim) - self.o = nn.Linear(dim, dim) - - self.norm_q = RMSNorm(dim, eps=eps) - self.norm_k = RMSNorm(dim, eps=eps) - self.has_image_input = has_image_input - if has_image_input: - self.k_img = nn.Linear(dim, dim) - self.v_img = nn.Linear(dim, dim) - self.norm_k_img = RMSNorm(dim, eps=eps) - - self.attn = AttentionModule(self.num_heads) - - def forward(self, x: torch.Tensor, y: torch.Tensor): - if self.has_image_input: - img = y[:, :257] - ctx = y[:, 257:] - else: - ctx = y - q = self.norm_q(self.q(x)) - k = self.norm_k(self.k(ctx)) - v = self.v(ctx) - x = self.attn(q, k, v) - if self.has_image_input: - k_img = self.norm_k_img(self.k_img(img)) - v_img = self.v_img(img) - y = flash_attention(q, k_img, v_img, num_heads=self.num_heads) - x = x + y - return self.o(x) - - -class GateModule(nn.Module): - def __init__(self,): - super().__init__() - - def forward(self, x, gate, residual): - return x + gate * residual - -class DiTBlock(nn.Module): - def __init__(self, has_image_input: bool, dim: int, num_heads: int, ffn_dim: int, eps: float = 1e-6): - super().__init__() - self.dim = dim - self.num_heads = num_heads - self.ffn_dim = ffn_dim - - self.self_attn = SelfAttention(dim, num_heads, eps) - self.cross_attn = CrossAttention( - dim, num_heads, eps, has_image_input=has_image_input) - self.norm1 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) - self.norm2 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) - self.norm3 = nn.LayerNorm(dim, eps=eps) - self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU( - approximate='tanh'), nn.Linear(ffn_dim, dim)) - - self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) - self.gate = GateModule() - - def forward(self, x, context, t_mod, freqs): - # msa: multi-head self-attention mlp: multi-layer perceptron - shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( - self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(6, dim=1) - input_x = modulate(self.norm1(x), shift_msa, scale_msa) - x = self.gate(x, gate_msa, self.self_attn(input_x, freqs)) - x = x + self.cross_attn(self.norm3(x), context) - input_x = modulate(self.norm2(x), shift_mlp, scale_mlp) - x = self.gate(x, gate_mlp, self.ffn(input_x)) - return x - - -class MLP(torch.nn.Module): - def __init__(self, in_dim, out_dim): - super().__init__() - self.proj = torch.nn.Sequential( - nn.LayerNorm(in_dim), - nn.Linear(in_dim, in_dim), - nn.GELU(), - nn.Linear(in_dim, out_dim), - nn.LayerNorm(out_dim) - ) - - def forward(self, x): - return self.proj(x) - - -class Head(nn.Module): - def __init__(self, dim: int, out_dim: int, patch_size: Tuple[int, int, int], eps: float): - super().__init__() - self.dim = dim - self.patch_size = patch_size - self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=False) - self.head = nn.Linear(dim, out_dim * math.prod(patch_size)) - self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) - - def forward(self, x, t_mod): - shift, scale = (self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(2, dim=1) - x = (self.head(self.norm(x) * (1 + scale) + shift)) - return x - - -class WanModel(torch.nn.Module): - def __init__( - self, - dim: int, - in_dim: int, - ffn_dim: int, - out_dim: int, - text_dim: int, - freq_dim: int, - eps: float, - patch_size: Tuple[int, int, int], - num_heads: int, - num_layers: int, - has_image_input: bool, - ): - super().__init__() - self.dim = dim - self.freq_dim = freq_dim - self.has_image_input = has_image_input - self.patch_size = patch_size - - self.patch_embedding = nn.Conv3d( - in_dim, dim, kernel_size=patch_size, stride=patch_size) - - self.text_embedding = nn.Sequential( - nn.Linear(text_dim, dim), - nn.GELU(approximate='tanh'), - nn.Linear(dim, dim) - ) - self.time_embedding = nn.Sequential( - nn.Linear(freq_dim, dim), - nn.SiLU(), - nn.Linear(dim, dim) - ) - self.time_projection = nn.Sequential( - nn.SiLU(), nn.Linear(dim, dim * 6)) - self.blocks = nn.ModuleList([ - DiTBlock(has_image_input, dim, num_heads, ffn_dim, eps) - for _ in range(num_layers) - ]) - self.head = Head(dim, out_dim, patch_size, eps) - head_dim = dim // num_heads - self.freqs = precompute_freqs_cis_3d(head_dim) - - if has_image_input: - self.img_emb = MLP(1280, dim) # clip_feature_dim = 1280 - - def patchify(self, x: torch.Tensor): - x = self.patch_embedding(x) - grid_size = x.shape[2:] - x = rearrange(x, 'b c f h w -> b (f h w) c').contiguous() - return x, grid_size # x, grid_size: (f, h, w) - - def unpatchify(self, x: torch.Tensor, grid_size: torch.Tensor): - return rearrange( - x, 'b (f h w) (x y z c) -> b c (f x) (h y) (w z)', - f=grid_size[0], h=grid_size[1], w=grid_size[2], - x=self.patch_size[0], y=self.patch_size[1], z=self.patch_size[2] - ) - - def forward(self, - x: torch.Tensor, - timestep: torch.Tensor, - context: torch.Tensor, - clip_feature: Optional[torch.Tensor] = None, - y: Optional[torch.Tensor] = None, - use_gradient_checkpointing: bool = False, - use_gradient_checkpointing_offload: bool = False, - **kwargs, - ): - t = self.time_embedding( - sinusoidal_embedding_1d(self.freq_dim, timestep)) - t_mod = self.time_projection(t).unflatten(1, (6, self.dim)) - context = self.text_embedding(context) - - if self.has_image_input: - x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w) - clip_embdding = self.img_emb(clip_feature) - context = torch.cat([clip_embdding, context], dim=1) - - x, (f, h, w) = self.patchify(x) - - freqs = torch.cat([ - self.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), - self.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), - self.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) - ], dim=-1).reshape(f * h * w, 1, -1).to(x.device) - - def create_custom_forward(module): - def custom_forward(*inputs): - return module(*inputs) - return custom_forward - - for block in self.blocks: - if self.training and use_gradient_checkpointing: - if use_gradient_checkpointing_offload: - with torch.autograd.graph.save_on_cpu(): - x = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - x, context, t_mod, freqs, - use_reentrant=False, - ) - else: - x = torch.utils.checkpoint.checkpoint( - create_custom_forward(block), - x, context, t_mod, freqs, - use_reentrant=False, - ) - else: - x = block(x, context, t_mod, freqs) - - x = self.head(x, t) - x = self.unpatchify(x, (f, h, w)) - return x - - @staticmethod - def state_dict_converter(): - return WanModelStateDictConverter() - - -class WanModelStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - rename_dict = { - "blocks.0.attn1.norm_k.weight": "blocks.0.self_attn.norm_k.weight", - "blocks.0.attn1.norm_q.weight": "blocks.0.self_attn.norm_q.weight", - "blocks.0.attn1.to_k.bias": "blocks.0.self_attn.k.bias", - "blocks.0.attn1.to_k.weight": "blocks.0.self_attn.k.weight", - "blocks.0.attn1.to_out.0.bias": "blocks.0.self_attn.o.bias", - "blocks.0.attn1.to_out.0.weight": "blocks.0.self_attn.o.weight", - "blocks.0.attn1.to_q.bias": "blocks.0.self_attn.q.bias", - "blocks.0.attn1.to_q.weight": "blocks.0.self_attn.q.weight", - "blocks.0.attn1.to_v.bias": "blocks.0.self_attn.v.bias", - "blocks.0.attn1.to_v.weight": "blocks.0.self_attn.v.weight", - "blocks.0.attn2.norm_k.weight": "blocks.0.cross_attn.norm_k.weight", - "blocks.0.attn2.norm_q.weight": "blocks.0.cross_attn.norm_q.weight", - "blocks.0.attn2.to_k.bias": "blocks.0.cross_attn.k.bias", - "blocks.0.attn2.to_k.weight": "blocks.0.cross_attn.k.weight", - "blocks.0.attn2.to_out.0.bias": "blocks.0.cross_attn.o.bias", - "blocks.0.attn2.to_out.0.weight": "blocks.0.cross_attn.o.weight", - "blocks.0.attn2.to_q.bias": "blocks.0.cross_attn.q.bias", - "blocks.0.attn2.to_q.weight": "blocks.0.cross_attn.q.weight", - "blocks.0.attn2.to_v.bias": "blocks.0.cross_attn.v.bias", - "blocks.0.attn2.to_v.weight": "blocks.0.cross_attn.v.weight", - "blocks.0.ffn.net.0.proj.bias": "blocks.0.ffn.0.bias", - "blocks.0.ffn.net.0.proj.weight": "blocks.0.ffn.0.weight", - "blocks.0.ffn.net.2.bias": "blocks.0.ffn.2.bias", - "blocks.0.ffn.net.2.weight": "blocks.0.ffn.2.weight", - "blocks.0.norm2.bias": "blocks.0.norm3.bias", - "blocks.0.norm2.weight": "blocks.0.norm3.weight", - "blocks.0.scale_shift_table": "blocks.0.modulation", - "condition_embedder.text_embedder.linear_1.bias": "text_embedding.0.bias", - "condition_embedder.text_embedder.linear_1.weight": "text_embedding.0.weight", - "condition_embedder.text_embedder.linear_2.bias": "text_embedding.2.bias", - "condition_embedder.text_embedder.linear_2.weight": "text_embedding.2.weight", - "condition_embedder.time_embedder.linear_1.bias": "time_embedding.0.bias", - "condition_embedder.time_embedder.linear_1.weight": "time_embedding.0.weight", - "condition_embedder.time_embedder.linear_2.bias": "time_embedding.2.bias", - "condition_embedder.time_embedder.linear_2.weight": "time_embedding.2.weight", - "condition_embedder.time_proj.bias": "time_projection.1.bias", - "condition_embedder.time_proj.weight": "time_projection.1.weight", - "patch_embedding.bias": "patch_embedding.bias", - "patch_embedding.weight": "patch_embedding.weight", - "scale_shift_table": "head.modulation", - "proj_out.bias": "head.head.bias", - "proj_out.weight": "head.head.weight", - } - state_dict_ = {} - for name, param in state_dict.items(): - if name in rename_dict: - state_dict_[rename_dict[name]] = param - else: - name_ = ".".join(name.split(".")[:1] + ["0"] + name.split(".")[2:]) - if name_ in rename_dict: - name_ = rename_dict[name_] - name_ = ".".join(name_.split(".")[:1] + [name.split(".")[1]] + name_.split(".")[2:]) - state_dict_[name_] = param - if hash_state_dict_keys(state_dict) == "cb104773c6c2cb6df4f9529ad5c60d0b": - config = { - "model_type": "t2v", - "patch_size": (1, 2, 2), - "text_len": 512, - "in_dim": 16, - "dim": 5120, - "ffn_dim": 13824, - "freq_dim": 256, - "text_dim": 4096, - "out_dim": 16, - "num_heads": 40, - "num_layers": 40, - "window_size": (-1, -1), - "qk_norm": True, - "cross_attn_norm": True, - "eps": 1e-6, - } - else: - config = {} - return state_dict_, config - - def from_civitai(self, state_dict): - if hash_state_dict_keys(state_dict) == "9269f8db9040a9d860eaca435be61814": - config = { - "has_image_input": False, - "patch_size": [1, 2, 2], - "in_dim": 16, - "dim": 1536, - "ffn_dim": 8960, - "freq_dim": 256, - "text_dim": 4096, - "out_dim": 16, - "num_heads": 12, - "num_layers": 30, - "eps": 1e-6 - } - elif hash_state_dict_keys(state_dict) == "aafcfd9672c3a2456dc46e1cb6e52c70": - config = { - "has_image_input": False, - "patch_size": [1, 2, 2], - "in_dim": 16, - "dim": 5120, - "ffn_dim": 13824, - "freq_dim": 256, - "text_dim": 4096, - "out_dim": 16, - "num_heads": 40, - "num_layers": 40, - "eps": 1e-6 - } - elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e": - config = { - "has_image_input": True, - "patch_size": [1, 2, 2], - "in_dim": 36, - "dim": 5120, - "ffn_dim": 13824, - "freq_dim": 256, - "text_dim": 4096, - "out_dim": 16, - "num_heads": 40, - "num_layers": 40, - "eps": 1e-6 - } - elif hash_state_dict_keys(state_dict) == "6d6ccde6845b95ad9114ab993d917893": - config = { - "has_image_input": True, - "patch_size": [1, 2, 2], - "in_dim": 36, - "dim": 1536, - "ffn_dim": 8960, - "freq_dim": 256, - "text_dim": 4096, - "out_dim": 16, - "num_heads": 12, - "num_layers": 30, - "eps": 1e-6 - } - elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e": - config = { - "has_image_input": True, - "patch_size": [1, 2, 2], - "in_dim": 36, - "dim": 5120, - "ffn_dim": 13824, - "freq_dim": 256, - "text_dim": 4096, - "out_dim": 16, - "num_heads": 40, - "num_layers": 40, - "eps": 1e-6 - } - elif hash_state_dict_keys(state_dict) == "349723183fc063b2bfc10bb2835cf677": - config = { - "has_image_input": True, - "patch_size": [1, 2, 2], - "in_dim": 48, - "dim": 1536, - "ffn_dim": 8960, - "freq_dim": 256, - "text_dim": 4096, - "out_dim": 16, - "num_heads": 12, - "num_layers": 30, - "eps": 1e-6 - } - elif hash_state_dict_keys(state_dict) == "efa44cddf936c70abd0ea28b6cbe946c": - config = { - "has_image_input": True, - "patch_size": [1, 2, 2], - "in_dim": 48, - "dim": 5120, - "ffn_dim": 13824, - "freq_dim": 256, - "text_dim": 4096, - "out_dim": 16, - "num_heads": 40, - "num_layers": 40, - "eps": 1e-6 - } - else: - config = {} - return state_dict, config diff --git a/diffsynth/models/wan_video_image_encoder.py b/diffsynth/models/wan_video_image_encoder.py deleted file mode 100644 index 5ca878b1fd6ed6dc00420f092f87479fb65ef63a..0000000000000000000000000000000000000000 --- a/diffsynth/models/wan_video_image_encoder.py +++ /dev/null @@ -1,902 +0,0 @@ -""" -Concise re-implementation of -``https://github.com/openai/CLIP'' and -``https://github.com/mlfoundations/open_clip''. -""" -import math -import torch -import torch.nn as nn -import torch.nn.functional as F -import torchvision.transforms as T -from .wan_video_dit import flash_attention - - -class SelfAttention(nn.Module): - - def __init__(self, dim, num_heads, dropout=0.1, eps=1e-5): - assert dim % num_heads == 0 - super().__init__() - self.dim = dim - self.num_heads = num_heads - self.head_dim = dim // num_heads - self.eps = eps - - # layers - self.q = nn.Linear(dim, dim) - self.k = nn.Linear(dim, dim) - self.v = nn.Linear(dim, dim) - self.o = nn.Linear(dim, dim) - self.dropout = nn.Dropout(dropout) - - def forward(self, x, mask): - """ - x: [B, L, C]. - """ - b, s, c, n, d = *x.size(), self.num_heads, self.head_dim - - # compute query, key, value - q = self.q(x).reshape(b, s, n, d).permute(0, 2, 1, 3) - k = self.k(x).reshape(b, s, n, d).permute(0, 2, 1, 3) - v = self.v(x).reshape(b, s, n, d).permute(0, 2, 1, 3) - - # compute attention - p = self.dropout.p if self.training else 0.0 - x = F.scaled_dot_product_attention(q, k, v, mask, p) - x = x.permute(0, 2, 1, 3).reshape(b, s, c) - - # output - x = self.o(x) - x = self.dropout(x) - return x - - -class AttentionBlock(nn.Module): - - def __init__(self, dim, num_heads, post_norm, dropout=0.1, eps=1e-5): - super().__init__() - self.dim = dim - self.num_heads = num_heads - self.post_norm = post_norm - self.eps = eps - - # layers - self.attn = SelfAttention(dim, num_heads, dropout, eps) - self.norm1 = nn.LayerNorm(dim, eps=eps) - self.ffn = nn.Sequential( - nn.Linear(dim, dim * 4), nn.GELU(), nn.Linear(dim * 4, dim), - nn.Dropout(dropout)) - self.norm2 = nn.LayerNorm(dim, eps=eps) - - def forward(self, x, mask): - if self.post_norm: - x = self.norm1(x + self.attn(x, mask)) - x = self.norm2(x + self.ffn(x)) - else: - x = x + self.attn(self.norm1(x), mask) - x = x + self.ffn(self.norm2(x)) - return x - - -class XLMRoberta(nn.Module): - """ - XLMRobertaModel with no pooler and no LM head. - """ - - def __init__(self, - vocab_size=250002, - max_seq_len=514, - type_size=1, - pad_id=1, - dim=1024, - num_heads=16, - num_layers=24, - post_norm=True, - dropout=0.1, - eps=1e-5): - super().__init__() - self.vocab_size = vocab_size - self.max_seq_len = max_seq_len - self.type_size = type_size - self.pad_id = pad_id - self.dim = dim - self.num_heads = num_heads - self.num_layers = num_layers - self.post_norm = post_norm - self.eps = eps - - # embeddings - self.token_embedding = nn.Embedding(vocab_size, dim, padding_idx=pad_id) - self.type_embedding = nn.Embedding(type_size, dim) - self.pos_embedding = nn.Embedding(max_seq_len, dim, padding_idx=pad_id) - self.dropout = nn.Dropout(dropout) - - # blocks - self.blocks = nn.ModuleList([ - AttentionBlock(dim, num_heads, post_norm, dropout, eps) - for _ in range(num_layers) - ]) - - # norm layer - self.norm = nn.LayerNorm(dim, eps=eps) - - def forward(self, ids): - """ - ids: [B, L] of torch.LongTensor. - """ - b, s = ids.shape - mask = ids.ne(self.pad_id).long() - - # embeddings - x = self.token_embedding(ids) + \ - self.type_embedding(torch.zeros_like(ids)) + \ - self.pos_embedding(self.pad_id + torch.cumsum(mask, dim=1) * mask) - if self.post_norm: - x = self.norm(x) - x = self.dropout(x) - - # blocks - mask = torch.where( - mask.view(b, 1, 1, s).gt(0), 0.0, - torch.finfo(x.dtype).min) - for block in self.blocks: - x = block(x, mask) - - # output - if not self.post_norm: - x = self.norm(x) - return x - - -def xlm_roberta_large(pretrained=False, - return_tokenizer=False, - device='cpu', - **kwargs): - """ - XLMRobertaLarge adapted from Huggingface. - """ - # params - cfg = dict( - vocab_size=250002, - max_seq_len=514, - type_size=1, - pad_id=1, - dim=1024, - num_heads=16, - num_layers=24, - post_norm=True, - dropout=0.1, - eps=1e-5) - cfg.update(**kwargs) - - # init model - if pretrained: - from sora import DOWNLOAD_TO_CACHE - - # init a meta model - with torch.device('meta'): - model = XLMRoberta(**cfg) - - # load checkpoint - model.load_state_dict( - torch.load( - DOWNLOAD_TO_CACHE('models/xlm_roberta/xlm_roberta_large.pth'), - map_location=device), - assign=True) - else: - # init a model on device - with torch.device(device): - model = XLMRoberta(**cfg) - - # init tokenizer - if return_tokenizer: - from sora.data import HuggingfaceTokenizer - tokenizer = HuggingfaceTokenizer( - name='xlm-roberta-large', - seq_len=model.text_len, - clean='whitespace') - return model, tokenizer - else: - return model - - - -def pos_interpolate(pos, seq_len): - if pos.size(1) == seq_len: - return pos - else: - src_grid = int(math.sqrt(pos.size(1))) - tar_grid = int(math.sqrt(seq_len)) - n = pos.size(1) - src_grid * src_grid - return torch.cat([ - pos[:, :n], - F.interpolate( - pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute( - 0, 3, 1, 2), - size=(tar_grid, tar_grid), - mode='bicubic', - align_corners=False).flatten(2).transpose(1, 2) - ], - dim=1) - - -class QuickGELU(nn.Module): - - def forward(self, x): - return x * torch.sigmoid(1.702 * x) - - -class LayerNorm(nn.LayerNorm): - - def forward(self, x): - return super().forward(x).type_as(x) - - -class SelfAttention(nn.Module): - - def __init__(self, - dim, - num_heads, - causal=False, - attn_dropout=0.0, - proj_dropout=0.0): - assert dim % num_heads == 0 - super().__init__() - self.dim = dim - self.num_heads = num_heads - self.head_dim = dim // num_heads - self.causal = causal - self.attn_dropout = attn_dropout - self.proj_dropout = proj_dropout - - # layers - self.to_qkv = nn.Linear(dim, dim * 3) - self.proj = nn.Linear(dim, dim) - - def forward(self, x): - """ - x: [B, L, C]. - """ - # compute query, key, value - q, k, v = self.to_qkv(x).chunk(3, dim=-1) - - # compute attention - x = flash_attention(q, k, v, num_heads=self.num_heads, compatibility_mode=True) - - # output - x = self.proj(x) - x = F.dropout(x, self.proj_dropout, self.training) - return x - - -class SwiGLU(nn.Module): - - def __init__(self, dim, mid_dim): - super().__init__() - self.dim = dim - self.mid_dim = mid_dim - - # layers - self.fc1 = nn.Linear(dim, mid_dim) - self.fc2 = nn.Linear(dim, mid_dim) - self.fc3 = nn.Linear(mid_dim, dim) - - def forward(self, x): - x = F.silu(self.fc1(x)) * self.fc2(x) - x = self.fc3(x) - return x - - -class AttentionBlock(nn.Module): - - def __init__(self, - dim, - mlp_ratio, - num_heads, - post_norm=False, - causal=False, - activation='quick_gelu', - attn_dropout=0.0, - proj_dropout=0.0, - norm_eps=1e-5): - assert activation in ['quick_gelu', 'gelu', 'swi_glu'] - super().__init__() - self.dim = dim - self.mlp_ratio = mlp_ratio - self.num_heads = num_heads - self.post_norm = post_norm - self.causal = causal - self.norm_eps = norm_eps - - # layers - self.norm1 = LayerNorm(dim, eps=norm_eps) - self.attn = SelfAttention(dim, num_heads, causal, attn_dropout, - proj_dropout) - self.norm2 = LayerNorm(dim, eps=norm_eps) - if activation == 'swi_glu': - self.mlp = SwiGLU(dim, int(dim * mlp_ratio)) - else: - self.mlp = nn.Sequential( - nn.Linear(dim, int(dim * mlp_ratio)), - QuickGELU() if activation == 'quick_gelu' else nn.GELU(), - nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout)) - - def forward(self, x): - if self.post_norm: - x = x + self.norm1(self.attn(x)) - x = x + self.norm2(self.mlp(x)) - else: - x = x + self.attn(self.norm1(x)) - x = x + self.mlp(self.norm2(x)) - return x - - -class AttentionPool(nn.Module): - - def __init__(self, - dim, - mlp_ratio, - num_heads, - activation='gelu', - proj_dropout=0.0, - norm_eps=1e-5): - assert dim % num_heads == 0 - super().__init__() - self.dim = dim - self.mlp_ratio = mlp_ratio - self.num_heads = num_heads - self.head_dim = dim // num_heads - self.proj_dropout = proj_dropout - self.norm_eps = norm_eps - - # layers - gain = 1.0 / math.sqrt(dim) - self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) - self.to_q = nn.Linear(dim, dim) - self.to_kv = nn.Linear(dim, dim * 2) - self.proj = nn.Linear(dim, dim) - self.norm = LayerNorm(dim, eps=norm_eps) - self.mlp = nn.Sequential( - nn.Linear(dim, int(dim * mlp_ratio)), - QuickGELU() if activation == 'quick_gelu' else nn.GELU(), - nn.Linear(int(dim * mlp_ratio), dim), nn.Dropout(proj_dropout)) - - def forward(self, x): - """ - x: [B, L, C]. - """ - b, s, c, n, d = *x.size(), self.num_heads, self.head_dim - - # compute query, key, value - q = self.to_q(self.cls_embedding).view(1, 1, n*d).expand(b, -1, -1) - k, v = self.to_kv(x).chunk(2, dim=-1) - - # compute attention - x = flash_attention(q, k, v, num_heads=self.num_heads, compatibility_mode=True) - x = x.reshape(b, 1, c) - - # output - x = self.proj(x) - x = F.dropout(x, self.proj_dropout, self.training) - - # mlp - x = x + self.mlp(self.norm(x)) - return x[:, 0] - - -class VisionTransformer(nn.Module): - - def __init__(self, - image_size=224, - patch_size=16, - dim=768, - mlp_ratio=4, - out_dim=512, - num_heads=12, - num_layers=12, - pool_type='token', - pre_norm=True, - post_norm=False, - activation='quick_gelu', - attn_dropout=0.0, - proj_dropout=0.0, - embedding_dropout=0.0, - norm_eps=1e-5): - if image_size % patch_size != 0: - print( - '[WARNING] image_size is not divisible by patch_size', - flush=True) - assert pool_type in ('token', 'token_fc', 'attn_pool') - out_dim = out_dim or dim - super().__init__() - self.image_size = image_size - self.patch_size = patch_size - self.num_patches = (image_size // patch_size)**2 - self.dim = dim - self.mlp_ratio = mlp_ratio - self.out_dim = out_dim - self.num_heads = num_heads - self.num_layers = num_layers - self.pool_type = pool_type - self.post_norm = post_norm - self.norm_eps = norm_eps - - # embeddings - gain = 1.0 / math.sqrt(dim) - self.patch_embedding = nn.Conv2d( - 3, - dim, - kernel_size=patch_size, - stride=patch_size, - bias=not pre_norm) - if pool_type in ('token', 'token_fc'): - self.cls_embedding = nn.Parameter(gain * torch.randn(1, 1, dim)) - self.pos_embedding = nn.Parameter(gain * torch.randn( - 1, self.num_patches + - (1 if pool_type in ('token', 'token_fc') else 0), dim)) - self.dropout = nn.Dropout(embedding_dropout) - - # transformer - self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None - self.transformer = nn.Sequential(*[ - AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False, - activation, attn_dropout, proj_dropout, norm_eps) - for _ in range(num_layers) - ]) - self.post_norm = LayerNorm(dim, eps=norm_eps) - - # head - if pool_type == 'token': - self.head = nn.Parameter(gain * torch.randn(dim, out_dim)) - elif pool_type == 'token_fc': - self.head = nn.Linear(dim, out_dim) - elif pool_type == 'attn_pool': - self.head = AttentionPool(dim, mlp_ratio, num_heads, activation, - proj_dropout, norm_eps) - - def forward(self, x, interpolation=False, use_31_block=False): - b = x.size(0) - - # embeddings - x = self.patch_embedding(x).flatten(2).permute(0, 2, 1) - if self.pool_type in ('token', 'token_fc'): - x = torch.cat([self.cls_embedding.expand(b, -1, -1).to(dtype=x.dtype, device=x.device), x], dim=1) - if interpolation: - e = pos_interpolate(self.pos_embedding, x.size(1)) - else: - e = self.pos_embedding - e = e.to(dtype=x.dtype, device=x.device) - x = self.dropout(x + e) - if self.pre_norm is not None: - x = self.pre_norm(x) - - # transformer - if use_31_block: - x = self.transformer[:-1](x) - return x - else: - x = self.transformer(x) - return x - - -class CLIP(nn.Module): - - def __init__(self, - embed_dim=512, - image_size=224, - patch_size=16, - vision_dim=768, - vision_mlp_ratio=4, - vision_heads=12, - vision_layers=12, - vision_pool='token', - vision_pre_norm=True, - vision_post_norm=False, - vocab_size=49408, - text_len=77, - text_dim=512, - text_mlp_ratio=4, - text_heads=8, - text_layers=12, - text_causal=True, - text_pool='argmax', - text_head_bias=False, - logit_bias=None, - activation='quick_gelu', - attn_dropout=0.0, - proj_dropout=0.0, - embedding_dropout=0.0, - norm_eps=1e-5): - super().__init__() - self.embed_dim = embed_dim - self.image_size = image_size - self.patch_size = patch_size - self.vision_dim = vision_dim - self.vision_mlp_ratio = vision_mlp_ratio - self.vision_heads = vision_heads - self.vision_layers = vision_layers - self.vision_pool = vision_pool - self.vision_pre_norm = vision_pre_norm - self.vision_post_norm = vision_post_norm - self.vocab_size = vocab_size - self.text_len = text_len - self.text_dim = text_dim - self.text_mlp_ratio = text_mlp_ratio - self.text_heads = text_heads - self.text_layers = text_layers - self.text_causal = text_causal - self.text_pool = text_pool - self.text_head_bias = text_head_bias - self.norm_eps = norm_eps - - # models - self.visual = VisionTransformer( - image_size=image_size, - patch_size=patch_size, - dim=vision_dim, - mlp_ratio=vision_mlp_ratio, - out_dim=embed_dim, - num_heads=vision_heads, - num_layers=vision_layers, - pool_type=vision_pool, - pre_norm=vision_pre_norm, - post_norm=vision_post_norm, - activation=activation, - attn_dropout=attn_dropout, - proj_dropout=proj_dropout, - embedding_dropout=embedding_dropout, - norm_eps=norm_eps) - self.textual = TextTransformer( - vocab_size=vocab_size, - text_len=text_len, - dim=text_dim, - mlp_ratio=text_mlp_ratio, - out_dim=embed_dim, - num_heads=text_heads, - num_layers=text_layers, - causal=text_causal, - pool_type=text_pool, - head_bias=text_head_bias, - activation=activation, - attn_dropout=attn_dropout, - proj_dropout=proj_dropout, - embedding_dropout=embedding_dropout, - norm_eps=norm_eps) - self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([])) - if logit_bias is not None: - self.logit_bias = nn.Parameter(logit_bias * torch.ones([])) - - # initialize weights - self.init_weights() - - def forward(self, imgs, txt_ids): - """ - imgs: [B, 3, H, W] of torch.float32. - - mean: [0.48145466, 0.4578275, 0.40821073] - - std: [0.26862954, 0.26130258, 0.27577711] - txt_ids: [B, L] of torch.long. Encoded by data.CLIPTokenizer. - """ - xi = self.visual(imgs) - xt = self.textual(txt_ids) - return xi, xt - - def init_weights(self): - # embeddings - nn.init.normal_(self.textual.token_embedding.weight, std=0.02) - nn.init.normal_(self.visual.patch_embedding.weight, std=0.1) - - # attentions - for modality in ['visual', 'textual']: - dim = self.vision_dim if modality == 'visual' else self.text_dim - transformer = getattr(self, modality).transformer - proj_gain = (1.0 / math.sqrt(dim)) * ( - 1.0 / math.sqrt(2 * len(transformer))) - attn_gain = 1.0 / math.sqrt(dim) - mlp_gain = 1.0 / math.sqrt(2.0 * dim) - for block in transformer: - nn.init.normal_(block.attn.to_qkv.weight, std=attn_gain) - nn.init.normal_(block.attn.proj.weight, std=proj_gain) - nn.init.normal_(block.mlp[0].weight, std=mlp_gain) - nn.init.normal_(block.mlp[2].weight, std=proj_gain) - - def param_groups(self): - groups = [{ - 'params': [ - p for n, p in self.named_parameters() - if 'norm' in n or n.endswith('bias') - ], - 'weight_decay': 0.0 - }, { - 'params': [ - p for n, p in self.named_parameters() - if not ('norm' in n or n.endswith('bias')) - ] - }] - return groups - - -class XLMRobertaWithHead(XLMRoberta): - - def __init__(self, **kwargs): - self.out_dim = kwargs.pop('out_dim') - super().__init__(**kwargs) - - # head - mid_dim = (self.dim + self.out_dim) // 2 - self.head = nn.Sequential( - nn.Linear(self.dim, mid_dim, bias=False), nn.GELU(), - nn.Linear(mid_dim, self.out_dim, bias=False)) - - def forward(self, ids): - # xlm-roberta - x = super().forward(ids) - - # average pooling - mask = ids.ne(self.pad_id).unsqueeze(-1).to(x) - x = (x * mask).sum(dim=1) / mask.sum(dim=1) - - # head - x = self.head(x) - return x - - -class XLMRobertaCLIP(nn.Module): - - def __init__(self, - embed_dim=1024, - image_size=224, - patch_size=14, - vision_dim=1280, - vision_mlp_ratio=4, - vision_heads=16, - vision_layers=32, - vision_pool='token', - vision_pre_norm=True, - vision_post_norm=False, - activation='gelu', - vocab_size=250002, - max_text_len=514, - type_size=1, - pad_id=1, - text_dim=1024, - text_heads=16, - text_layers=24, - text_post_norm=True, - text_dropout=0.1, - attn_dropout=0.0, - proj_dropout=0.0, - embedding_dropout=0.0, - norm_eps=1e-5): - super().__init__() - self.embed_dim = embed_dim - self.image_size = image_size - self.patch_size = patch_size - self.vision_dim = vision_dim - self.vision_mlp_ratio = vision_mlp_ratio - self.vision_heads = vision_heads - self.vision_layers = vision_layers - self.vision_pre_norm = vision_pre_norm - self.vision_post_norm = vision_post_norm - self.activation = activation - self.vocab_size = vocab_size - self.max_text_len = max_text_len - self.type_size = type_size - self.pad_id = pad_id - self.text_dim = text_dim - self.text_heads = text_heads - self.text_layers = text_layers - self.text_post_norm = text_post_norm - self.norm_eps = norm_eps - - # models - self.visual = VisionTransformer( - image_size=image_size, - patch_size=patch_size, - dim=vision_dim, - mlp_ratio=vision_mlp_ratio, - out_dim=embed_dim, - num_heads=vision_heads, - num_layers=vision_layers, - pool_type=vision_pool, - pre_norm=vision_pre_norm, - post_norm=vision_post_norm, - activation=activation, - attn_dropout=attn_dropout, - proj_dropout=proj_dropout, - embedding_dropout=embedding_dropout, - norm_eps=norm_eps) - self.textual = None - self.log_scale = nn.Parameter(math.log(1 / 0.07) * torch.ones([])) - - def forward(self, imgs, txt_ids): - """ - imgs: [B, 3, H, W] of torch.float32. - - mean: [0.48145466, 0.4578275, 0.40821073] - - std: [0.26862954, 0.26130258, 0.27577711] - txt_ids: [B, L] of torch.long. - Encoded by data.CLIPTokenizer. - """ - xi = self.visual(imgs) - xt = self.textual(txt_ids) - return xi, xt - - def param_groups(self): - groups = [{ - 'params': [ - p for n, p in self.named_parameters() - if 'norm' in n or n.endswith('bias') - ], - 'weight_decay': 0.0 - }, { - 'params': [ - p for n, p in self.named_parameters() - if not ('norm' in n or n.endswith('bias')) - ] - }] - return groups - - -def _clip(pretrained=False, - pretrained_name=None, - model_cls=CLIP, - return_transforms=False, - return_tokenizer=False, - tokenizer_padding='eos', - dtype=torch.float32, - device='cpu', - **kwargs): - # init model - if pretrained and pretrained_name: - from sora import BUCKET, DOWNLOAD_TO_CACHE - - # init a meta model - with torch.device('meta'): - model = model_cls(**kwargs) - - # checkpoint path - checkpoint = f'models/clip/{pretrained_name}' - if dtype in (torch.float16, torch.bfloat16): - suffix = '-' + { - torch.float16: 'fp16', - torch.bfloat16: 'bf16' - }[dtype] - if object_exists(BUCKET, f'{checkpoint}{suffix}.pth'): - checkpoint = f'{checkpoint}{suffix}' - checkpoint += '.pth' - - # load - model.load_state_dict( - torch.load(DOWNLOAD_TO_CACHE(checkpoint), map_location=device), - assign=True, - strict=False) - else: - # init a model on device - with torch.device(device): - model = model_cls(**kwargs) - - # set device - output = (model,) - - # init transforms - if return_transforms: - # mean and std - if 'siglip' in pretrained_name.lower(): - mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5] - else: - mean = [0.48145466, 0.4578275, 0.40821073] - std = [0.26862954, 0.26130258, 0.27577711] - - # transforms - transforms = T.Compose([ - T.Resize((model.image_size, model.image_size), - interpolation=T.InterpolationMode.BICUBIC), - T.ToTensor(), - T.Normalize(mean=mean, std=std) - ]) - output += (transforms,) - - # init tokenizer - if return_tokenizer: - from sora import data - if 'siglip' in pretrained_name.lower(): - tokenizer = data.HuggingfaceTokenizer( - name=f'timm/{pretrained_name}', - seq_len=model.text_len, - clean='canonicalize') - elif 'xlm' in pretrained_name.lower(): - tokenizer = data.HuggingfaceTokenizer( - name='xlm-roberta-large', - seq_len=model.max_text_len - 2, - clean='whitespace') - elif 'mba' in pretrained_name.lower(): - tokenizer = data.HuggingfaceTokenizer( - name='facebook/xlm-roberta-xl', - seq_len=model.max_text_len - 2, - clean='whitespace') - else: - tokenizer = data.CLIPTokenizer( - seq_len=model.text_len, padding=tokenizer_padding) - output += (tokenizer,) - return output[0] if len(output) == 1 else output - - -def clip_xlm_roberta_vit_h_14( - pretrained=False, - pretrained_name='open-clip-xlm-roberta-large-vit-huge-14', - **kwargs): - cfg = dict( - embed_dim=1024, - image_size=224, - patch_size=14, - vision_dim=1280, - vision_mlp_ratio=4, - vision_heads=16, - vision_layers=32, - vision_pool='token', - activation='gelu', - vocab_size=250002, - max_text_len=514, - type_size=1, - pad_id=1, - text_dim=1024, - text_heads=16, - text_layers=24, - text_post_norm=True, - text_dropout=0.1, - attn_dropout=0.0, - proj_dropout=0.0, - embedding_dropout=0.0) - cfg.update(**kwargs) - return _clip(pretrained, pretrained_name, XLMRobertaCLIP, **cfg) - - -class WanImageEncoder(torch.nn.Module): - - def __init__(self): - super().__init__() - # init model - self.model, self.transforms = clip_xlm_roberta_vit_h_14( - pretrained=False, - return_transforms=True, - return_tokenizer=False, - dtype=torch.float32, - device="cpu") - - def encode_image(self, videos): - # preprocess - size = (self.model.image_size,) * 2 - videos = torch.cat([ - F.interpolate( - u, - size=size, - mode='bicubic', - align_corners=False) for u in videos - ]) - videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5)) - - # forward - dtype = next(iter(self.model.visual.parameters())).dtype - videos = videos.to(dtype) - out = self.model.visual(videos, use_31_block=True) - return out - - @staticmethod - def state_dict_converter(): - return WanImageEncoderStateDictConverter() - - -class WanImageEncoderStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - return state_dict - - def from_civitai(self, state_dict): - state_dict_ = {} - for name, param in state_dict.items(): - if name.startswith("textual."): - continue - name = "model." + name - state_dict_[name] = param - return state_dict_ - diff --git a/diffsynth/models/wan_video_motion_controller.py b/diffsynth/models/wan_video_motion_controller.py deleted file mode 100644 index 518c1c66edca1cae11d5f3371af0455808b2a66a..0000000000000000000000000000000000000000 --- a/diffsynth/models/wan_video_motion_controller.py +++ /dev/null @@ -1,44 +0,0 @@ -import torch -import torch.nn as nn -from .wan_video_dit import sinusoidal_embedding_1d - - - -class WanMotionControllerModel(torch.nn.Module): - def __init__(self, freq_dim=256, dim=1536): - super().__init__() - self.freq_dim = freq_dim - self.linear = nn.Sequential( - nn.Linear(freq_dim, dim), - nn.SiLU(), - nn.Linear(dim, dim), - nn.SiLU(), - nn.Linear(dim, dim * 6), - ) - - def forward(self, motion_bucket_id): - emb = sinusoidal_embedding_1d(self.freq_dim, motion_bucket_id * 10) - emb = self.linear(emb) - return emb - - def init(self): - state_dict = self.linear[-1].state_dict() - state_dict = {i: state_dict[i] * 0 for i in state_dict} - self.linear[-1].load_state_dict(state_dict) - - @staticmethod - def state_dict_converter(): - return WanMotionControllerModelDictConverter() - - - -class WanMotionControllerModelDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - return state_dict - - def from_civitai(self, state_dict): - return state_dict - diff --git a/diffsynth/models/wan_video_text_encoder.py b/diffsynth/models/wan_video_text_encoder.py deleted file mode 100644 index c28873722ee92f23914712c9d5b2c3a26fd2adb7..0000000000000000000000000000000000000000 --- a/diffsynth/models/wan_video_text_encoder.py +++ /dev/null @@ -1,269 +0,0 @@ -import math - -import torch -import torch.nn as nn -import torch.nn.functional as F - - -def fp16_clamp(x): - if x.dtype == torch.float16 and torch.isinf(x).any(): - clamp = torch.finfo(x.dtype).max - 1000 - x = torch.clamp(x, min=-clamp, max=clamp) - return x - - -class GELU(nn.Module): - - def forward(self, x): - return 0.5 * x * (1.0 + torch.tanh( - math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) - - -class T5LayerNorm(nn.Module): - - def __init__(self, dim, eps=1e-6): - super(T5LayerNorm, self).__init__() - self.dim = dim - self.eps = eps - self.weight = nn.Parameter(torch.ones(dim)) - - def forward(self, x): - x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) + - self.eps) - if self.weight.dtype in [torch.float16, torch.bfloat16]: - x = x.type_as(self.weight) - return self.weight * x - - -class T5Attention(nn.Module): - - def __init__(self, dim, dim_attn, num_heads, dropout=0.1): - assert dim_attn % num_heads == 0 - super(T5Attention, self).__init__() - self.dim = dim - self.dim_attn = dim_attn - self.num_heads = num_heads - self.head_dim = dim_attn // num_heads - - # layers - self.q = nn.Linear(dim, dim_attn, bias=False) - self.k = nn.Linear(dim, dim_attn, bias=False) - self.v = nn.Linear(dim, dim_attn, bias=False) - self.o = nn.Linear(dim_attn, dim, bias=False) - self.dropout = nn.Dropout(dropout) - - def forward(self, x, context=None, mask=None, pos_bias=None): - """ - x: [B, L1, C]. - context: [B, L2, C] or None. - mask: [B, L2] or [B, L1, L2] or None. - """ - # check inputs - context = x if context is None else context - b, n, c = x.size(0), self.num_heads, self.head_dim - - # compute query, key, value - q = self.q(x).view(b, -1, n, c) - k = self.k(context).view(b, -1, n, c) - v = self.v(context).view(b, -1, n, c) - - # attention bias - attn_bias = x.new_zeros(b, n, q.size(1), k.size(1)) - if pos_bias is not None: - attn_bias += pos_bias - if mask is not None: - assert mask.ndim in [2, 3] - mask = mask.view(b, 1, 1, - -1) if mask.ndim == 2 else mask.unsqueeze(1) - attn_bias.masked_fill_(mask == 0, torch.finfo(x.dtype).min) - - # compute attention (T5 does not use scaling) - attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias - attn = F.softmax(attn.float(), dim=-1).type_as(attn) - x = torch.einsum('bnij,bjnc->binc', attn, v) - - # output - x = x.reshape(b, -1, n * c) - x = self.o(x) - x = self.dropout(x) - return x - - -class T5FeedForward(nn.Module): - - def __init__(self, dim, dim_ffn, dropout=0.1): - super(T5FeedForward, self).__init__() - self.dim = dim - self.dim_ffn = dim_ffn - - # layers - self.gate = nn.Sequential(nn.Linear(dim, dim_ffn, bias=False), GELU()) - self.fc1 = nn.Linear(dim, dim_ffn, bias=False) - self.fc2 = nn.Linear(dim_ffn, dim, bias=False) - self.dropout = nn.Dropout(dropout) - - def forward(self, x): - x = self.fc1(x) * self.gate(x) - x = self.dropout(x) - x = self.fc2(x) - x = self.dropout(x) - return x - - -class T5SelfAttention(nn.Module): - - def __init__(self, - dim, - dim_attn, - dim_ffn, - num_heads, - num_buckets, - shared_pos=True, - dropout=0.1): - super(T5SelfAttention, self).__init__() - self.dim = dim - self.dim_attn = dim_attn - self.dim_ffn = dim_ffn - self.num_heads = num_heads - self.num_buckets = num_buckets - self.shared_pos = shared_pos - - # layers - self.norm1 = T5LayerNorm(dim) - self.attn = T5Attention(dim, dim_attn, num_heads, dropout) - self.norm2 = T5LayerNorm(dim) - self.ffn = T5FeedForward(dim, dim_ffn, dropout) - self.pos_embedding = None if shared_pos else T5RelativeEmbedding( - num_buckets, num_heads, bidirectional=True) - - def forward(self, x, mask=None, pos_bias=None): - e = pos_bias if self.shared_pos else self.pos_embedding( - x.size(1), x.size(1)) - x = fp16_clamp(x + self.attn(self.norm1(x), mask=mask, pos_bias=e)) - x = fp16_clamp(x + self.ffn(self.norm2(x))) - return x - - -class T5RelativeEmbedding(nn.Module): - - def __init__(self, num_buckets, num_heads, bidirectional, max_dist=128): - super(T5RelativeEmbedding, self).__init__() - self.num_buckets = num_buckets - self.num_heads = num_heads - self.bidirectional = bidirectional - self.max_dist = max_dist - - # layers - self.embedding = nn.Embedding(num_buckets, num_heads) - - def forward(self, lq, lk): - device = self.embedding.weight.device - # rel_pos = torch.arange(lk).unsqueeze(0).to(device) - \ - # torch.arange(lq).unsqueeze(1).to(device) - rel_pos = torch.arange(lk, device=device).unsqueeze(0) - \ - torch.arange(lq, device=device).unsqueeze(1) - rel_pos = self._relative_position_bucket(rel_pos) - rel_pos_embeds = self.embedding(rel_pos) - rel_pos_embeds = rel_pos_embeds.permute(2, 0, 1).unsqueeze( - 0) # [1, N, Lq, Lk] - return rel_pos_embeds.contiguous() - - def _relative_position_bucket(self, rel_pos): - # preprocess - if self.bidirectional: - num_buckets = self.num_buckets // 2 - rel_buckets = (rel_pos > 0).long() * num_buckets - rel_pos = torch.abs(rel_pos) - else: - num_buckets = self.num_buckets - rel_buckets = 0 - rel_pos = -torch.min(rel_pos, torch.zeros_like(rel_pos)) - - # embeddings for small and large positions - max_exact = num_buckets // 2 - rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) / - math.log(self.max_dist / max_exact) * - (num_buckets - max_exact)).long() - rel_pos_large = torch.min( - rel_pos_large, torch.full_like(rel_pos_large, num_buckets - 1)) - rel_buckets += torch.where(rel_pos < max_exact, rel_pos, rel_pos_large) - return rel_buckets - -def init_weights(m): - if isinstance(m, T5LayerNorm): - nn.init.ones_(m.weight) - elif isinstance(m, T5FeedForward): - nn.init.normal_(m.gate[0].weight, std=m.dim**-0.5) - nn.init.normal_(m.fc1.weight, std=m.dim**-0.5) - nn.init.normal_(m.fc2.weight, std=m.dim_ffn**-0.5) - elif isinstance(m, T5Attention): - nn.init.normal_(m.q.weight, std=(m.dim * m.dim_attn)**-0.5) - nn.init.normal_(m.k.weight, std=m.dim**-0.5) - nn.init.normal_(m.v.weight, std=m.dim**-0.5) - nn.init.normal_(m.o.weight, std=(m.num_heads * m.dim_attn)**-0.5) - elif isinstance(m, T5RelativeEmbedding): - nn.init.normal_( - m.embedding.weight, std=(2 * m.num_buckets * m.num_heads)**-0.5) - - -class WanTextEncoder(torch.nn.Module): - - def __init__(self, - vocab=256384, - dim=4096, - dim_attn=4096, - dim_ffn=10240, - num_heads=64, - num_layers=24, - num_buckets=32, - shared_pos=False, - dropout=0.1): - super(WanTextEncoder, self).__init__() - self.dim = dim - self.dim_attn = dim_attn - self.dim_ffn = dim_ffn - self.num_heads = num_heads - self.num_layers = num_layers - self.num_buckets = num_buckets - self.shared_pos = shared_pos - - # layers - self.token_embedding = vocab if isinstance(vocab, nn.Embedding) \ - else nn.Embedding(vocab, dim) - self.pos_embedding = T5RelativeEmbedding( - num_buckets, num_heads, bidirectional=True) if shared_pos else None - self.dropout = nn.Dropout(dropout) - self.blocks = nn.ModuleList([ - T5SelfAttention(dim, dim_attn, dim_ffn, num_heads, num_buckets, - shared_pos, dropout) for _ in range(num_layers) - ]) - self.norm = T5LayerNorm(dim) - - # initialize weights - self.apply(init_weights) - - def forward(self, ids, mask=None): - x = self.token_embedding(ids) - x = self.dropout(x) - e = self.pos_embedding(x.size(1), - x.size(1)) if self.shared_pos else None - for block in self.blocks: - x = block(x, mask, pos_bias=e) - x = self.norm(x) - x = self.dropout(x) - return x - - @staticmethod - def state_dict_converter(): - return WanTextEncoderStateDictConverter() - - -class WanTextEncoderStateDictConverter: - def __init__(self): - pass - - def from_diffusers(self, state_dict): - return state_dict - - def from_civitai(self, state_dict): - return state_dict diff --git a/diffsynth/models/wan_video_vae.py b/diffsynth/models/wan_video_vae.py deleted file mode 100644 index e3f63f7a98935393e8b4a2ee8ebe868c7fdc9855..0000000000000000000000000000000000000000 --- a/diffsynth/models/wan_video_vae.py +++ /dev/null @@ -1,808 +0,0 @@ -from einops import rearrange, repeat - -import torch -import torch.nn as nn -import torch.nn.functional as F -from tqdm import tqdm - -CACHE_T = 2 - - -def check_is_instance(model, module_class): - if isinstance(model, module_class): - return True - if hasattr(model, "module") and isinstance(model.module, module_class): - return True - return False - - -def block_causal_mask(x, block_size): - # params - b, n, s, _, device = *x.size(), x.device - assert s % block_size == 0 - num_blocks = s // block_size - - # build mask - mask = torch.zeros(b, n, s, s, dtype=torch.bool, device=device) - for i in range(num_blocks): - mask[:, :, - i * block_size:(i + 1) * block_size, :(i + 1) * block_size] = 1 - return mask - - -class CausalConv3d(nn.Conv3d): - """ - Causal 3d convolusion. - """ - - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - self._padding = (self.padding[2], self.padding[2], self.padding[1], - self.padding[1], 2 * self.padding[0], 0) - self.padding = (0, 0, 0) - - def forward(self, x, cache_x=None): - padding = list(self._padding) - if cache_x is not None and self._padding[4] > 0: - cache_x = cache_x.to(x.device) - x = torch.cat([cache_x, x], dim=2) - padding[4] -= cache_x.shape[2] - x = F.pad(x, padding) - - return super().forward(x) - - -class RMS_norm(nn.Module): - - def __init__(self, dim, channel_first=True, images=True, bias=False): - super().__init__() - broadcastable_dims = (1, 1, 1) if not images else (1, 1) - shape = (dim, *broadcastable_dims) if channel_first else (dim,) - - self.channel_first = channel_first - self.scale = dim**0.5 - self.gamma = nn.Parameter(torch.ones(shape)) - self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0. - - def forward(self, x): - return F.normalize( - x, dim=(1 if self.channel_first else - -1)) * self.scale * self.gamma + self.bias - - -class Upsample(nn.Upsample): - - def forward(self, x): - """ - Fix bfloat16 support for nearest neighbor interpolation. - """ - return super().forward(x.float()).type_as(x) - - -class Resample(nn.Module): - - def __init__(self, dim, mode): - assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d', - 'downsample3d') - super().__init__() - self.dim = dim - self.mode = mode - - # layers - if mode == 'upsample2d': - self.resample = nn.Sequential( - Upsample(scale_factor=(2., 2.), mode='nearest-exact'), - nn.Conv2d(dim, dim // 2, 3, padding=1)) - elif mode == 'upsample3d': - self.resample = nn.Sequential( - Upsample(scale_factor=(2., 2.), mode='nearest-exact'), - nn.Conv2d(dim, dim // 2, 3, padding=1)) - self.time_conv = CausalConv3d(dim, - dim * 2, (3, 1, 1), - padding=(1, 0, 0)) - - elif mode == 'downsample2d': - self.resample = nn.Sequential( - nn.ZeroPad2d((0, 1, 0, 1)), - nn.Conv2d(dim, dim, 3, stride=(2, 2))) - elif mode == 'downsample3d': - self.resample = nn.Sequential( - nn.ZeroPad2d((0, 1, 0, 1)), - nn.Conv2d(dim, dim, 3, stride=(2, 2))) - self.time_conv = CausalConv3d(dim, - dim, (3, 1, 1), - stride=(2, 1, 1), - padding=(0, 0, 0)) - - else: - self.resample = nn.Identity() - - def forward(self, x, feat_cache=None, feat_idx=[0]): - b, c, t, h, w = x.size() - if self.mode == 'upsample3d': - if feat_cache is not None: - idx = feat_idx[0] - if feat_cache[idx] is None: - feat_cache[idx] = 'Rep' - feat_idx[0] += 1 - else: - - cache_x = x[:, :, -CACHE_T:, :, :].clone() - if cache_x.shape[2] < 2 and feat_cache[ - idx] is not None and feat_cache[idx] != 'Rep': - # cache last frame of last two chunk - cache_x = torch.cat([ - feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( - cache_x.device), cache_x - ], - dim=2) - if cache_x.shape[2] < 2 and feat_cache[ - idx] is not None and feat_cache[idx] == 'Rep': - cache_x = torch.cat([ - torch.zeros_like(cache_x).to(cache_x.device), - cache_x - ], - dim=2) - if feat_cache[idx] == 'Rep': - x = self.time_conv(x) - else: - x = self.time_conv(x, feat_cache[idx]) - feat_cache[idx] = cache_x - feat_idx[0] += 1 - - x = x.reshape(b, 2, c, t, h, w) - x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), - 3) - x = x.reshape(b, c, t * 2, h, w) - t = x.shape[2] - x = rearrange(x, 'b c t h w -> (b t) c h w') - x = self.resample(x) - x = rearrange(x, '(b t) c h w -> b c t h w', t=t) - - if self.mode == 'downsample3d': - if feat_cache is not None: - idx = feat_idx[0] - if feat_cache[idx] is None: - feat_cache[idx] = x.clone() - feat_idx[0] += 1 - else: - cache_x = x[:, :, -1:, :, :].clone() - x = self.time_conv( - torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)) - feat_cache[idx] = cache_x - feat_idx[0] += 1 - return x - - def init_weight(self, conv): - conv_weight = conv.weight - nn.init.zeros_(conv_weight) - c1, c2, t, h, w = conv_weight.size() - one_matrix = torch.eye(c1, c2) - init_matrix = one_matrix - nn.init.zeros_(conv_weight) - conv_weight.data[:, :, 1, 0, 0] = init_matrix - conv.weight.data.copy_(conv_weight) - nn.init.zeros_(conv.bias.data) - - def init_weight2(self, conv): - conv_weight = conv.weight.data - nn.init.zeros_(conv_weight) - c1, c2, t, h, w = conv_weight.size() - init_matrix = torch.eye(c1 // 2, c2) - conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix - conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix - conv.weight.data.copy_(conv_weight) - nn.init.zeros_(conv.bias.data) - - -class ResidualBlock(nn.Module): - - def __init__(self, in_dim, out_dim, dropout=0.0): - super().__init__() - self.in_dim = in_dim - self.out_dim = out_dim - - # layers - self.residual = nn.Sequential( - RMS_norm(in_dim, images=False), nn.SiLU(), - CausalConv3d(in_dim, out_dim, 3, padding=1), - RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout), - CausalConv3d(out_dim, out_dim, 3, padding=1)) - self.shortcut = CausalConv3d(in_dim, out_dim, 1) \ - if in_dim != out_dim else nn.Identity() - - def forward(self, x, feat_cache=None, feat_idx=[0]): - h = self.shortcut(x) - for layer in self.residual: - if check_is_instance(layer, CausalConv3d) and feat_cache is not None: - idx = feat_idx[0] - cache_x = x[:, :, -CACHE_T:, :, :].clone() - if cache_x.shape[2] < 2 and feat_cache[idx] is not None: - # cache last frame of last two chunk - cache_x = torch.cat([ - feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( - cache_x.device), cache_x - ], - dim=2) - x = layer(x, feat_cache[idx]) - feat_cache[idx] = cache_x - feat_idx[0] += 1 - else: - x = layer(x) - return x + h - - -class AttentionBlock(nn.Module): - """ - Causal self-attention with a single head. - """ - - def __init__(self, dim): - super().__init__() - self.dim = dim - - # layers - self.norm = RMS_norm(dim) - self.to_qkv = nn.Conv2d(dim, dim * 3, 1) - self.proj = nn.Conv2d(dim, dim, 1) - - # zero out the last layer params - nn.init.zeros_(self.proj.weight) - - def forward(self, x): - identity = x - b, c, t, h, w = x.size() - x = rearrange(x, 'b c t h w -> (b t) c h w') - x = self.norm(x) - # compute query, key, value - q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute( - 0, 1, 3, 2).contiguous().chunk(3, dim=-1) - - # apply attention - x = F.scaled_dot_product_attention( - q, - k, - v, - #attn_mask=block_causal_mask(q, block_size=h * w) - ) - x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w) - - # output - x = self.proj(x) - x = rearrange(x, '(b t) c h w-> b c t h w', t=t) - return x + identity - - -class Encoder3d(nn.Module): - - def __init__(self, - dim=128, - z_dim=4, - dim_mult=[1, 2, 4, 4], - num_res_blocks=2, - attn_scales=[], - temperal_downsample=[True, True, False], - dropout=0.0): - super().__init__() - self.dim = dim - self.z_dim = z_dim - self.dim_mult = dim_mult - self.num_res_blocks = num_res_blocks - self.attn_scales = attn_scales - self.temperal_downsample = temperal_downsample - - # dimensions - dims = [dim * u for u in [1] + dim_mult] - scale = 1.0 - - # init block - self.conv1 = CausalConv3d(3, dims[0], 3, padding=1) - - # downsample blocks - downsamples = [] - for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): - # residual (+attention) blocks - for _ in range(num_res_blocks): - downsamples.append(ResidualBlock(in_dim, out_dim, dropout)) - if scale in attn_scales: - downsamples.append(AttentionBlock(out_dim)) - in_dim = out_dim - - # downsample block - if i != len(dim_mult) - 1: - mode = 'downsample3d' if temperal_downsample[ - i] else 'downsample2d' - downsamples.append(Resample(out_dim, mode=mode)) - scale /= 2.0 - self.downsamples = nn.Sequential(*downsamples) - - # middle blocks - self.middle = nn.Sequential(ResidualBlock(out_dim, out_dim, dropout), - AttentionBlock(out_dim), - ResidualBlock(out_dim, out_dim, dropout)) - - # output blocks - self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(), - CausalConv3d(out_dim, z_dim, 3, padding=1)) - - def forward(self, x, feat_cache=None, feat_idx=[0]): - if feat_cache is not None: - idx = feat_idx[0] - cache_x = x[:, :, -CACHE_T:, :, :].clone() - if cache_x.shape[2] < 2 and feat_cache[idx] is not None: - # cache last frame of last two chunk - cache_x = torch.cat([ - feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( - cache_x.device), cache_x - ], - dim=2) - x = self.conv1(x, feat_cache[idx]) - feat_cache[idx] = cache_x - feat_idx[0] += 1 - else: - x = self.conv1(x) - - ## downsamples - for layer in self.downsamples: - if feat_cache is not None: - x = layer(x, feat_cache, feat_idx) - else: - x = layer(x) - - ## middle - for layer in self.middle: - if check_is_instance(layer, ResidualBlock) and feat_cache is not None: - x = layer(x, feat_cache, feat_idx) - else: - x = layer(x) - - ## head - for layer in self.head: - if check_is_instance(layer, CausalConv3d) and feat_cache is not None: - idx = feat_idx[0] - cache_x = x[:, :, -CACHE_T:, :, :].clone() - if cache_x.shape[2] < 2 and feat_cache[idx] is not None: - # cache last frame of last two chunk - cache_x = torch.cat([ - feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( - cache_x.device), cache_x - ], - dim=2) - x = layer(x, feat_cache[idx]) - feat_cache[idx] = cache_x - feat_idx[0] += 1 - else: - x = layer(x) - return x - - -class Decoder3d(nn.Module): - - def __init__(self, - dim=128, - z_dim=4, - dim_mult=[1, 2, 4, 4], - num_res_blocks=2, - attn_scales=[], - temperal_upsample=[False, True, True], - dropout=0.0): - super().__init__() - self.dim = dim - self.z_dim = z_dim - self.dim_mult = dim_mult - self.num_res_blocks = num_res_blocks - self.attn_scales = attn_scales - self.temperal_upsample = temperal_upsample - - # dimensions - dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] - scale = 1.0 / 2**(len(dim_mult) - 2) - - # init block - self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1) - - # middle blocks - self.middle = nn.Sequential(ResidualBlock(dims[0], dims[0], dropout), - AttentionBlock(dims[0]), - ResidualBlock(dims[0], dims[0], dropout)) - - # upsample blocks - upsamples = [] - for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): - # residual (+attention) blocks - if i == 1 or i == 2 or i == 3: - in_dim = in_dim // 2 - for _ in range(num_res_blocks + 1): - upsamples.append(ResidualBlock(in_dim, out_dim, dropout)) - if scale in attn_scales: - upsamples.append(AttentionBlock(out_dim)) - in_dim = out_dim - - # upsample block - if i != len(dim_mult) - 1: - mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d' - upsamples.append(Resample(out_dim, mode=mode)) - scale *= 2.0 - self.upsamples = nn.Sequential(*upsamples) - - # output blocks - self.head = nn.Sequential(RMS_norm(out_dim, images=False), nn.SiLU(), - CausalConv3d(out_dim, 3, 3, padding=1)) - - def forward(self, x, feat_cache=None, feat_idx=[0]): - ## conv1 - if feat_cache is not None: - idx = feat_idx[0] - cache_x = x[:, :, -CACHE_T:, :, :].clone() - if cache_x.shape[2] < 2 and feat_cache[idx] is not None: - # cache last frame of last two chunk - cache_x = torch.cat([ - feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( - cache_x.device), cache_x - ], - dim=2) - x = self.conv1(x, feat_cache[idx]) - feat_cache[idx] = cache_x - feat_idx[0] += 1 - else: - x = self.conv1(x) - - ## middle - for layer in self.middle: - if check_is_instance(layer, ResidualBlock) and feat_cache is not None: - x = layer(x, feat_cache, feat_idx) - else: - x = layer(x) - - ## upsamples - for layer in self.upsamples: - if feat_cache is not None: - x = layer(x, feat_cache, feat_idx) - else: - x = layer(x) - - ## head - for layer in self.head: - if check_is_instance(layer, CausalConv3d) and feat_cache is not None: - idx = feat_idx[0] - cache_x = x[:, :, -CACHE_T:, :, :].clone() - if cache_x.shape[2] < 2 and feat_cache[idx] is not None: - # cache last frame of last two chunk - cache_x = torch.cat([ - feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( - cache_x.device), cache_x - ], - dim=2) - x = layer(x, feat_cache[idx]) - feat_cache[idx] = cache_x - feat_idx[0] += 1 - else: - x = layer(x) - return x - - -def count_conv3d(model): - count = 0 - for m in model.modules(): - if check_is_instance(m, CausalConv3d): - count += 1 - return count - - -class VideoVAE_(nn.Module): - - def __init__(self, - dim=96, - z_dim=16, - dim_mult=[1, 2, 4, 4], - num_res_blocks=2, - attn_scales=[], - temperal_downsample=[False, True, True], - dropout=0.0): - super().__init__() - self.dim = dim - self.z_dim = z_dim - self.dim_mult = dim_mult - self.num_res_blocks = num_res_blocks - self.attn_scales = attn_scales - self.temperal_downsample = temperal_downsample - self.temperal_upsample = temperal_downsample[::-1] - - # modules - self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, - attn_scales, self.temperal_downsample, dropout) - self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1) - self.conv2 = CausalConv3d(z_dim, z_dim, 1) - self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, - attn_scales, self.temperal_upsample, dropout) - - def forward(self, x): - mu, log_var = self.encode(x) - z = self.reparameterize(mu, log_var) - x_recon = self.decode(z) - return x_recon, mu, log_var - - def encode(self, x, scale): - self.clear_cache() - ## cache - t = x.shape[2] - iter_ = 1 + (t - 1) // 4 - - for i in range(iter_): - self._enc_conv_idx = [0] - if i == 0: - out = self.encoder(x[:, :, :1, :, :], - feat_cache=self._enc_feat_map, - feat_idx=self._enc_conv_idx) - else: - out_ = self.encoder(x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :], - feat_cache=self._enc_feat_map, - feat_idx=self._enc_conv_idx) - out = torch.cat([out, out_], 2) - mu, log_var = self.conv1(out).chunk(2, dim=1) - if isinstance(scale[0], torch.Tensor): - scale = [s.to(dtype=mu.dtype, device=mu.device) for s in scale] - mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view( - 1, self.z_dim, 1, 1, 1) - else: - scale = scale.to(dtype=mu.dtype, device=mu.device) - mu = (mu - scale[0]) * scale[1] - return mu - - def decode(self, z, scale): - self.clear_cache() - # z: [b,c,t,h,w] - if isinstance(scale[0], torch.Tensor): - scale = [s.to(dtype=z.dtype, device=z.device) for s in scale] - z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view( - 1, self.z_dim, 1, 1, 1) - else: - scale = scale.to(dtype=z.dtype, device=z.device) - z = z / scale[1] + scale[0] - iter_ = z.shape[2] - x = self.conv2(z) - for i in range(iter_): - self._conv_idx = [0] - if i == 0: - out = self.decoder(x[:, :, i:i + 1, :, :], - feat_cache=self._feat_map, - feat_idx=self._conv_idx) - else: - out_ = self.decoder(x[:, :, i:i + 1, :, :], - feat_cache=self._feat_map, - feat_idx=self._conv_idx) - out = torch.cat([out, out_], 2) # may add tensor offload - return out - - def reparameterize(self, mu, log_var): - std = torch.exp(0.5 * log_var) - eps = torch.randn_like(std) - return eps * std + mu - - def sample(self, imgs, deterministic=False): - mu, log_var = self.encode(imgs) - if deterministic: - return mu - std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0)) - return mu + std * torch.randn_like(std) - - def clear_cache(self): - self._conv_num = count_conv3d(self.decoder) - self._conv_idx = [0] - self._feat_map = [None] * self._conv_num - # cache encode - self._enc_conv_num = count_conv3d(self.encoder) - self._enc_conv_idx = [0] - self._enc_feat_map = [None] * self._enc_conv_num - - -class WanVideoVAE(nn.Module): - - def __init__(self, z_dim=16): - super().__init__() - - mean = [ - -0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508, - 0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921 - ] - std = [ - 2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743, - 3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160 - ] - self.mean = torch.tensor(mean) - self.std = torch.tensor(std) - self.scale = [self.mean, 1.0 / self.std] - - # init model - self.model = VideoVAE_(z_dim=z_dim).eval().requires_grad_(False) - self.upsampling_factor = 8 - - - def build_1d_mask(self, length, left_bound, right_bound, border_width): - x = torch.ones((length,)) - if not left_bound: - x[:border_width] = (torch.arange(border_width) + 1) / border_width - if not right_bound: - x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,)) - return x - - - def build_mask(self, data, is_bound, border_width): - _, _, _, H, W = data.shape - h = self.build_1d_mask(H, is_bound[0], is_bound[1], border_width[0]) - w = self.build_1d_mask(W, is_bound[2], is_bound[3], border_width[1]) - - h = repeat(h, "H -> H W", H=H, W=W) - w = repeat(w, "W -> H W", H=H, W=W) - - mask = torch.stack([h, w]).min(dim=0).values - mask = rearrange(mask, "H W -> 1 1 1 H W") - return mask - - - def tiled_decode(self, hidden_states, device, tile_size, tile_stride): - _, _, T, H, W = hidden_states.shape - size_h, size_w = tile_size - stride_h, stride_w = tile_stride - - # Split tasks - tasks = [] - for h in range(0, H, stride_h): - if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue - for w in range(0, W, stride_w): - if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue - h_, w_ = h + size_h, w + size_w - tasks.append((h, h_, w, w_)) - - data_device = "cpu" - computation_device = device - - out_T = T * 4 - 3 - weight = torch.zeros((1, 1, out_T, H * self.upsampling_factor, W * self.upsampling_factor), dtype=hidden_states.dtype, device=data_device) - values = torch.zeros((1, 3, out_T, H * self.upsampling_factor, W * self.upsampling_factor), dtype=hidden_states.dtype, device=data_device) - - for h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"): - hidden_states_batch = hidden_states[:, :, :, h:h_, w:w_].to(computation_device) - hidden_states_batch = self.model.decode(hidden_states_batch, self.scale).to(data_device) - - mask = self.build_mask( - hidden_states_batch, - is_bound=(h==0, h_>=H, w==0, w_>=W), - border_width=((size_h - stride_h) * self.upsampling_factor, (size_w - stride_w) * self.upsampling_factor) - ).to(dtype=hidden_states.dtype, device=data_device) - - target_h = h * self.upsampling_factor - target_w = w * self.upsampling_factor - values[ - :, - :, - :, - target_h:target_h + hidden_states_batch.shape[3], - target_w:target_w + hidden_states_batch.shape[4], - ] += hidden_states_batch * mask - weight[ - :, - :, - :, - target_h: target_h + hidden_states_batch.shape[3], - target_w: target_w + hidden_states_batch.shape[4], - ] += mask - values = values / weight - values = values.clamp_(-1, 1) - return values - - - def tiled_encode(self, video, device, tile_size, tile_stride): - _, _, T, H, W = video.shape - size_h, size_w = tile_size - stride_h, stride_w = tile_stride - - # Split tasks - tasks = [] - for h in range(0, H, stride_h): - if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue - for w in range(0, W, stride_w): - if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue - h_, w_ = h + size_h, w + size_w - tasks.append((h, h_, w, w_)) - - data_device = "cpu" - computation_device = device - - out_T = (T + 3) // 4 - weight = torch.zeros((1, 1, out_T, H // self.upsampling_factor, W // self.upsampling_factor), dtype=video.dtype, device=data_device) - values = torch.zeros((1, 16, out_T, H // self.upsampling_factor, W // self.upsampling_factor), dtype=video.dtype, device=data_device) - - # for h, h_, w, w_ in tqdm(tasks, desc="VAE encoding"): #me - for h, h_, w, w_ in tasks: - hidden_states_batch = video[:, :, :, h:h_, w:w_].to(computation_device) - hidden_states_batch = self.model.encode(hidden_states_batch, self.scale).to(data_device) - - mask = self.build_mask( - hidden_states_batch, - is_bound=(h==0, h_>=H, w==0, w_>=W), - border_width=((size_h - stride_h) // self.upsampling_factor, (size_w - stride_w) // self.upsampling_factor) - ).to(dtype=video.dtype, device=data_device) - - target_h = h // self.upsampling_factor - target_w = w // self.upsampling_factor - values[ - :, - :, - :, - target_h:target_h + hidden_states_batch.shape[3], - target_w:target_w + hidden_states_batch.shape[4], - ] += hidden_states_batch * mask - weight[ - :, - :, - :, - target_h: target_h + hidden_states_batch.shape[3], - target_w: target_w + hidden_states_batch.shape[4], - ] += mask - values = values / weight - return values - - - def single_encode(self, video, device): - video = video.to(device) - x = self.model.encode(video, self.scale) - return x - - - def single_decode(self, hidden_state, device): - hidden_state = hidden_state.to(device) - video = self.model.decode(hidden_state, self.scale) - return video.clamp_(-1, 1) - - - def encode(self, videos, device, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)): - - videos = [video.to("cpu") for video in videos] - hidden_states = [] - for video in videos: - video = video.unsqueeze(0) - if tiled: - tile_size = (tile_size[0] * 8, tile_size[1] * 8) - tile_stride = (tile_stride[0] * 8, tile_stride[1] * 8) - hidden_state = self.tiled_encode(video, device, tile_size, tile_stride) - else: - hidden_state = self.single_encode(video, device) - hidden_state = hidden_state.squeeze(0) - hidden_states.append(hidden_state) - hidden_states = torch.stack(hidden_states) - return hidden_states - - - def decode(self, hidden_states, device, tiled=False, tile_size=(34, 34), tile_stride=(18, 16)): - hidden_states = [hidden_state.to("cpu") for hidden_state in hidden_states] - videos = [] - for hidden_state in hidden_states: - hidden_state = hidden_state.unsqueeze(0) - if tiled: - video = self.tiled_decode(hidden_state, device, tile_size, tile_stride) - else: - video = self.single_decode(hidden_state, device) - video = video.squeeze(0) - videos.append(video) - videos = torch.stack(videos) - return videos - - - @staticmethod - def state_dict_converter(): - return WanVideoVAEStateDictConverter() - - -class WanVideoVAEStateDictConverter: - - def __init__(self): - pass - - def from_civitai(self, state_dict): - state_dict_ = {} - if 'model_state' in state_dict: - state_dict = state_dict['model_state'] - for name in state_dict: - state_dict_['model.' + name] = state_dict[name] - return state_dict_ diff --git a/diffsynth/pipelines/__init__.py b/diffsynth/pipelines/__init__.py deleted file mode 100644 index e2ad5516a01787b9e2ce5ba54228466dd7b57d8e..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/__init__.py +++ /dev/null @@ -1,15 +0,0 @@ -from .sd_image import SDImagePipeline -from .sd_video import SDVideoPipeline -from .sdxl_image import SDXLImagePipeline -from .sdxl_video import SDXLVideoPipeline -from .sd3_image import SD3ImagePipeline -from .hunyuan_image import HunyuanDiTImagePipeline -from .svd_video import SVDVideoPipeline -from .flux_image import FluxImagePipeline -from .cog_video import CogVideoPipeline -from .omnigen_image import OmnigenImagePipeline -from .pipeline_runner import SDVideoPipelineRunner -from .hunyuan_video import HunyuanVideoPipeline -from .step_video import StepVideoPipeline -from .wan_video import WanVideoPipeline -KolorsImagePipeline = SDXLImagePipeline diff --git a/diffsynth/pipelines/base.py b/diffsynth/pipelines/base.py deleted file mode 100644 index 53477e61da42488ded26c177df8ab89ed02ecfe8..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/base.py +++ /dev/null @@ -1,127 +0,0 @@ -import torch -import numpy as np -from PIL import Image -from torchvision.transforms import GaussianBlur - - - -class BasePipeline(torch.nn.Module): - - def __init__(self, device="cuda", torch_dtype=torch.float16, height_division_factor=64, width_division_factor=64): - super().__init__() - self.device = device - self.torch_dtype = torch_dtype - self.height_division_factor = height_division_factor - self.width_division_factor = width_division_factor - self.cpu_offload = False - self.model_names = [] - - - def check_resize_height_width(self, height, width): - if height % self.height_division_factor != 0: - height = (height + self.height_division_factor - 1) // self.height_division_factor * self.height_division_factor - print(f"The height cannot be evenly divided by {self.height_division_factor}. We round it up to {height}.") - if width % self.width_division_factor != 0: - width = (width + self.width_division_factor - 1) // self.width_division_factor * self.width_division_factor - print(f"The width cannot be evenly divided by {self.width_division_factor}. We round it up to {width}.") - return height, width - - - def preprocess_image(self, image): - image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) - return image # 1,c,h,w ? - - - def preprocess_images(self, images): - return [self.preprocess_image(image) for image in images] # num,1,c,h,w ? - - - def vae_output_to_image(self, vae_output): - image = vae_output[0].cpu().float().permute(1, 2, 0).numpy() - image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) - return image - - - def vae_output_to_video(self, vae_output): - video = vae_output.cpu().permute(1, 2, 0).numpy() - video = [Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) for image in video] - return video - - - def merge_latents(self, value, latents, masks, scales, blur_kernel_size=33, blur_sigma=10.0): - if len(latents) > 0: - blur = GaussianBlur(kernel_size=blur_kernel_size, sigma=blur_sigma) - height, width = value.shape[-2:] - weight = torch.ones_like(value) - for latent, mask, scale in zip(latents, masks, scales): - mask = self.preprocess_image(mask.resize((width, height))).mean(dim=1, keepdim=True) > 0 - mask = mask.repeat(1, latent.shape[1], 1, 1).to(dtype=latent.dtype, device=latent.device) - mask = blur(mask) - value += latent * mask * scale - weight += mask * scale - value /= weight - return value - - - def control_noise_via_local_prompts(self, prompt_emb_global, prompt_emb_locals, masks, mask_scales, inference_callback, special_kwargs=None, special_local_kwargs_list=None): - if special_kwargs is None: - noise_pred_global = inference_callback(prompt_emb_global) - else: - noise_pred_global = inference_callback(prompt_emb_global, special_kwargs) - if special_local_kwargs_list is None: - noise_pred_locals = [inference_callback(prompt_emb_local) for prompt_emb_local in prompt_emb_locals] - else: - noise_pred_locals = [inference_callback(prompt_emb_local, special_kwargs) for prompt_emb_local, special_kwargs in zip(prompt_emb_locals, special_local_kwargs_list)] - noise_pred = self.merge_latents(noise_pred_global, noise_pred_locals, masks, mask_scales) - return noise_pred - - - def extend_prompt(self, prompt, local_prompts, masks, mask_scales): - local_prompts = local_prompts or [] - masks = masks or [] - mask_scales = mask_scales or [] - extended_prompt_dict = self.prompter.extend_prompt(prompt) - prompt = extended_prompt_dict.get("prompt", prompt) - local_prompts += extended_prompt_dict.get("prompts", []) - masks += extended_prompt_dict.get("masks", []) - mask_scales += [100.0] * len(extended_prompt_dict.get("masks", [])) - return prompt, local_prompts, masks, mask_scales - - - def enable_cpu_offload(self): - self.cpu_offload = True - - - def load_models_to_device(self, loadmodel_names=[]): - # only load models to device if cpu_offload is enabled - if not self.cpu_offload: - return - # offload the unneeded models to cpu - for model_name in self.model_names: - if model_name not in loadmodel_names: - model = getattr(self, model_name) - if model is not None: - if hasattr(model, "vram_management_enabled") and model.vram_management_enabled: - for module in model.modules(): - if hasattr(module, "offload"): - module.offload() - else: - model.cpu() - # load the needed models to device - for model_name in loadmodel_names: - model = getattr(self, model_name) - if model is not None: - if hasattr(model, "vram_management_enabled") and model.vram_management_enabled: - for module in model.modules(): - if hasattr(module, "onload"): - module.onload() - else: - model.to(self.device) - # fresh the cuda cache - torch.cuda.empty_cache() - - - def generate_noise(self, shape, seed=None, device="cpu", dtype=torch.float16): - generator = None if seed is None else torch.Generator(device).manual_seed(seed) - noise = torch.randn(shape, generator=generator, device=device, dtype=dtype) - return noise diff --git a/diffsynth/pipelines/cog_video.py b/diffsynth/pipelines/cog_video.py deleted file mode 100644 index f42d295187e718617cc7d4e327067700f2a689fd..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/cog_video.py +++ /dev/null @@ -1,135 +0,0 @@ -from ..models import ModelManager, FluxTextEncoder2, CogDiT, CogVAEEncoder, CogVAEDecoder -from ..prompters import CogPrompter -from ..schedulers import EnhancedDDIMScheduler -from .base import BasePipeline -import torch -from tqdm import tqdm -from PIL import Image -import numpy as np -from einops import rearrange - - - -class CogVideoPipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16): - super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16) - self.scheduler = EnhancedDDIMScheduler(rescale_zero_terminal_snr=True, prediction_type="v_prediction") - self.prompter = CogPrompter() - # models - self.text_encoder: FluxTextEncoder2 = None - self.dit: CogDiT = None - self.vae_encoder: CogVAEEncoder = None - self.vae_decoder: CogVAEDecoder = None - - - def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): - self.text_encoder = model_manager.fetch_model("flux_text_encoder_2") - self.dit = model_manager.fetch_model("cog_dit") - self.vae_encoder = model_manager.fetch_model("cog_vae_encoder") - self.vae_decoder = model_manager.fetch_model("cog_vae_decoder") - self.prompter.fetch_models(self.text_encoder) - self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) - - - @staticmethod - def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[]): - pipe = CogVideoPipeline( - device=model_manager.device, - torch_dtype=model_manager.torch_dtype - ) - pipe.fetch_models(model_manager, prompt_refiner_classes) - return pipe - - - def tensor2video(self, frames): - frames = rearrange(frames, "C T H W -> T H W C") - frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) - frames = [Image.fromarray(frame) for frame in frames] - return frames - - - def encode_prompt(self, prompt, positive=True): - prompt_emb = self.prompter.encode_prompt(prompt, device=self.device, positive=positive) - return {"prompt_emb": prompt_emb} - - - def prepare_extra_input(self, latents): - return {"image_rotary_emb": self.dit.prepare_rotary_positional_embeddings(latents.shape[3], latents.shape[4], latents.shape[2], device=self.device)} - - - @torch.no_grad() - def __call__( - self, - prompt, - negative_prompt="", - input_video=None, - cfg_scale=7.0, - denoising_strength=1.0, - num_frames=49, - height=480, - width=720, - num_inference_steps=20, - tiled=False, - tile_size=(60, 90), - tile_stride=(30, 45), - seed=None, - progress_bar_cmd=tqdm, - progress_bar_st=None, - ): - height, width = self.check_resize_height_width(height, width) - - # Tiler parameters - tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} - - # Prepare scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength) - - # Prepare latent tensors - noise = self.generate_noise((1, 16, num_frames // 4 + 1, height//8, width//8), seed=seed, device="cpu", dtype=self.torch_dtype) - - if denoising_strength == 1.0: - latents = noise.clone() - else: - input_video = self.preprocess_images(input_video) - input_video = torch.stack(input_video, dim=2) - latents = self.vae_encoder.encode_video(input_video, **tiler_kwargs, progress_bar=progress_bar_cmd).to(dtype=self.torch_dtype) - latents = self.scheduler.add_noise(latents, noise, self.scheduler.timesteps[0]) - if not tiled: latents = latents.to(self.device) - - # Encode prompt - prompt_emb_posi = self.encode_prompt(prompt, positive=True) - if cfg_scale != 1.0: - prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) - - # Extra input - extra_input = self.prepare_extra_input(latents) - - # Denoise - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).to(self.device) - - # Classifier-free guidance - noise_pred_posi = self.dit( - latents, timestep=timestep, **prompt_emb_posi, **tiler_kwargs, **extra_input - ) - if cfg_scale != 1.0: - noise_pred_nega = self.dit( - latents, timestep=timestep, **prompt_emb_nega, **tiler_kwargs, **extra_input - ) - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - else: - noise_pred = noise_pred_posi - - # DDIM - latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) - - # Update progress bar - if progress_bar_st is not None: - progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) - - # Decode image - video = self.vae_decoder.decode_video(latents.to("cpu"), **tiler_kwargs, progress_bar=progress_bar_cmd) - video = self.tensor2video(video[0]) - - return video diff --git a/diffsynth/pipelines/dancer.py b/diffsynth/pipelines/dancer.py deleted file mode 100644 index 593b57c8363f94e312debf7c7f69bf6decdb7dbd..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/dancer.py +++ /dev/null @@ -1,236 +0,0 @@ -import torch -from ..models import SDUNet, SDMotionModel, SDXLUNet, SDXLMotionModel -from ..models.sd_unet import PushBlock, PopBlock -from ..controlnets import MultiControlNetManager - - -def lets_dance( - unet: SDUNet, - motion_modules: SDMotionModel = None, - controlnet: MultiControlNetManager = None, - sample = None, - timestep = None, - encoder_hidden_states = None, - ipadapter_kwargs_list = {}, - controlnet_frames = None, - unet_batch_size = 1, - controlnet_batch_size = 1, - cross_frame_attention = False, - tiled=False, - tile_size=64, - tile_stride=32, - device = "cuda", - vram_limit_level = 0, -): - # 0. Text embedding alignment (only for video processing) - if encoder_hidden_states.shape[0] != sample.shape[0]: - encoder_hidden_states = encoder_hidden_states.repeat(sample.shape[0], 1, 1, 1) - - # 1. ControlNet - # This part will be repeated on overlapping frames if animatediff_batch_size > animatediff_stride. - # I leave it here because I intend to do something interesting on the ControlNets. - controlnet_insert_block_id = 30 - if controlnet is not None and controlnet_frames is not None: - res_stacks = [] - # process controlnet frames with batch - for batch_id in range(0, sample.shape[0], controlnet_batch_size): - batch_id_ = min(batch_id + controlnet_batch_size, sample.shape[0]) - res_stack = controlnet( - sample[batch_id: batch_id_], - timestep, - encoder_hidden_states[batch_id: batch_id_], - controlnet_frames[:, batch_id: batch_id_], - tiled=tiled, tile_size=tile_size, tile_stride=tile_stride - ) - if vram_limit_level >= 1: - res_stack = [res.cpu() for res in res_stack] - res_stacks.append(res_stack) - # concat the residual - additional_res_stack = [] - for i in range(len(res_stacks[0])): - res = torch.concat([res_stack[i] for res_stack in res_stacks], dim=0) - additional_res_stack.append(res) - else: - additional_res_stack = None - - # 2. time - time_emb = unet.time_proj(timestep).to(sample.dtype) - time_emb = unet.time_embedding(time_emb) - - # 3. pre-process - height, width = sample.shape[2], sample.shape[3] - hidden_states = unet.conv_in(sample) - text_emb = encoder_hidden_states - res_stack = [hidden_states.cpu() if vram_limit_level>=1 else hidden_states] - - # 4. blocks - for block_id, block in enumerate(unet.blocks): - # 4.1 UNet - if isinstance(block, PushBlock): - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - if vram_limit_level>=1: - res_stack[-1] = res_stack[-1].cpu() - elif isinstance(block, PopBlock): - if vram_limit_level>=1: - res_stack[-1] = res_stack[-1].to(device) - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - else: - hidden_states_input = hidden_states - hidden_states_output = [] - for batch_id in range(0, sample.shape[0], unet_batch_size): - batch_id_ = min(batch_id + unet_batch_size, sample.shape[0]) - hidden_states, _, _, _ = block( - hidden_states_input[batch_id: batch_id_], - time_emb, - text_emb[batch_id: batch_id_], - res_stack, - cross_frame_attention=cross_frame_attention, - ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, {}), - tiled=tiled, tile_size=tile_size, tile_stride=tile_stride - ) - hidden_states_output.append(hidden_states) - hidden_states = torch.concat(hidden_states_output, dim=0) - # 4.2 AnimateDiff - if motion_modules is not None: - if block_id in motion_modules.call_block_id: - motion_module_id = motion_modules.call_block_id[block_id] - hidden_states, time_emb, text_emb, res_stack = motion_modules.motion_modules[motion_module_id]( - hidden_states, time_emb, text_emb, res_stack, - batch_size=1 - ) - # 4.3 ControlNet - if block_id == controlnet_insert_block_id and additional_res_stack is not None: - hidden_states += additional_res_stack.pop().to(device) - if vram_limit_level>=1: - res_stack = [(res.to(device) + additional_res.to(device)).cpu() for res, additional_res in zip(res_stack, additional_res_stack)] - else: - res_stack = [res + additional_res for res, additional_res in zip(res_stack, additional_res_stack)] - - # 5. output - hidden_states = unet.conv_norm_out(hidden_states) - hidden_states = unet.conv_act(hidden_states) - hidden_states = unet.conv_out(hidden_states) - - return hidden_states - - - - -def lets_dance_xl( - unet: SDXLUNet, - motion_modules: SDXLMotionModel = None, - controlnet: MultiControlNetManager = None, - sample = None, - add_time_id = None, - add_text_embeds = None, - timestep = None, - encoder_hidden_states = None, - ipadapter_kwargs_list = {}, - controlnet_frames = None, - unet_batch_size = 1, - controlnet_batch_size = 1, - cross_frame_attention = False, - tiled=False, - tile_size=64, - tile_stride=32, - device = "cuda", - vram_limit_level = 0, -): - # 0. Text embedding alignment (only for video processing) - if encoder_hidden_states.shape[0] != sample.shape[0]: - encoder_hidden_states = encoder_hidden_states.repeat(sample.shape[0], 1, 1, 1) - if add_text_embeds.shape[0] != sample.shape[0]: - add_text_embeds = add_text_embeds.repeat(sample.shape[0], 1) - - # 1. ControlNet - controlnet_insert_block_id = 22 - if controlnet is not None and controlnet_frames is not None: - res_stacks = [] - # process controlnet frames with batch - for batch_id in range(0, sample.shape[0], controlnet_batch_size): - batch_id_ = min(batch_id + controlnet_batch_size, sample.shape[0]) - res_stack = controlnet( - sample[batch_id: batch_id_], - timestep, - encoder_hidden_states[batch_id: batch_id_], - controlnet_frames[:, batch_id: batch_id_], - add_time_id=add_time_id, - add_text_embeds=add_text_embeds, - tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, - unet=unet, # for Kolors, some modules in ControlNets will be replaced. - ) - if vram_limit_level >= 1: - res_stack = [res.cpu() for res in res_stack] - res_stacks.append(res_stack) - # concat the residual - additional_res_stack = [] - for i in range(len(res_stacks[0])): - res = torch.concat([res_stack[i] for res_stack in res_stacks], dim=0) - additional_res_stack.append(res) - else: - additional_res_stack = None - - # 2. time - t_emb = unet.time_proj(timestep).to(sample.dtype) - t_emb = unet.time_embedding(t_emb) - - time_embeds = unet.add_time_proj(add_time_id) - time_embeds = time_embeds.reshape((add_text_embeds.shape[0], -1)) - add_embeds = torch.concat([add_text_embeds, time_embeds], dim=-1) - add_embeds = add_embeds.to(sample.dtype) - add_embeds = unet.add_time_embedding(add_embeds) - - time_emb = t_emb + add_embeds - - # 3. pre-process - height, width = sample.shape[2], sample.shape[3] - hidden_states = unet.conv_in(sample) - text_emb = encoder_hidden_states if unet.text_intermediate_proj is None else unet.text_intermediate_proj(encoder_hidden_states) - res_stack = [hidden_states] - - # 4. blocks - for block_id, block in enumerate(unet.blocks): - # 4.1 UNet - if isinstance(block, PushBlock): - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - if vram_limit_level>=1: - res_stack[-1] = res_stack[-1].cpu() - elif isinstance(block, PopBlock): - if vram_limit_level>=1: - res_stack[-1] = res_stack[-1].to(device) - hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) - else: - hidden_states_input = hidden_states - hidden_states_output = [] - for batch_id in range(0, sample.shape[0], unet_batch_size): - batch_id_ = min(batch_id + unet_batch_size, sample.shape[0]) - hidden_states, _, _, _ = block( - hidden_states_input[batch_id: batch_id_], - time_emb[batch_id: batch_id_], - text_emb[batch_id: batch_id_], - res_stack, - cross_frame_attention=cross_frame_attention, - ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, {}), - tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, - ) - hidden_states_output.append(hidden_states) - hidden_states = torch.concat(hidden_states_output, dim=0) - # 4.2 AnimateDiff - if motion_modules is not None: - if block_id in motion_modules.call_block_id: - motion_module_id = motion_modules.call_block_id[block_id] - hidden_states, time_emb, text_emb, res_stack = motion_modules.motion_modules[motion_module_id]( - hidden_states, time_emb, text_emb, res_stack, - batch_size=1 - ) - # 4.3 ControlNet - if block_id == controlnet_insert_block_id and additional_res_stack is not None: - hidden_states += additional_res_stack.pop().to(device) - res_stack = [res + additional_res for res, additional_res in zip(res_stack, additional_res_stack)] - - # 5. output - hidden_states = unet.conv_norm_out(hidden_states) - hidden_states = unet.conv_act(hidden_states) - hidden_states = unet.conv_out(hidden_states) - - return hidden_states \ No newline at end of file diff --git a/diffsynth/pipelines/flux_image.py b/diffsynth/pipelines/flux_image.py deleted file mode 100644 index c0729fc5470d26c7099a498a28c33a550a94de12..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/flux_image.py +++ /dev/null @@ -1,722 +0,0 @@ -from ..models import ModelManager, FluxDiT, SD3TextEncoder1, FluxTextEncoder2, FluxVAEDecoder, FluxVAEEncoder, FluxIpAdapter -from ..controlnets import FluxMultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator -from ..prompters import FluxPrompter -from ..schedulers import FlowMatchScheduler -from .base import BasePipeline -from typing import List -import torch -from tqdm import tqdm -import numpy as np -from PIL import Image -from ..models.tiler import FastTileWorker -from transformers import SiglipVisionModel -from copy import deepcopy -from transformers.models.t5.modeling_t5 import T5LayerNorm, T5DenseActDense, T5DenseGatedActDense -from ..models.flux_dit import RMSNorm -from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear - - -class FluxImagePipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16): - super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16) - self.scheduler = FlowMatchScheduler() - self.prompter = FluxPrompter() - # models - self.text_encoder_1: SD3TextEncoder1 = None - self.text_encoder_2: FluxTextEncoder2 = None - self.dit: FluxDiT = None - self.vae_decoder: FluxVAEDecoder = None - self.vae_encoder: FluxVAEEncoder = None - self.controlnet: FluxMultiControlNetManager = None - self.ipadapter: FluxIpAdapter = None - self.ipadapter_image_encoder: SiglipVisionModel = None - self.infinityou_processor: InfinitYou = None - self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae_decoder', 'vae_encoder', 'controlnet', 'ipadapter', 'ipadapter_image_encoder'] - - - def enable_vram_management(self, num_persistent_param_in_dit=None): - dtype = next(iter(self.text_encoder_1.parameters())).dtype - enable_vram_management( - self.text_encoder_1, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - torch.nn.Embedding: AutoWrappedModule, - torch.nn.LayerNorm: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - dtype = next(iter(self.text_encoder_2.parameters())).dtype - enable_vram_management( - self.text_encoder_2, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - torch.nn.Embedding: AutoWrappedModule, - T5LayerNorm: AutoWrappedModule, - T5DenseActDense: AutoWrappedModule, - T5DenseGatedActDense: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - dtype = next(iter(self.dit.parameters())).dtype - enable_vram_management( - self.dit, - module_map = { - RMSNorm: AutoWrappedModule, - torch.nn.Linear: AutoWrappedLinear, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cuda", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - max_num_param=num_persistent_param_in_dit, - overflow_module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - dtype = next(iter(self.vae_decoder.parameters())).dtype - enable_vram_management( - self.vae_decoder, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - torch.nn.Conv2d: AutoWrappedModule, - torch.nn.GroupNorm: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - dtype = next(iter(self.vae_encoder.parameters())).dtype - enable_vram_management( - self.vae_encoder, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - torch.nn.Conv2d: AutoWrappedModule, - torch.nn.GroupNorm: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - self.enable_cpu_offload() - - - def denoising_model(self): - return self.dit - - - def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], prompt_extender_classes=[]): - self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1") - self.text_encoder_2 = model_manager.fetch_model("flux_text_encoder_2") - self.dit = model_manager.fetch_model("flux_dit") - self.vae_decoder = model_manager.fetch_model("flux_vae_decoder") - self.vae_encoder = model_manager.fetch_model("flux_vae_encoder") - self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2) - self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) - self.prompter.load_prompt_extenders(model_manager, prompt_extender_classes) - - # ControlNets - controlnet_units = [] - for config in controlnet_config_units: - controlnet_unit = ControlNetUnit( - Annotator(config.processor_id, device=self.device, skip_processor=config.skip_processor), - model_manager.fetch_model("flux_controlnet", config.model_path), - config.scale - ) - controlnet_units.append(controlnet_unit) - self.controlnet = FluxMultiControlNetManager(controlnet_units) - - # IP-Adapters - self.ipadapter = model_manager.fetch_model("flux_ipadapter") - self.ipadapter_image_encoder = model_manager.fetch_model("siglip_vision_model") - - # InfiniteYou - self.image_proj_model = model_manager.fetch_model("infiniteyou_image_projector") - if self.image_proj_model is not None: - self.infinityou_processor = InfinitYou(device=self.device) - - - @staticmethod - def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], prompt_extender_classes=[], device=None, torch_dtype=None): - pipe = FluxImagePipeline( - device=model_manager.device if device is None else device, - torch_dtype=model_manager.torch_dtype if torch_dtype is None else torch_dtype, - ) - pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes, prompt_extender_classes) - return pipe - - - def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): - latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - return latents - - - def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): - image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - image = self.vae_output_to_image(image) - return image - - - def encode_prompt(self, prompt, positive=True, t5_sequence_length=512): - prompt_emb, pooled_prompt_emb, text_ids = self.prompter.encode_prompt( - prompt, device=self.device, positive=positive, t5_sequence_length=t5_sequence_length - ) - return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_ids": text_ids} - - - def prepare_extra_input(self, latents=None, guidance=1.0): - latent_image_ids = self.dit.prepare_image_ids(latents) - guidance = torch.Tensor([guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype) - return {"image_ids": latent_image_ids, "guidance": guidance} - - - def apply_controlnet_mask_on_latents(self, latents, mask): - mask = (self.preprocess_image(mask) + 1) / 2 - mask = mask.mean(dim=1, keepdim=True) - mask = mask.to(dtype=self.torch_dtype, device=self.device) - mask = 1 - torch.nn.functional.interpolate(mask, size=latents.shape[-2:]) - latents = torch.concat([latents, mask], dim=1) - return latents - - - def apply_controlnet_mask_on_image(self, image, mask): - mask = mask.resize(image.size) - mask = self.preprocess_image(mask).mean(dim=[0, 1]) - image = np.array(image) - image[mask > 0] = 0 - image = Image.fromarray(image) - return image - - - def prepare_controlnet_input(self, controlnet_image, controlnet_inpaint_mask, tiler_kwargs): - if isinstance(controlnet_image, Image.Image): - controlnet_image = [controlnet_image] * len(self.controlnet.processors) - - controlnet_frames = [] - for i in range(len(self.controlnet.processors)): - # image annotator - image = self.controlnet.process_image(controlnet_image[i], processor_id=i)[0] - if controlnet_inpaint_mask is not None and self.controlnet.processors[i].processor_id == "inpaint": - image = self.apply_controlnet_mask_on_image(image, controlnet_inpaint_mask) - - # image to tensor - image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) - - # vae encoder - image = self.encode_image(image, **tiler_kwargs) - if controlnet_inpaint_mask is not None and self.controlnet.processors[i].processor_id == "inpaint": - image = self.apply_controlnet_mask_on_latents(image, controlnet_inpaint_mask) - - # store it - controlnet_frames.append(image) - return controlnet_frames - - - def prepare_ipadapter_inputs(self, images, height=384, width=384): - images = [image.convert("RGB").resize((width, height), resample=3) for image in images] - images = [self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) for image in images] - return torch.cat(images, dim=0) - - - def inpaint_fusion(self, latents, inpaint_latents, pred_noise, fg_mask, bg_mask, progress_id, background_weight=0.): - # inpaint noise - inpaint_noise = (latents - inpaint_latents) / self.scheduler.sigmas[progress_id] - # merge noise - weight = torch.ones_like(inpaint_noise) - inpaint_noise[fg_mask] = pred_noise[fg_mask] - inpaint_noise[bg_mask] += pred_noise[bg_mask] * background_weight - weight[bg_mask] += background_weight - inpaint_noise /= weight - return inpaint_noise - - - def preprocess_masks(self, masks, height, width, dim): - out_masks = [] - for mask in masks: - mask = self.preprocess_image(mask.resize((width, height), resample=Image.NEAREST)).mean(dim=1, keepdim=True) > 0 - mask = mask.repeat(1, dim, 1, 1).to(device=self.device, dtype=self.torch_dtype) - out_masks.append(mask) - return out_masks - - - def prepare_entity_inputs(self, entity_prompts, entity_masks, width, height, t5_sequence_length=512, enable_eligen_inpaint=False): - fg_mask, bg_mask = None, None - if enable_eligen_inpaint: - masks_ = deepcopy(entity_masks) - fg_masks = torch.cat([self.preprocess_image(mask.resize((width//8, height//8))).mean(dim=1, keepdim=True) for mask in masks_]) - fg_masks = (fg_masks > 0).float() - fg_mask = fg_masks.sum(dim=0, keepdim=True).repeat(1, 16, 1, 1) > 0 - bg_mask = ~fg_mask - entity_masks = self.preprocess_masks(entity_masks, height//8, width//8, 1) - entity_masks = torch.cat(entity_masks, dim=0).unsqueeze(0) # b, n_mask, c, h, w - entity_prompts = self.encode_prompt(entity_prompts, t5_sequence_length=t5_sequence_length)['prompt_emb'].unsqueeze(0) - return entity_prompts, entity_masks, fg_mask, bg_mask - - - def prepare_latents(self, input_image, height, width, seed, tiled, tile_size, tile_stride): - if input_image is not None: - self.load_models_to_device(['vae_encoder']) - image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) - input_latents = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - noise = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - latents = self.scheduler.add_noise(input_latents, noise, timestep=self.scheduler.timesteps[0]) - else: - latents = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - input_latents = None - return latents, input_latents - - - def prepare_ipadapter(self, ipadapter_images, ipadapter_scale): - if ipadapter_images is not None: - self.load_models_to_device(['ipadapter_image_encoder']) - ipadapter_images = self.prepare_ipadapter_inputs(ipadapter_images) - ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images).pooler_output - self.load_models_to_device(['ipadapter']) - ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} - ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} - else: - ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} - return ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega - - - def prepare_controlnet(self, controlnet_image, masks, controlnet_inpaint_mask, tiler_kwargs, enable_controlnet_on_negative): - if controlnet_image is not None: - self.load_models_to_device(['vae_encoder']) - controlnet_kwargs_posi = {"controlnet_frames": self.prepare_controlnet_input(controlnet_image, controlnet_inpaint_mask, tiler_kwargs)} - if len(masks) > 0 and controlnet_inpaint_mask is not None: - print("The controlnet_inpaint_mask will be overridden by masks.") - local_controlnet_kwargs = [{"controlnet_frames": self.prepare_controlnet_input(controlnet_image, mask, tiler_kwargs)} for mask in masks] - else: - local_controlnet_kwargs = None - else: - controlnet_kwargs_posi, local_controlnet_kwargs = {"controlnet_frames": None}, [{}] * len(masks) - controlnet_kwargs_nega = controlnet_kwargs_posi if enable_controlnet_on_negative else {} - return controlnet_kwargs_posi, controlnet_kwargs_nega, local_controlnet_kwargs - - - def prepare_eligen(self, prompt_emb_nega, eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint, enable_eligen_on_negative, cfg_scale): - if eligen_entity_masks is not None: - entity_prompt_emb_posi, entity_masks_posi, fg_mask, bg_mask = self.prepare_entity_inputs(eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint) - if enable_eligen_on_negative and cfg_scale != 1.0: - entity_prompt_emb_nega = prompt_emb_nega['prompt_emb'].unsqueeze(1).repeat(1, entity_masks_posi.shape[1], 1, 1) - entity_masks_nega = entity_masks_posi - else: - entity_prompt_emb_nega, entity_masks_nega = None, None - else: - entity_prompt_emb_posi, entity_masks_posi, entity_prompt_emb_nega, entity_masks_nega = None, None, None, None - fg_mask, bg_mask = None, None - eligen_kwargs_posi = {"entity_prompt_emb": entity_prompt_emb_posi, "entity_masks": entity_masks_posi} - eligen_kwargs_nega = {"entity_prompt_emb": entity_prompt_emb_nega, "entity_masks": entity_masks_nega} - return eligen_kwargs_posi, eligen_kwargs_nega, fg_mask, bg_mask - - - def prepare_prompts(self, prompt, local_prompts, masks, mask_scales, t5_sequence_length, negative_prompt, cfg_scale): - # Extend prompt - self.load_models_to_device(['text_encoder_1', 'text_encoder_2']) - prompt, local_prompts, masks, mask_scales = self.extend_prompt(prompt, local_prompts, masks, mask_scales) - - # Encode prompts - prompt_emb_posi = self.encode_prompt(prompt, t5_sequence_length=t5_sequence_length) - prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False, t5_sequence_length=t5_sequence_length) if cfg_scale != 1.0 else None - prompt_emb_locals = [self.encode_prompt(prompt_local, t5_sequence_length=t5_sequence_length) for prompt_local in local_prompts] - return prompt_emb_posi, prompt_emb_nega, prompt_emb_locals - - - def prepare_infinite_you(self, id_image, controlnet_image, infinityou_guidance, height, width): - if self.infinityou_processor is not None and id_image is not None: - return self.infinityou_processor.prepare_infinite_you(self.image_proj_model, id_image, controlnet_image, infinityou_guidance, height, width) - else: - return {}, controlnet_image - - - @torch.no_grad() - def __call__( - self, - # Prompt - prompt, - negative_prompt="", - cfg_scale=1.0, - embedded_guidance=3.5, - t5_sequence_length=512, - # Image - input_image=None, - denoising_strength=1.0, - height=1024, - width=1024, - seed=None, - # Steps - num_inference_steps=30, - # local prompts - local_prompts=(), - masks=(), - mask_scales=(), - # ControlNet - controlnet_image=None, - controlnet_inpaint_mask=None, - enable_controlnet_on_negative=False, - # IP-Adapter - ipadapter_images=None, - ipadapter_scale=1.0, - # EliGen - eligen_entity_prompts=None, - eligen_entity_masks=None, - enable_eligen_on_negative=False, - enable_eligen_inpaint=False, - # InfiniteYou - infinityou_id_image=None, - infinityou_guidance=1.0, - # TeaCache - tea_cache_l1_thresh=None, - # Tile - tiled=False, - tile_size=128, - tile_stride=64, - # Progress bar - progress_bar_cmd=tqdm, - progress_bar_st=None, - ): - height, width = self.check_resize_height_width(height, width) - - # Tiler parameters - tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} - - # Prepare scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength) - - # Prepare latent tensors - latents, input_latents = self.prepare_latents(input_image, height, width, seed, tiled, tile_size, tile_stride) - - # Prompt - prompt_emb_posi, prompt_emb_nega, prompt_emb_locals = self.prepare_prompts(prompt, local_prompts, masks, mask_scales, t5_sequence_length, negative_prompt, cfg_scale) - - # Extra input - extra_input = self.prepare_extra_input(latents, guidance=embedded_guidance) - - # InfiniteYou - infiniteyou_kwargs, controlnet_image = self.prepare_infinite_you(infinityou_id_image, controlnet_image, infinityou_guidance, height, width) - - # Entity control - eligen_kwargs_posi, eligen_kwargs_nega, fg_mask, bg_mask = self.prepare_eligen(prompt_emb_nega, eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint, enable_eligen_on_negative, cfg_scale) - - # IP-Adapter - ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = self.prepare_ipadapter(ipadapter_images, ipadapter_scale) - - # ControlNets - controlnet_kwargs_posi, controlnet_kwargs_nega, local_controlnet_kwargs = self.prepare_controlnet(controlnet_image, masks, controlnet_inpaint_mask, tiler_kwargs, enable_controlnet_on_negative) - - # TeaCache - tea_cache_kwargs = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh) if tea_cache_l1_thresh is not None else None} - - # Denoise - self.load_models_to_device(['dit', 'controlnet']) - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).to(self.device) - - # Positive side - inference_callback = lambda prompt_emb_posi, controlnet_kwargs: lets_dance_flux( - dit=self.dit, controlnet=self.controlnet, - hidden_states=latents, timestep=timestep, - **prompt_emb_posi, **tiler_kwargs, **extra_input, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **eligen_kwargs_posi, **tea_cache_kwargs, **infiniteyou_kwargs - ) - noise_pred_posi = self.control_noise_via_local_prompts( - prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback, - special_kwargs=controlnet_kwargs_posi, special_local_kwargs_list=local_controlnet_kwargs - ) - - # Inpaint - if enable_eligen_inpaint: - noise_pred_posi = self.inpaint_fusion(latents, input_latents, noise_pred_posi, fg_mask, bg_mask, progress_id) - - # Classifier-free guidance - if cfg_scale != 1.0: - # Negative side - noise_pred_nega = lets_dance_flux( - dit=self.dit, controlnet=self.controlnet, - hidden_states=latents, timestep=timestep, - **prompt_emb_nega, **tiler_kwargs, **extra_input, **controlnet_kwargs_nega, **ipadapter_kwargs_list_nega, **eligen_kwargs_nega, **infiniteyou_kwargs, - ) - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - else: - noise_pred = noise_pred_posi - - # Iterate - latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) - - # UI - if progress_bar_st is not None: - progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) - - # Decode image - self.load_models_to_device(['vae_decoder']) - image = self.decode_image(latents, **tiler_kwargs) - - # Offload all models - self.load_models_to_device([]) - return image - - - -class InfinitYou: - def __init__(self, device="cuda", torch_dtype=torch.bfloat16): - from facexlib.recognition import init_recognition_model - from insightface.app import FaceAnalysis - self.device = device - self.torch_dtype = torch_dtype - insightface_root_path = 'models/InfiniteYou/insightface' - self.app_640 = FaceAnalysis(name='antelopev2', root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) - self.app_640.prepare(ctx_id=0, det_size=(640, 640)) - self.app_320 = FaceAnalysis(name='antelopev2', root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) - self.app_320.prepare(ctx_id=0, det_size=(320, 320)) - self.app_160 = FaceAnalysis(name='antelopev2', root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) - self.app_160.prepare(ctx_id=0, det_size=(160, 160)) - self.arcface_model = init_recognition_model('arcface', device=self.device) - - def _detect_face(self, id_image_cv2): - face_info = self.app_640.get(id_image_cv2) - if len(face_info) > 0: - return face_info - face_info = self.app_320.get(id_image_cv2) - if len(face_info) > 0: - return face_info - face_info = self.app_160.get(id_image_cv2) - return face_info - - def extract_arcface_bgr_embedding(self, in_image, landmark): - from insightface.utils import face_align - arc_face_image = face_align.norm_crop(in_image, landmark=np.array(landmark), image_size=112) - arc_face_image = torch.from_numpy(arc_face_image).unsqueeze(0).permute(0, 3, 1, 2) / 255. - arc_face_image = 2 * arc_face_image - 1 - arc_face_image = arc_face_image.contiguous().to(self.device) - face_emb = self.arcface_model(arc_face_image)[0] # [512], normalized - return face_emb - - def prepare_infinite_you(self, model, id_image, controlnet_image, infinityou_guidance, height, width): - import cv2 - if id_image is None: - return {'id_emb': None}, controlnet_image - id_image_cv2 = cv2.cvtColor(np.array(id_image), cv2.COLOR_RGB2BGR) - face_info = self._detect_face(id_image_cv2) - if len(face_info) == 0: - raise ValueError('No face detected in the input ID image') - landmark = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]['kps'] # only use the maximum face - id_emb = self.extract_arcface_bgr_embedding(id_image_cv2, landmark) - id_emb = model(id_emb.unsqueeze(0).reshape([1, -1, 512]).to(dtype=self.torch_dtype)) - if controlnet_image is None: - controlnet_image = Image.fromarray(np.zeros([height, width, 3]).astype(np.uint8)) - infinityou_guidance = torch.Tensor([infinityou_guidance]).to(device=self.device, dtype=self.torch_dtype) - return {'id_emb': id_emb, 'infinityou_guidance': infinityou_guidance}, controlnet_image - - -class TeaCache: - def __init__(self, num_inference_steps, rel_l1_thresh): - self.num_inference_steps = num_inference_steps - self.step = 0 - self.accumulated_rel_l1_distance = 0 - self.previous_modulated_input = None - self.rel_l1_thresh = rel_l1_thresh - self.previous_residual = None - self.previous_hidden_states = None - - def check(self, dit: FluxDiT, hidden_states, conditioning): - inp = hidden_states.clone() - temb_ = conditioning.clone() - modulated_inp, _, _, _, _ = dit.blocks[0].norm1_a(inp, emb=temb_) - if self.step == 0 or self.step == self.num_inference_steps - 1: - should_calc = True - self.accumulated_rel_l1_distance = 0 - else: - coefficients = [4.98651651e+02, -2.83781631e+02, 5.58554382e+01, -3.82021401e+00, 2.64230861e-01] - rescale_func = np.poly1d(coefficients) - self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) - if self.accumulated_rel_l1_distance < self.rel_l1_thresh: - should_calc = False - else: - should_calc = True - self.accumulated_rel_l1_distance = 0 - self.previous_modulated_input = modulated_inp - self.step += 1 - if self.step == self.num_inference_steps: - self.step = 0 - if should_calc: - self.previous_hidden_states = hidden_states.clone() - return not should_calc - - def store(self, hidden_states): - self.previous_residual = hidden_states - self.previous_hidden_states - self.previous_hidden_states = None - - def update(self, hidden_states): - hidden_states = hidden_states + self.previous_residual - return hidden_states - - -def lets_dance_flux( - dit: FluxDiT, - controlnet: FluxMultiControlNetManager = None, - hidden_states=None, - timestep=None, - prompt_emb=None, - pooled_prompt_emb=None, - guidance=None, - text_ids=None, - image_ids=None, - controlnet_frames=None, - tiled=False, - tile_size=128, - tile_stride=64, - entity_prompt_emb=None, - entity_masks=None, - ipadapter_kwargs_list={}, - id_emb=None, - infinityou_guidance=None, - tea_cache: TeaCache = None, - **kwargs -): - if tiled: - def flux_forward_fn(hl, hr, wl, wr): - tiled_controlnet_frames = [f[:, :, hl: hr, wl: wr] for f in controlnet_frames] if controlnet_frames is not None else None - return lets_dance_flux( - dit=dit, - controlnet=controlnet, - hidden_states=hidden_states[:, :, hl: hr, wl: wr], - timestep=timestep, - prompt_emb=prompt_emb, - pooled_prompt_emb=pooled_prompt_emb, - guidance=guidance, - text_ids=text_ids, - image_ids=None, - controlnet_frames=tiled_controlnet_frames, - tiled=False, - **kwargs - ) - return FastTileWorker().tiled_forward( - flux_forward_fn, - hidden_states, - tile_size=tile_size, - tile_stride=tile_stride, - tile_device=hidden_states.device, - tile_dtype=hidden_states.dtype - ) - - - # ControlNet - if controlnet is not None and controlnet_frames is not None: - controlnet_extra_kwargs = { - "hidden_states": hidden_states, - "timestep": timestep, - "prompt_emb": prompt_emb, - "pooled_prompt_emb": pooled_prompt_emb, - "guidance": guidance, - "text_ids": text_ids, - "image_ids": image_ids, - "tiled": tiled, - "tile_size": tile_size, - "tile_stride": tile_stride, - } - if id_emb is not None: - controlnet_text_ids = torch.zeros(id_emb.shape[0], id_emb.shape[1], 3).to(device=hidden_states.device, dtype=hidden_states.dtype) - controlnet_extra_kwargs.update({"prompt_emb": id_emb, 'text_ids': controlnet_text_ids, 'guidance': infinityou_guidance}) - controlnet_res_stack, controlnet_single_res_stack = controlnet( - controlnet_frames, **controlnet_extra_kwargs - ) - - if image_ids is None: - image_ids = dit.prepare_image_ids(hidden_states) - - conditioning = dit.time_embedder(timestep, hidden_states.dtype) + dit.pooled_text_embedder(pooled_prompt_emb) - if dit.guidance_embedder is not None: - guidance = guidance * 1000 - conditioning = conditioning + dit.guidance_embedder(guidance, hidden_states.dtype) - - height, width = hidden_states.shape[-2:] - hidden_states = dit.patchify(hidden_states) - hidden_states = dit.x_embedder(hidden_states) - - if entity_prompt_emb is not None and entity_masks is not None: - prompt_emb, image_rotary_emb, attention_mask = dit.process_entity_masks(hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids) - else: - prompt_emb = dit.context_embedder(prompt_emb) - image_rotary_emb = dit.pos_embedder(torch.cat((text_ids, image_ids), dim=1)) - attention_mask = None - - # TeaCache - if tea_cache is not None: - tea_cache_update = tea_cache.check(dit, hidden_states, conditioning) - else: - tea_cache_update = False - - if tea_cache_update: - hidden_states = tea_cache.update(hidden_states) - else: - # Joint Blocks - for block_id, block in enumerate(dit.blocks): - hidden_states, prompt_emb = block( - hidden_states, - prompt_emb, - conditioning, - image_rotary_emb, - attention_mask, - ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, None) - ) - # ControlNet - if controlnet is not None and controlnet_frames is not None: - hidden_states = hidden_states + controlnet_res_stack[block_id] - - # Single Blocks - hidden_states = torch.cat([prompt_emb, hidden_states], dim=1) - num_joint_blocks = len(dit.blocks) - for block_id, block in enumerate(dit.single_blocks): - hidden_states, prompt_emb = block( - hidden_states, - prompt_emb, - conditioning, - image_rotary_emb, - attention_mask, - ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id + num_joint_blocks, None) - ) - # ControlNet - if controlnet is not None and controlnet_frames is not None: - hidden_states[:, prompt_emb.shape[1]:] = hidden_states[:, prompt_emb.shape[1]:] + controlnet_single_res_stack[block_id] - hidden_states = hidden_states[:, prompt_emb.shape[1]:] - - if tea_cache is not None: - tea_cache.store(hidden_states) - - hidden_states = dit.final_norm_out(hidden_states, conditioning) - hidden_states = dit.final_proj_out(hidden_states) - hidden_states = dit.unpatchify(hidden_states, height, width) - - return hidden_states diff --git a/diffsynth/pipelines/hunyuan_image.py b/diffsynth/pipelines/hunyuan_image.py deleted file mode 100644 index 0c6f6d5dedc6aac50b06a9f10701f7f8ab33117f..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/hunyuan_image.py +++ /dev/null @@ -1,288 +0,0 @@ -from ..models.hunyuan_dit import HunyuanDiT -from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder -from ..models.sdxl_vae_encoder import SDXLVAEEncoder -from ..models.sdxl_vae_decoder import SDXLVAEDecoder -from ..models import ModelManager -from ..prompters import HunyuanDiTPrompter -from ..schedulers import EnhancedDDIMScheduler -from .base import BasePipeline -import torch -from tqdm import tqdm -import numpy as np - - - -class ImageSizeManager: - def __init__(self): - pass - - - def _to_tuple(self, x): - if isinstance(x, int): - return x, x - else: - return x - - - def get_fill_resize_and_crop(self, src, tgt): - th, tw = self._to_tuple(tgt) - h, w = self._to_tuple(src) - - tr = th / tw # base 分辨率 - r = h / w # 目标分辨率 - - # resize - if r > tr: - resize_height = th - resize_width = int(round(th / h * w)) - else: - resize_width = tw - resize_height = int(round(tw / w * h)) # 根据base分辨率,将目标分辨率resize下来 - - crop_top = int(round((th - resize_height) / 2.0)) - crop_left = int(round((tw - resize_width) / 2.0)) - - return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) - - - def get_meshgrid(self, start, *args): - if len(args) == 0: - # start is grid_size - num = self._to_tuple(start) - start = (0, 0) - stop = num - elif len(args) == 1: - # start is start, args[0] is stop, step is 1 - start = self._to_tuple(start) - stop = self._to_tuple(args[0]) - num = (stop[0] - start[0], stop[1] - start[1]) - elif len(args) == 2: - # start is start, args[0] is stop, args[1] is num - start = self._to_tuple(start) # 左上角 eg: 12,0 - stop = self._to_tuple(args[0]) # 右下角 eg: 20,32 - num = self._to_tuple(args[1]) # 目标大小 eg: 32,124 - else: - raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}") - - grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32) # 12-20 中间差值32份 0-32 中间差值124份 - grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32) - grid = np.meshgrid(grid_w, grid_h) # here w goes first - grid = np.stack(grid, axis=0) # [2, W, H] - return grid - - - def get_2d_rotary_pos_embed(self, embed_dim, start, *args, use_real=True): - grid = self.get_meshgrid(start, *args) # [2, H, w] - grid = grid.reshape([2, 1, *grid.shape[1:]]) # 返回一个采样矩阵 分辨率与目标分辨率一致 - pos_embed = self.get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real) - return pos_embed - - - def get_2d_rotary_pos_embed_from_grid(self, embed_dim, grid, use_real=False): - assert embed_dim % 4 == 0 - - # use half of dimensions to encode grid_h - emb_h = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4) - emb_w = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4) - - if use_real: - cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2) - sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2) - return cos, sin - else: - emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2) - return emb - - - def get_1d_rotary_pos_embed(self, dim: int, pos, theta: float = 10000.0, use_real=False): - if isinstance(pos, int): - pos = np.arange(pos) - freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2] - t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S] - freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2] - if use_real: - freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D] - freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D] - return freqs_cos, freqs_sin - else: - freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2] - return freqs_cis - - - def calc_rope(self, height, width): - patch_size = 2 - head_size = 88 - th = height // 8 // patch_size - tw = width // 8 // patch_size - base_size = 512 // 8 // patch_size - start, stop = self.get_fill_resize_and_crop((th, tw), base_size) - sub_args = [start, stop, (th, tw)] - rope = self.get_2d_rotary_pos_embed(head_size, *sub_args) - return rope - - - -class HunyuanDiTImagePipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16): - super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16) - self.scheduler = EnhancedDDIMScheduler(prediction_type="v_prediction", beta_start=0.00085, beta_end=0.03) - self.prompter = HunyuanDiTPrompter() - self.image_size_manager = ImageSizeManager() - # models - self.text_encoder: HunyuanDiTCLIPTextEncoder = None - self.text_encoder_t5: HunyuanDiTT5TextEncoder = None - self.dit: HunyuanDiT = None - self.vae_decoder: SDXLVAEDecoder = None - self.vae_encoder: SDXLVAEEncoder = None - self.model_names = ['text_encoder', 'text_encoder_t5', 'dit', 'vae_decoder', 'vae_encoder'] - - - def denoising_model(self): - return self.dit - - - def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): - # Main models - self.text_encoder = model_manager.fetch_model("hunyuan_dit_clip_text_encoder") - self.text_encoder_t5 = model_manager.fetch_model("hunyuan_dit_t5_text_encoder") - self.dit = model_manager.fetch_model("hunyuan_dit") - self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder") - self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder") - self.prompter.fetch_models(self.text_encoder, self.text_encoder_t5) - self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) - - - @staticmethod - def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None): - pipe = HunyuanDiTImagePipeline( - device=model_manager.device if device is None else device, - torch_dtype=model_manager.torch_dtype, - ) - pipe.fetch_models(model_manager, prompt_refiner_classes) - return pipe - - - def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): - latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - return latents - - - def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): - image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - image = self.vae_output_to_image(image) - return image - - - def encode_prompt(self, prompt, clip_skip=1, clip_skip_2=1, positive=True): - text_emb, text_emb_mask, text_emb_t5, text_emb_mask_t5 = self.prompter.encode_prompt( - prompt, - clip_skip=clip_skip, - clip_skip_2=clip_skip_2, - positive=positive, - device=self.device - ) - return { - "text_emb": text_emb, - "text_emb_mask": text_emb_mask, - "text_emb_t5": text_emb_t5, - "text_emb_mask_t5": text_emb_mask_t5 - } - - - def prepare_extra_input(self, latents=None, tiled=False, tile_size=64, tile_stride=32): - batch_size, height, width = latents.shape[0], latents.shape[2] * 8, latents.shape[3] * 8 - if tiled: - height, width = tile_size * 16, tile_size * 16 - image_meta_size = torch.as_tensor([width, height, width, height, 0, 0]).to(device=self.device) - freqs_cis_img = self.image_size_manager.calc_rope(height, width) - image_meta_size = torch.stack([image_meta_size] * batch_size) - return { - "size_emb": image_meta_size, - "freq_cis_img": (freqs_cis_img[0].to(dtype=self.torch_dtype, device=self.device), freqs_cis_img[1].to(dtype=self.torch_dtype, device=self.device)), - "tiled": tiled, - "tile_size": tile_size, - "tile_stride": tile_stride - } - - - @torch.no_grad() - def __call__( - self, - prompt, - local_prompts=[], - masks=[], - mask_scales=[], - negative_prompt="", - cfg_scale=7.5, - clip_skip=1, - clip_skip_2=1, - input_image=None, - reference_strengths=[0.4], - denoising_strength=1.0, - height=1024, - width=1024, - num_inference_steps=20, - tiled=False, - tile_size=64, - tile_stride=32, - seed=None, - progress_bar_cmd=tqdm, - progress_bar_st=None, - ): - height, width = self.check_resize_height_width(height, width) - - # Prepare scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength) - - # Prepare latent tensors - noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - if input_image is not None: - self.load_models_to_device(['vae_encoder']) - image = self.preprocess_image(input_image).to(device=self.device, dtype=torch.float32) - latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype) - latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) - else: - latents = noise.clone() - - # Encode prompts - self.load_models_to_device(['text_encoder', 'text_encoder_t5']) - prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) - if cfg_scale != 1.0: - prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) - prompt_emb_locals = [self.encode_prompt(prompt_local, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) for prompt_local in local_prompts] - - # Prepare positional id - extra_input = self.prepare_extra_input(latents, tiled, tile_size) - - # Denoise - self.load_models_to_device(['dit']) - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = torch.tensor([timestep]).to(dtype=self.torch_dtype, device=self.device) - - # Positive side - inference_callback = lambda prompt_emb_posi: self.dit(latents, timestep=timestep, **prompt_emb_posi, **extra_input) - noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) - - if cfg_scale != 1.0: - # Negative side - noise_pred_nega = self.dit( - latents, timestep=timestep, **prompt_emb_nega, **extra_input, - ) - # Classifier-free guidance - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - else: - noise_pred = noise_pred_posi - - latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) - - if progress_bar_st is not None: - progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) - - # Decode image - self.load_models_to_device(['vae_decoder']) - image = self.decode_image(latents.to(torch.float32), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - - # Offload all models - self.load_models_to_device([]) - return image diff --git a/diffsynth/pipelines/hunyuan_video.py b/diffsynth/pipelines/hunyuan_video.py deleted file mode 100644 index d8a0411e155f293e86a2b64073fa8b25af3d83d5..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/hunyuan_video.py +++ /dev/null @@ -1,395 +0,0 @@ -from ..models import ModelManager, SD3TextEncoder1, HunyuanVideoVAEDecoder, HunyuanVideoVAEEncoder -from ..models.hunyuan_video_dit import HunyuanVideoDiT -from ..models.hunyuan_video_text_encoder import HunyuanVideoLLMEncoder -from ..schedulers.flow_match import FlowMatchScheduler -from .base import BasePipeline -from ..prompters import HunyuanVideoPrompter -import torch -import torchvision.transforms as transforms -from einops import rearrange -import numpy as np -from PIL import Image -from tqdm import tqdm - - -class HunyuanVideoPipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16): - super().__init__(device=device, torch_dtype=torch_dtype) - self.scheduler = FlowMatchScheduler(shift=7.0, sigma_min=0.0, extra_one_step=True) - self.prompter = HunyuanVideoPrompter() - self.text_encoder_1: SD3TextEncoder1 = None - self.text_encoder_2: HunyuanVideoLLMEncoder = None - self.dit: HunyuanVideoDiT = None - self.vae_decoder: HunyuanVideoVAEDecoder = None - self.vae_encoder: HunyuanVideoVAEEncoder = None - self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae_decoder', 'vae_encoder'] - self.vram_management = False - - - def enable_vram_management(self): - self.vram_management = True - self.enable_cpu_offload() - self.text_encoder_2.enable_auto_offload(dtype=self.torch_dtype, device=self.device) - self.dit.enable_auto_offload(dtype=self.torch_dtype, device=self.device) - - - def fetch_models(self, model_manager: ModelManager): - self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1") - self.text_encoder_2 = model_manager.fetch_model("hunyuan_video_text_encoder_2") - self.dit = model_manager.fetch_model("hunyuan_video_dit") - self.vae_decoder = model_manager.fetch_model("hunyuan_video_vae_decoder") - self.vae_encoder = model_manager.fetch_model("hunyuan_video_vae_encoder") - self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2) - - - @staticmethod - def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None, enable_vram_management=True): - if device is None: device = model_manager.device - if torch_dtype is None: torch_dtype = model_manager.torch_dtype - pipe = HunyuanVideoPipeline(device=device, torch_dtype=torch_dtype) - pipe.fetch_models(model_manager) - if enable_vram_management: - pipe.enable_vram_management() - return pipe - - def generate_crop_size_list(self, base_size=256, patch_size=32, max_ratio=4.0): - num_patches = round((base_size / patch_size)**2) - assert max_ratio >= 1.0 - crop_size_list = [] - wp, hp = num_patches, 1 - while wp > 0: - if max(wp, hp) / min(wp, hp) <= max_ratio: - crop_size_list.append((wp * patch_size, hp * patch_size)) - if (hp + 1) * wp <= num_patches: - hp += 1 - else: - wp -= 1 - return crop_size_list - - - def get_closest_ratio(self, height: float, width: float, ratios: list, buckets: list): - aspect_ratio = float(height) / float(width) - closest_ratio_id = np.abs(ratios - aspect_ratio).argmin() - closest_ratio = min(ratios, key=lambda ratio: abs(float(ratio) - aspect_ratio)) - return buckets[closest_ratio_id], float(closest_ratio) - - - def prepare_vae_images_inputs(self, semantic_images, i2v_resolution="720p"): - if i2v_resolution == "720p": - bucket_hw_base_size = 960 - elif i2v_resolution == "540p": - bucket_hw_base_size = 720 - elif i2v_resolution == "360p": - bucket_hw_base_size = 480 - else: - raise ValueError(f"i2v_resolution: {i2v_resolution} must be in [360p, 540p, 720p]") - origin_size = semantic_images[0].size - - crop_size_list = self.generate_crop_size_list(bucket_hw_base_size, 32) - aspect_ratios = np.array([round(float(h) / float(w), 5) for h, w in crop_size_list]) - closest_size, closest_ratio = self.get_closest_ratio(origin_size[1], origin_size[0], aspect_ratios, crop_size_list) - ref_image_transform = transforms.Compose([ - transforms.Resize(closest_size), - transforms.CenterCrop(closest_size), - transforms.ToTensor(), - transforms.Normalize([0.5], [0.5]) - ]) - - semantic_image_pixel_values = [ref_image_transform(semantic_image) for semantic_image in semantic_images] - semantic_image_pixel_values = torch.cat(semantic_image_pixel_values).unsqueeze(0).unsqueeze(2).to(self.device) - target_height, target_width = closest_size - return semantic_image_pixel_values, target_height, target_width - - - def encode_prompt(self, prompt, positive=True, clip_sequence_length=77, llm_sequence_length=256, input_images=None): - prompt_emb, pooled_prompt_emb, text_mask = self.prompter.encode_prompt( - prompt, device=self.device, positive=positive, clip_sequence_length=clip_sequence_length, llm_sequence_length=llm_sequence_length, images=input_images - ) - return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_mask": text_mask} - - - def prepare_extra_input(self, latents=None, guidance=1.0): - freqs_cos, freqs_sin = self.dit.prepare_freqs(latents) - guidance = torch.Tensor([guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype) - return {"freqs_cos": freqs_cos, "freqs_sin": freqs_sin, "guidance": guidance} - - - def tensor2video(self, frames): - frames = rearrange(frames, "C T H W -> T H W C") - frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) - frames = [Image.fromarray(frame) for frame in frames] - return frames - - - def encode_video(self, frames, tile_size=(17, 30, 30), tile_stride=(12, 20, 20)): - tile_size = ((tile_size[0] - 1) * 4 + 1, tile_size[1] * 8, tile_size[2] * 8) - tile_stride = (tile_stride[0] * 4, tile_stride[1] * 8, tile_stride[2] * 8) - latents = self.vae_encoder.encode_video(frames, tile_size=tile_size, tile_stride=tile_stride) - return latents - - - @torch.no_grad() - def __call__( - self, - prompt, - negative_prompt="", - input_video=None, - input_images=None, - i2v_resolution="720p", - i2v_stability=True, - denoising_strength=1.0, - seed=None, - rand_device=None, - height=720, - width=1280, - num_frames=129, - embedded_guidance=6.0, - cfg_scale=1.0, - num_inference_steps=30, - tea_cache_l1_thresh=None, - tile_size=(17, 30, 30), - tile_stride=(12, 20, 20), - step_processor=None, - progress_bar_cmd=lambda x: x, - progress_bar_st=None, - ): - # Tiler parameters - tiler_kwargs = {"tile_size": tile_size, "tile_stride": tile_stride} - - # Scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength) - - # encoder input images - if input_images is not None: - self.load_models_to_device(['vae_encoder']) - image_pixel_values, height, width = self.prepare_vae_images_inputs(input_images, i2v_resolution=i2v_resolution) - with torch.autocast(device_type=self.device, dtype=torch.float16, enabled=True): - image_latents = self.vae_encoder(image_pixel_values) - - # Initialize noise - rand_device = self.device if rand_device is None else rand_device - noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=self.torch_dtype).to(self.device) - if input_video is not None: - self.load_models_to_device(['vae_encoder']) - input_video = self.preprocess_images(input_video) - input_video = torch.stack(input_video, dim=2) - latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=self.torch_dtype, device=self.device) - latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) - elif input_images is not None and i2v_stability: - noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=image_latents.dtype).to(self.device) - t = torch.tensor([0.999]).to(device=self.device) - latents = noise * t + image_latents.repeat(1, 1, (num_frames - 1) // 4 + 1, 1, 1) * (1 - t) - latents = latents.to(dtype=image_latents.dtype) - else: - latents = noise - - # Encode prompts - # current mllm does not support vram_management - self.load_models_to_device(["text_encoder_1"] if self.vram_management and input_images is None else ["text_encoder_1", "text_encoder_2"]) - prompt_emb_posi = self.encode_prompt(prompt, positive=True, input_images=input_images) - if cfg_scale != 1.0: - prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) - - # Extra input - extra_input = self.prepare_extra_input(latents, guidance=embedded_guidance) - - # TeaCache - tea_cache_kwargs = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh) if tea_cache_l1_thresh is not None else None} - - # Denoise - self.load_models_to_device([] if self.vram_management else ["dit"]) - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).to(self.device) - print(f"Step {progress_id + 1} / {len(self.scheduler.timesteps)}") - - forward_func = lets_dance_hunyuan_video - if input_images is not None: - latents = torch.concat([image_latents, latents[:, :, 1:, :, :]], dim=2) - forward_func = lets_dance_hunyuan_video_i2v - - # Inference - with torch.autocast(device_type=self.device, dtype=self.torch_dtype): - noise_pred_posi = forward_func(self.dit, latents, timestep, **prompt_emb_posi, **extra_input, **tea_cache_kwargs) - if cfg_scale != 1.0: - noise_pred_nega = forward_func(self.dit, latents, timestep, **prompt_emb_nega, **extra_input) - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - else: - noise_pred = noise_pred_posi - - # (Experimental feature, may be removed in the future) - if step_processor is not None: - self.load_models_to_device(['vae_decoder']) - rendered_frames = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents, to_final=True) - rendered_frames = self.vae_decoder.decode_video(rendered_frames, **tiler_kwargs) - rendered_frames = self.tensor2video(rendered_frames[0]) - rendered_frames = step_processor(rendered_frames, original_frames=input_video) - self.load_models_to_device(['vae_encoder']) - rendered_frames = self.preprocess_images(rendered_frames) - rendered_frames = torch.stack(rendered_frames, dim=2) - target_latents = self.encode_video(rendered_frames).to(dtype=self.torch_dtype, device=self.device) - noise_pred = self.scheduler.return_to_timestep(self.scheduler.timesteps[progress_id], latents, target_latents) - self.load_models_to_device([] if self.vram_management else ["dit"]) - - # Scheduler - if input_images is not None: - latents = self.scheduler.step(noise_pred[:, :, 1:, :, :], self.scheduler.timesteps[progress_id], latents[:, :, 1:, :, :]) - latents = torch.concat([image_latents, latents], dim=2) - else: - latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) - - # Decode - self.load_models_to_device(['vae_decoder']) - frames = self.vae_decoder.decode_video(latents, **tiler_kwargs) - self.load_models_to_device([]) - frames = self.tensor2video(frames[0]) - - return frames - - - -class TeaCache: - def __init__(self, num_inference_steps, rel_l1_thresh): - self.num_inference_steps = num_inference_steps - self.step = 0 - self.accumulated_rel_l1_distance = 0 - self.previous_modulated_input = None - self.rel_l1_thresh = rel_l1_thresh - self.previous_residual = None - self.previous_hidden_states = None - - def check(self, dit: HunyuanVideoDiT, img, vec): - img_ = img.clone() - vec_ = vec.clone() - img_mod1_shift, img_mod1_scale, _, _, _, _ = dit.double_blocks[0].component_a.mod(vec_).chunk(6, dim=-1) - normed_inp = dit.double_blocks[0].component_a.norm1(img_) - modulated_inp = normed_inp * (1 + img_mod1_scale.unsqueeze(1)) + img_mod1_shift.unsqueeze(1) - if self.step == 0 or self.step == self.num_inference_steps - 1: - should_calc = True - self.accumulated_rel_l1_distance = 0 - else: - coefficients = [7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02] - rescale_func = np.poly1d(coefficients) - self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) - if self.accumulated_rel_l1_distance < self.rel_l1_thresh: - should_calc = False - else: - should_calc = True - self.accumulated_rel_l1_distance = 0 - self.previous_modulated_input = modulated_inp - self.step += 1 - if self.step == self.num_inference_steps: - self.step = 0 - if should_calc: - self.previous_hidden_states = img.clone() - return not should_calc - - def store(self, hidden_states): - self.previous_residual = hidden_states - self.previous_hidden_states - self.previous_hidden_states = None - - def update(self, hidden_states): - hidden_states = hidden_states + self.previous_residual - return hidden_states - - - -def lets_dance_hunyuan_video( - dit: HunyuanVideoDiT, - x: torch.Tensor, - t: torch.Tensor, - prompt_emb: torch.Tensor = None, - text_mask: torch.Tensor = None, - pooled_prompt_emb: torch.Tensor = None, - freqs_cos: torch.Tensor = None, - freqs_sin: torch.Tensor = None, - guidance: torch.Tensor = None, - tea_cache: TeaCache = None, - **kwargs -): - B, C, T, H, W = x.shape - - vec = dit.time_in(t, dtype=torch.float32) + dit.vector_in(pooled_prompt_emb) + dit.guidance_in(guidance * 1000, dtype=torch.float32) - img = dit.img_in(x) - txt = dit.txt_in(prompt_emb, t, text_mask) - - # TeaCache - if tea_cache is not None: - tea_cache_update = tea_cache.check(dit, img, vec) - else: - tea_cache_update = False - - if tea_cache_update: - print("TeaCache skip forward.") - img = tea_cache.update(img) - else: - split_token = int(text_mask.sum(dim=1)) - txt_len = int(txt.shape[1]) - for block in tqdm(dit.double_blocks, desc="Double stream blocks"): - img, txt = block(img, txt, vec, (freqs_cos, freqs_sin), split_token=split_token) - - x = torch.concat([img, txt], dim=1) - for block in tqdm(dit.single_blocks, desc="Single stream blocks"): - x = block(x, vec, (freqs_cos, freqs_sin), txt_len=txt_len, split_token=split_token) - img = x[:, :-txt_len] - - if tea_cache is not None: - tea_cache.store(img) - img = dit.final_layer(img, vec) - img = dit.unpatchify(img, T=T//1, H=H//2, W=W//2) - return img - - -def lets_dance_hunyuan_video_i2v( - dit: HunyuanVideoDiT, - x: torch.Tensor, - t: torch.Tensor, - prompt_emb: torch.Tensor = None, - text_mask: torch.Tensor = None, - pooled_prompt_emb: torch.Tensor = None, - freqs_cos: torch.Tensor = None, - freqs_sin: torch.Tensor = None, - guidance: torch.Tensor = None, - tea_cache: TeaCache = None, - **kwargs -): - B, C, T, H, W = x.shape - # Uncomment below to keep same as official implementation - # guidance = guidance.to(dtype=torch.float32).to(torch.bfloat16) - vec = dit.time_in(t, dtype=torch.bfloat16) - vec_2 = dit.vector_in(pooled_prompt_emb) - vec = vec + vec_2 - vec = vec + dit.guidance_in(guidance * 1000., dtype=torch.bfloat16) - - token_replace_vec = dit.time_in(torch.zeros_like(t), dtype=torch.bfloat16) - tr_token = (H // 2) * (W // 2) - token_replace_vec = token_replace_vec + vec_2 - - img = dit.img_in(x) - txt = dit.txt_in(prompt_emb, t, text_mask) - - # TeaCache - if tea_cache is not None: - tea_cache_update = tea_cache.check(dit, img, vec) - else: - tea_cache_update = False - - if tea_cache_update: - print("TeaCache skip forward.") - img = tea_cache.update(img) - else: - split_token = int(text_mask.sum(dim=1)) - txt_len = int(txt.shape[1]) - for block in tqdm(dit.double_blocks, desc="Double stream blocks"): - img, txt = block(img, txt, vec, (freqs_cos, freqs_sin), token_replace_vec, tr_token, split_token) - - x = torch.concat([img, txt], dim=1) - for block in tqdm(dit.single_blocks, desc="Single stream blocks"): - x = block(x, vec, (freqs_cos, freqs_sin), txt_len, token_replace_vec, tr_token, split_token) - img = x[:, :-txt_len] - - if tea_cache is not None: - tea_cache.store(img) - img = dit.final_layer(img, vec) - img = dit.unpatchify(img, T=T//1, H=H//2, W=W//2) - return img diff --git a/diffsynth/pipelines/omnigen_image.py b/diffsynth/pipelines/omnigen_image.py deleted file mode 100644 index ddb2ae656639550084b7143fe690186602c0387d..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/omnigen_image.py +++ /dev/null @@ -1,289 +0,0 @@ -from ..models.omnigen import OmniGenTransformer -from ..models.sdxl_vae_encoder import SDXLVAEEncoder -from ..models.sdxl_vae_decoder import SDXLVAEDecoder -from ..models.model_manager import ModelManager -from ..prompters.omnigen_prompter import OmniGenPrompter -from ..schedulers import FlowMatchScheduler -from .base import BasePipeline -from typing import Optional, Dict, Any, Tuple, List -from transformers.cache_utils import DynamicCache -import torch, os -from tqdm import tqdm - - - -class OmniGenCache(DynamicCache): - def __init__(self, - num_tokens_for_img: int, offload_kv_cache: bool=False) -> None: - if not torch.cuda.is_available(): - print("No available GPU, offload_kv_cache will be set to False, which will result in large memory usage and time cost when input multiple images!!!") - offload_kv_cache = False - raise RuntimeError("OffloadedCache can only be used with a GPU") - super().__init__() - self.original_device = [] - self.prefetch_stream = torch.cuda.Stream() - self.num_tokens_for_img = num_tokens_for_img - self.offload_kv_cache = offload_kv_cache - - def prefetch_layer(self, layer_idx: int): - "Starts prefetching the next layer cache" - if layer_idx < len(self): - with torch.cuda.stream(self.prefetch_stream): - # Prefetch next layer tensors to GPU - device = self.original_device[layer_idx] - self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True) - self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True) - - - def evict_previous_layer(self, layer_idx: int): - "Moves the previous layer cache to the CPU" - if len(self) > 2: - # We do it on the default stream so it occurs after all earlier computations on these tensors are done - if layer_idx == 0: - prev_layer_idx = -1 - else: - prev_layer_idx = (layer_idx - 1) % len(self) - self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True) - self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True) - - - def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]: - "Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer." - if layer_idx < len(self): - if self.offload_kv_cache: - # Evict the previous layer if necessary - torch.cuda.current_stream().synchronize() - self.evict_previous_layer(layer_idx) - # Load current layer cache to its original device if not already there - original_device = self.original_device[layer_idx] - # self.prefetch_stream.synchronize(original_device) - torch.cuda.synchronize(self.prefetch_stream) - key_tensor = self.key_cache[layer_idx] - value_tensor = self.value_cache[layer_idx] - - # Prefetch the next layer - self.prefetch_layer((layer_idx + 1) % len(self)) - else: - key_tensor = self.key_cache[layer_idx] - value_tensor = self.value_cache[layer_idx] - return (key_tensor, value_tensor) - else: - raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") - - - def update( - self, - key_states: torch.Tensor, - value_states: torch.Tensor, - layer_idx: int, - cache_kwargs: Optional[Dict[str, Any]] = None, - ) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. - Parameters: - key_states (`torch.Tensor`): - The new key states to cache. - value_states (`torch.Tensor`): - The new value states to cache. - layer_idx (`int`): - The index of the layer to cache the states for. - cache_kwargs (`Dict[str, Any]`, `optional`): - Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`. - Return: - A tuple containing the updated key and value states. - """ - # Update the cache - if len(self.key_cache) < layer_idx: - raise ValueError("OffloadedCache does not support model usage where layers are skipped. Use DynamicCache.") - elif len(self.key_cache) == layer_idx: - # only cache the states for condition tokens - key_states = key_states[..., :-(self.num_tokens_for_img+1), :] - value_states = value_states[..., :-(self.num_tokens_for_img+1), :] - - # Update the number of seen tokens - if layer_idx == 0: - self._seen_tokens += key_states.shape[-2] - - self.key_cache.append(key_states) - self.value_cache.append(value_states) - self.original_device.append(key_states.device) - if self.offload_kv_cache: - self.evict_previous_layer(layer_idx) - return self.key_cache[layer_idx], self.value_cache[layer_idx] - else: - # only cache the states for condition tokens - key_tensor, value_tensor = self[layer_idx] - k = torch.cat([key_tensor, key_states], dim=-2) - v = torch.cat([value_tensor, value_states], dim=-2) - return k, v - - - -class OmnigenImagePipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16): - super().__init__(device=device, torch_dtype=torch_dtype) - self.scheduler = FlowMatchScheduler(num_train_timesteps=1, shift=1, inverse_timesteps=True, sigma_min=0, sigma_max=1) - # models - self.vae_decoder: SDXLVAEDecoder = None - self.vae_encoder: SDXLVAEEncoder = None - self.transformer: OmniGenTransformer = None - self.prompter: OmniGenPrompter = None - self.model_names = ['transformer', 'vae_decoder', 'vae_encoder'] - - - def denoising_model(self): - return self.transformer - - - def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): - # Main models - self.transformer, model_path = model_manager.fetch_model("omnigen_transformer", require_model_path=True) - self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder") - self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder") - self.prompter = OmniGenPrompter.from_pretrained(os.path.dirname(model_path)) - - - @staticmethod - def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None): - pipe = OmnigenImagePipeline( - device=model_manager.device if device is None else device, - torch_dtype=model_manager.torch_dtype, - ) - pipe.fetch_models(model_manager, prompt_refiner_classes=[]) - return pipe - - - def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): - latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - return latents - - - def encode_images(self, images, tiled=False, tile_size=64, tile_stride=32): - latents = [self.encode_image(image.to(device=self.device), tiled, tile_size, tile_stride).to(self.torch_dtype) for image in images] - return latents - - - def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): - image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - image = self.vae_output_to_image(image) - return image - - - def encode_prompt(self, prompt, clip_skip=1, positive=True): - prompt_emb = self.prompter.encode_prompt(prompt, clip_skip=clip_skip, device=self.device, positive=positive) - return {"encoder_hidden_states": prompt_emb} - - - def prepare_extra_input(self, latents=None): - return {} - - - def crop_position_ids_for_cache(self, position_ids, num_tokens_for_img): - if isinstance(position_ids, list): - for i in range(len(position_ids)): - position_ids[i] = position_ids[i][:, -(num_tokens_for_img+1):] - else: - position_ids = position_ids[:, -(num_tokens_for_img+1):] - return position_ids - - - def crop_attention_mask_for_cache(self, attention_mask, num_tokens_for_img): - if isinstance(attention_mask, list): - return [x[..., -(num_tokens_for_img+1):, :] for x in attention_mask] - return attention_mask[..., -(num_tokens_for_img+1):, :] - - - @torch.no_grad() - def __call__( - self, - prompt, - reference_images=[], - cfg_scale=2.0, - image_cfg_scale=2.0, - use_kv_cache=True, - offload_kv_cache=True, - input_image=None, - denoising_strength=1.0, - height=1024, - width=1024, - num_inference_steps=20, - tiled=False, - tile_size=64, - tile_stride=32, - seed=None, - progress_bar_cmd=tqdm, - progress_bar_st=None, - ): - height, width = self.check_resize_height_width(height, width) - - # Tiler parameters - tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} - - # Prepare scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength) - - # Prepare latent tensors - if input_image is not None: - self.load_models_to_device(['vae_encoder']) - image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) - latents = self.encode_image(image, **tiler_kwargs) - noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) - else: - latents = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - latents = latents.repeat(3, 1, 1, 1) - - # Encode prompts - input_data = self.prompter(prompt, reference_images, height=height, width=width, use_img_cfg=True, separate_cfg_input=True, use_input_image_size_as_output=False) - - # Encode images - reference_latents = [self.encode_images(images, **tiler_kwargs) for images in input_data['input_pixel_values']] - - # Pack all parameters - model_kwargs = dict(input_ids=[input_ids.to(self.device) for input_ids in input_data['input_ids']], - input_img_latents=reference_latents, - input_image_sizes=input_data['input_image_sizes'], - attention_mask=[attention_mask.to(self.device) for attention_mask in input_data["attention_mask"]], - position_ids=[position_ids.to(self.device) for position_ids in input_data["position_ids"]], - cfg_scale=cfg_scale, - img_cfg_scale=image_cfg_scale, - use_img_cfg=True, - use_kv_cache=use_kv_cache, - offload_model=False, - ) - - # Denoise - self.load_models_to_device(['transformer']) - cache = [OmniGenCache(latents.size(-1)*latents.size(-2) // 4, offload_kv_cache) for _ in range(len(model_kwargs['input_ids']))] if use_kv_cache else None - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).repeat(latents.shape[0]).to(self.device) - - # Forward - noise_pred, cache = self.transformer.forward_with_separate_cfg(latents, timestep, past_key_values=cache, **model_kwargs) - - # Scheduler - latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) - - # Update KV cache - if progress_id == 0 and use_kv_cache: - num_tokens_for_img = latents.size(-1)*latents.size(-2) // 4 - if isinstance(cache, list): - model_kwargs['input_ids'] = [None] * len(cache) - else: - model_kwargs['input_ids'] = None - model_kwargs['position_ids'] = self.crop_position_ids_for_cache(model_kwargs['position_ids'], num_tokens_for_img) - model_kwargs['attention_mask'] = self.crop_attention_mask_for_cache(model_kwargs['attention_mask'], num_tokens_for_img) - - # UI - if progress_bar_st is not None: - progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) - - # Decode image - del cache - self.load_models_to_device(['vae_decoder']) - image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - - # offload all models - self.load_models_to_device([]) - return image diff --git a/diffsynth/pipelines/pipeline_runner.py b/diffsynth/pipelines/pipeline_runner.py deleted file mode 100644 index 1b842f9bd7b25edca1c9951e67ebe5c364deca81..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/pipeline_runner.py +++ /dev/null @@ -1,105 +0,0 @@ -import os, torch, json -from .sd_video import ModelManager, SDVideoPipeline, ControlNetConfigUnit -from ..processors.sequencial_processor import SequencialProcessor -from ..data import VideoData, save_frames, save_video - - - -class SDVideoPipelineRunner: - def __init__(self, in_streamlit=False): - self.in_streamlit = in_streamlit - - - def load_pipeline(self, model_list, textual_inversion_folder, device, lora_alphas, controlnet_units): - # Load models - model_manager = ModelManager(torch_dtype=torch.float16, device=device) - model_manager.load_models(model_list) - pipe = SDVideoPipeline.from_model_manager( - model_manager, - [ - ControlNetConfigUnit( - processor_id=unit["processor_id"], - model_path=unit["model_path"], - scale=unit["scale"] - ) for unit in controlnet_units - ] - ) - textual_inversion_paths = [] - for file_name in os.listdir(textual_inversion_folder): - if file_name.endswith(".pt") or file_name.endswith(".bin") or file_name.endswith(".pth") or file_name.endswith(".safetensors"): - textual_inversion_paths.append(os.path.join(textual_inversion_folder, file_name)) - pipe.prompter.load_textual_inversions(textual_inversion_paths) - return model_manager, pipe - - - def load_smoother(self, model_manager, smoother_configs): - smoother = SequencialProcessor.from_model_manager(model_manager, smoother_configs) - return smoother - - - def synthesize_video(self, model_manager, pipe, seed, smoother, **pipeline_inputs): - torch.manual_seed(seed) - if self.in_streamlit: - import streamlit as st - progress_bar_st = st.progress(0.0) - output_video = pipe(**pipeline_inputs, smoother=smoother, progress_bar_st=progress_bar_st) - progress_bar_st.progress(1.0) - else: - output_video = pipe(**pipeline_inputs, smoother=smoother) - model_manager.to("cpu") - return output_video - - - def load_video(self, video_file, image_folder, height, width, start_frame_id, end_frame_id): - video = VideoData(video_file=video_file, image_folder=image_folder, height=height, width=width) - if start_frame_id is None: - start_frame_id = 0 - if end_frame_id is None: - end_frame_id = len(video) - frames = [video[i] for i in range(start_frame_id, end_frame_id)] - return frames - - - def add_data_to_pipeline_inputs(self, data, pipeline_inputs): - pipeline_inputs["input_frames"] = self.load_video(**data["input_frames"]) - pipeline_inputs["num_frames"] = len(pipeline_inputs["input_frames"]) - pipeline_inputs["width"], pipeline_inputs["height"] = pipeline_inputs["input_frames"][0].size - if len(data["controlnet_frames"]) > 0: - pipeline_inputs["controlnet_frames"] = [self.load_video(**unit) for unit in data["controlnet_frames"]] - return pipeline_inputs - - - def save_output(self, video, output_folder, fps, config): - os.makedirs(output_folder, exist_ok=True) - save_frames(video, os.path.join(output_folder, "frames")) - save_video(video, os.path.join(output_folder, "video.mp4"), fps=fps) - config["pipeline"]["pipeline_inputs"]["input_frames"] = [] - config["pipeline"]["pipeline_inputs"]["controlnet_frames"] = [] - with open(os.path.join(output_folder, "config.json"), 'w') as file: - json.dump(config, file, indent=4) - - - def run(self, config): - if self.in_streamlit: - import streamlit as st - if self.in_streamlit: st.markdown("Loading videos ...") - config["pipeline"]["pipeline_inputs"] = self.add_data_to_pipeline_inputs(config["data"], config["pipeline"]["pipeline_inputs"]) - if self.in_streamlit: st.markdown("Loading videos ... done!") - if self.in_streamlit: st.markdown("Loading models ...") - model_manager, pipe = self.load_pipeline(**config["models"]) - if self.in_streamlit: st.markdown("Loading models ... done!") - if "smoother_configs" in config: - if self.in_streamlit: st.markdown("Loading smoother ...") - smoother = self.load_smoother(model_manager, config["smoother_configs"]) - if self.in_streamlit: st.markdown("Loading smoother ... done!") - else: - smoother = None - if self.in_streamlit: st.markdown("Synthesizing videos ...") - output_video = self.synthesize_video(model_manager, pipe, config["pipeline"]["seed"], smoother, **config["pipeline"]["pipeline_inputs"]) - if self.in_streamlit: st.markdown("Synthesizing videos ... done!") - if self.in_streamlit: st.markdown("Saving videos ...") - self.save_output(output_video, config["data"]["output_folder"], config["data"]["fps"], config) - if self.in_streamlit: st.markdown("Saving videos ... done!") - if self.in_streamlit: st.markdown("Finished!") - video_file = open(os.path.join(os.path.join(config["data"]["output_folder"], "video.mp4")), 'rb') - if self.in_streamlit: st.video(video_file.read()) diff --git a/diffsynth/pipelines/sd3_image.py b/diffsynth/pipelines/sd3_image.py deleted file mode 100644 index c6098739b2701d59958ef3fa85b0dc96b5ffe86a..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/sd3_image.py +++ /dev/null @@ -1,147 +0,0 @@ -from ..models import ModelManager, SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3, SD3DiT, SD3VAEDecoder, SD3VAEEncoder -from ..prompters import SD3Prompter -from ..schedulers import FlowMatchScheduler -from .base import BasePipeline -import torch -from tqdm import tqdm - - - -class SD3ImagePipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16): - super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16) - self.scheduler = FlowMatchScheduler() - self.prompter = SD3Prompter() - # models - self.text_encoder_1: SD3TextEncoder1 = None - self.text_encoder_2: SD3TextEncoder2 = None - self.text_encoder_3: SD3TextEncoder3 = None - self.dit: SD3DiT = None - self.vae_decoder: SD3VAEDecoder = None - self.vae_encoder: SD3VAEEncoder = None - self.model_names = ['text_encoder_1', 'text_encoder_2', 'text_encoder_3', 'dit', 'vae_decoder', 'vae_encoder'] - - - def denoising_model(self): - return self.dit - - - def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): - self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1") - self.text_encoder_2 = model_manager.fetch_model("sd3_text_encoder_2") - self.text_encoder_3 = model_manager.fetch_model("sd3_text_encoder_3") - self.dit = model_manager.fetch_model("sd3_dit") - self.vae_decoder = model_manager.fetch_model("sd3_vae_decoder") - self.vae_encoder = model_manager.fetch_model("sd3_vae_encoder") - self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2, self.text_encoder_3) - self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) - - - @staticmethod - def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None): - pipe = SD3ImagePipeline( - device=model_manager.device if device is None else device, - torch_dtype=model_manager.torch_dtype, - ) - pipe.fetch_models(model_manager, prompt_refiner_classes) - return pipe - - - def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): - latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - return latents - - - def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): - image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - image = self.vae_output_to_image(image) - return image - - - def encode_prompt(self, prompt, positive=True, t5_sequence_length=77): - prompt_emb, pooled_prompt_emb = self.prompter.encode_prompt( - prompt, device=self.device, positive=positive, t5_sequence_length=t5_sequence_length - ) - return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb} - - - def prepare_extra_input(self, latents=None): - return {} - - - @torch.no_grad() - def __call__( - self, - prompt, - local_prompts=[], - masks=[], - mask_scales=[], - negative_prompt="", - cfg_scale=7.5, - input_image=None, - denoising_strength=1.0, - height=1024, - width=1024, - num_inference_steps=20, - t5_sequence_length=77, - tiled=False, - tile_size=128, - tile_stride=64, - seed=None, - progress_bar_cmd=tqdm, - progress_bar_st=None, - ): - height, width = self.check_resize_height_width(height, width) - - # Tiler parameters - tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} - - # Prepare scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength) - - # Prepare latent tensors - if input_image is not None: - self.load_models_to_device(['vae_encoder']) - image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) - latents = self.encode_image(image, **tiler_kwargs) - noise = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) - else: - latents = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - - # Encode prompts - self.load_models_to_device(['text_encoder_1', 'text_encoder_2', 'text_encoder_3']) - prompt_emb_posi = self.encode_prompt(prompt, positive=True, t5_sequence_length=t5_sequence_length) - prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False, t5_sequence_length=t5_sequence_length) - prompt_emb_locals = [self.encode_prompt(prompt_local, t5_sequence_length=t5_sequence_length) for prompt_local in local_prompts] - - # Denoise - self.load_models_to_device(['dit']) - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).to(self.device) - - # Classifier-free guidance - inference_callback = lambda prompt_emb_posi: self.dit( - latents, timestep=timestep, **prompt_emb_posi, **tiler_kwargs, - ) - noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) - noise_pred_nega = self.dit( - latents, timestep=timestep, **prompt_emb_nega, **tiler_kwargs, - ) - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - - # DDIM - latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) - - # UI - if progress_bar_st is not None: - progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) - - # Decode image - self.load_models_to_device(['vae_decoder']) - image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - - # offload all models - self.load_models_to_device([]) - return image diff --git a/diffsynth/pipelines/sd_image.py b/diffsynth/pipelines/sd_image.py deleted file mode 100644 index c22c3fe69578f28925be900036bf21afeb750f17..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/sd_image.py +++ /dev/null @@ -1,191 +0,0 @@ -from ..models import SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder -from ..models.model_manager import ModelManager -from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator -from ..prompters import SDPrompter -from ..schedulers import EnhancedDDIMScheduler -from .base import BasePipeline -from .dancer import lets_dance -from typing import List -import torch -from tqdm import tqdm - - - -class SDImagePipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16): - super().__init__(device=device, torch_dtype=torch_dtype) - self.scheduler = EnhancedDDIMScheduler() - self.prompter = SDPrompter() - # models - self.text_encoder: SDTextEncoder = None - self.unet: SDUNet = None - self.vae_decoder: SDVAEDecoder = None - self.vae_encoder: SDVAEEncoder = None - self.controlnet: MultiControlNetManager = None - self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None - self.ipadapter: SDIpAdapter = None - self.model_names = ['text_encoder', 'unet', 'vae_decoder', 'vae_encoder', 'controlnet', 'ipadapter_image_encoder', 'ipadapter'] - - - def denoising_model(self): - return self.unet - - - def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): - # Main models - self.text_encoder = model_manager.fetch_model("sd_text_encoder") - self.unet = model_manager.fetch_model("sd_unet") - self.vae_decoder = model_manager.fetch_model("sd_vae_decoder") - self.vae_encoder = model_manager.fetch_model("sd_vae_encoder") - self.prompter.fetch_models(self.text_encoder) - self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) - - # ControlNets - controlnet_units = [] - for config in controlnet_config_units: - controlnet_unit = ControlNetUnit( - Annotator(config.processor_id, device=self.device), - model_manager.fetch_model("sd_controlnet", config.model_path), - config.scale - ) - controlnet_units.append(controlnet_unit) - self.controlnet = MultiControlNetManager(controlnet_units) - - # IP-Adapters - self.ipadapter = model_manager.fetch_model("sd_ipadapter") - self.ipadapter_image_encoder = model_manager.fetch_model("sd_ipadapter_clip_image_encoder") - - - @staticmethod - def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], device=None): - pipe = SDImagePipeline( - device=model_manager.device if device is None else device, - torch_dtype=model_manager.torch_dtype, - ) - pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes=[]) - return pipe - - - def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): - latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - return latents - - - def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): - image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - image = self.vae_output_to_image(image) - return image - - - def encode_prompt(self, prompt, clip_skip=1, positive=True): - prompt_emb = self.prompter.encode_prompt(prompt, clip_skip=clip_skip, device=self.device, positive=positive) - return {"encoder_hidden_states": prompt_emb} - - - def prepare_extra_input(self, latents=None): - return {} - - - @torch.no_grad() - def __call__( - self, - prompt, - local_prompts=[], - masks=[], - mask_scales=[], - negative_prompt="", - cfg_scale=7.5, - clip_skip=1, - input_image=None, - ipadapter_images=None, - ipadapter_scale=1.0, - controlnet_image=None, - denoising_strength=1.0, - height=512, - width=512, - num_inference_steps=20, - tiled=False, - tile_size=64, - tile_stride=32, - seed=None, - progress_bar_cmd=tqdm, - progress_bar_st=None, - ): - height, width = self.check_resize_height_width(height, width) - - # Tiler parameters - tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} - - # Prepare scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength) - - # Prepare latent tensors - if input_image is not None: - self.load_models_to_device(['vae_encoder']) - image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) - latents = self.encode_image(image, **tiler_kwargs) - noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) - else: - latents = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - - # Encode prompts - self.load_models_to_device(['text_encoder']) - prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True) - prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False) - prompt_emb_locals = [self.encode_prompt(prompt_local, clip_skip=clip_skip, positive=True) for prompt_local in local_prompts] - - # IP-Adapter - if ipadapter_images is not None: - self.load_models_to_device(['ipadapter_image_encoder']) - ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images) - self.load_models_to_device(['ipadapter']) - ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} - ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} - else: - ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} - - # Prepare ControlNets - if controlnet_image is not None: - self.load_models_to_device(['controlnet']) - controlnet_image = self.controlnet.process_image(controlnet_image).to(device=self.device, dtype=self.torch_dtype) - controlnet_image = controlnet_image.unsqueeze(1) - controlnet_kwargs = {"controlnet_frames": controlnet_image} - else: - controlnet_kwargs = {"controlnet_frames": None} - - # Denoise - self.load_models_to_device(['controlnet', 'unet']) - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).to(self.device) - - # Classifier-free guidance - inference_callback = lambda prompt_emb_posi: lets_dance( - self.unet, motion_modules=None, controlnet=self.controlnet, - sample=latents, timestep=timestep, - **prompt_emb_posi, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_posi, - device=self.device, - ) - noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) - noise_pred_nega = lets_dance( - self.unet, motion_modules=None, controlnet=self.controlnet, - sample=latents, timestep=timestep, **prompt_emb_nega, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_nega, - device=self.device, - ) - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - - # DDIM - latents = self.scheduler.step(noise_pred, timestep, latents) - - # UI - if progress_bar_st is not None: - progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) - - # Decode image - self.load_models_to_device(['vae_decoder']) - image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - - # offload all models - self.load_models_to_device([]) - return image diff --git a/diffsynth/pipelines/sd_video.py b/diffsynth/pipelines/sd_video.py deleted file mode 100644 index 4337beb4f7a2d4a08c5955fdbd5f528ea328b39e..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/sd_video.py +++ /dev/null @@ -1,269 +0,0 @@ -from ..models import SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder, SDMotionModel -from ..models.model_manager import ModelManager -from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator -from ..prompters import SDPrompter -from ..schedulers import EnhancedDDIMScheduler -from .sd_image import SDImagePipeline -from .dancer import lets_dance -from typing import List -import torch -from tqdm import tqdm - - - -def lets_dance_with_long_video( - unet: SDUNet, - motion_modules: SDMotionModel = None, - controlnet: MultiControlNetManager = None, - sample = None, - timestep = None, - encoder_hidden_states = None, - ipadapter_kwargs_list = {}, - controlnet_frames = None, - unet_batch_size = 1, - controlnet_batch_size = 1, - cross_frame_attention = False, - tiled=False, - tile_size=64, - tile_stride=32, - device="cuda", - animatediff_batch_size=16, - animatediff_stride=8, -): - num_frames = sample.shape[0] - hidden_states_output = [(torch.zeros(sample[0].shape, dtype=sample[0].dtype), 0) for i in range(num_frames)] - - for batch_id in range(0, num_frames, animatediff_stride): - batch_id_ = min(batch_id + animatediff_batch_size, num_frames) - - # process this batch - hidden_states_batch = lets_dance( - unet, motion_modules, controlnet, - sample[batch_id: batch_id_].to(device), - timestep, - encoder_hidden_states, - ipadapter_kwargs_list=ipadapter_kwargs_list, - controlnet_frames=controlnet_frames[:, batch_id: batch_id_].to(device) if controlnet_frames is not None else None, - unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size, - cross_frame_attention=cross_frame_attention, - tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, device=device - ).cpu() - - # update hidden_states - for i, hidden_states_updated in zip(range(batch_id, batch_id_), hidden_states_batch): - bias = max(1 - abs(i - (batch_id + batch_id_ - 1) / 2) / ((batch_id_ - batch_id - 1 + 1e-2) / 2), 1e-2) - hidden_states, num = hidden_states_output[i] - hidden_states = hidden_states * (num / (num + bias)) + hidden_states_updated * (bias / (num + bias)) - hidden_states_output[i] = (hidden_states, num + bias) - - if batch_id_ == num_frames: - break - - # output - hidden_states = torch.stack([h for h, _ in hidden_states_output]) - return hidden_states - - - -class SDVideoPipeline(SDImagePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16, use_original_animatediff=True): - super().__init__(device=device, torch_dtype=torch_dtype) - self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_original_animatediff else "scaled_linear") - self.prompter = SDPrompter() - # models - self.text_encoder: SDTextEncoder = None - self.unet: SDUNet = None - self.vae_decoder: SDVAEDecoder = None - self.vae_encoder: SDVAEEncoder = None - self.controlnet: MultiControlNetManager = None - self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None - self.ipadapter: SDIpAdapter = None - self.motion_modules: SDMotionModel = None - - - def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): - # Main models - self.text_encoder = model_manager.fetch_model("sd_text_encoder") - self.unet = model_manager.fetch_model("sd_unet") - self.vae_decoder = model_manager.fetch_model("sd_vae_decoder") - self.vae_encoder = model_manager.fetch_model("sd_vae_encoder") - self.prompter.fetch_models(self.text_encoder) - self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) - - # ControlNets - controlnet_units = [] - for config in controlnet_config_units: - controlnet_unit = ControlNetUnit( - Annotator(config.processor_id, device=self.device), - model_manager.fetch_model("sd_controlnet", config.model_path), - config.scale - ) - controlnet_units.append(controlnet_unit) - self.controlnet = MultiControlNetManager(controlnet_units) - - # IP-Adapters - self.ipadapter = model_manager.fetch_model("sd_ipadapter") - self.ipadapter_image_encoder = model_manager.fetch_model("sd_ipadapter_clip_image_encoder") - - # Motion Modules - self.motion_modules = model_manager.fetch_model("sd_motion_modules") - if self.motion_modules is None: - self.scheduler = EnhancedDDIMScheduler(beta_schedule="scaled_linear") - - - @staticmethod - def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): - pipe = SDVideoPipeline( - device=model_manager.device, - torch_dtype=model_manager.torch_dtype, - ) - pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes) - return pipe - - - def decode_video(self, latents, tiled=False, tile_size=64, tile_stride=32): - images = [ - self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - for frame_id in range(latents.shape[0]) - ] - return images - - - def encode_video(self, processed_images, tiled=False, tile_size=64, tile_stride=32): - latents = [] - for image in processed_images: - image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) - latent = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - latents.append(latent.cpu()) - latents = torch.concat(latents, dim=0) - return latents - - - @torch.no_grad() - def __call__( - self, - prompt, - negative_prompt="", - cfg_scale=7.5, - clip_skip=1, - num_frames=None, - input_frames=None, - ipadapter_images=None, - ipadapter_scale=1.0, - controlnet_frames=None, - denoising_strength=1.0, - height=512, - width=512, - num_inference_steps=20, - animatediff_batch_size = 16, - animatediff_stride = 8, - unet_batch_size = 1, - controlnet_batch_size = 1, - cross_frame_attention = False, - smoother=None, - smoother_progress_ids=[], - tiled=False, - tile_size=64, - tile_stride=32, - seed=None, - progress_bar_cmd=tqdm, - progress_bar_st=None, - ): - height, width = self.check_resize_height_width(height, width) - - # Tiler parameters, batch size ... - tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} - other_kwargs = { - "animatediff_batch_size": animatediff_batch_size, "animatediff_stride": animatediff_stride, - "unet_batch_size": unet_batch_size, "controlnet_batch_size": controlnet_batch_size, - "cross_frame_attention": cross_frame_attention, - } - - # Prepare scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength) - - # Prepare latent tensors - if self.motion_modules is None: - noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1) - else: - noise = self.generate_noise((num_frames, 4, height//8, width//8), seed=seed, device="cpu", dtype=self.torch_dtype) - if input_frames is None or denoising_strength == 1.0: - latents = noise - else: - latents = self.encode_video(input_frames, **tiler_kwargs) - latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) - - # Encode prompts - prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True) - prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False) - - # IP-Adapter - if ipadapter_images is not None: - ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images) - ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} - ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} - else: - ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} - - # Prepare ControlNets - if controlnet_frames is not None: - if isinstance(controlnet_frames[0], list): - controlnet_frames_ = [] - for processor_id in range(len(controlnet_frames)): - controlnet_frames_.append( - torch.stack([ - self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype) - for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id]) - ], dim=1) - ) - controlnet_frames = torch.concat(controlnet_frames_, dim=0) - else: - controlnet_frames = torch.stack([ - self.controlnet.process_image(controlnet_frame).to(self.torch_dtype) - for controlnet_frame in progress_bar_cmd(controlnet_frames) - ], dim=1) - controlnet_kwargs = {"controlnet_frames": controlnet_frames} - else: - controlnet_kwargs = {"controlnet_frames": None} - - # Denoise - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).to(self.device) - - # Classifier-free guidance - noise_pred_posi = lets_dance_with_long_video( - self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet, - sample=latents, timestep=timestep, - **prompt_emb_posi, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **other_kwargs, **tiler_kwargs, - device=self.device, - ) - noise_pred_nega = lets_dance_with_long_video( - self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet, - sample=latents, timestep=timestep, - **prompt_emb_nega, **controlnet_kwargs, **ipadapter_kwargs_list_nega, **other_kwargs, **tiler_kwargs, - device=self.device, - ) - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - - # DDIM and smoother - if smoother is not None and progress_id in smoother_progress_ids: - rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True) - rendered_frames = self.decode_video(rendered_frames) - rendered_frames = smoother(rendered_frames, original_frames=input_frames) - target_latents = self.encode_video(rendered_frames) - noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents) - latents = self.scheduler.step(noise_pred, timestep, latents) - - # UI - if progress_bar_st is not None: - progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) - - # Decode image - output_frames = self.decode_video(latents, **tiler_kwargs) - - # Post-process - if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids): - output_frames = smoother(output_frames, original_frames=input_frames) - - return output_frames diff --git a/diffsynth/pipelines/sdxl_image.py b/diffsynth/pipelines/sdxl_image.py deleted file mode 100644 index 499c4bbce707fa7cfd026c66af8c8dca3e554127..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/sdxl_image.py +++ /dev/null @@ -1,226 +0,0 @@ -from ..models import SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder, SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder -from ..models.kolors_text_encoder import ChatGLMModel -from ..models.model_manager import ModelManager -from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator -from ..prompters import SDXLPrompter, KolorsPrompter -from ..schedulers import EnhancedDDIMScheduler -from .base import BasePipeline -from .dancer import lets_dance_xl -from typing import List -import torch -from tqdm import tqdm -from einops import repeat - - - -class SDXLImagePipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16): - super().__init__(device=device, torch_dtype=torch_dtype) - self.scheduler = EnhancedDDIMScheduler() - self.prompter = SDXLPrompter() - # models - self.text_encoder: SDXLTextEncoder = None - self.text_encoder_2: SDXLTextEncoder2 = None - self.text_encoder_kolors: ChatGLMModel = None - self.unet: SDXLUNet = None - self.vae_decoder: SDXLVAEDecoder = None - self.vae_encoder: SDXLVAEEncoder = None - self.controlnet: MultiControlNetManager = None - self.ipadapter_image_encoder: IpAdapterXLCLIPImageEmbedder = None - self.ipadapter: SDXLIpAdapter = None - self.model_names = ['text_encoder', 'text_encoder_2', 'text_encoder_kolors', 'unet', 'vae_decoder', 'vae_encoder', 'controlnet', 'ipadapter_image_encoder', 'ipadapter'] - - - def denoising_model(self): - return self.unet - - - def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): - # Main models - self.text_encoder = model_manager.fetch_model("sdxl_text_encoder") - self.text_encoder_2 = model_manager.fetch_model("sdxl_text_encoder_2") - self.text_encoder_kolors = model_manager.fetch_model("kolors_text_encoder") - self.unet = model_manager.fetch_model("sdxl_unet") - self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder") - self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder") - - # ControlNets - controlnet_units = [] - for config in controlnet_config_units: - controlnet_unit = ControlNetUnit( - Annotator(config.processor_id, device=self.device), - model_manager.fetch_model("sdxl_controlnet", config.model_path), - config.scale - ) - controlnet_units.append(controlnet_unit) - self.controlnet = MultiControlNetManager(controlnet_units) - - # IP-Adapters - self.ipadapter = model_manager.fetch_model("sdxl_ipadapter") - self.ipadapter_image_encoder = model_manager.fetch_model("sdxl_ipadapter_clip_image_encoder") - - # Kolors - if self.text_encoder_kolors is not None: - print("Switch to Kolors. The prompter and scheduler will be replaced.") - self.prompter = KolorsPrompter() - self.prompter.fetch_models(self.text_encoder_kolors) - self.scheduler = EnhancedDDIMScheduler(beta_end=0.014, num_train_timesteps=1100) - else: - self.prompter.fetch_models(self.text_encoder, self.text_encoder_2) - self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) - - - @staticmethod - def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], device=None): - pipe = SDXLImagePipeline( - device=model_manager.device if device is None else device, - torch_dtype=model_manager.torch_dtype, - ) - pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes) - return pipe - - - def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): - latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - return latents - - - def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): - image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - image = self.vae_output_to_image(image) - return image - - - def encode_prompt(self, prompt, clip_skip=1, clip_skip_2=2, positive=True): - add_prompt_emb, prompt_emb = self.prompter.encode_prompt( - prompt, - clip_skip=clip_skip, clip_skip_2=clip_skip_2, - device=self.device, - positive=positive, - ) - return {"encoder_hidden_states": prompt_emb, "add_text_embeds": add_prompt_emb} - - - def prepare_extra_input(self, latents=None): - height, width = latents.shape[2] * 8, latents.shape[3] * 8 - add_time_id = torch.tensor([height, width, 0, 0, height, width], device=self.device).repeat(latents.shape[0]) - return {"add_time_id": add_time_id} - - - @torch.no_grad() - def __call__( - self, - prompt, - local_prompts=[], - masks=[], - mask_scales=[], - negative_prompt="", - cfg_scale=7.5, - clip_skip=1, - clip_skip_2=2, - input_image=None, - ipadapter_images=None, - ipadapter_scale=1.0, - ipadapter_use_instant_style=False, - controlnet_image=None, - denoising_strength=1.0, - height=1024, - width=1024, - num_inference_steps=20, - tiled=False, - tile_size=64, - tile_stride=32, - seed=None, - progress_bar_cmd=tqdm, - progress_bar_st=None, - ): - height, width = self.check_resize_height_width(height, width) - - # Tiler parameters - tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} - - # Prepare scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength) - - # Prepare latent tensors - if input_image is not None: - self.load_models_to_device(['vae_encoder']) - image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) - latents = self.encode_image(image, **tiler_kwargs) - noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) - else: - latents = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - - # Encode prompts - self.load_models_to_device(['text_encoder', 'text_encoder_2', 'text_encoder_kolors']) - prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) - prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=False) - prompt_emb_locals = [self.encode_prompt(prompt_local, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) for prompt_local in local_prompts] - - # IP-Adapter - if ipadapter_images is not None: - if ipadapter_use_instant_style: - self.ipadapter.set_less_adapter() - else: - self.ipadapter.set_full_adapter() - self.load_models_to_device(['ipadapter_image_encoder']) - ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images) - self.load_models_to_device(['ipadapter']) - ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} - ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} - else: - ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} - - # Prepare ControlNets - if controlnet_image is not None: - self.load_models_to_device(['controlnet']) - controlnet_image = self.controlnet.process_image(controlnet_image).to(device=self.device, dtype=self.torch_dtype) - controlnet_image = controlnet_image.unsqueeze(1) - controlnet_kwargs = {"controlnet_frames": controlnet_image} - else: - controlnet_kwargs = {"controlnet_frames": None} - - # Prepare extra input - extra_input = self.prepare_extra_input(latents) - - # Denoise - self.load_models_to_device(['controlnet', 'unet']) - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).to(self.device) - - # Classifier-free guidance - inference_callback = lambda prompt_emb_posi: lets_dance_xl( - self.unet, motion_modules=None, controlnet=self.controlnet, - sample=latents, timestep=timestep, **extra_input, - **prompt_emb_posi, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_posi, - device=self.device, - ) - noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) - - if cfg_scale != 1.0: - noise_pred_nega = lets_dance_xl( - self.unet, motion_modules=None, controlnet=self.controlnet, - sample=latents, timestep=timestep, **extra_input, - **prompt_emb_nega, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_nega, - device=self.device, - ) - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - else: - noise_pred = noise_pred_posi - - # DDIM - latents = self.scheduler.step(noise_pred, timestep, latents) - - # UI - if progress_bar_st is not None: - progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) - - # Decode image - self.load_models_to_device(['vae_decoder']) - image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - - # offload all models - self.load_models_to_device([]) - return image diff --git a/diffsynth/pipelines/sdxl_video.py b/diffsynth/pipelines/sdxl_video.py deleted file mode 100644 index 308590ca6a874c5803da95db1d90fced26126893..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/sdxl_video.py +++ /dev/null @@ -1,226 +0,0 @@ -from ..models import SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder, SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder, SDXLMotionModel -from ..models.kolors_text_encoder import ChatGLMModel -from ..models.model_manager import ModelManager -from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator -from ..prompters import SDXLPrompter, KolorsPrompter -from ..schedulers import EnhancedDDIMScheduler -from .sdxl_image import SDXLImagePipeline -from .dancer import lets_dance_xl -from typing import List -import torch -from tqdm import tqdm - - - -class SDXLVideoPipeline(SDXLImagePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16, use_original_animatediff=True): - super().__init__(device=device, torch_dtype=torch_dtype) - self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_original_animatediff else "scaled_linear") - self.prompter = SDXLPrompter() - # models - self.text_encoder: SDXLTextEncoder = None - self.text_encoder_2: SDXLTextEncoder2 = None - self.text_encoder_kolors: ChatGLMModel = None - self.unet: SDXLUNet = None - self.vae_decoder: SDXLVAEDecoder = None - self.vae_encoder: SDXLVAEEncoder = None - # self.controlnet: MultiControlNetManager = None (TODO) - self.ipadapter_image_encoder: IpAdapterXLCLIPImageEmbedder = None - self.ipadapter: SDXLIpAdapter = None - self.motion_modules: SDXLMotionModel = None - - - def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): - # Main models - self.text_encoder = model_manager.fetch_model("sdxl_text_encoder") - self.text_encoder_2 = model_manager.fetch_model("sdxl_text_encoder_2") - self.text_encoder_kolors = model_manager.fetch_model("kolors_text_encoder") - self.unet = model_manager.fetch_model("sdxl_unet") - self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder") - self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder") - self.prompter.fetch_models(self.text_encoder) - self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) - - # ControlNets (TODO) - - # IP-Adapters - self.ipadapter = model_manager.fetch_model("sdxl_ipadapter") - self.ipadapter_image_encoder = model_manager.fetch_model("sdxl_ipadapter_clip_image_encoder") - - # Motion Modules - self.motion_modules = model_manager.fetch_model("sdxl_motion_modules") - if self.motion_modules is None: - self.scheduler = EnhancedDDIMScheduler(beta_schedule="scaled_linear") - - # Kolors - if self.text_encoder_kolors is not None: - print("Switch to Kolors. The prompter will be replaced.") - self.prompter = KolorsPrompter() - self.prompter.fetch_models(self.text_encoder_kolors) - # The schedulers of AniamteDiff and Kolors are incompatible. We align it with AniamteDiff. - if self.motion_modules is None: - self.scheduler = EnhancedDDIMScheduler(beta_end=0.014, num_train_timesteps=1100) - else: - self.prompter.fetch_models(self.text_encoder, self.text_encoder_2) - - - @staticmethod - def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): - pipe = SDXLVideoPipeline( - device=model_manager.device, - torch_dtype=model_manager.torch_dtype, - ) - pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes) - return pipe - - - def decode_video(self, latents, tiled=False, tile_size=64, tile_stride=32): - images = [ - self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - for frame_id in range(latents.shape[0]) - ] - return images - - - def encode_video(self, processed_images, tiled=False, tile_size=64, tile_stride=32): - latents = [] - for image in processed_images: - image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) - latent = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - latents.append(latent.cpu()) - latents = torch.concat(latents, dim=0) - return latents - - - @torch.no_grad() - def __call__( - self, - prompt, - negative_prompt="", - cfg_scale=7.5, - clip_skip=1, - num_frames=None, - input_frames=None, - ipadapter_images=None, - ipadapter_scale=1.0, - ipadapter_use_instant_style=False, - controlnet_frames=None, - denoising_strength=1.0, - height=512, - width=512, - num_inference_steps=20, - animatediff_batch_size = 16, - animatediff_stride = 8, - unet_batch_size = 1, - controlnet_batch_size = 1, - cross_frame_attention = False, - smoother=None, - smoother_progress_ids=[], - tiled=False, - tile_size=64, - tile_stride=32, - seed=None, - progress_bar_cmd=tqdm, - progress_bar_st=None, - ): - height, width = self.check_resize_height_width(height, width) - - # Tiler parameters, batch size ... - tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} - - # Prepare scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength) - - # Prepare latent tensors - if self.motion_modules is None: - noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1) - else: - noise = self.generate_noise((num_frames, 4, height//8, width//8), seed=seed, device="cpu", dtype=self.torch_dtype) - if input_frames is None or denoising_strength == 1.0: - latents = noise - else: - latents = self.encode_video(input_frames, **tiler_kwargs) - latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) - latents = latents.to(self.device) # will be deleted for supporting long videos - - # Encode prompts - prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True) - prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False) - - # IP-Adapter - if ipadapter_images is not None: - if ipadapter_use_instant_style: - self.ipadapter.set_less_adapter() - else: - self.ipadapter.set_full_adapter() - ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images) - ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} - ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} - else: - ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} - - # Prepare ControlNets - if controlnet_frames is not None: - if isinstance(controlnet_frames[0], list): - controlnet_frames_ = [] - for processor_id in range(len(controlnet_frames)): - controlnet_frames_.append( - torch.stack([ - self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype) - for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id]) - ], dim=1) - ) - controlnet_frames = torch.concat(controlnet_frames_, dim=0) - else: - controlnet_frames = torch.stack([ - self.controlnet.process_image(controlnet_frame).to(self.torch_dtype) - for controlnet_frame in progress_bar_cmd(controlnet_frames) - ], dim=1) - controlnet_kwargs = {"controlnet_frames": controlnet_frames} - else: - controlnet_kwargs = {"controlnet_frames": None} - - # Prepare extra input - extra_input = self.prepare_extra_input(latents) - - # Denoise - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).to(self.device) - - # Classifier-free guidance - noise_pred_posi = lets_dance_xl( - self.unet, motion_modules=self.motion_modules, controlnet=None, - sample=latents, timestep=timestep, - **prompt_emb_posi, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **extra_input, **tiler_kwargs, - device=self.device, - ) - noise_pred_nega = lets_dance_xl( - self.unet, motion_modules=self.motion_modules, controlnet=None, - sample=latents, timestep=timestep, - **prompt_emb_nega, **controlnet_kwargs, **ipadapter_kwargs_list_nega, **extra_input, **tiler_kwargs, - device=self.device, - ) - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - - # DDIM and smoother - if smoother is not None and progress_id in smoother_progress_ids: - rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True) - rendered_frames = self.decode_video(rendered_frames) - rendered_frames = smoother(rendered_frames, original_frames=input_frames) - target_latents = self.encode_video(rendered_frames) - noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents) - latents = self.scheduler.step(noise_pred, timestep, latents) - - # UI - if progress_bar_st is not None: - progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) - - # Decode image - output_frames = self.decode_video(latents, **tiler_kwargs) - - # Post-process - if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids): - output_frames = smoother(output_frames, original_frames=input_frames) - - return output_frames diff --git a/diffsynth/pipelines/step_video.py b/diffsynth/pipelines/step_video.py deleted file mode 100644 index 56140178e9d6cdaf5efeca77ea061f8232836f11..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/step_video.py +++ /dev/null @@ -1,209 +0,0 @@ -from ..models import ModelManager -from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder -from ..models.stepvideo_text_encoder import STEP1TextEncoder -from ..models.stepvideo_dit import StepVideoModel -from ..models.stepvideo_vae import StepVideoVAE -from ..schedulers.flow_match import FlowMatchScheduler -from .base import BasePipeline -from ..prompters import StepVideoPrompter -import torch -from einops import rearrange -import numpy as np -from PIL import Image -from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear -from transformers.models.bert.modeling_bert import BertEmbeddings -from ..models.stepvideo_dit import RMSNorm -from ..models.stepvideo_vae import CausalConv, CausalConvAfterNorm, Upsample2D, BaseGroupNorm - - - -class StepVideoPipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16): - super().__init__(device=device, torch_dtype=torch_dtype) - self.scheduler = FlowMatchScheduler(sigma_min=0.0, extra_one_step=True, shift=13.0, reverse_sigmas=True, num_train_timesteps=1) - self.prompter = StepVideoPrompter() - self.text_encoder_1: HunyuanDiTCLIPTextEncoder = None - self.text_encoder_2: STEP1TextEncoder = None - self.dit: StepVideoModel = None - self.vae: StepVideoVAE = None - self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae'] - - - def enable_vram_management(self, num_persistent_param_in_dit=None): - dtype = next(iter(self.text_encoder_1.parameters())).dtype - enable_vram_management( - self.text_encoder_1, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - BertEmbeddings: AutoWrappedModule, - torch.nn.LayerNorm: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=torch.float32, - computation_device=self.device, - ), - ) - dtype = next(iter(self.text_encoder_2.parameters())).dtype - enable_vram_management( - self.text_encoder_2, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - RMSNorm: AutoWrappedModule, - torch.nn.Embedding: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - dtype = next(iter(self.dit.parameters())).dtype - enable_vram_management( - self.dit, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - torch.nn.Conv2d: AutoWrappedModule, - torch.nn.LayerNorm: AutoWrappedModule, - RMSNorm: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device=self.device, - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - max_num_param=num_persistent_param_in_dit, - overflow_module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - dtype = next(iter(self.vae.parameters())).dtype - enable_vram_management( - self.vae, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - torch.nn.Conv3d: AutoWrappedModule, - CausalConv: AutoWrappedModule, - CausalConvAfterNorm: AutoWrappedModule, - Upsample2D: AutoWrappedModule, - BaseGroupNorm: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - self.enable_cpu_offload() - - - def fetch_models(self, model_manager: ModelManager): - self.text_encoder_1 = model_manager.fetch_model("hunyuan_dit_clip_text_encoder") - self.text_encoder_2 = model_manager.fetch_model("stepvideo_text_encoder_2") - self.dit = model_manager.fetch_model("stepvideo_dit") - self.vae = model_manager.fetch_model("stepvideo_vae") - self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2) - - - @staticmethod - def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None): - if device is None: device = model_manager.device - if torch_dtype is None: torch_dtype = model_manager.torch_dtype - pipe = StepVideoPipeline(device=device, torch_dtype=torch_dtype) - pipe.fetch_models(model_manager) - return pipe - - - def encode_prompt(self, prompt, positive=True): - clip_embeds, llm_embeds, llm_mask = self.prompter.encode_prompt(prompt, device=self.device, positive=positive) - clip_embeds = clip_embeds.to(dtype=self.torch_dtype, device=self.device) - llm_embeds = llm_embeds.to(dtype=self.torch_dtype, device=self.device) - llm_mask = llm_mask.to(dtype=self.torch_dtype, device=self.device) - return {"encoder_hidden_states_2": clip_embeds, "encoder_hidden_states": llm_embeds, "encoder_attention_mask": llm_mask} - - - def tensor2video(self, frames): - frames = rearrange(frames, "C T H W -> T H W C") - frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) - frames = [Image.fromarray(frame) for frame in frames] - return frames - - - @torch.no_grad() - def __call__( - self, - prompt, - negative_prompt="", - input_video=None, - denoising_strength=1.0, - seed=None, - rand_device="cpu", - height=544, - width=992, - num_frames=204, - cfg_scale=9.0, - num_inference_steps=30, - tiled=True, - tile_size=(34, 34), - tile_stride=(16, 16), - smooth_scale=0.6, - progress_bar_cmd=lambda x: x, - progress_bar_st=None, - ): - # Tiler parameters - tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} - - # Scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength) - - # Initialize noise - latents = self.generate_noise((1, max(num_frames//17*3, 1), 64, height//16, width//16), seed=seed, device=rand_device, dtype=self.torch_dtype).to(self.device) - - # Encode prompts - self.load_models_to_device(["text_encoder_1", "text_encoder_2"]) - prompt_emb_posi = self.encode_prompt(prompt, positive=True) - if cfg_scale != 1.0: - prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) - - # Denoise - self.load_models_to_device(["dit"]) - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device) - print(f"Step {progress_id + 1} / {len(self.scheduler.timesteps)}") - - # Inference - noise_pred_posi = self.dit(latents, timestep=timestep, **prompt_emb_posi) - if cfg_scale != 1.0: - noise_pred_nega = self.dit(latents, timestep=timestep, **prompt_emb_nega) - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - else: - noise_pred = noise_pred_posi - - # Scheduler - latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) - - # Decode - self.load_models_to_device(['vae']) - frames = self.vae.decode(latents, device=self.device, smooth_scale=smooth_scale, **tiler_kwargs) - self.load_models_to_device([]) - frames = self.tensor2video(frames[0]) - - return frames diff --git a/diffsynth/pipelines/svd_video.py b/diffsynth/pipelines/svd_video.py deleted file mode 100644 index b71597efa73783f7e3746a2bcf6b7be5c70c360e..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/svd_video.py +++ /dev/null @@ -1,300 +0,0 @@ -from ..models import ModelManager, SVDImageEncoder, SVDUNet, SVDVAEEncoder, SVDVAEDecoder -from ..schedulers import ContinuousODEScheduler -from .base import BasePipeline -import torch -from tqdm import tqdm -from PIL import Image -import numpy as np -from einops import rearrange, repeat - - - -class SVDVideoPipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16): - super().__init__(device=device, torch_dtype=torch_dtype) - self.scheduler = ContinuousODEScheduler() - # models - self.image_encoder: SVDImageEncoder = None - self.unet: SVDUNet = None - self.vae_encoder: SVDVAEEncoder = None - self.vae_decoder: SVDVAEDecoder = None - - - def fetch_models(self, model_manager: ModelManager): - self.image_encoder = model_manager.fetch_model("svd_image_encoder") - self.unet = model_manager.fetch_model("svd_unet") - self.vae_encoder = model_manager.fetch_model("svd_vae_encoder") - self.vae_decoder = model_manager.fetch_model("svd_vae_decoder") - - - @staticmethod - def from_model_manager(model_manager: ModelManager, **kwargs): - pipe = SVDVideoPipeline( - device=model_manager.device, - torch_dtype=model_manager.torch_dtype - ) - pipe.fetch_models(model_manager) - return pipe - - - def encode_image_with_clip(self, image): - image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) - image = SVDCLIPImageProcessor().resize_with_antialiasing(image, (224, 224)) - image = (image + 1.0) / 2.0 - mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.torch_dtype) - std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.torch_dtype) - image = (image - mean) / std - image_emb = self.image_encoder(image) - return image_emb - - - def encode_image_with_vae(self, image, noise_aug_strength, seed=None): - image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) - noise = self.generate_noise(image.shape, seed=seed, device=self.device, dtype=self.torch_dtype) - image = image + noise_aug_strength * noise - image_emb = self.vae_encoder(image) / self.vae_encoder.scaling_factor - return image_emb - - - def encode_video_with_vae(self, video): - video = torch.concat([self.preprocess_image(frame) for frame in video], dim=0) - video = rearrange(video, "T C H W -> 1 C T H W") - video = video.to(device=self.device, dtype=self.torch_dtype) - latents = self.vae_encoder.encode_video(video) - latents = rearrange(latents[0], "C T H W -> T C H W") - return latents - - - def tensor2video(self, frames): - frames = rearrange(frames, "C T H W -> T H W C") - frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) - frames = [Image.fromarray(frame) for frame in frames] - return frames - - - def calculate_noise_pred( - self, - latents, - timestep, - add_time_id, - cfg_scales, - image_emb_vae_posi, image_emb_clip_posi, - image_emb_vae_nega, image_emb_clip_nega - ): - # Positive side - noise_pred_posi = self.unet( - torch.cat([latents, image_emb_vae_posi], dim=1), - timestep, image_emb_clip_posi, add_time_id - ) - # Negative side - noise_pred_nega = self.unet( - torch.cat([latents, image_emb_vae_nega], dim=1), - timestep, image_emb_clip_nega, add_time_id - ) - - # Classifier-free guidance - noise_pred = noise_pred_nega + cfg_scales * (noise_pred_posi - noise_pred_nega) - - return noise_pred - - - def post_process_latents(self, latents, post_normalize=True, contrast_enhance_scale=1.0): - if post_normalize: - mean, std = latents.mean(), latents.std() - latents = (latents - latents.mean(dim=[1, 2, 3], keepdim=True)) / latents.std(dim=[1, 2, 3], keepdim=True) * std + mean - latents = latents * contrast_enhance_scale - return latents - - - @torch.no_grad() - def __call__( - self, - input_image=None, - input_video=None, - mask_frames=[], - mask_frame_ids=[], - min_cfg_scale=1.0, - max_cfg_scale=3.0, - denoising_strength=1.0, - num_frames=25, - height=576, - width=1024, - fps=7, - motion_bucket_id=127, - noise_aug_strength=0.02, - num_inference_steps=20, - post_normalize=True, - contrast_enhance_scale=1.2, - seed=None, - progress_bar_cmd=tqdm, - progress_bar_st=None, - ): - height, width = self.check_resize_height_width(height, width) - - # Prepare scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength) - - # Prepare latent tensors - noise = self.generate_noise((num_frames, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) - if denoising_strength == 1.0: - latents = noise.clone() - else: - latents = self.encode_video_with_vae(input_video) - latents = self.scheduler.add_noise(latents, noise, self.scheduler.timesteps[0]) - - # Prepare mask frames - if len(mask_frames) > 0: - mask_latents = self.encode_video_with_vae(mask_frames) - - # Encode image - image_emb_clip_posi = self.encode_image_with_clip(input_image) - image_emb_clip_nega = torch.zeros_like(image_emb_clip_posi) - image_emb_vae_posi = repeat(self.encode_image_with_vae(input_image, noise_aug_strength, seed=seed), "B C H W -> (B T) C H W", T=num_frames) - image_emb_vae_nega = torch.zeros_like(image_emb_vae_posi) - - # Prepare classifier-free guidance - cfg_scales = torch.linspace(min_cfg_scale, max_cfg_scale, num_frames) - cfg_scales = cfg_scales.reshape(num_frames, 1, 1, 1).to(device=self.device, dtype=self.torch_dtype) - - # Prepare positional id - add_time_id = torch.tensor([[fps-1, motion_bucket_id, noise_aug_strength]], device=self.device) - - # Denoise - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - - # Mask frames - for frame_id, mask_frame_id in enumerate(mask_frame_ids): - latents[mask_frame_id] = self.scheduler.add_noise(mask_latents[frame_id], noise[mask_frame_id], timestep) - - # Fetch model output - noise_pred = self.calculate_noise_pred( - latents, timestep, add_time_id, cfg_scales, - image_emb_vae_posi, image_emb_clip_posi, image_emb_vae_nega, image_emb_clip_nega - ) - - # Forward Euler - latents = self.scheduler.step(noise_pred, timestep, latents) - - # Update progress bar - if progress_bar_st is not None: - progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) - - # Decode image - latents = self.post_process_latents(latents, post_normalize=post_normalize, contrast_enhance_scale=contrast_enhance_scale) - video = self.vae_decoder.decode_video(latents, progress_bar=progress_bar_cmd) - video = self.tensor2video(video) - - return video - - - -class SVDCLIPImageProcessor: - def __init__(self): - pass - - def resize_with_antialiasing(self, input, size, interpolation="bicubic", align_corners=True): - h, w = input.shape[-2:] - factors = (h / size[0], w / size[1]) - - # First, we have to determine sigma - # Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171 - sigmas = ( - max((factors[0] - 1.0) / 2.0, 0.001), - max((factors[1] - 1.0) / 2.0, 0.001), - ) - - # Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma - # https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206 - # But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now - ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3)) - - # Make sure it is odd - if (ks[0] % 2) == 0: - ks = ks[0] + 1, ks[1] - - if (ks[1] % 2) == 0: - ks = ks[0], ks[1] + 1 - - input = self._gaussian_blur2d(input, ks, sigmas) - - output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners) - return output - - - def _compute_padding(self, kernel_size): - """Compute padding tuple.""" - # 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom) - # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad - if len(kernel_size) < 2: - raise AssertionError(kernel_size) - computed = [k - 1 for k in kernel_size] - - # for even kernels we need to do asymmetric padding :( - out_padding = 2 * len(kernel_size) * [0] - - for i in range(len(kernel_size)): - computed_tmp = computed[-(i + 1)] - - pad_front = computed_tmp // 2 - pad_rear = computed_tmp - pad_front - - out_padding[2 * i + 0] = pad_front - out_padding[2 * i + 1] = pad_rear - - return out_padding - - - def _filter2d(self, input, kernel): - # prepare kernel - b, c, h, w = input.shape - tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype) - - tmp_kernel = tmp_kernel.expand(-1, c, -1, -1) - - height, width = tmp_kernel.shape[-2:] - - padding_shape: list[int] = self._compute_padding([height, width]) - input = torch.nn.functional.pad(input, padding_shape, mode="reflect") - - # kernel and input tensor reshape to align element-wise or batch-wise params - tmp_kernel = tmp_kernel.reshape(-1, 1, height, width) - input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1)) - - # convolve the tensor with the kernel. - output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1) - - out = output.view(b, c, h, w) - return out - - - def _gaussian(self, window_size: int, sigma): - if isinstance(sigma, float): - sigma = torch.tensor([[sigma]]) - - batch_size = sigma.shape[0] - - x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1) - - if window_size % 2 == 0: - x = x + 0.5 - - gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0))) - - return gauss / gauss.sum(-1, keepdim=True) - - - def _gaussian_blur2d(self, input, kernel_size, sigma): - if isinstance(sigma, tuple): - sigma = torch.tensor([sigma], dtype=input.dtype) - else: - sigma = sigma.to(dtype=input.dtype) - - ky, kx = int(kernel_size[0]), int(kernel_size[1]) - bs = sigma.shape[0] - kernel_x = self._gaussian(kx, sigma[:, 1].view(bs, 1)) - kernel_y = self._gaussian(ky, sigma[:, 0].view(bs, 1)) - out_x = self._filter2d(input, kernel_x[..., None, :]) - out = self._filter2d(out_x, kernel_y[..., None]) - - return out diff --git a/diffsynth/pipelines/wan_video.py b/diffsynth/pipelines/wan_video.py deleted file mode 100644 index c5ca132b8914e3a34bf0555f9097abfdd3dd4275..0000000000000000000000000000000000000000 --- a/diffsynth/pipelines/wan_video.py +++ /dev/null @@ -1,520 +0,0 @@ -import types -from ..models import ModelManager -from ..models.wan_video_dit import WanModel -from ..models.wan_video_text_encoder import WanTextEncoder -from ..models.wan_video_vae import WanVideoVAE -from ..models.wan_video_image_encoder import WanImageEncoder -from ..schedulers.flow_match import FlowMatchScheduler -from .base import BasePipeline -from ..prompters import WanPrompter -import torch, os -from einops import rearrange -import numpy as np -from PIL import Image -from tqdm import tqdm -from typing import Optional - -from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear -from ..models.wan_video_text_encoder import T5RelativeEmbedding, T5LayerNorm -from ..models.wan_video_dit import RMSNorm, sinusoidal_embedding_1d -from ..models.wan_video_vae import RMS_norm, CausalConv3d, Upsample -from ..models.wan_video_motion_controller import WanMotionControllerModel - - - -class WanVideoPipeline(BasePipeline): - - def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None): - super().__init__(device=device, torch_dtype=torch_dtype) - self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True) - self.prompter = WanPrompter(tokenizer_path=tokenizer_path) - self.text_encoder: WanTextEncoder = None - self.image_encoder: WanImageEncoder = None - self.dit: WanModel = None - self.vae: WanVideoVAE = None - self.motion_controller: WanMotionControllerModel = None - self.model_names = ['text_encoder', 'dit', 'vae', 'image_encoder', 'motion_controller'] - self.height_division_factor = 16 - self.width_division_factor = 16 - self.use_unified_sequence_parallel = False - - - def enable_vram_management(self, num_persistent_param_in_dit=None): - dtype = next(iter(self.text_encoder.parameters())).dtype - enable_vram_management( - self.text_encoder, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - torch.nn.Embedding: AutoWrappedModule, - T5RelativeEmbedding: AutoWrappedModule, - T5LayerNorm: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - dtype = next(iter(self.dit.parameters())).dtype - enable_vram_management( - self.dit, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - torch.nn.Conv3d: AutoWrappedModule, - torch.nn.LayerNorm: AutoWrappedModule, - RMSNorm: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device=self.device, - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - max_num_param=num_persistent_param_in_dit, - overflow_module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - dtype = next(iter(self.vae.parameters())).dtype - enable_vram_management( - self.vae, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - torch.nn.Conv2d: AutoWrappedModule, - RMS_norm: AutoWrappedModule, - CausalConv3d: AutoWrappedModule, - Upsample: AutoWrappedModule, - torch.nn.SiLU: AutoWrappedModule, - torch.nn.Dropout: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device=self.device, - computation_dtype=self.torch_dtype, - computation_device=self.device, - ), - ) - if self.image_encoder is not None: - dtype = next(iter(self.image_encoder.parameters())).dtype - enable_vram_management( - self.image_encoder, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - torch.nn.Conv2d: AutoWrappedModule, - torch.nn.LayerNorm: AutoWrappedModule, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=dtype, - computation_device=self.device, - ), - ) - if self.motion_controller is not None: - dtype = next(iter(self.motion_controller.parameters())).dtype - enable_vram_management( - self.motion_controller, - module_map = { - torch.nn.Linear: AutoWrappedLinear, - }, - module_config = dict( - offload_dtype=dtype, - offload_device="cpu", - onload_dtype=dtype, - onload_device="cpu", - computation_dtype=dtype, - computation_device=self.device, - ), - ) - self.enable_cpu_offload() - - - def fetch_models(self, model_manager: ModelManager): - text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True) - if text_encoder_model_and_path is not None: - self.text_encoder, tokenizer_path = text_encoder_model_and_path - self.prompter.fetch_models(self.text_encoder) - self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl")) - self.dit = model_manager.fetch_model("wan_video_dit") - self.vae = model_manager.fetch_model("wan_video_vae") - self.image_encoder = model_manager.fetch_model("wan_video_image_encoder") - self.motion_controller = model_manager.fetch_model("wan_video_motion_controller") - - - @staticmethod - def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None, use_usp=False): - if device is None: device = model_manager.device - if torch_dtype is None: torch_dtype = model_manager.torch_dtype - pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype) - pipe.fetch_models(model_manager) - if use_usp: - from xfuser.core.distributed import get_sequence_parallel_world_size - from ..distributed.xdit_context_parallel import usp_attn_forward, usp_dit_forward - - for block in pipe.dit.blocks: - block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn) - pipe.dit.forward = types.MethodType(usp_dit_forward, pipe.dit) - pipe.sp_size = get_sequence_parallel_world_size() - pipe.use_unified_sequence_parallel = True - return pipe - - - def denoising_model(self): - return self.dit - - - def encode_prompt(self, prompt, positive=True): - prompt_emb = self.prompter.encode_prompt(prompt, positive=positive, device=self.device) - return {"context": prompt_emb} - - - def encode_image(self, image, end_image, num_frames, height, width): - image = self.preprocess_image(image.resize((width, height))).to(self.device) - clip_context = self.image_encoder.encode_image([image]) - msk = torch.ones(1, num_frames, height//8, width//8, device=self.device) - msk[:, 1:] = 0 - if end_image is not None: - end_image = self.preprocess_image(end_image.resize((width, height))).to(self.device) - vae_input = torch.concat([image.transpose(0,1), torch.zeros(3, num_frames-2, height, width).to(image.device), end_image.transpose(0,1)],dim=1) - msk[:, -1:] = 1 - else: - vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1) - - msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) - msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8) - msk = msk.transpose(1, 2)[0] - - y = self.vae.encode([vae_input.to(dtype=self.torch_dtype, device=self.device)], device=self.device)[0] - y = torch.concat([msk, y]) - y = y.unsqueeze(0) - clip_context = clip_context.to(dtype=self.torch_dtype, device=self.device) - y = y.to(dtype=self.torch_dtype, device=self.device) - return {"clip_feature": clip_context, "y": y} - - # diffSynth-Studio代码支持输入Control Video - def encode_control_video(self, control_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): - control_video = self.preprocess_images(control_video) # f=49,1,c=3,h,w -> 下一行: 1,c=3,f=49,h,w - control_video = torch.stack(control_video, dim=2).to(dtype=self.torch_dtype, device=self.device) - # print(control_video.shape, control_video.max(), control_video.min()) - # torch.Size([1, 3, 49, 800, 1920]) tensor(0.8125, device='cuda:0', dtype=torch.bfloat16) tensor(-1., device='cuda:0', dtype=torch.bfloat16) - latents = self.encode_video(control_video, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(dtype=self.torch_dtype, device=self.device) - return latents - - # clip_feature - def image_clip_feature(self, image, height, width): - image = self.preprocess_image(image.resize((width, height))).to(self.device) - # image: b,c,h,w - clip_feature = self.image_encoder.encode_image([image]).to(self.device) - clip_feature = clip_feature.to(dtype=self.torch_dtype, device=self.device) - return clip_feature - - def prepare_controlnet_kwargs(self, control_video, num_frames, height, width, clip_feature=None, y=None, more_config=None, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): - if control_video is not None: - control_latents = self.encode_control_video(control_video, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - # if clip_feature is None or y is None: - if clip_feature is None: - clip_feature = torch.zeros((1, 257, 1280), dtype=self.torch_dtype, device=self.device) - if y is None: - y0 = torch.zeros((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), dtype=self.torch_dtype, device=self.device) - elif more_config == 'encode_y': - y0 = self.encode_control_video(y, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - else: - y0 = y - # if more_config == 'inp': - # y = torch.concat([y0, control_latents], dim=1) - y = torch.concat([control_latents, y0], dim=1) - # torch.Size([1, 257, 1280]) torch.Size([1, 32, 13, 100, 240]) - return {"clip_feature": clip_feature, "y": y} - - - def tensor2video(self, frames): - frames = rearrange(frames, "C T H W -> T H W C") - frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) - frames = [Image.fromarray(frame) for frame in frames] - return frames - - - def prepare_extra_input(self, latents=None): - return {} - - - def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): - latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - return latents - - - def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): - frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) - return frames - - - def prepare_unified_sequence_parallel(self): - return {"use_unified_sequence_parallel": self.use_unified_sequence_parallel} - - - def prepare_motion_bucket_id(self, motion_bucket_id): - motion_bucket_id = torch.Tensor((motion_bucket_id,)).to(dtype=self.torch_dtype, device=self.device) - return {"motion_bucket_id": motion_bucket_id} - - - @torch.no_grad() - def __call__( - self, - prompt, - negative_prompt="", - input_image=None, - end_image=None, - input_video=None, - control_video=None, - denoising_strength=1.0, - seed=None, - rand_device="cpu", - height=480, - width=832, - num_frames=81, - cfg_scale=5.0, - num_inference_steps=50, - sigma_shift=5.0, - motion_bucket_id=None, - tiled=True, - tile_size=(30, 52), - tile_stride=(15, 26), - tea_cache_l1_thresh=None, - tea_cache_model_id="", - progress_bar_cmd=tqdm, - progress_bar_st=None, - - with_clip_feature = True, #+ - cond_latents2 = None, #+ - more_config = None, #+ - ): - # Parameter check - height, width = self.check_resize_height_width(height, width) - if num_frames % 4 != 1: - num_frames = (num_frames + 2) // 4 * 4 + 1 - print(f"Only `num_frames % 4 != 1` is acceptable. We round it up to {num_frames}.") - - # Tiler parameters - tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} - - # Scheduler - self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift) - - # Initialize noise - noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=torch.float32) - noise = noise.to(dtype=self.torch_dtype, device=self.device) - if input_video is not None: - self.load_models_to_device(['vae']) - input_video = self.preprocess_images(input_video) - input_video = torch.stack(input_video, dim=2).to(dtype=self.torch_dtype, device=self.device) - latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=self.torch_dtype, device=self.device) - latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) - else: - latents = noise - - # Encode prompts - self.load_models_to_device(["text_encoder"]) - prompt_emb_posi = self.encode_prompt(prompt, positive=True) - if cfg_scale != 1.0: - prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) - - # Encode image - if input_image is not None and self.image_encoder is not None: - self.load_models_to_device(["image_encoder", "vae"]) - image_emb = self.encode_image(input_image, end_image, num_frames, height, width) - else: # input_image=None, image_emb=None - image_emb = {} - - # ControlNet #* clip_feature - if control_video is not None: - self.load_models_to_device(["image_encoder", "vae"]) - if with_clip_feature: - clip_feature = self.image_clip_feature(control_video[0], height, width) - else: - clip_feature = None - # image_emb = self.prepare_controlnet_kwargs(control_video, num_frames, height, width, clip_feature, **image_emb, **tiler_kwargs) - # 推理时调用 - image_emb = self.prepare_controlnet_kwargs(control_video, num_frames, height, width, clip_feature, - y=cond_latents2, more_config=more_config, **image_emb, **tiler_kwargs) - - # Motion Controller - if self.motion_controller is not None and motion_bucket_id is not None: - motion_kwargs = self.prepare_motion_bucket_id(motion_bucket_id) - else: - motion_kwargs = {} - - # Extra input - extra_input = self.prepare_extra_input(latents) # return {} - - # TeaCache - tea_cache_posi = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None} - tea_cache_nega = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None} - - # Unified Sequence Parallel - usp_kwargs = self.prepare_unified_sequence_parallel() - - # Denoise - self.load_models_to_device(["dit", "motion_controller"]) - for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): - timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device) - - # Inference - noise_pred_posi = model_fn_wan_video( - self.dit, motion_controller=self.motion_controller, - x=latents, timestep=timestep, - **prompt_emb_posi, **image_emb, **extra_input, - **tea_cache_posi, **usp_kwargs, **motion_kwargs - ) - if cfg_scale != 1.0: - noise_pred_nega = model_fn_wan_video( - self.dit, motion_controller=self.motion_controller, - x=latents, timestep=timestep, - **prompt_emb_nega, **image_emb, **extra_input, - **tea_cache_nega, **usp_kwargs, **motion_kwargs - ) - noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) - else: - noise_pred = noise_pred_posi - - # Scheduler - latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) - - # Decode - self.load_models_to_device(['vae']) - frames = self.decode_video(latents, **tiler_kwargs) - self.load_models_to_device([]) - frames = self.tensor2video(frames[0]) - - return frames - - - -class TeaCache: - def __init__(self, num_inference_steps, rel_l1_thresh, model_id): - self.num_inference_steps = num_inference_steps - self.step = 0 - self.accumulated_rel_l1_distance = 0 - self.previous_modulated_input = None - self.rel_l1_thresh = rel_l1_thresh - self.previous_residual = None - self.previous_hidden_states = None - - self.coefficients_dict = { - "Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02], - "Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01], - "Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01], - "Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02], - } - if model_id not in self.coefficients_dict: - supported_model_ids = ", ".join([i for i in self.coefficients_dict]) - raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).") - self.coefficients = self.coefficients_dict[model_id] - - def check(self, dit: WanModel, x, t_mod): - modulated_inp = t_mod.clone() - if self.step == 0 or self.step == self.num_inference_steps - 1: - should_calc = True - self.accumulated_rel_l1_distance = 0 - else: - coefficients = self.coefficients - rescale_func = np.poly1d(coefficients) - self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) - if self.accumulated_rel_l1_distance < self.rel_l1_thresh: - should_calc = False - else: - should_calc = True - self.accumulated_rel_l1_distance = 0 - self.previous_modulated_input = modulated_inp - self.step += 1 - if self.step == self.num_inference_steps: - self.step = 0 - if should_calc: - self.previous_hidden_states = x.clone() - return not should_calc - - def store(self, hidden_states): - self.previous_residual = hidden_states - self.previous_hidden_states - self.previous_hidden_states = None - - def update(self, hidden_states): - hidden_states = hidden_states + self.previous_residual - return hidden_states - - - -def model_fn_wan_video( - dit: WanModel, - motion_controller: WanMotionControllerModel = None, - x: torch.Tensor = None, - timestep: torch.Tensor = None, - context: torch.Tensor = None, - clip_feature: Optional[torch.Tensor] = None, - y: Optional[torch.Tensor] = None, - tea_cache: TeaCache = None, - use_unified_sequence_parallel: bool = False, - motion_bucket_id: Optional[torch.Tensor] = None, - **kwargs, -): - if use_unified_sequence_parallel: - import torch.distributed as dist - from xfuser.core.distributed import (get_sequence_parallel_rank, - get_sequence_parallel_world_size, - get_sp_group) - - t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep)) - t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim)) - if motion_bucket_id is not None and motion_controller is not None: - t_mod = t_mod + motion_controller(motion_bucket_id).unflatten(1, (6, dit.dim)) - context = dit.text_embedding(context) - - if dit.has_image_input: - x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w) - clip_embdding = dit.img_emb(clip_feature) - context = torch.cat([clip_embdding, context], dim=1) - - x, (f, h, w) = dit.patchify(x) - - freqs = torch.cat([ - dit.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), - dit.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), - dit.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) - ], dim=-1).reshape(f * h * w, 1, -1).to(x.device) - - # TeaCache - if tea_cache is not None: - tea_cache_update = tea_cache.check(dit, x, t_mod) - else: - tea_cache_update = False - - # blocks - if use_unified_sequence_parallel: - if dist.is_initialized() and dist.get_world_size() > 1: - x = torch.chunk(x, get_sequence_parallel_world_size(), dim=1)[get_sequence_parallel_rank()] - if tea_cache_update: - x = tea_cache.update(x) - else: - for block in dit.blocks: - x = block(x, context, t_mod, freqs) - if tea_cache is not None: - tea_cache.store(x) - - x = dit.head(x, t) - if use_unified_sequence_parallel: - if dist.is_initialized() and dist.get_world_size() > 1: - x = get_sp_group().all_gather(x, dim=1) - x = dit.unpatchify(x, (f, h, w)) - return x diff --git a/diffsynth/processors/FastBlend.py b/diffsynth/processors/FastBlend.py deleted file mode 100644 index fed33f4fdd215c8c9dc46f3b07d9453a12cc6b98..0000000000000000000000000000000000000000 --- a/diffsynth/processors/FastBlend.py +++ /dev/null @@ -1,142 +0,0 @@ -from PIL import Image -import cupy as cp -import numpy as np -from tqdm import tqdm -from ..extensions.FastBlend.patch_match import PyramidPatchMatcher -from ..extensions.FastBlend.runners.fast import TableManager -from .base import VideoProcessor - - -class FastBlendSmoother(VideoProcessor): - def __init__( - self, - inference_mode="fast", batch_size=8, window_size=60, - minimum_patch_size=5, threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0, initialize="identity", tracking_window_size=0 - ): - self.inference_mode = inference_mode - self.batch_size = batch_size - self.window_size = window_size - self.ebsynth_config = { - "minimum_patch_size": minimum_patch_size, - "threads_per_block": threads_per_block, - "num_iter": num_iter, - "gpu_id": gpu_id, - "guide_weight": guide_weight, - "initialize": initialize, - "tracking_window_size": tracking_window_size - } - - @staticmethod - def from_model_manager(model_manager, **kwargs): - # TODO: fetch GPU ID from model_manager - return FastBlendSmoother(**kwargs) - - def inference_fast(self, frames_guide, frames_style): - table_manager = TableManager() - patch_match_engine = PyramidPatchMatcher( - image_height=frames_style[0].shape[0], - image_width=frames_style[0].shape[1], - channel=3, - **self.ebsynth_config - ) - # left part - table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, self.batch_size, desc="Fast Mode Step 1/4") - table_l = table_manager.remapping_table_to_blending_table(table_l) - table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, self.window_size, self.batch_size, desc="Fast Mode Step 2/4") - # right part - table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, self.batch_size, desc="Fast Mode Step 3/4") - table_r = table_manager.remapping_table_to_blending_table(table_r) - table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, self.window_size, self.batch_size, desc="Fast Mode Step 4/4")[::-1] - # merge - frames = [] - for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r): - weight_m = -1 - weight = weight_l + weight_m + weight_r - frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight) - frames.append(frame) - frames = [frame.clip(0, 255).astype("uint8") for frame in frames] - frames = [Image.fromarray(frame) for frame in frames] - return frames - - def inference_balanced(self, frames_guide, frames_style): - patch_match_engine = PyramidPatchMatcher( - image_height=frames_style[0].shape[0], - image_width=frames_style[0].shape[1], - channel=3, - **self.ebsynth_config - ) - output_frames = [] - # tasks - n = len(frames_style) - tasks = [] - for target in range(n): - for source in range(target - self.window_size, target + self.window_size + 1): - if source >= 0 and source < n and source != target: - tasks.append((source, target)) - # run - frames = [(None, 1) for i in range(n)] - for batch_id in tqdm(range(0, len(tasks), self.batch_size), desc="Balanced Mode"): - tasks_batch = tasks[batch_id: min(batch_id+self.batch_size, len(tasks))] - source_guide = np.stack([frames_guide[source] for source, target in tasks_batch]) - target_guide = np.stack([frames_guide[target] for source, target in tasks_batch]) - source_style = np.stack([frames_style[source] for source, target in tasks_batch]) - _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) - for (source, target), result in zip(tasks_batch, target_style): - frame, weight = frames[target] - if frame is None: - frame = frames_style[target] - frames[target] = ( - frame * (weight / (weight + 1)) + result / (weight + 1), - weight + 1 - ) - if weight + 1 == min(n, target + self.window_size + 1) - max(0, target - self.window_size): - frame = frame.clip(0, 255).astype("uint8") - output_frames.append(Image.fromarray(frame)) - frames[target] = (None, 1) - return output_frames - - def inference_accurate(self, frames_guide, frames_style): - patch_match_engine = PyramidPatchMatcher( - image_height=frames_style[0].shape[0], - image_width=frames_style[0].shape[1], - channel=3, - use_mean_target_style=True, - **self.ebsynth_config - ) - output_frames = [] - # run - n = len(frames_style) - for target in tqdm(range(n), desc="Accurate Mode"): - l, r = max(target - self.window_size, 0), min(target + self.window_size + 1, n) - remapped_frames = [] - for i in range(l, r, self.batch_size): - j = min(i + self.batch_size, r) - source_guide = np.stack([frames_guide[source] for source in range(i, j)]) - target_guide = np.stack([frames_guide[target]] * (j - i)) - source_style = np.stack([frames_style[source] for source in range(i, j)]) - _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) - remapped_frames.append(target_style) - frame = np.concatenate(remapped_frames, axis=0).mean(axis=0) - frame = frame.clip(0, 255).astype("uint8") - output_frames.append(Image.fromarray(frame)) - return output_frames - - def release_vram(self): - mempool = cp.get_default_memory_pool() - pinned_mempool = cp.get_default_pinned_memory_pool() - mempool.free_all_blocks() - pinned_mempool.free_all_blocks() - - def __call__(self, rendered_frames, original_frames=None, **kwargs): - rendered_frames = [np.array(frame) for frame in rendered_frames] - original_frames = [np.array(frame) for frame in original_frames] - if self.inference_mode == "fast": - output_frames = self.inference_fast(original_frames, rendered_frames) - elif self.inference_mode == "balanced": - output_frames = self.inference_balanced(original_frames, rendered_frames) - elif self.inference_mode == "accurate": - output_frames = self.inference_accurate(original_frames, rendered_frames) - else: - raise ValueError("inference_mode must be fast, balanced or accurate") - self.release_vram() - return output_frames diff --git a/diffsynth/processors/PILEditor.py b/diffsynth/processors/PILEditor.py deleted file mode 100644 index 01011d8724f61283550d503c5c20ae6fd0375ec7..0000000000000000000000000000000000000000 --- a/diffsynth/processors/PILEditor.py +++ /dev/null @@ -1,28 +0,0 @@ -from PIL import ImageEnhance -from .base import VideoProcessor - - -class ContrastEditor(VideoProcessor): - def __init__(self, rate=1.5): - self.rate = rate - - @staticmethod - def from_model_manager(model_manager, **kwargs): - return ContrastEditor(**kwargs) - - def __call__(self, rendered_frames, **kwargs): - rendered_frames = [ImageEnhance.Contrast(i).enhance(self.rate) for i in rendered_frames] - return rendered_frames - - -class SharpnessEditor(VideoProcessor): - def __init__(self, rate=1.5): - self.rate = rate - - @staticmethod - def from_model_manager(model_manager, **kwargs): - return SharpnessEditor(**kwargs) - - def __call__(self, rendered_frames, **kwargs): - rendered_frames = [ImageEnhance.Sharpness(i).enhance(self.rate) for i in rendered_frames] - return rendered_frames diff --git a/diffsynth/processors/RIFE.py b/diffsynth/processors/RIFE.py deleted file mode 100644 index 4186eb31496e9a1bf38df06eb64921226f07ee09..0000000000000000000000000000000000000000 --- a/diffsynth/processors/RIFE.py +++ /dev/null @@ -1,77 +0,0 @@ -import torch -import numpy as np -from PIL import Image -from .base import VideoProcessor - - -class RIFESmoother(VideoProcessor): - def __init__(self, model, device="cuda", scale=1.0, batch_size=4, interpolate=True): - self.model = model - self.device = device - - # IFNet only does not support float16 - self.torch_dtype = torch.float32 - - # Other parameters - self.scale = scale - self.batch_size = batch_size - self.interpolate = interpolate - - @staticmethod - def from_model_manager(model_manager, **kwargs): - return RIFESmoother(model_manager.RIFE, device=model_manager.device, **kwargs) - - def process_image(self, image): - width, height = image.size - if width % 32 != 0 or height % 32 != 0: - width = (width + 31) // 32 - height = (height + 31) // 32 - image = image.resize((width, height)) - image = torch.Tensor(np.array(image, dtype=np.float32)[:, :, [2,1,0]] / 255).permute(2, 0, 1) - return image - - def process_images(self, images): - images = [self.process_image(image) for image in images] - images = torch.stack(images) - return images - - def decode_images(self, images): - images = (images[:, [2,1,0]].permute(0, 2, 3, 1) * 255).clip(0, 255).numpy().astype(np.uint8) - images = [Image.fromarray(image) for image in images] - return images - - def process_tensors(self, input_tensor, scale=1.0, batch_size=4): - output_tensor = [] - for batch_id in range(0, input_tensor.shape[0], batch_size): - batch_id_ = min(batch_id + batch_size, input_tensor.shape[0]) - batch_input_tensor = input_tensor[batch_id: batch_id_] - batch_input_tensor = batch_input_tensor.to(device=self.device, dtype=self.torch_dtype) - flow, mask, merged = self.model(batch_input_tensor, [4/scale, 2/scale, 1/scale]) - output_tensor.append(merged[2].cpu()) - output_tensor = torch.concat(output_tensor, dim=0) - return output_tensor - - @torch.no_grad() - def __call__(self, rendered_frames, **kwargs): - # Preprocess - processed_images = self.process_images(rendered_frames) - - # Input - input_tensor = torch.cat((processed_images[:-2], processed_images[2:]), dim=1) - - # Interpolate - output_tensor = self.process_tensors(input_tensor, scale=self.scale, batch_size=self.batch_size) - - if self.interpolate: - # Blend - input_tensor = torch.cat((processed_images[1:-1], output_tensor), dim=1) - output_tensor = self.process_tensors(input_tensor, scale=self.scale, batch_size=self.batch_size) - processed_images[1:-1] = output_tensor - else: - processed_images[1:-1] = (processed_images[1:-1] + output_tensor) / 2 - - # To images - output_images = self.decode_images(processed_images) - if output_images[0].size != rendered_frames[0].size: - output_images = [image.resize(rendered_frames[0].size) for image in output_images] - return output_images diff --git a/diffsynth/processors/__init__.py b/diffsynth/processors/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/diffsynth/processors/base.py b/diffsynth/processors/base.py deleted file mode 100644 index 278a9c1b74044987cc116de35292a96de8b13737..0000000000000000000000000000000000000000 --- a/diffsynth/processors/base.py +++ /dev/null @@ -1,6 +0,0 @@ -class VideoProcessor: - def __init__(self): - pass - - def __call__(self): - raise NotImplementedError diff --git a/diffsynth/processors/sequencial_processor.py b/diffsynth/processors/sequencial_processor.py deleted file mode 100644 index 9b5bc9454f0b9d74f10bb4a6bff92db77f26325c..0000000000000000000000000000000000000000 --- a/diffsynth/processors/sequencial_processor.py +++ /dev/null @@ -1,41 +0,0 @@ -from .base import VideoProcessor - - -class AutoVideoProcessor(VideoProcessor): - def __init__(self): - pass - - @staticmethod - def from_model_manager(model_manager, processor_type, **kwargs): - if processor_type == "FastBlend": - from .FastBlend import FastBlendSmoother - return FastBlendSmoother.from_model_manager(model_manager, **kwargs) - elif processor_type == "Contrast": - from .PILEditor import ContrastEditor - return ContrastEditor.from_model_manager(model_manager, **kwargs) - elif processor_type == "Sharpness": - from .PILEditor import SharpnessEditor - return SharpnessEditor.from_model_manager(model_manager, **kwargs) - elif processor_type == "RIFE": - from .RIFE import RIFESmoother - return RIFESmoother.from_model_manager(model_manager, **kwargs) - else: - raise ValueError(f"invalid processor_type: {processor_type}") - - -class SequencialProcessor(VideoProcessor): - def __init__(self, processors=[]): - self.processors = processors - - @staticmethod - def from_model_manager(model_manager, configs): - processors = [ - AutoVideoProcessor.from_model_manager(model_manager, config["processor_type"], **config["config"]) - for config in configs - ] - return SequencialProcessor(processors) - - def __call__(self, rendered_frames, **kwargs): - for processor in self.processors: - rendered_frames = processor(rendered_frames, **kwargs) - return rendered_frames diff --git a/diffsynth/prompters/__init__.py b/diffsynth/prompters/__init__.py deleted file mode 100644 index f27c6f153b076de484c2b650e8bf16d7142d1099..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/__init__.py +++ /dev/null @@ -1,12 +0,0 @@ -from .prompt_refiners import Translator, BeautifulPrompt, QwenPrompt -from .sd_prompter import SDPrompter -from .sdxl_prompter import SDXLPrompter -from .sd3_prompter import SD3Prompter -from .hunyuan_dit_prompter import HunyuanDiTPrompter -from .kolors_prompter import KolorsPrompter -from .flux_prompter import FluxPrompter -from .omost import OmostPromter -from .cog_prompter import CogPrompter -from .hunyuan_video_prompter import HunyuanVideoPrompter -from .stepvideo_prompter import StepVideoPrompter -from .wan_prompter import WanPrompter diff --git a/diffsynth/prompters/base_prompter.py b/diffsynth/prompters/base_prompter.py deleted file mode 100644 index 136abd18fabdb04e618f59801420c9ce5fb94634..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/base_prompter.py +++ /dev/null @@ -1,70 +0,0 @@ -from ..models.model_manager import ModelManager -import torch - - - -def tokenize_long_prompt(tokenizer, prompt, max_length=None): - # Get model_max_length from self.tokenizer - length = tokenizer.model_max_length if max_length is None else max_length - - # To avoid the warning. set self.tokenizer.model_max_length to +oo. - tokenizer.model_max_length = 99999999 - - # Tokenize it! - input_ids = tokenizer(prompt, return_tensors="pt").input_ids - - # Determine the real length. - max_length = (input_ids.shape[1] + length - 1) // length * length - - # Restore tokenizer.model_max_length - tokenizer.model_max_length = length - - # Tokenize it again with fixed length. - input_ids = tokenizer( - prompt, - return_tensors="pt", - padding="max_length", - max_length=max_length, - truncation=True - ).input_ids - - # Reshape input_ids to fit the text encoder. - num_sentence = input_ids.shape[1] // length - input_ids = input_ids.reshape((num_sentence, length)) - - return input_ids - - - -class BasePrompter: - def __init__(self): - self.refiners = [] - self.extenders = [] - - - def load_prompt_refiners(self, model_manager: ModelManager, refiner_classes=[]): - for refiner_class in refiner_classes: - refiner = refiner_class.from_model_manager(model_manager) - self.refiners.append(refiner) - - def load_prompt_extenders(self,model_manager:ModelManager,extender_classes=[]): - for extender_class in extender_classes: - extender = extender_class.from_model_manager(model_manager) - self.extenders.append(extender) - - - @torch.no_grad() - def process_prompt(self, prompt, positive=True): - if isinstance(prompt, list): - prompt = [self.process_prompt(prompt_, positive=positive) for prompt_ in prompt] - else: - for refiner in self.refiners: - prompt = refiner(prompt, positive=positive) - return prompt - - @torch.no_grad() - def extend_prompt(self, prompt:str, positive=True): - extended_prompt = dict(prompt=prompt) - for extender in self.extenders: - extended_prompt = extender(extended_prompt) - return extended_prompt \ No newline at end of file diff --git a/diffsynth/prompters/cog_prompter.py b/diffsynth/prompters/cog_prompter.py deleted file mode 100644 index a1ab84a69c32e681e087ba7ed0642a6177fe1f7a..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/cog_prompter.py +++ /dev/null @@ -1,46 +0,0 @@ -from .base_prompter import BasePrompter -from ..models.flux_text_encoder import FluxTextEncoder2 -from transformers import T5TokenizerFast -import os - - -class CogPrompter(BasePrompter): - def __init__( - self, - tokenizer_path=None - ): - if tokenizer_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_path = os.path.join(base_path, "tokenizer_configs/cog/tokenizer") - super().__init__() - self.tokenizer = T5TokenizerFast.from_pretrained(tokenizer_path) - self.text_encoder: FluxTextEncoder2 = None - - - def fetch_models(self, text_encoder: FluxTextEncoder2 = None): - self.text_encoder = text_encoder - - - def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device): - input_ids = tokenizer( - prompt, - return_tensors="pt", - padding="max_length", - max_length=max_length, - truncation=True, - ).input_ids.to(device) - prompt_emb = text_encoder(input_ids) - prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) - - return prompt_emb - - - def encode_prompt( - self, - prompt, - positive=True, - device="cuda" - ): - prompt = self.process_prompt(prompt, positive=positive) - prompt_emb = self.encode_prompt_using_t5(prompt, self.text_encoder, self.tokenizer, 226, device) - return prompt_emb diff --git a/diffsynth/prompters/flux_prompter.py b/diffsynth/prompters/flux_prompter.py deleted file mode 100644 index a3a06ff8df29345f505873cf1b79c963229f3efb..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/flux_prompter.py +++ /dev/null @@ -1,74 +0,0 @@ -from .base_prompter import BasePrompter -from ..models.flux_text_encoder import FluxTextEncoder2 -from ..models.sd3_text_encoder import SD3TextEncoder1 -from transformers import CLIPTokenizer, T5TokenizerFast -import os, torch - - -class FluxPrompter(BasePrompter): - def __init__( - self, - tokenizer_1_path=None, - tokenizer_2_path=None - ): - if tokenizer_1_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_1_path = os.path.join(base_path, "tokenizer_configs/flux/tokenizer_1") - if tokenizer_2_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/flux/tokenizer_2") - super().__init__() - self.tokenizer_1 = CLIPTokenizer.from_pretrained(tokenizer_1_path) - self.tokenizer_2 = T5TokenizerFast.from_pretrained(tokenizer_2_path) - self.text_encoder_1: SD3TextEncoder1 = None - self.text_encoder_2: FluxTextEncoder2 = None - - - def fetch_models(self, text_encoder_1: SD3TextEncoder1 = None, text_encoder_2: FluxTextEncoder2 = None): - self.text_encoder_1 = text_encoder_1 - self.text_encoder_2 = text_encoder_2 - - - def encode_prompt_using_clip(self, prompt, text_encoder, tokenizer, max_length, device): - input_ids = tokenizer( - prompt, - return_tensors="pt", - padding="max_length", - max_length=max_length, - truncation=True - ).input_ids.to(device) - pooled_prompt_emb, _ = text_encoder(input_ids) - return pooled_prompt_emb - - - def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device): - input_ids = tokenizer( - prompt, - return_tensors="pt", - padding="max_length", - max_length=max_length, - truncation=True, - ).input_ids.to(device) - prompt_emb = text_encoder(input_ids) - return prompt_emb - - - def encode_prompt( - self, - prompt, - positive=True, - device="cuda", - t5_sequence_length=512, - ): - prompt = self.process_prompt(prompt, positive=positive) - - # CLIP - pooled_prompt_emb = self.encode_prompt_using_clip(prompt, self.text_encoder_1, self.tokenizer_1, 77, device) - - # T5 - prompt_emb = self.encode_prompt_using_t5(prompt, self.text_encoder_2, self.tokenizer_2, t5_sequence_length, device) - - # text_ids - text_ids = torch.zeros(prompt_emb.shape[0], prompt_emb.shape[1], 3).to(device=device, dtype=prompt_emb.dtype) - - return prompt_emb, pooled_prompt_emb, text_ids diff --git a/diffsynth/prompters/hunyuan_dit_prompter.py b/diffsynth/prompters/hunyuan_dit_prompter.py deleted file mode 100644 index 52a22ed72ab77ef668183119fff67db3141ee561..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/hunyuan_dit_prompter.py +++ /dev/null @@ -1,69 +0,0 @@ -from .base_prompter import BasePrompter -from ..models.model_manager import ModelManager -from ..models import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder -from transformers import BertTokenizer, AutoTokenizer -import warnings, os - - -class HunyuanDiTPrompter(BasePrompter): - def __init__( - self, - tokenizer_path=None, - tokenizer_t5_path=None - ): - if tokenizer_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_path = os.path.join(base_path, "tokenizer_configs/hunyuan_dit/tokenizer") - if tokenizer_t5_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_t5_path = os.path.join(base_path, "tokenizer_configs/hunyuan_dit/tokenizer_t5") - super().__init__() - self.tokenizer = BertTokenizer.from_pretrained(tokenizer_path) - with warnings.catch_warnings(): - warnings.simplefilter("ignore") - self.tokenizer_t5 = AutoTokenizer.from_pretrained(tokenizer_t5_path) - self.text_encoder: HunyuanDiTCLIPTextEncoder = None - self.text_encoder_t5: HunyuanDiTT5TextEncoder = None - - - def fetch_models(self, text_encoder: HunyuanDiTCLIPTextEncoder = None, text_encoder_t5: HunyuanDiTT5TextEncoder = None): - self.text_encoder = text_encoder - self.text_encoder_t5 = text_encoder_t5 - - - def encode_prompt_using_signle_model(self, prompt, text_encoder, tokenizer, max_length, clip_skip, device): - text_inputs = tokenizer( - prompt, - padding="max_length", - max_length=max_length, - truncation=True, - return_attention_mask=True, - return_tensors="pt", - ) - text_input_ids = text_inputs.input_ids - attention_mask = text_inputs.attention_mask.to(device) - prompt_embeds = text_encoder( - text_input_ids.to(device), - attention_mask=attention_mask, - clip_skip=clip_skip - ) - return prompt_embeds, attention_mask - - - def encode_prompt( - self, - prompt, - clip_skip=1, - clip_skip_2=1, - positive=True, - device="cuda" - ): - prompt = self.process_prompt(prompt, positive=positive) - - # CLIP - prompt_emb, attention_mask = self.encode_prompt_using_signle_model(prompt, self.text_encoder, self.tokenizer, self.tokenizer.model_max_length, clip_skip, device) - - # T5 - prompt_emb_t5, attention_mask_t5 = self.encode_prompt_using_signle_model(prompt, self.text_encoder_t5, self.tokenizer_t5, self.tokenizer_t5.model_max_length, clip_skip_2, device) - - return prompt_emb, attention_mask, prompt_emb_t5, attention_mask_t5 diff --git a/diffsynth/prompters/hunyuan_video_prompter.py b/diffsynth/prompters/hunyuan_video_prompter.py deleted file mode 100644 index 5b97356cacd4b9ccd9d0912b5694e1c1b4868ae9..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/hunyuan_video_prompter.py +++ /dev/null @@ -1,275 +0,0 @@ -from .base_prompter import BasePrompter -from ..models.sd3_text_encoder import SD3TextEncoder1 -from ..models.hunyuan_video_text_encoder import HunyuanVideoLLMEncoder, HunyuanVideoMLLMEncoder -from transformers import CLIPTokenizer, LlamaTokenizerFast, CLIPImageProcessor -import os, torch -from typing import Union - -PROMPT_TEMPLATE_ENCODE = ( - "<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, " - "quantity, text, spatial relationships of the objects and background:<|eot_id|>" - "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>") - -PROMPT_TEMPLATE_ENCODE_VIDEO = ( - "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: " - "1. The main content and theme of the video." - "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." - "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." - "4. background environment, light, style and atmosphere." - "5. camera angles, movements, and transitions used in the video:<|eot_id|>" - "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>") - -PROMPT_TEMPLATE_ENCODE_I2V = ( - "<|start_header_id|>system<|end_header_id|>\n\n\nDescribe the image by detailing the color, shape, size, texture, " - "quantity, text, spatial relationships of the objects and background:<|eot_id|>" - "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" - "<|start_header_id|>assistant<|end_header_id|>\n\n" -) - -PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = ( - "<|start_header_id|>system<|end_header_id|>\n\n\nDescribe the video by detailing the following aspects according to the reference image: " - "1. The main content and theme of the video." - "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects." - "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects." - "4. background environment, light, style and atmosphere." - "5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n" - "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>" - "<|start_header_id|>assistant<|end_header_id|>\n\n" -) - -PROMPT_TEMPLATE = { - "dit-llm-encode": { - "template": PROMPT_TEMPLATE_ENCODE, - "crop_start": 36, - }, - "dit-llm-encode-video": { - "template": PROMPT_TEMPLATE_ENCODE_VIDEO, - "crop_start": 95, - }, - "dit-llm-encode-i2v": { - "template": PROMPT_TEMPLATE_ENCODE_I2V, - "crop_start": 36, - "image_emb_start": 5, - "image_emb_end": 581, - "image_emb_len": 576, - "double_return_token_id": 271 - }, - "dit-llm-encode-video-i2v": { - "template": PROMPT_TEMPLATE_ENCODE_VIDEO_I2V, - "crop_start": 103, - "image_emb_start": 5, - "image_emb_end": 581, - "image_emb_len": 576, - "double_return_token_id": 271 - }, -} - -NEGATIVE_PROMPT = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion" - - -class HunyuanVideoPrompter(BasePrompter): - - def __init__( - self, - tokenizer_1_path=None, - tokenizer_2_path=None, - ): - if tokenizer_1_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_1_path = os.path.join( - base_path, "tokenizer_configs/hunyuan_video/tokenizer_1") - if tokenizer_2_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_2_path = os.path.join( - base_path, "tokenizer_configs/hunyuan_video/tokenizer_2") - super().__init__() - self.tokenizer_1 = CLIPTokenizer.from_pretrained(tokenizer_1_path) - self.tokenizer_2 = LlamaTokenizerFast.from_pretrained(tokenizer_2_path, padding_side='right') - self.text_encoder_1: SD3TextEncoder1 = None - self.text_encoder_2: HunyuanVideoLLMEncoder = None - - self.prompt_template = PROMPT_TEMPLATE['dit-llm-encode'] - self.prompt_template_video = PROMPT_TEMPLATE['dit-llm-encode-video'] - - def fetch_models(self, - text_encoder_1: SD3TextEncoder1 = None, - text_encoder_2: Union[HunyuanVideoLLMEncoder, HunyuanVideoMLLMEncoder] = None): - self.text_encoder_1 = text_encoder_1 - self.text_encoder_2 = text_encoder_2 - if isinstance(text_encoder_2, HunyuanVideoMLLMEncoder): - # processor - # TODO: may need to replace processor with local implementation - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/hunyuan_video/tokenizer_2") - self.processor = CLIPImageProcessor.from_pretrained(tokenizer_2_path) - # template - self.prompt_template = PROMPT_TEMPLATE['dit-llm-encode-i2v'] - self.prompt_template_video = PROMPT_TEMPLATE['dit-llm-encode-video-i2v'] - - def apply_text_to_template(self, text, template): - assert isinstance(template, str) - if isinstance(text, list): - return [self.apply_text_to_template(text_) for text_ in text] - elif isinstance(text, str): - # Will send string to tokenizer. Used for llm - return template.format(text) - else: - raise TypeError(f"Unsupported prompt type: {type(text)}") - - def encode_prompt_using_clip(self, prompt, max_length, device): - tokenized_result = self.tokenizer_1( - prompt, - return_tensors="pt", - padding="max_length", - max_length=max_length, - truncation=True, - return_attention_mask=True - ) - input_ids = tokenized_result.input_ids.to(device) - attention_mask = tokenized_result.attention_mask.to(device) - return self.text_encoder_1(input_ids=input_ids, extra_mask=attention_mask)[0] - - def encode_prompt_using_llm(self, - prompt, - max_length, - device, - crop_start, - hidden_state_skip_layer=2, - use_attention_mask=True): - max_length += crop_start - inputs = self.tokenizer_2(prompt, - return_tensors="pt", - padding="max_length", - max_length=max_length, - truncation=True) - input_ids = inputs.input_ids.to(device) - attention_mask = inputs.attention_mask.to(device) - last_hidden_state = self.text_encoder_2(input_ids, attention_mask, hidden_state_skip_layer) - - # crop out - if crop_start > 0: - last_hidden_state = last_hidden_state[:, crop_start:] - attention_mask = (attention_mask[:, crop_start:] if use_attention_mask else None) - - return last_hidden_state, attention_mask - - def encode_prompt_using_mllm(self, - prompt, - images, - max_length, - device, - crop_start, - hidden_state_skip_layer=2, - use_attention_mask=True, - image_embed_interleave=4): - image_outputs = self.processor(images, return_tensors="pt")["pixel_values"].to(device) - max_length += crop_start - inputs = self.tokenizer_2(prompt, - return_tensors="pt", - padding="max_length", - max_length=max_length, - truncation=True) - input_ids = inputs.input_ids.to(device) - attention_mask = inputs.attention_mask.to(device) - last_hidden_state = self.text_encoder_2(input_ids=input_ids, - attention_mask=attention_mask, - hidden_state_skip_layer=hidden_state_skip_layer, - pixel_values=image_outputs) - - text_crop_start = (crop_start - 1 + self.prompt_template_video.get("image_emb_len", 576)) - image_crop_start = self.prompt_template_video.get("image_emb_start", 5) - image_crop_end = self.prompt_template_video.get("image_emb_end", 581) - batch_indices, last_double_return_token_indices = torch.where( - input_ids == self.prompt_template_video.get("double_return_token_id", 271)) - if last_double_return_token_indices.shape[0] == 3: - # in case the prompt is too long - last_double_return_token_indices = torch.cat(( - last_double_return_token_indices, - torch.tensor([input_ids.shape[-1]]), - )) - batch_indices = torch.cat((batch_indices, torch.tensor([0]))) - last_double_return_token_indices = (last_double_return_token_indices.reshape(input_ids.shape[0], -1)[:, -1]) - batch_indices = batch_indices.reshape(input_ids.shape[0], -1)[:, -1] - assistant_crop_start = (last_double_return_token_indices - 1 + self.prompt_template_video.get("image_emb_len", 576) - 4) - assistant_crop_end = (last_double_return_token_indices - 1 + self.prompt_template_video.get("image_emb_len", 576)) - attention_mask_assistant_crop_start = (last_double_return_token_indices - 4) - attention_mask_assistant_crop_end = last_double_return_token_indices - text_last_hidden_state = [] - text_attention_mask = [] - image_last_hidden_state = [] - image_attention_mask = [] - for i in range(input_ids.shape[0]): - text_last_hidden_state.append( - torch.cat([ - last_hidden_state[i, text_crop_start:assistant_crop_start[i].item()], - last_hidden_state[i, assistant_crop_end[i].item():], - ])) - text_attention_mask.append( - torch.cat([ - attention_mask[ - i, - crop_start:attention_mask_assistant_crop_start[i].item(), - ], - attention_mask[i, attention_mask_assistant_crop_end[i].item():], - ]) if use_attention_mask else None) - image_last_hidden_state.append(last_hidden_state[i, image_crop_start:image_crop_end]) - image_attention_mask.append( - torch.ones(image_last_hidden_state[-1].shape[0]).to(last_hidden_state.device). - to(attention_mask.dtype) if use_attention_mask else None) - - text_last_hidden_state = torch.stack(text_last_hidden_state) - text_attention_mask = torch.stack(text_attention_mask) - image_last_hidden_state = torch.stack(image_last_hidden_state) - image_attention_mask = torch.stack(image_attention_mask) - - image_last_hidden_state = image_last_hidden_state[:, ::image_embed_interleave, :] - image_attention_mask = image_attention_mask[:, ::image_embed_interleave] - - assert (text_last_hidden_state.shape[0] == text_attention_mask.shape[0] and - image_last_hidden_state.shape[0] == image_attention_mask.shape[0]) - - last_hidden_state = torch.cat([image_last_hidden_state, text_last_hidden_state], dim=1) - attention_mask = torch.cat([image_attention_mask, text_attention_mask], dim=1) - - return last_hidden_state, attention_mask - - def encode_prompt(self, - prompt, - images=None, - positive=True, - device="cuda", - clip_sequence_length=77, - llm_sequence_length=256, - data_type='video', - use_template=True, - hidden_state_skip_layer=2, - use_attention_mask=True, - image_embed_interleave=4): - - prompt = self.process_prompt(prompt, positive=positive) - - # apply template - if use_template: - template = self.prompt_template_video if data_type == 'video' else self.prompt_template - prompt_formated = self.apply_text_to_template(prompt, template['template']) - else: - prompt_formated = prompt - # Text encoder - if data_type == 'video': - crop_start = self.prompt_template_video.get("crop_start", 0) - else: - crop_start = self.prompt_template.get("crop_start", 0) - - # CLIP - pooled_prompt_emb = self.encode_prompt_using_clip(prompt, clip_sequence_length, device) - - # LLM - if images is None: - prompt_emb, attention_mask = self.encode_prompt_using_llm(prompt_formated, llm_sequence_length, device, crop_start, - hidden_state_skip_layer, use_attention_mask) - else: - prompt_emb, attention_mask = self.encode_prompt_using_mllm(prompt_formated, images, llm_sequence_length, device, - crop_start, hidden_state_skip_layer, use_attention_mask, - image_embed_interleave) - - return prompt_emb, pooled_prompt_emb, attention_mask diff --git a/diffsynth/prompters/kolors_prompter.py b/diffsynth/prompters/kolors_prompter.py deleted file mode 100644 index e3d5d58a9dbb816ea8c8e0e3b4f0433bd11d3306..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/kolors_prompter.py +++ /dev/null @@ -1,354 +0,0 @@ -from .base_prompter import BasePrompter -from ..models.model_manager import ModelManager -import json, os, re -from typing import List, Optional, Union, Dict -from sentencepiece import SentencePieceProcessor -from transformers import PreTrainedTokenizer -from transformers.utils import PaddingStrategy -from transformers.tokenization_utils_base import EncodedInput, BatchEncoding -from ..models.kolors_text_encoder import ChatGLMModel - - -class SPTokenizer: - def __init__(self, model_path: str): - # reload tokenizer - assert os.path.isfile(model_path), model_path - self.sp_model = SentencePieceProcessor(model_file=model_path) - - # BOS / EOS token IDs - self.n_words: int = self.sp_model.vocab_size() - self.bos_id: int = self.sp_model.bos_id() - self.eos_id: int = self.sp_model.eos_id() - self.pad_id: int = self.sp_model.unk_id() - assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() - - role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"] - special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens - self.special_tokens = {} - self.index_special_tokens = {} - for token in special_tokens: - self.special_tokens[token] = self.n_words - self.index_special_tokens[self.n_words] = token - self.n_words += 1 - self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens]) - - def tokenize(self, s: str, encode_special_tokens=False): - if encode_special_tokens: - last_index = 0 - t = [] - for match in re.finditer(self.role_special_token_expression, s): - if last_index < match.start(): - t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()])) - t.append(s[match.start():match.end()]) - last_index = match.end() - if last_index < len(s): - t.extend(self.sp_model.EncodeAsPieces(s[last_index:])) - return t - else: - return self.sp_model.EncodeAsPieces(s) - - def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]: - assert type(s) is str - t = self.sp_model.encode(s) - if bos: - t = [self.bos_id] + t - if eos: - t = t + [self.eos_id] - return t - - def decode(self, t: List[int]) -> str: - text, buffer = "", [] - for token in t: - if token in self.index_special_tokens: - if buffer: - text += self.sp_model.decode(buffer) - buffer = [] - text += self.index_special_tokens[token] - else: - buffer.append(token) - if buffer: - text += self.sp_model.decode(buffer) - return text - - def decode_tokens(self, tokens: List[str]) -> str: - text = self.sp_model.DecodePieces(tokens) - return text - - def convert_token_to_id(self, token): - """ Converts a token (str) in an id using the vocab. """ - if token in self.special_tokens: - return self.special_tokens[token] - return self.sp_model.PieceToId(token) - - def convert_id_to_token(self, index): - """Converts an index (integer) in a token (str) using the vocab.""" - if index in self.index_special_tokens: - return self.index_special_tokens[index] - if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0: - return "" - return self.sp_model.IdToPiece(index) - - - -class ChatGLMTokenizer(PreTrainedTokenizer): - vocab_files_names = {"vocab_file": "tokenizer.model"} - - model_input_names = ["input_ids", "attention_mask", "position_ids"] - - def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False, - **kwargs): - self.name = "GLMTokenizer" - - self.vocab_file = vocab_file - self.tokenizer = SPTokenizer(vocab_file) - self.special_tokens = { - "": self.tokenizer.bos_id, - "": self.tokenizer.eos_id, - "": self.tokenizer.pad_id - } - self.encode_special_tokens = encode_special_tokens - super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, - encode_special_tokens=encode_special_tokens, - **kwargs) - - def get_command(self, token): - if token in self.special_tokens: - return self.special_tokens[token] - assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}" - return self.tokenizer.special_tokens[token] - - @property - def unk_token(self) -> str: - return "" - - @property - def pad_token(self) -> str: - return "" - - @property - def pad_token_id(self): - return self.get_command("") - - @property - def eos_token(self) -> str: - return "" - - @property - def eos_token_id(self): - return self.get_command("") - - @property - def vocab_size(self): - return self.tokenizer.n_words - - def get_vocab(self): - """ Returns vocab as a dict """ - vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} - vocab.update(self.added_tokens_encoder) - return vocab - - def _tokenize(self, text, **kwargs): - return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens) - - def _convert_token_to_id(self, token): - """ Converts a token (str) in an id using the vocab. """ - return self.tokenizer.convert_token_to_id(token) - - def _convert_id_to_token(self, index): - """Converts an index (integer) in a token (str) using the vocab.""" - return self.tokenizer.convert_id_to_token(index) - - def convert_tokens_to_string(self, tokens: List[str]) -> str: - return self.tokenizer.decode_tokens(tokens) - - def save_vocabulary(self, save_directory, filename_prefix=None): - """ - Save the vocabulary and special tokens file to a directory. - - Args: - save_directory (`str`): - The directory in which to save the vocabulary. - filename_prefix (`str`, *optional*): - An optional prefix to add to the named of the saved files. - - Returns: - `Tuple(str)`: Paths to the files saved. - """ - if os.path.isdir(save_directory): - vocab_file = os.path.join( - save_directory, self.vocab_files_names["vocab_file"] - ) - else: - vocab_file = save_directory - - with open(self.vocab_file, 'rb') as fin: - proto_str = fin.read() - - with open(vocab_file, "wb") as writer: - writer.write(proto_str) - - return (vocab_file,) - - def get_prefix_tokens(self): - prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")] - return prefix_tokens - - def build_single_message(self, role, metadata, message): - assert role in ["system", "user", "assistant", "observation"], role - role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n") - message_tokens = self.tokenizer.encode(message) - tokens = role_tokens + message_tokens - return tokens - - def build_chat_input(self, query, history=None, role="user"): - if history is None: - history = [] - input_ids = [] - for item in history: - content = item["content"] - if item["role"] == "system" and "tools" in item: - content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False) - input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content)) - input_ids.extend(self.build_single_message(role, "", query)) - input_ids.extend([self.get_command("<|assistant|>")]) - return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True) - - def build_inputs_with_special_tokens( - self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None - ) -> List[int]: - """ - Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and - adding special tokens. A BERT sequence has the following format: - - - single sequence: `[CLS] X [SEP]` - - pair of sequences: `[CLS] A [SEP] B [SEP]` - - Args: - token_ids_0 (`List[int]`): - List of IDs to which the special tokens will be added. - token_ids_1 (`List[int]`, *optional*): - Optional second list of IDs for sequence pairs. - - Returns: - `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. - """ - prefix_tokens = self.get_prefix_tokens() - token_ids_0 = prefix_tokens + token_ids_0 - if token_ids_1 is not None: - token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("")] - return token_ids_0 - - def _pad( - self, - encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], - max_length: Optional[int] = None, - padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, - pad_to_multiple_of: Optional[int] = None, - return_attention_mask: Optional[bool] = None, - padding_side: Optional[str] = None, - ) -> dict: - """ - Pad encoded inputs (on left/right and up to predefined length or max length in the batch) - - Args: - encoded_inputs: - Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). - max_length: maximum length of the returned list and optionally padding length (see below). - Will truncate by taking into account the special tokens. - padding_strategy: PaddingStrategy to use for padding. - - - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - - PaddingStrategy.DO_NOT_PAD: Do not pad - The tokenizer padding sides are defined in self.padding_side: - - - 'left': pads on the left of the sequences - - 'right': pads on the right of the sequences - pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. - This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability - `>= 7.5` (Volta). - return_attention_mask: - (optional) Set to False to avoid returning attention mask (default: set to model specifics) - """ - # Load from model defaults - assert self.padding_side == "left" - - required_input = encoded_inputs[self.model_input_names[0]] - seq_length = len(required_input) - - if padding_strategy == PaddingStrategy.LONGEST: - max_length = len(required_input) - - if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): - max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of - - needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length - - # Initialize attention mask if not present. - if "attention_mask" not in encoded_inputs: - encoded_inputs["attention_mask"] = [1] * seq_length - - if "position_ids" not in encoded_inputs: - encoded_inputs["position_ids"] = list(range(seq_length)) - - if needs_to_be_padded: - difference = max_length - len(required_input) - - if "attention_mask" in encoded_inputs: - encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] - if "position_ids" in encoded_inputs: - encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] - encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input - - return encoded_inputs - - - -class KolorsPrompter(BasePrompter): - def __init__( - self, - tokenizer_path=None - ): - if tokenizer_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_path = os.path.join(base_path, "tokenizer_configs/kolors/tokenizer") - super().__init__() - self.tokenizer = ChatGLMTokenizer.from_pretrained(tokenizer_path) - self.text_encoder: ChatGLMModel = None - - - def fetch_models(self, text_encoder: ChatGLMModel = None): - self.text_encoder = text_encoder - - - def encode_prompt_using_ChatGLM(self, prompt, text_encoder, tokenizer, max_length, clip_skip, device): - text_inputs = tokenizer( - prompt, - padding="max_length", - max_length=max_length, - truncation=True, - return_tensors="pt", - ).to(device) - output = text_encoder( - input_ids=text_inputs['input_ids'] , - attention_mask=text_inputs['attention_mask'], - position_ids=text_inputs['position_ids'], - output_hidden_states=True - ) - prompt_emb = output.hidden_states[-clip_skip].permute(1, 0, 2).clone() - pooled_prompt_emb = output.hidden_states[-1][-1, :, :].clone() - return prompt_emb, pooled_prompt_emb - - - def encode_prompt( - self, - prompt, - clip_skip=1, - clip_skip_2=2, - positive=True, - device="cuda" - ): - prompt = self.process_prompt(prompt, positive=positive) - prompt_emb, pooled_prompt_emb = self.encode_prompt_using_ChatGLM(prompt, self.text_encoder, self.tokenizer, 256, clip_skip_2, device) - - return pooled_prompt_emb, prompt_emb diff --git a/diffsynth/prompters/omnigen_prompter.py b/diffsynth/prompters/omnigen_prompter.py deleted file mode 100644 index 616efabebb7d327ecf968165dd12341ab8f83894..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/omnigen_prompter.py +++ /dev/null @@ -1,356 +0,0 @@ -import os -import re -from typing import Dict, List - -import torch -from PIL import Image -from torchvision import transforms -from transformers import AutoTokenizer -from huggingface_hub import snapshot_download -import numpy as np - - - -def crop_arr(pil_image, max_image_size): - while min(*pil_image.size) >= 2 * max_image_size: - pil_image = pil_image.resize( - tuple(x // 2 for x in pil_image.size), resample=Image.BOX - ) - - if max(*pil_image.size) > max_image_size: - scale = max_image_size / max(*pil_image.size) - pil_image = pil_image.resize( - tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC - ) - - if min(*pil_image.size) < 16: - scale = 16 / min(*pil_image.size) - pil_image = pil_image.resize( - tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC - ) - - arr = np.array(pil_image) - crop_y1 = (arr.shape[0] % 16) // 2 - crop_y2 = arr.shape[0] % 16 - crop_y1 - - crop_x1 = (arr.shape[1] % 16) // 2 - crop_x2 = arr.shape[1] % 16 - crop_x1 - - arr = arr[crop_y1:arr.shape[0]-crop_y2, crop_x1:arr.shape[1]-crop_x2] - return Image.fromarray(arr) - - - -class OmniGenPrompter: - def __init__(self, - text_tokenizer, - max_image_size: int=1024): - self.text_tokenizer = text_tokenizer - self.max_image_size = max_image_size - - self.image_transform = transforms.Compose([ - transforms.Lambda(lambda pil_image: crop_arr(pil_image, max_image_size)), - transforms.ToTensor(), - transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) - ]) - - self.collator = OmniGenCollator() - self.separate_collator = OmniGenSeparateCollator() - - @classmethod - def from_pretrained(cls, model_name): - if not os.path.exists(model_name): - cache_folder = os.getenv('HF_HUB_CACHE') - model_name = snapshot_download(repo_id=model_name, - cache_dir=cache_folder, - allow_patterns="*.json") - text_tokenizer = AutoTokenizer.from_pretrained(model_name) - - return cls(text_tokenizer) - - - def process_image(self, image): - return self.image_transform(image) - - def process_multi_modal_prompt(self, text, input_images): - text = self.add_prefix_instruction(text) - if input_images is None or len(input_images) == 0: - model_inputs = self.text_tokenizer(text) - return {"input_ids": model_inputs.input_ids, "pixel_values": None, "image_sizes": None} - - pattern = r"<\|image_\d+\|>" - prompt_chunks = [self.text_tokenizer(chunk).input_ids for chunk in re.split(pattern, text)] - - for i in range(1, len(prompt_chunks)): - if prompt_chunks[i][0] == 1: - prompt_chunks[i] = prompt_chunks[i][1:] - - image_tags = re.findall(pattern, text) - image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags] - - unique_image_ids = sorted(list(set(image_ids))) - assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}" - # total images must be the same as the number of image tags - assert len(unique_image_ids) == len(input_images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(input_images)} images" - - input_images = [input_images[x-1] for x in image_ids] - - all_input_ids = [] - img_inx = [] - idx = 0 - for i in range(len(prompt_chunks)): - all_input_ids.extend(prompt_chunks[i]) - if i != len(prompt_chunks) -1: - start_inx = len(all_input_ids) - size = input_images[i].size(-2) * input_images[i].size(-1) // 16 // 16 - img_inx.append([start_inx, start_inx+size]) - all_input_ids.extend([0]*size) - - return {"input_ids": all_input_ids, "pixel_values": input_images, "image_sizes": img_inx} - - - def add_prefix_instruction(self, prompt): - user_prompt = '<|user|>\n' - generation_prompt = 'Generate an image according to the following instructions\n' - assistant_prompt = '<|assistant|>\n<|diffusion|>' - prompt_suffix = "<|end|>\n" - prompt = f"{user_prompt}{generation_prompt}{prompt}{prompt_suffix}{assistant_prompt}" - return prompt - - - def __call__(self, - instructions: List[str], - input_images: List[List[str]] = None, - height: int = 1024, - width: int = 1024, - negative_prompt: str = "low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers.", - use_img_cfg: bool = True, - separate_cfg_input: bool = False, - use_input_image_size_as_output: bool=False, - ) -> Dict: - - if input_images is None: - use_img_cfg = False - if isinstance(instructions, str): - instructions = [instructions] - input_images = [input_images] - - input_data = [] - for i in range(len(instructions)): - cur_instruction = instructions[i] - cur_input_images = None if input_images is None else input_images[i] - if cur_input_images is not None and len(cur_input_images) > 0: - cur_input_images = [self.process_image(x) for x in cur_input_images] - else: - cur_input_images = None - assert "<|image_1|>" not in cur_instruction - - mllm_input = self.process_multi_modal_prompt(cur_instruction, cur_input_images) - - - neg_mllm_input, img_cfg_mllm_input = None, None - neg_mllm_input = self.process_multi_modal_prompt(negative_prompt, None) - if use_img_cfg: - if cur_input_images is not None and len(cur_input_images) >= 1: - img_cfg_prompt = [f"<|image_{i+1}|>" for i in range(len(cur_input_images))] - img_cfg_mllm_input = self.process_multi_modal_prompt(" ".join(img_cfg_prompt), cur_input_images) - else: - img_cfg_mllm_input = neg_mllm_input - - if use_input_image_size_as_output: - input_data.append((mllm_input, neg_mllm_input, img_cfg_mllm_input, [mllm_input['pixel_values'][0].size(-2), mllm_input['pixel_values'][0].size(-1)])) - else: - input_data.append((mllm_input, neg_mllm_input, img_cfg_mllm_input, [height, width])) - - if separate_cfg_input: - return self.separate_collator(input_data) - return self.collator(input_data) - - - - -class OmniGenCollator: - def __init__(self, pad_token_id=2, hidden_size=3072): - self.pad_token_id = pad_token_id - self.hidden_size = hidden_size - - def create_position(self, attention_mask, num_tokens_for_output_images): - position_ids = [] - text_length = attention_mask.size(-1) - img_length = max(num_tokens_for_output_images) - for mask in attention_mask: - temp_l = torch.sum(mask) - temp_position = [0]*(text_length-temp_l) + [i for i in range(temp_l+img_length+1)] # we add a time embedding into the sequence, so add one more token - position_ids.append(temp_position) - return torch.LongTensor(position_ids) - - def create_mask(self, attention_mask, num_tokens_for_output_images): - extended_mask = [] - padding_images = [] - text_length = attention_mask.size(-1) - img_length = max(num_tokens_for_output_images) - seq_len = text_length + img_length + 1 # we add a time embedding into the sequence, so add one more token - inx = 0 - for mask in attention_mask: - temp_l = torch.sum(mask) - pad_l = text_length - temp_l - - temp_mask = torch.tril(torch.ones(size=(temp_l+1, temp_l+1))) - - image_mask = torch.zeros(size=(temp_l+1, img_length)) - temp_mask = torch.cat([temp_mask, image_mask], dim=-1) - - image_mask = torch.ones(size=(img_length, temp_l+img_length+1)) - temp_mask = torch.cat([temp_mask, image_mask], dim=0) - - if pad_l > 0: - pad_mask = torch.zeros(size=(temp_l+1+img_length, pad_l)) - temp_mask = torch.cat([pad_mask, temp_mask], dim=-1) - - pad_mask = torch.ones(size=(pad_l, seq_len)) - temp_mask = torch.cat([pad_mask, temp_mask], dim=0) - - true_img_length = num_tokens_for_output_images[inx] - pad_img_length = img_length - true_img_length - if pad_img_length > 0: - temp_mask[:, -pad_img_length:] = 0 - temp_padding_imgs = torch.zeros(size=(1, pad_img_length, self.hidden_size)) - else: - temp_padding_imgs = None - - extended_mask.append(temp_mask.unsqueeze(0)) - padding_images.append(temp_padding_imgs) - inx += 1 - return torch.cat(extended_mask, dim=0), padding_images - - def adjust_attention_for_input_images(self, attention_mask, image_sizes): - for b_inx in image_sizes.keys(): - for start_inx, end_inx in image_sizes[b_inx]: - attention_mask[b_inx][start_inx:end_inx, start_inx:end_inx] = 1 - - return attention_mask - - def pad_input_ids(self, input_ids, image_sizes): - max_l = max([len(x) for x in input_ids]) - padded_ids = [] - attention_mask = [] - new_image_sizes = [] - - for i in range(len(input_ids)): - temp_ids = input_ids[i] - temp_l = len(temp_ids) - pad_l = max_l - temp_l - if pad_l == 0: - attention_mask.append([1]*max_l) - padded_ids.append(temp_ids) - else: - attention_mask.append([0]*pad_l+[1]*temp_l) - padded_ids.append([self.pad_token_id]*pad_l+temp_ids) - - if i in image_sizes: - new_inx = [] - for old_inx in image_sizes[i]: - new_inx.append([x+pad_l for x in old_inx]) - image_sizes[i] = new_inx - - return torch.LongTensor(padded_ids), torch.LongTensor(attention_mask), image_sizes - - - def process_mllm_input(self, mllm_inputs, target_img_size): - num_tokens_for_output_images = [] - for img_size in target_img_size: - num_tokens_for_output_images.append(img_size[0]*img_size[1]//16//16) - - pixel_values, image_sizes = [], {} - b_inx = 0 - for x in mllm_inputs: - if x['pixel_values'] is not None: - pixel_values.extend(x['pixel_values']) - for size in x['image_sizes']: - if b_inx not in image_sizes: - image_sizes[b_inx] = [size] - else: - image_sizes[b_inx].append(size) - b_inx += 1 - pixel_values = [x.unsqueeze(0) for x in pixel_values] - - - input_ids = [x['input_ids'] for x in mllm_inputs] - padded_input_ids, attention_mask, image_sizes = self.pad_input_ids(input_ids, image_sizes) - position_ids = self.create_position(attention_mask, num_tokens_for_output_images) - attention_mask, padding_images = self.create_mask(attention_mask, num_tokens_for_output_images) - attention_mask = self.adjust_attention_for_input_images(attention_mask, image_sizes) - - return padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes - - - def __call__(self, features): - mllm_inputs = [f[0] for f in features] - cfg_mllm_inputs = [f[1] for f in features] - img_cfg_mllm_input = [f[2] for f in features] - target_img_size = [f[3] for f in features] - - - if img_cfg_mllm_input[0] is not None: - mllm_inputs = mllm_inputs + cfg_mllm_inputs + img_cfg_mllm_input - target_img_size = target_img_size + target_img_size + target_img_size - else: - mllm_inputs = mllm_inputs + cfg_mllm_inputs - target_img_size = target_img_size + target_img_size - - - all_padded_input_ids, all_position_ids, all_attention_mask, all_padding_images, all_pixel_values, all_image_sizes = self.process_mllm_input(mllm_inputs, target_img_size) - - data = {"input_ids": all_padded_input_ids, - "attention_mask": all_attention_mask, - "position_ids": all_position_ids, - "input_pixel_values": all_pixel_values, - "input_image_sizes": all_image_sizes, - "padding_images": all_padding_images, - } - return data - - -class OmniGenSeparateCollator(OmniGenCollator): - def __call__(self, features): - mllm_inputs = [f[0] for f in features] - cfg_mllm_inputs = [f[1] for f in features] - img_cfg_mllm_input = [f[2] for f in features] - target_img_size = [f[3] for f in features] - - all_padded_input_ids, all_attention_mask, all_position_ids, all_pixel_values, all_image_sizes, all_padding_images = [], [], [], [], [], [] - - - padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(mllm_inputs, target_img_size) - all_padded_input_ids.append(padded_input_ids) - all_attention_mask.append(attention_mask) - all_position_ids.append(position_ids) - all_pixel_values.append(pixel_values) - all_image_sizes.append(image_sizes) - all_padding_images.append(padding_images) - - if cfg_mllm_inputs[0] is not None: - padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(cfg_mllm_inputs, target_img_size) - all_padded_input_ids.append(padded_input_ids) - all_attention_mask.append(attention_mask) - all_position_ids.append(position_ids) - all_pixel_values.append(pixel_values) - all_image_sizes.append(image_sizes) - all_padding_images.append(padding_images) - if img_cfg_mllm_input[0] is not None: - padded_input_ids, position_ids, attention_mask, padding_images, pixel_values, image_sizes = self.process_mllm_input(img_cfg_mllm_input, target_img_size) - all_padded_input_ids.append(padded_input_ids) - all_attention_mask.append(attention_mask) - all_position_ids.append(position_ids) - all_pixel_values.append(pixel_values) - all_image_sizes.append(image_sizes) - all_padding_images.append(padding_images) - - data = {"input_ids": all_padded_input_ids, - "attention_mask": all_attention_mask, - "position_ids": all_position_ids, - "input_pixel_values": all_pixel_values, - "input_image_sizes": all_image_sizes, - "padding_images": all_padding_images, - } - return data diff --git a/diffsynth/prompters/omost.py b/diffsynth/prompters/omost.py deleted file mode 100644 index 81828ad79978103eea42389d439847c0877cbd85..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/omost.py +++ /dev/null @@ -1,323 +0,0 @@ -from transformers import AutoTokenizer, TextIteratorStreamer -import difflib -import torch -import numpy as np -import re -from ..models.model_manager import ModelManager -from PIL import Image - -valid_colors = { # r, g, b - 'aliceblue': (240, 248, 255), 'antiquewhite': (250, 235, 215), 'aqua': (0, 255, 255), - 'aquamarine': (127, 255, 212), 'azure': (240, 255, 255), 'beige': (245, 245, 220), - 'bisque': (255, 228, 196), 'black': (0, 0, 0), 'blanchedalmond': (255, 235, 205), 'blue': (0, 0, 255), - 'blueviolet': (138, 43, 226), 'brown': (165, 42, 42), 'burlywood': (222, 184, 135), - 'cadetblue': (95, 158, 160), 'chartreuse': (127, 255, 0), 'chocolate': (210, 105, 30), - 'coral': (255, 127, 80), 'cornflowerblue': (100, 149, 237), 'cornsilk': (255, 248, 220), - 'crimson': (220, 20, 60), 'cyan': (0, 255, 255), 'darkblue': (0, 0, 139), 'darkcyan': (0, 139, 139), - 'darkgoldenrod': (184, 134, 11), 'darkgray': (169, 169, 169), 'darkgrey': (169, 169, 169), - 'darkgreen': (0, 100, 0), 'darkkhaki': (189, 183, 107), 'darkmagenta': (139, 0, 139), - 'darkolivegreen': (85, 107, 47), 'darkorange': (255, 140, 0), 'darkorchid': (153, 50, 204), - 'darkred': (139, 0, 0), 'darksalmon': (233, 150, 122), 'darkseagreen': (143, 188, 143), - 'darkslateblue': (72, 61, 139), 'darkslategray': (47, 79, 79), 'darkslategrey': (47, 79, 79), - 'darkturquoise': (0, 206, 209), 'darkviolet': (148, 0, 211), 'deeppink': (255, 20, 147), - 'deepskyblue': (0, 191, 255), 'dimgray': (105, 105, 105), 'dimgrey': (105, 105, 105), - 'dodgerblue': (30, 144, 255), 'firebrick': (178, 34, 34), 'floralwhite': (255, 250, 240), - 'forestgreen': (34, 139, 34), 'fuchsia': (255, 0, 255), 'gainsboro': (220, 220, 220), - 'ghostwhite': (248, 248, 255), 'gold': (255, 215, 0), 'goldenrod': (218, 165, 32), - 'gray': (128, 128, 128), 'grey': (128, 128, 128), 'green': (0, 128, 0), 'greenyellow': (173, 255, 47), - 'honeydew': (240, 255, 240), 'hotpink': (255, 105, 180), 'indianred': (205, 92, 92), - 'indigo': (75, 0, 130), 'ivory': (255, 255, 240), 'khaki': (240, 230, 140), 'lavender': (230, 230, 250), - 'lavenderblush': (255, 240, 245), 'lawngreen': (124, 252, 0), 'lemonchiffon': (255, 250, 205), - 'lightblue': (173, 216, 230), 'lightcoral': (240, 128, 128), 'lightcyan': (224, 255, 255), - 'lightgoldenrodyellow': (250, 250, 210), 'lightgray': (211, 211, 211), 'lightgrey': (211, 211, 211), - 'lightgreen': (144, 238, 144), 'lightpink': (255, 182, 193), 'lightsalmon': (255, 160, 122), - 'lightseagreen': (32, 178, 170), 'lightskyblue': (135, 206, 250), 'lightslategray': (119, 136, 153), - 'lightslategrey': (119, 136, 153), 'lightsteelblue': (176, 196, 222), 'lightyellow': (255, 255, 224), - 'lime': (0, 255, 0), 'limegreen': (50, 205, 50), 'linen': (250, 240, 230), 'magenta': (255, 0, 255), - 'maroon': (128, 0, 0), 'mediumaquamarine': (102, 205, 170), 'mediumblue': (0, 0, 205), - 'mediumorchid': (186, 85, 211), 'mediumpurple': (147, 112, 219), 'mediumseagreen': (60, 179, 113), - 'mediumslateblue': (123, 104, 238), 'mediumspringgreen': (0, 250, 154), - 'mediumturquoise': (72, 209, 204), 'mediumvioletred': (199, 21, 133), 'midnightblue': (25, 25, 112), - 'mintcream': (245, 255, 250), 'mistyrose': (255, 228, 225), 'moccasin': (255, 228, 181), - 'navajowhite': (255, 222, 173), 'navy': (0, 0, 128), 'navyblue': (0, 0, 128), - 'oldlace': (253, 245, 230), 'olive': (128, 128, 0), 'olivedrab': (107, 142, 35), - 'orange': (255, 165, 0), 'orangered': (255, 69, 0), 'orchid': (218, 112, 214), - 'palegoldenrod': (238, 232, 170), 'palegreen': (152, 251, 152), 'paleturquoise': (175, 238, 238), - 'palevioletred': (219, 112, 147), 'papayawhip': (255, 239, 213), 'peachpuff': (255, 218, 185), - 'peru': (205, 133, 63), 'pink': (255, 192, 203), 'plum': (221, 160, 221), 'powderblue': (176, 224, 230), - 'purple': (128, 0, 128), 'rebeccapurple': (102, 51, 153), 'red': (255, 0, 0), - 'rosybrown': (188, 143, 143), 'royalblue': (65, 105, 225), 'saddlebrown': (139, 69, 19), - 'salmon': (250, 128, 114), 'sandybrown': (244, 164, 96), 'seagreen': (46, 139, 87), - 'seashell': (255, 245, 238), 'sienna': (160, 82, 45), 'silver': (192, 192, 192), - 'skyblue': (135, 206, 235), 'slateblue': (106, 90, 205), 'slategray': (112, 128, 144), - 'slategrey': (112, 128, 144), 'snow': (255, 250, 250), 'springgreen': (0, 255, 127), - 'steelblue': (70, 130, 180), 'tan': (210, 180, 140), 'teal': (0, 128, 128), 'thistle': (216, 191, 216), - 'tomato': (255, 99, 71), 'turquoise': (64, 224, 208), 'violet': (238, 130, 238), - 'wheat': (245, 222, 179), 'white': (255, 255, 255), 'whitesmoke': (245, 245, 245), - 'yellow': (255, 255, 0), 'yellowgreen': (154, 205, 50) -} - -valid_locations = { # x, y in 90*90 - 'in the center': (45, 45), - 'on the left': (15, 45), - 'on the right': (75, 45), - 'on the top': (45, 15), - 'on the bottom': (45, 75), - 'on the top-left': (15, 15), - 'on the top-right': (75, 15), - 'on the bottom-left': (15, 75), - 'on the bottom-right': (75, 75) -} - -valid_offsets = { # x, y in 90*90 - 'no offset': (0, 0), - 'slightly to the left': (-10, 0), - 'slightly to the right': (10, 0), - 'slightly to the upper': (0, -10), - 'slightly to the lower': (0, 10), - 'slightly to the upper-left': (-10, -10), - 'slightly to the upper-right': (10, -10), - 'slightly to the lower-left': (-10, 10), - 'slightly to the lower-right': (10, 10)} - -valid_areas = { # w, h in 90*90 - "a small square area": (50, 50), - "a small vertical area": (40, 60), - "a small horizontal area": (60, 40), - "a medium-sized square area": (60, 60), - "a medium-sized vertical area": (50, 80), - "a medium-sized horizontal area": (80, 50), - "a large square area": (70, 70), - "a large vertical area": (60, 90), - "a large horizontal area": (90, 60) -} - -def safe_str(x): - return x.strip(',. ') + '.' - -def closest_name(input_str, options): - input_str = input_str.lower() - - closest_match = difflib.get_close_matches(input_str, list(options.keys()), n=1, cutoff=0.5) - assert isinstance(closest_match, list) and len(closest_match) > 0, f'The value [{input_str}] is not valid!' - result = closest_match[0] - - if result != input_str: - print(f'Automatically corrected [{input_str}] -> [{result}].') - - return result - -class Canvas: - @staticmethod - def from_bot_response(response: str): - - matched = re.search(r'```python\n(.*?)\n```', response, re.DOTALL) - assert matched, 'Response does not contain codes!' - code_content = matched.group(1) - assert 'canvas = Canvas()' in code_content, 'Code block must include valid canvas var!' - local_vars = {'Canvas': Canvas} - exec(code_content, {}, local_vars) - canvas = local_vars.get('canvas', None) - assert isinstance(canvas, Canvas), 'Code block must produce valid canvas var!' - return canvas - - def __init__(self): - self.components = [] - self.color = None - self.record_tags = True - self.prefixes = [] - self.suffixes = [] - return - - def set_global_description(self, description: str, detailed_descriptions: list, tags: str, - HTML_web_color_name: str): - assert isinstance(description, str), 'Global description is not valid!' - assert isinstance(detailed_descriptions, list) and all(isinstance(item, str) for item in detailed_descriptions), \ - 'Global detailed_descriptions is not valid!' - assert isinstance(tags, str), 'Global tags is not valid!' - - HTML_web_color_name = closest_name(HTML_web_color_name, valid_colors) - self.color = np.array([[valid_colors[HTML_web_color_name]]], dtype=np.uint8) - - self.prefixes = [description] - self.suffixes = detailed_descriptions - - if self.record_tags: - self.suffixes = self.suffixes + [tags] - - self.prefixes = [safe_str(x) for x in self.prefixes] - self.suffixes = [safe_str(x) for x in self.suffixes] - - return - - def add_local_description(self, location: str, offset: str, area: str, distance_to_viewer: float, description: str, - detailed_descriptions: list, tags: str, atmosphere: str, style: str, - quality_meta: str, HTML_web_color_name: str): - assert isinstance(description, str), 'Local description is wrong!' - assert isinstance(distance_to_viewer, (int, float)) and distance_to_viewer > 0, \ - f'The distance_to_viewer for [{description}] is not positive float number!' - assert isinstance(detailed_descriptions, list) and all(isinstance(item, str) for item in detailed_descriptions), \ - f'The detailed_descriptions for [{description}] is not valid!' - assert isinstance(tags, str), f'The tags for [{description}] is not valid!' - assert isinstance(atmosphere, str), f'The atmosphere for [{description}] is not valid!' - assert isinstance(style, str), f'The style for [{description}] is not valid!' - assert isinstance(quality_meta, str), f'The quality_meta for [{description}] is not valid!' - - location = closest_name(location, valid_locations) - offset = closest_name(offset, valid_offsets) - area = closest_name(area, valid_areas) - HTML_web_color_name = closest_name(HTML_web_color_name, valid_colors) - - xb, yb = valid_locations[location] - xo, yo = valid_offsets[offset] - w, h = valid_areas[area] - rect = (yb + yo - h // 2, yb + yo + h // 2, xb + xo - w // 2, xb + xo + w // 2) - rect = [max(0, min(90, i)) for i in rect] - color = np.array([[valid_colors[HTML_web_color_name]]], dtype=np.uint8) - - prefixes = self.prefixes + [description] - suffixes = detailed_descriptions - - if self.record_tags: - suffixes = suffixes + [tags, atmosphere, style, quality_meta] - - prefixes = [safe_str(x) for x in prefixes] - suffixes = [safe_str(x) for x in suffixes] - - self.components.append(dict( - rect=rect, - distance_to_viewer=distance_to_viewer, - color=color, - prefixes=prefixes, - suffixes=suffixes, - location=location, - )) - - return - - def process(self): - # sort components - self.components = sorted(self.components, key=lambda x: x['distance_to_viewer'], reverse=True) - - # compute initial latent - # print(self.color) - initial_latent = np.zeros(shape=(90, 90, 3), dtype=np.float32) + self.color - - for component in self.components: - a, b, c, d = component['rect'] - initial_latent[a:b, c:d] = 0.7 * component['color'] + 0.3 * initial_latent[a:b, c:d] - - initial_latent = initial_latent.clip(0, 255).astype(np.uint8) - - # compute conditions - - bag_of_conditions = [ - dict(mask=np.ones(shape=(90, 90), dtype=np.float32), prefixes=self.prefixes, suffixes=self.suffixes,location= "full") - ] - - for i, component in enumerate(self.components): - a, b, c, d = component['rect'] - m = np.zeros(shape=(90, 90), dtype=np.float32) - m[a:b, c:d] = 1.0 - bag_of_conditions.append(dict( - mask = m, - prefixes = component['prefixes'], - suffixes = component['suffixes'], - location = component['location'], - )) - - return dict( - initial_latent = initial_latent, - bag_of_conditions = bag_of_conditions, - ) - - -class OmostPromter(torch.nn.Module): - - def __init__(self,model = None,tokenizer = None, template = "",device="cpu"): - super().__init__() - self.model=model - self.tokenizer = tokenizer - self.device = device - if template == "": - template = r'''You are a helpful AI assistant to compose images using the below python class `Canvas`: - ```python - class Canvas: - def set_global_description(self, description: str, detailed_descriptions: list[str], tags: str, HTML_web_color_name: str): - pass - - def add_local_description(self, location: str, offset: str, area: str, distance_to_viewer: float, description: str, detailed_descriptions: list[str], tags: str, atmosphere: str, style: str, quality_meta: str, HTML_web_color_name: str): - assert location in ["in the center", "on the left", "on the right", "on the top", "on the bottom", "on the top-left", "on the top-right", "on the bottom-left", "on the bottom-right"] - assert offset in ["no offset", "slightly to the left", "slightly to the right", "slightly to the upper", "slightly to the lower", "slightly to the upper-left", "slightly to the upper-right", "slightly to the lower-left", "slightly to the lower-right"] - assert area in ["a small square area", "a small vertical area", "a small horizontal area", "a medium-sized square area", "a medium-sized vertical area", "a medium-sized horizontal area", "a large square area", "a large vertical area", "a large horizontal area"] - assert distance_to_viewer > 0 - pass - ```''' - self.template = template - - @staticmethod - def from_model_manager(model_manager: ModelManager): - model, model_path = model_manager.fetch_model("omost_prompt", require_model_path=True) - tokenizer = AutoTokenizer.from_pretrained(model_path) - omost = OmostPromter( - model= model, - tokenizer = tokenizer, - device = model_manager.device - ) - return omost - - - def __call__(self,prompt_dict:dict): - raw_prompt=prompt_dict["prompt"] - conversation = [{"role": "system", "content": self.template}] - conversation.append({"role": "user", "content": raw_prompt}) - - input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True).to(self.device) - streamer = TextIteratorStreamer(self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) - attention_mask = torch.ones(input_ids.shape, dtype=torch.bfloat16, device=self.device) - - generate_kwargs = dict( - input_ids = input_ids, - streamer = streamer, - # stopping_criteria=stopping_criteria, - # max_new_tokens=max_new_tokens, - do_sample = True, - attention_mask = attention_mask, - pad_token_id = self.tokenizer.eos_token_id, - # temperature=temperature, - # top_p=top_p, - ) - self.model.generate(**generate_kwargs) - outputs = [] - for text in streamer: - outputs.append(text) - llm_outputs = "".join(outputs) - - canvas = Canvas.from_bot_response(llm_outputs) - canvas_output = canvas.process() - - prompts = [" ".join(_["prefixes"]+_["suffixes"][:2]) for _ in canvas_output["bag_of_conditions"]] - canvas_output["prompt"] = prompts[0] - canvas_output["prompts"] = prompts[1:] - - raw_masks = [_["mask"] for _ in canvas_output["bag_of_conditions"]] - masks=[] - for mask in raw_masks: - mask[mask>0.5]=255 - mask = np.stack([mask] * 3, axis=-1).astype("uint8") - masks.append(Image.fromarray(mask)) - - canvas_output["masks"] = masks - prompt_dict.update(canvas_output) - print(f"Your prompt is extended by Omost:\n") - cnt = 0 - for component,pmt in zip(canvas_output["bag_of_conditions"],prompts): - loc = component["location"] - cnt += 1 - print(f"Component {cnt} - Location : {loc}\nPrompt:{pmt}\n") - - return prompt_dict - - - - \ No newline at end of file diff --git a/diffsynth/prompters/prompt_refiners.py b/diffsynth/prompters/prompt_refiners.py deleted file mode 100644 index 0ac19f565b076cccb21d9e05149b604e4bb55854..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/prompt_refiners.py +++ /dev/null @@ -1,130 +0,0 @@ -from transformers import AutoTokenizer -from ..models.model_manager import ModelManager -import torch -from .omost import OmostPromter - -class BeautifulPrompt(torch.nn.Module): - def __init__(self, tokenizer_path=None, model=None, template=""): - super().__init__() - self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) - self.model = model - self.template = template - - - @staticmethod - def from_model_manager(model_manager: ModelManager): - model, model_path = model_manager.fetch_model("beautiful_prompt", require_model_path=True) - template = 'Instruction: Give a simple description of the image to generate a drawing prompt.\nInput: {raw_prompt}\nOutput:' - if model_path.endswith("v2"): - template = """Converts a simple image description into a prompt. \ -Prompts are formatted as multiple related tags separated by commas, plus you can use () to increase the weight, [] to decrease the weight, \ -or use a number to specify the weight. You should add appropriate words to make the images described in the prompt more aesthetically pleasing, \ -but make sure there is a correlation between the input and output.\n\ -### Input: {raw_prompt}\n### Output:""" - beautiful_prompt = BeautifulPrompt( - tokenizer_path=model_path, - model=model, - template=template - ) - return beautiful_prompt - - - def __call__(self, raw_prompt, positive=True, **kwargs): - if positive: - model_input = self.template.format(raw_prompt=raw_prompt) - input_ids = self.tokenizer.encode(model_input, return_tensors='pt').to(self.model.device) - outputs = self.model.generate( - input_ids, - max_new_tokens=384, - do_sample=True, - temperature=0.9, - top_k=50, - top_p=0.95, - repetition_penalty=1.1, - num_return_sequences=1 - ) - prompt = raw_prompt + ", " + self.tokenizer.batch_decode( - outputs[:, input_ids.size(1):], - skip_special_tokens=True - )[0].strip() - print(f"Your prompt is refined by BeautifulPrompt: {prompt}") - return prompt - else: - return raw_prompt - - - -class QwenPrompt(torch.nn.Module): - # This class leverages the open-source Qwen model to translate Chinese prompts into English, - # with an integrated optimization mechanism for enhanced translation quality. - def __init__(self, tokenizer_path=None, model=None, system_prompt=""): - super().__init__() - self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) - self.model = model - self.system_prompt = system_prompt - - - @staticmethod - def from_model_manager(model_nameger: ModelManager): - model, model_path = model_nameger.fetch_model("qwen_prompt", require_model_path=True) - system_prompt = """You are an English image describer. Here are some example image styles:\n\n1. Extreme close-up: Clear focus on a single object with a blurred background, highlighted under natural sunlight.\n2. Vintage: A photograph of a historical scene, using techniques such as Daguerreotype or cyanotype.\n3. Anime: A stylized cartoon image, emphasizing hyper-realistic portraits and luminous brushwork.\n4. Candid: A natural, unposed shot capturing spontaneous moments, often with cinematic qualities.\n5. Landscape: A photorealistic image of natural scenery, such as a sunrise over the sea.\n6. Design: Colorful and detailed illustrations, often in the style of 2D game art or botanical illustrations.\n7. Urban: An ultrarealistic scene in a modern setting, possibly a cityscape viewed from indoors.\n\nYour task is to translate a given Chinese image description into a concise and precise English description. Ensure that the imagery is vivid and descriptive, and include stylistic elements to enrich the description.\nPlease note the following points:\n\n1. Capture the essence and mood of the Chinese description without including direct phrases or words from the examples provided.\n2. You should add appropriate words to make the images described in the prompt more aesthetically pleasing. If the Chinese description does not specify a style, you need to add some stylistic descriptions based on the essence of the Chinese text.\n3. The generated English description should not exceed 200 words.\n\n""" - qwen_prompt = QwenPrompt( - tokenizer_path=model_path, - model=model, - system_prompt=system_prompt - ) - return qwen_prompt - - - def __call__(self, raw_prompt, positive=True, **kwargs): - if positive: - messages = [{ - 'role': 'system', - 'content': self.system_prompt - }, { - 'role': 'user', - 'content': raw_prompt - }] - text = self.tokenizer.apply_chat_template( - messages, - tokenize=False, - add_generation_prompt=True - ) - model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) - - generated_ids = self.model.generate( - model_inputs.input_ids, - max_new_tokens=512 - ) - generated_ids = [ - output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) - ] - - prompt = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] - print(f"Your prompt is refined by Qwen: {prompt}") - return prompt - else: - return raw_prompt - - - -class Translator(torch.nn.Module): - def __init__(self, tokenizer_path=None, model=None): - super().__init__() - self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) - self.model = model - - - @staticmethod - def from_model_manager(model_manager: ModelManager): - model, model_path = model_manager.fetch_model("translator", require_model_path=True) - translator = Translator(tokenizer_path=model_path, model=model) - return translator - - - def __call__(self, prompt, **kwargs): - input_ids = self.tokenizer.encode(prompt, return_tensors='pt').to(self.model.device) - output_ids = self.model.generate(input_ids) - prompt = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] - print(f"Your prompt is translated: {prompt}") - return prompt diff --git a/diffsynth/prompters/sd3_prompter.py b/diffsynth/prompters/sd3_prompter.py deleted file mode 100644 index ecf9bca30ae53e78822d06d769a65a6c79e8b5d8..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/sd3_prompter.py +++ /dev/null @@ -1,93 +0,0 @@ -from .base_prompter import BasePrompter -from ..models.model_manager import ModelManager -from ..models import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3 -from transformers import CLIPTokenizer, T5TokenizerFast -import os, torch - - -class SD3Prompter(BasePrompter): - def __init__( - self, - tokenizer_1_path=None, - tokenizer_2_path=None, - tokenizer_3_path=None - ): - if tokenizer_1_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_1_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_3/tokenizer_1") - if tokenizer_2_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_3/tokenizer_2") - if tokenizer_3_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_3_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_3/tokenizer_3") - super().__init__() - self.tokenizer_1 = CLIPTokenizer.from_pretrained(tokenizer_1_path) - self.tokenizer_2 = CLIPTokenizer.from_pretrained(tokenizer_2_path) - self.tokenizer_3 = T5TokenizerFast.from_pretrained(tokenizer_3_path) - self.text_encoder_1: SD3TextEncoder1 = None - self.text_encoder_2: SD3TextEncoder2 = None - self.text_encoder_3: SD3TextEncoder3 = None - - - def fetch_models(self, text_encoder_1: SD3TextEncoder1 = None, text_encoder_2: SD3TextEncoder2 = None, text_encoder_3: SD3TextEncoder3 = None): - self.text_encoder_1 = text_encoder_1 - self.text_encoder_2 = text_encoder_2 - self.text_encoder_3 = text_encoder_3 - - - def encode_prompt_using_clip(self, prompt, text_encoder, tokenizer, max_length, device): - input_ids = tokenizer( - prompt, - return_tensors="pt", - padding="max_length", - max_length=max_length, - truncation=True - ).input_ids.to(device) - pooled_prompt_emb, prompt_emb = text_encoder(input_ids) - return pooled_prompt_emb, prompt_emb - - - def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device): - input_ids = tokenizer( - prompt, - return_tensors="pt", - padding="max_length", - max_length=max_length, - truncation=True, - add_special_tokens=True, - ).input_ids.to(device) - prompt_emb = text_encoder(input_ids) - prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) - - return prompt_emb - - - def encode_prompt( - self, - prompt, - positive=True, - device="cuda", - t5_sequence_length=77, - ): - prompt = self.process_prompt(prompt, positive=positive) - - # CLIP - pooled_prompt_emb_1, prompt_emb_1 = self.encode_prompt_using_clip(prompt, self.text_encoder_1, self.tokenizer_1, 77, device) - pooled_prompt_emb_2, prompt_emb_2 = self.encode_prompt_using_clip(prompt, self.text_encoder_2, self.tokenizer_2, 77, device) - - # T5 - if self.text_encoder_3 is None: - prompt_emb_3 = torch.zeros((prompt_emb_1.shape[0], t5_sequence_length, 4096), dtype=prompt_emb_1.dtype, device=device) - else: - prompt_emb_3 = self.encode_prompt_using_t5(prompt, self.text_encoder_3, self.tokenizer_3, t5_sequence_length, device) - prompt_emb_3 = prompt_emb_3.to(prompt_emb_1.dtype) # float32 -> float16 - - # Merge - prompt_emb = torch.cat([ - torch.nn.functional.pad(torch.cat([prompt_emb_1, prompt_emb_2], dim=-1), (0, 4096 - 768 - 1280)), - prompt_emb_3 - ], dim=-2) - pooled_prompt_emb = torch.cat([pooled_prompt_emb_1, pooled_prompt_emb_2], dim=-1) - - return prompt_emb, pooled_prompt_emb diff --git a/diffsynth/prompters/sd_prompter.py b/diffsynth/prompters/sd_prompter.py deleted file mode 100644 index e3b31ea2836b3b02edab37d7f610c13f2cf6cead..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/sd_prompter.py +++ /dev/null @@ -1,73 +0,0 @@ -from .base_prompter import BasePrompter, tokenize_long_prompt -from ..models.utils import load_state_dict, search_for_embeddings -from ..models import SDTextEncoder -from transformers import CLIPTokenizer -import torch, os - - - -class SDPrompter(BasePrompter): - def __init__(self, tokenizer_path=None): - if tokenizer_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion/tokenizer") - super().__init__() - self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) - self.text_encoder: SDTextEncoder = None - self.textual_inversion_dict = {} - self.keyword_dict = {} - - - def fetch_models(self, text_encoder: SDTextEncoder = None): - self.text_encoder = text_encoder - - - def add_textual_inversions_to_model(self, textual_inversion_dict, text_encoder): - dtype = next(iter(text_encoder.parameters())).dtype - state_dict = text_encoder.token_embedding.state_dict() - token_embeddings = [state_dict["weight"]] - for keyword in textual_inversion_dict: - _, embeddings = textual_inversion_dict[keyword] - token_embeddings.append(embeddings.to(dtype=dtype, device=token_embeddings[0].device)) - token_embeddings = torch.concat(token_embeddings, dim=0) - state_dict["weight"] = token_embeddings - text_encoder.token_embedding = torch.nn.Embedding(token_embeddings.shape[0], token_embeddings.shape[1]) - text_encoder.token_embedding = text_encoder.token_embedding.to(dtype=dtype, device=token_embeddings[0].device) - text_encoder.token_embedding.load_state_dict(state_dict) - - - def add_textual_inversions_to_tokenizer(self, textual_inversion_dict, tokenizer): - additional_tokens = [] - for keyword in textual_inversion_dict: - tokens, _ = textual_inversion_dict[keyword] - additional_tokens += tokens - self.keyword_dict[keyword] = " " + " ".join(tokens) + " " - tokenizer.add_tokens(additional_tokens) - - - def load_textual_inversions(self, model_paths): - for model_path in model_paths: - keyword = os.path.splitext(os.path.split(model_path)[-1])[0] - state_dict = load_state_dict(model_path) - - # Search for embeddings - for embeddings in search_for_embeddings(state_dict): - if len(embeddings.shape) == 2 and embeddings.shape[1] == 768: - tokens = [f"{keyword}_{i}" for i in range(embeddings.shape[0])] - self.textual_inversion_dict[keyword] = (tokens, embeddings) - - self.add_textual_inversions_to_model(self.textual_inversion_dict, self.text_encoder) - self.add_textual_inversions_to_tokenizer(self.textual_inversion_dict, self.tokenizer) - - - def encode_prompt(self, prompt, clip_skip=1, device="cuda", positive=True): - prompt = self.process_prompt(prompt, positive=positive) - for keyword in self.keyword_dict: - if keyword in prompt: - print(f"Textual inversion {keyword} is enabled.") - prompt = prompt.replace(keyword, self.keyword_dict[keyword]) - input_ids = tokenize_long_prompt(self.tokenizer, prompt).to(device) - prompt_emb = self.text_encoder(input_ids, clip_skip=clip_skip) - prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) - - return prompt_emb \ No newline at end of file diff --git a/diffsynth/prompters/sdxl_prompter.py b/diffsynth/prompters/sdxl_prompter.py deleted file mode 100644 index d84145402538b89b23d39a98271cbad64c2d9fc3..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/sdxl_prompter.py +++ /dev/null @@ -1,61 +0,0 @@ -from .base_prompter import BasePrompter, tokenize_long_prompt -from ..models.model_manager import ModelManager -from ..models import SDXLTextEncoder, SDXLTextEncoder2 -from transformers import CLIPTokenizer -import torch, os - - - -class SDXLPrompter(BasePrompter): - def __init__( - self, - tokenizer_path=None, - tokenizer_2_path=None - ): - if tokenizer_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion/tokenizer") - if tokenizer_2_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_xl/tokenizer_2") - super().__init__() - self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) - self.tokenizer_2 = CLIPTokenizer.from_pretrained(tokenizer_2_path) - self.text_encoder: SDXLTextEncoder = None - self.text_encoder_2: SDXLTextEncoder2 = None - - - def fetch_models(self, text_encoder: SDXLTextEncoder = None, text_encoder_2: SDXLTextEncoder2 = None): - self.text_encoder = text_encoder - self.text_encoder_2 = text_encoder_2 - - - def encode_prompt( - self, - prompt, - clip_skip=1, - clip_skip_2=2, - positive=True, - device="cuda" - ): - prompt = self.process_prompt(prompt, positive=positive) - - # 1 - input_ids = tokenize_long_prompt(self.tokenizer, prompt).to(device) - prompt_emb_1 = self.text_encoder(input_ids, clip_skip=clip_skip) - - # 2 - input_ids_2 = tokenize_long_prompt(self.tokenizer_2, prompt).to(device) - add_text_embeds, prompt_emb_2 = self.text_encoder_2(input_ids_2, clip_skip=clip_skip_2) - - # Merge - if prompt_emb_1.shape[0] != prompt_emb_2.shape[0]: - max_batch_size = min(prompt_emb_1.shape[0], prompt_emb_2.shape[0]) - prompt_emb_1 = prompt_emb_1[: max_batch_size] - prompt_emb_2 = prompt_emb_2[: max_batch_size] - prompt_emb = torch.concatenate([prompt_emb_1, prompt_emb_2], dim=-1) - - # For very long prompt, we only use the first 77 tokens to compute `add_text_embeds`. - add_text_embeds = add_text_embeds[0:1] - prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) - return add_text_embeds, prompt_emb diff --git a/diffsynth/prompters/stepvideo_prompter.py b/diffsynth/prompters/stepvideo_prompter.py deleted file mode 100644 index 79d374b1f8a4be2a2298520fcbf87800e0ca91d9..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/stepvideo_prompter.py +++ /dev/null @@ -1,56 +0,0 @@ -from .base_prompter import BasePrompter -from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder -from ..models.stepvideo_text_encoder import STEP1TextEncoder -from transformers import BertTokenizer -import os, torch - - -class StepVideoPrompter(BasePrompter): - - def __init__( - self, - tokenizer_1_path=None, - ): - if tokenizer_1_path is None: - base_path = os.path.dirname(os.path.dirname(__file__)) - tokenizer_1_path = os.path.join( - base_path, "tokenizer_configs/hunyuan_dit/tokenizer") - super().__init__() - self.tokenizer_1 = BertTokenizer.from_pretrained(tokenizer_1_path) - - def fetch_models(self, text_encoder_1: HunyuanDiTCLIPTextEncoder = None, text_encoder_2: STEP1TextEncoder = None): - self.text_encoder_1 = text_encoder_1 - self.text_encoder_2 = text_encoder_2 - - def encode_prompt_using_clip(self, prompt, max_length, device): - text_inputs = self.tokenizer_1( - prompt, - padding="max_length", - max_length=max_length, - truncation=True, - return_attention_mask=True, - return_tensors="pt", - ) - prompt_embeds = self.text_encoder_1( - text_inputs.input_ids.to(device), - attention_mask=text_inputs.attention_mask.to(device), - ) - return prompt_embeds - - def encode_prompt_using_llm(self, prompt, max_length, device): - y, y_mask = self.text_encoder_2(prompt, max_length=max_length, device=device) - return y, y_mask - - def encode_prompt(self, - prompt, - positive=True, - device="cuda"): - - prompt = self.process_prompt(prompt, positive=positive) - - clip_embeds = self.encode_prompt_using_clip(prompt, max_length=77, device=device) - llm_embeds, llm_mask = self.encode_prompt_using_llm(prompt, max_length=320, device=device) - - llm_mask = torch.nn.functional.pad(llm_mask, (clip_embeds.shape[1], 0), value=1) - - return clip_embeds, llm_embeds, llm_mask diff --git a/diffsynth/prompters/wan_prompter.py b/diffsynth/prompters/wan_prompter.py deleted file mode 100644 index 01a765d3cb3bf2ee4d06553fd061ed7dd75443b2..0000000000000000000000000000000000000000 --- a/diffsynth/prompters/wan_prompter.py +++ /dev/null @@ -1,109 +0,0 @@ -from .base_prompter import BasePrompter -from ..models.wan_video_text_encoder import WanTextEncoder -from transformers import AutoTokenizer -import os, torch -import ftfy -import html -import string -import regex as re - - -def basic_clean(text): - text = ftfy.fix_text(text) - text = html.unescape(html.unescape(text)) - return text.strip() - - -def whitespace_clean(text): - text = re.sub(r'\s+', ' ', text) - text = text.strip() - return text - - -def canonicalize(text, keep_punctuation_exact_string=None): - text = text.replace('_', ' ') - if keep_punctuation_exact_string: - text = keep_punctuation_exact_string.join( - part.translate(str.maketrans('', '', string.punctuation)) - for part in text.split(keep_punctuation_exact_string)) - else: - text = text.translate(str.maketrans('', '', string.punctuation)) - text = text.lower() - text = re.sub(r'\s+', ' ', text) - return text.strip() - - -class HuggingfaceTokenizer: - - def __init__(self, name, seq_len=None, clean=None, **kwargs): - assert clean in (None, 'whitespace', 'lower', 'canonicalize') - self.name = name - self.seq_len = seq_len - self.clean = clean - - # init tokenizer - self.tokenizer = AutoTokenizer.from_pretrained(name, **kwargs) - self.vocab_size = self.tokenizer.vocab_size - - def __call__(self, sequence, **kwargs): - return_mask = kwargs.pop('return_mask', False) - - # arguments - _kwargs = {'return_tensors': 'pt'} - if self.seq_len is not None: - _kwargs.update({ - 'padding': 'max_length', - 'truncation': True, - 'max_length': self.seq_len - }) - _kwargs.update(**kwargs) - - # tokenization - if isinstance(sequence, str): - sequence = [sequence] - if self.clean: - sequence = [self._clean(u) for u in sequence] - ids = self.tokenizer(sequence, **_kwargs) - - # output - if return_mask: - return ids.input_ids, ids.attention_mask - else: - return ids.input_ids - - def _clean(self, text): - if self.clean == 'whitespace': - text = whitespace_clean(basic_clean(text)) - elif self.clean == 'lower': - text = whitespace_clean(basic_clean(text)).lower() - elif self.clean == 'canonicalize': - text = canonicalize(basic_clean(text)) - return text - - -class WanPrompter(BasePrompter): - - def __init__(self, tokenizer_path=None, text_len=512): - super().__init__() - self.text_len = text_len - self.text_encoder = None - self.fetch_tokenizer(tokenizer_path) - - def fetch_tokenizer(self, tokenizer_path=None): - if tokenizer_path is not None: - self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=self.text_len, clean='whitespace') - - def fetch_models(self, text_encoder: WanTextEncoder = None): - self.text_encoder = text_encoder - - def encode_prompt(self, prompt, positive=True, device="cuda"): - prompt = self.process_prompt(prompt, positive=positive) - - ids, mask = self.tokenizer(prompt, return_mask=True, add_special_tokens=True) - ids = ids.to(device) - mask = mask.to(device) - seq_lens = mask.gt(0).sum(dim=1).long() - prompt_emb = self.text_encoder(ids, mask) - for i, v in enumerate(seq_lens): - prompt_emb[:, v:] = 0 - return prompt_emb diff --git a/diffsynth/schedulers/__init__.py b/diffsynth/schedulers/__init__.py deleted file mode 100644 index 0ec43257b687c9b5504e08e05763332755566ea5..0000000000000000000000000000000000000000 --- a/diffsynth/schedulers/__init__.py +++ /dev/null @@ -1,3 +0,0 @@ -from .ddim import EnhancedDDIMScheduler -from .continuous_ode import ContinuousODEScheduler -from .flow_match import FlowMatchScheduler diff --git a/diffsynth/schedulers/continuous_ode.py b/diffsynth/schedulers/continuous_ode.py deleted file mode 100644 index c73b9e221aa54a8385322b42012c30c598550fcd..0000000000000000000000000000000000000000 --- a/diffsynth/schedulers/continuous_ode.py +++ /dev/null @@ -1,59 +0,0 @@ -import torch - - -class ContinuousODEScheduler(): - - def __init__(self, num_inference_steps=100, sigma_max=700.0, sigma_min=0.002, rho=7.0): - self.sigma_max = sigma_max - self.sigma_min = sigma_min - self.rho = rho - self.set_timesteps(num_inference_steps) - - - def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, **kwargs): - ramp = torch.linspace(1-denoising_strength, 1, num_inference_steps) - min_inv_rho = torch.pow(torch.tensor((self.sigma_min,)), (1 / self.rho)) - max_inv_rho = torch.pow(torch.tensor((self.sigma_max,)), (1 / self.rho)) - self.sigmas = torch.pow(max_inv_rho + ramp * (min_inv_rho - max_inv_rho), self.rho) - self.timesteps = torch.log(self.sigmas) * 0.25 - - - def step(self, model_output, timestep, sample, to_final=False): - timestep_id = torch.argmin((self.timesteps - timestep).abs()) - sigma = self.sigmas[timestep_id] - sample *= (sigma*sigma + 1).sqrt() - estimated_sample = -sigma / (sigma*sigma + 1).sqrt() * model_output + 1 / (sigma*sigma + 1) * sample - if to_final or timestep_id + 1 >= len(self.timesteps): - prev_sample = estimated_sample - else: - sigma_ = self.sigmas[timestep_id + 1] - derivative = 1 / sigma * (sample - estimated_sample) - prev_sample = sample + derivative * (sigma_ - sigma) - prev_sample /= (sigma_*sigma_ + 1).sqrt() - return prev_sample - - - def return_to_timestep(self, timestep, sample, sample_stablized): - # This scheduler doesn't support this function. - pass - - - def add_noise(self, original_samples, noise, timestep): - timestep_id = torch.argmin((self.timesteps - timestep).abs()) - sigma = self.sigmas[timestep_id] - sample = (original_samples + noise * sigma) / (sigma*sigma + 1).sqrt() - return sample - - - def training_target(self, sample, noise, timestep): - timestep_id = torch.argmin((self.timesteps - timestep).abs()) - sigma = self.sigmas[timestep_id] - target = (-(sigma*sigma + 1).sqrt() / sigma + 1 / (sigma*sigma + 1).sqrt() / sigma) * sample + 1 / (sigma*sigma + 1).sqrt() * noise - return target - - - def training_weight(self, timestep): - timestep_id = torch.argmin((self.timesteps - timestep).abs()) - sigma = self.sigmas[timestep_id] - weight = (1 + sigma*sigma).sqrt() / sigma - return weight diff --git a/diffsynth/schedulers/ddim.py b/diffsynth/schedulers/ddim.py deleted file mode 100644 index da524963c62f662016b1429d5047ebe7b5922604..0000000000000000000000000000000000000000 --- a/diffsynth/schedulers/ddim.py +++ /dev/null @@ -1,105 +0,0 @@ -import torch, math - - -class EnhancedDDIMScheduler(): - - def __init__(self, num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", prediction_type="epsilon", rescale_zero_terminal_snr=False): - self.num_train_timesteps = num_train_timesteps - if beta_schedule == "scaled_linear": - betas = torch.square(torch.linspace(math.sqrt(beta_start), math.sqrt(beta_end), num_train_timesteps, dtype=torch.float32)) - elif beta_schedule == "linear": - betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) - else: - raise NotImplementedError(f"{beta_schedule} is not implemented") - self.alphas_cumprod = torch.cumprod(1.0 - betas, dim=0) - if rescale_zero_terminal_snr: - self.alphas_cumprod = self.rescale_zero_terminal_snr(self.alphas_cumprod) - self.alphas_cumprod = self.alphas_cumprod.tolist() - self.set_timesteps(10) - self.prediction_type = prediction_type - - - def rescale_zero_terminal_snr(self, alphas_cumprod): - alphas_bar_sqrt = alphas_cumprod.sqrt() - - # Store old values. - alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() - alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() - - # Shift so the last timestep is zero. - alphas_bar_sqrt -= alphas_bar_sqrt_T - - # Scale so the first timestep is back to the old value. - alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) - - # Convert alphas_bar_sqrt to betas - alphas_bar = alphas_bar_sqrt.square() # Revert sqrt - - return alphas_bar - - - def set_timesteps(self, num_inference_steps, denoising_strength=1.0, **kwargs): - # The timesteps are aligned to 999...0, which is different from other implementations, - # but I think this implementation is more reasonable in theory. - max_timestep = max(round(self.num_train_timesteps * denoising_strength) - 1, 0) - num_inference_steps = min(num_inference_steps, max_timestep + 1) - if num_inference_steps == 1: - self.timesteps = torch.Tensor([max_timestep]) - else: - step_length = max_timestep / (num_inference_steps - 1) - self.timesteps = torch.Tensor([round(max_timestep - i*step_length) for i in range(num_inference_steps)]) - - - def denoise(self, model_output, sample, alpha_prod_t, alpha_prod_t_prev): - if self.prediction_type == "epsilon": - weight_e = math.sqrt(1 - alpha_prod_t_prev) - math.sqrt(alpha_prod_t_prev * (1 - alpha_prod_t) / alpha_prod_t) - weight_x = math.sqrt(alpha_prod_t_prev / alpha_prod_t) - prev_sample = sample * weight_x + model_output * weight_e - elif self.prediction_type == "v_prediction": - weight_e = -math.sqrt(alpha_prod_t_prev * (1 - alpha_prod_t)) + math.sqrt(alpha_prod_t * (1 - alpha_prod_t_prev)) - weight_x = math.sqrt(alpha_prod_t * alpha_prod_t_prev) + math.sqrt((1 - alpha_prod_t) * (1 - alpha_prod_t_prev)) - prev_sample = sample * weight_x + model_output * weight_e - else: - raise NotImplementedError(f"{self.prediction_type} is not implemented") - return prev_sample - - - def step(self, model_output, timestep, sample, to_final=False): - alpha_prod_t = self.alphas_cumprod[int(timestep.flatten().tolist()[0])] - if isinstance(timestep, torch.Tensor): - timestep = timestep.cpu() - timestep_id = torch.argmin((self.timesteps - timestep).abs()) - if to_final or timestep_id + 1 >= len(self.timesteps): - alpha_prod_t_prev = 1.0 - else: - timestep_prev = int(self.timesteps[timestep_id + 1]) - alpha_prod_t_prev = self.alphas_cumprod[timestep_prev] - - return self.denoise(model_output, sample, alpha_prod_t, alpha_prod_t_prev) - - - def return_to_timestep(self, timestep, sample, sample_stablized): - alpha_prod_t = self.alphas_cumprod[int(timestep.flatten().tolist()[0])] - noise_pred = (sample - math.sqrt(alpha_prod_t) * sample_stablized) / math.sqrt(1 - alpha_prod_t) - return noise_pred - - - def add_noise(self, original_samples, noise, timestep): - sqrt_alpha_prod = math.sqrt(self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) - sqrt_one_minus_alpha_prod = math.sqrt(1 - self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) - noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise - return noisy_samples - - - def training_target(self, sample, noise, timestep): - if self.prediction_type == "epsilon": - return noise - else: - sqrt_alpha_prod = math.sqrt(self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) - sqrt_one_minus_alpha_prod = math.sqrt(1 - self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) - target = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample - return target - - - def training_weight(self, timestep): - return 1.0 diff --git a/diffsynth/schedulers/flow_match.py b/diffsynth/schedulers/flow_match.py deleted file mode 100644 index d6d02195aac2345e1938044d8ffd310dc6c4d3b9..0000000000000000000000000000000000000000 --- a/diffsynth/schedulers/flow_match.py +++ /dev/null @@ -1,79 +0,0 @@ -import torch - - - -class FlowMatchScheduler(): - - def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003/1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False): - self.num_train_timesteps = num_train_timesteps - self.shift = shift - self.sigma_max = sigma_max - self.sigma_min = sigma_min - self.inverse_timesteps = inverse_timesteps - self.extra_one_step = extra_one_step - self.reverse_sigmas = reverse_sigmas - self.set_timesteps(num_inference_steps) - - - def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False, shift=None): - if shift is not None: - self.shift = shift - sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength - if self.extra_one_step: - self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps + 1)[:-1] - else: - self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps) - if self.inverse_timesteps: - self.sigmas = torch.flip(self.sigmas, dims=[0]) - self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas) - if self.reverse_sigmas: - self.sigmas = 1 - self.sigmas - self.timesteps = self.sigmas * self.num_train_timesteps - if training: - x = self.timesteps - y = torch.exp(-2 * ((x - num_inference_steps / 2) / num_inference_steps) ** 2) - y_shifted = y - y.min() - bsmntw_weighing = y_shifted * (num_inference_steps / y_shifted.sum()) - self.linear_timesteps_weights = bsmntw_weighing - - - def step(self, model_output, timestep, sample, to_final=False, **kwargs): - if isinstance(timestep, torch.Tensor): - timestep = timestep.cpu() - timestep_id = torch.argmin((self.timesteps - timestep).abs()) - sigma = self.sigmas[timestep_id] - if to_final or timestep_id + 1 >= len(self.timesteps): - sigma_ = 1 if (self.inverse_timesteps or self.reverse_sigmas) else 0 - else: - sigma_ = self.sigmas[timestep_id + 1] - prev_sample = sample + model_output * (sigma_ - sigma) - return prev_sample - - - def return_to_timestep(self, timestep, sample, sample_stablized): - if isinstance(timestep, torch.Tensor): - timestep = timestep.cpu() - timestep_id = torch.argmin((self.timesteps - timestep).abs()) - sigma = self.sigmas[timestep_id] - model_output = (sample - sample_stablized) / sigma - return model_output - - - def add_noise(self, original_samples, noise, timestep): - if isinstance(timestep, torch.Tensor): - timestep = timestep.cpu() - timestep_id = torch.argmin((self.timesteps - timestep).abs()) - sigma = self.sigmas[timestep_id] - sample = (1 - sigma) * original_samples + sigma * noise - return sample - - - def training_target(self, sample, noise, timestep): - target = noise - sample - return target - - - def training_weight(self, timestep): - timestep_id = torch.argmin((self.timesteps - timestep.to(self.timesteps.device)).abs()) - weights = self.linear_timesteps_weights[timestep_id] - return weights diff --git a/diffsynth/trainers/__init__.py b/diffsynth/trainers/__init__.py deleted file mode 100644 index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000 diff --git a/diffsynth/trainers/text_to_image.py b/diffsynth/trainers/text_to_image.py deleted file mode 100644 index a76a7912da12f1ca665758542d92e50fea02713c..0000000000000000000000000000000000000000 --- a/diffsynth/trainers/text_to_image.py +++ /dev/null @@ -1,318 +0,0 @@ -import lightning as pl -from peft import LoraConfig, inject_adapter_in_model -import torch, os -from ..data.simple_text_image import TextImageDataset -from modelscope.hub.api import HubApi -from ..models.utils import load_state_dict - - - -class LightningModelForT2ILoRA(pl.LightningModule): - def __init__( - self, - learning_rate=1e-4, - use_gradient_checkpointing=True, - state_dict_converter=None, - ): - super().__init__() - # Set parameters - self.learning_rate = learning_rate - self.use_gradient_checkpointing = use_gradient_checkpointing - self.state_dict_converter = state_dict_converter - self.lora_alpha = None - - - def load_models(self): - # This function is implemented in other modules - self.pipe = None - - - def freeze_parameters(self): - # Freeze parameters - self.pipe.requires_grad_(False) - self.pipe.eval() - self.pipe.denoising_model().train() - - - def add_lora_to_model(self, model, lora_rank=4, lora_alpha=4, lora_target_modules="to_q,to_k,to_v,to_out", init_lora_weights="gaussian", pretrained_lora_path=None, state_dict_converter=None): - # Add LoRA to UNet - self.lora_alpha = lora_alpha - if init_lora_weights == "kaiming": - init_lora_weights = True - - lora_config = LoraConfig( - r=lora_rank, - lora_alpha=lora_alpha, - init_lora_weights=init_lora_weights, - target_modules=lora_target_modules.split(","), - ) - model = inject_adapter_in_model(lora_config, model) - for param in model.parameters(): - # Upcast LoRA parameters into fp32 - if param.requires_grad: - param.data = param.to(torch.float32) - - # Lora pretrained lora weights - if pretrained_lora_path is not None: - state_dict = load_state_dict(pretrained_lora_path) - if state_dict_converter is not None: - state_dict = state_dict_converter(state_dict) - missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) - all_keys = [i for i, _ in model.named_parameters()] - num_updated_keys = len(all_keys) - len(missing_keys) - num_unexpected_keys = len(unexpected_keys) - print(f"{num_updated_keys} parameters are loaded from {pretrained_lora_path}. {num_unexpected_keys} parameters are unexpected.") - - - def training_step(self, batch, batch_idx): - # Data - text, image = batch["text"], batch["image"] - - # Prepare input parameters - self.pipe.device = self.device - prompt_emb = self.pipe.encode_prompt(text, positive=True) - if "latents" in batch: - latents = batch["latents"].to(dtype=self.pipe.torch_dtype, device=self.device) - else: - latents = self.pipe.vae_encoder(image.to(dtype=self.pipe.torch_dtype, device=self.device)) - noise = torch.randn_like(latents) - timestep_id = torch.randint(0, self.pipe.scheduler.num_train_timesteps, (1,)) - timestep = self.pipe.scheduler.timesteps[timestep_id].to(self.device) - extra_input = self.pipe.prepare_extra_input(latents) - noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timestep) - training_target = self.pipe.scheduler.training_target(latents, noise, timestep) - - # Compute loss - noise_pred = self.pipe.denoising_model()( - noisy_latents, timestep=timestep, **prompt_emb, **extra_input, - use_gradient_checkpointing=self.use_gradient_checkpointing - ) - loss = torch.nn.functional.mse_loss(noise_pred.float(), training_target.float()) - loss = loss * self.pipe.scheduler.training_weight(timestep) - - # Record log - self.log("train_loss", loss, prog_bar=True) - return loss - - - def configure_optimizers(self): - trainable_modules = filter(lambda p: p.requires_grad, self.pipe.denoising_model().parameters()) - optimizer = torch.optim.AdamW(trainable_modules, lr=self.learning_rate) - return optimizer - - - def on_save_checkpoint(self, checkpoint): - checkpoint.clear() - trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.pipe.denoising_model().named_parameters())) - trainable_param_names = set([named_param[0] for named_param in trainable_param_names]) - state_dict = self.pipe.denoising_model().state_dict() - lora_state_dict = {} - for name, param in state_dict.items(): - if name in trainable_param_names: - lora_state_dict[name] = param - if self.state_dict_converter is not None: - lora_state_dict = self.state_dict_converter(lora_state_dict, alpha=self.lora_alpha) - checkpoint.update(lora_state_dict) - - - -def add_general_parsers(parser): - parser.add_argument( - "--dataset_path", - type=str, - default=None, - required=True, - help="The path of the Dataset.", - ) - parser.add_argument( - "--output_path", - type=str, - default="./", - help="Path to save the model.", - ) - parser.add_argument( - "--steps_per_epoch", - type=int, - default=500, - help="Number of steps per epoch.", - ) - parser.add_argument( - "--height", - type=int, - default=1024, - help="Image height.", - ) - parser.add_argument( - "--width", - type=int, - default=1024, - help="Image width.", - ) - parser.add_argument( - "--center_crop", - default=False, - action="store_true", - help=( - "Whether to center crop the input images to the resolution. If not set, the images will be randomly" - " cropped. The images will be resized to the resolution first before cropping." - ), - ) - parser.add_argument( - "--random_flip", - default=False, - action="store_true", - help="Whether to randomly flip images horizontally", - ) - parser.add_argument( - "--batch_size", - type=int, - default=1, - help="Batch size (per device) for the training dataloader.", - ) - parser.add_argument( - "--dataloader_num_workers", - type=int, - default=0, - help="Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.", - ) - parser.add_argument( - "--precision", - type=str, - default="16-mixed", - choices=["32", "16", "16-mixed", "bf16"], - help="Training precision", - ) - parser.add_argument( - "--learning_rate", - type=float, - default=1e-4, - help="Learning rate.", - ) - parser.add_argument( - "--lora_rank", - type=int, - default=4, - help="The dimension of the LoRA update matrices.", - ) - parser.add_argument( - "--lora_alpha", - type=float, - default=4.0, - help="The weight of the LoRA update matrices.", - ) - parser.add_argument( - "--init_lora_weights", - type=str, - default="kaiming", - choices=["gaussian", "kaiming"], - help="The initializing method of LoRA weight.", - ) - parser.add_argument( - "--use_gradient_checkpointing", - default=False, - action="store_true", - help="Whether to use gradient checkpointing.", - ) - parser.add_argument( - "--accumulate_grad_batches", - type=int, - default=1, - help="The number of batches in gradient accumulation.", - ) - parser.add_argument( - "--training_strategy", - type=str, - default="auto", - choices=["auto", "deepspeed_stage_1", "deepspeed_stage_2", "deepspeed_stage_3"], - help="Training strategy", - ) - parser.add_argument( - "--max_epochs", - type=int, - default=1, - help="Number of epochs.", - ) - parser.add_argument( - "--modelscope_model_id", - type=str, - default=None, - help="Model ID on ModelScope (https://www.modelscope.cn/). The model will be uploaded to ModelScope automatically if you provide a Model ID.", - ) - parser.add_argument( - "--modelscope_access_token", - type=str, - default=None, - help="Access key on ModelScope (https://www.modelscope.cn/). Required if you want to upload the model to ModelScope.", - ) - parser.add_argument( - "--pretrained_lora_path", - type=str, - default=None, - help="Pretrained LoRA path. Required if the training is resumed.", - ) - parser.add_argument( - "--use_swanlab", - default=False, - action="store_true", - help="Whether to use SwanLab logger.", - ) - parser.add_argument( - "--swanlab_mode", - default=None, - help="SwanLab mode (cloud or local).", - ) - return parser - - -def launch_training_task(model, args): - # dataset and data loader - dataset = TextImageDataset( - args.dataset_path, - steps_per_epoch=args.steps_per_epoch * args.batch_size, - height=args.height, - width=args.width, - center_crop=args.center_crop, - random_flip=args.random_flip - ) - train_loader = torch.utils.data.DataLoader( - dataset, - shuffle=True, - batch_size=args.batch_size, - num_workers=args.dataloader_num_workers - ) - # train - if args.use_swanlab: - from swanlab.integration.pytorch_lightning import SwanLabLogger - swanlab_config = {"UPPERFRAMEWORK": "DiffSynth-Studio"} - swanlab_config.update(vars(args)) - swanlab_logger = SwanLabLogger( - project="diffsynth_studio", - name="diffsynth_studio", - config=swanlab_config, - mode=args.swanlab_mode, - logdir=os.path.join(args.output_path, "swanlog"), - ) - logger = [swanlab_logger] - else: - logger = None - trainer = pl.Trainer( - max_epochs=args.max_epochs, - accelerator="gpu", - devices="auto", - precision=args.precision, - strategy=args.training_strategy, - default_root_dir=args.output_path, - accumulate_grad_batches=args.accumulate_grad_batches, - callbacks=[pl.pytorch.callbacks.ModelCheckpoint(save_top_k=-1)], - logger=logger, - ) - trainer.fit(model=model, train_dataloaders=train_loader) - - # Upload models - if args.modelscope_model_id is not None and args.modelscope_access_token is not None: - print(f"Uploading models to modelscope. model_id: {args.modelscope_model_id} local_path: {trainer.log_dir}") - with open(os.path.join(trainer.log_dir, "configuration.json"), "w", encoding="utf-8") as f: - f.write('{"framework":"Pytorch","task":"text-to-image-synthesis"}\n') - api = HubApi() - api.login(args.modelscope_access_token) - api.push_model(model_id=args.modelscope_model_id, model_dir=trainer.log_dir) diff --git a/diffsynth/vram_management/__init__.py b/diffsynth/vram_management/__init__.py deleted file mode 100644 index 69a388db1dea2d5699b716260dfa0902c27c0ab5..0000000000000000000000000000000000000000 --- a/diffsynth/vram_management/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .layers import * diff --git a/diffsynth/vram_management/layers.py b/diffsynth/vram_management/layers.py deleted file mode 100644 index a9df39ed224bf44a611af3ab984cb84a5d12c527..0000000000000000000000000000000000000000 --- a/diffsynth/vram_management/layers.py +++ /dev/null @@ -1,95 +0,0 @@ -import torch, copy -from ..models.utils import init_weights_on_device - - -def cast_to(weight, dtype, device): - r = torch.empty_like(weight, dtype=dtype, device=device) - r.copy_(weight) - return r - - -class AutoWrappedModule(torch.nn.Module): - def __init__(self, module: torch.nn.Module, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device): - super().__init__() - self.module = module.to(dtype=offload_dtype, device=offload_device) - self.offload_dtype = offload_dtype - self.offload_device = offload_device - self.onload_dtype = onload_dtype - self.onload_device = onload_device - self.computation_dtype = computation_dtype - self.computation_device = computation_device - self.state = 0 - - def offload(self): - if self.state == 1 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): - self.module.to(dtype=self.offload_dtype, device=self.offload_device) - self.state = 0 - - def onload(self): - if self.state == 0 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): - self.module.to(dtype=self.onload_dtype, device=self.onload_device) - self.state = 1 - - def forward(self, *args, **kwargs): - if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: - module = self.module - else: - module = copy.deepcopy(self.module).to(dtype=self.computation_dtype, device=self.computation_device) - return module(*args, **kwargs) - - -class AutoWrappedLinear(torch.nn.Linear): - def __init__(self, module: torch.nn.Linear, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device): - with init_weights_on_device(device=torch.device("meta")): - super().__init__(in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, dtype=offload_dtype, device=offload_device) - self.weight = module.weight - self.bias = module.bias - self.offload_dtype = offload_dtype - self.offload_device = offload_device - self.onload_dtype = onload_dtype - self.onload_device = onload_device - self.computation_dtype = computation_dtype - self.computation_device = computation_device - self.state = 0 - - def offload(self): - if self.state == 1 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): - self.to(dtype=self.offload_dtype, device=self.offload_device) - self.state = 0 - - def onload(self): - if self.state == 0 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): - self.to(dtype=self.onload_dtype, device=self.onload_device) - self.state = 1 - - def forward(self, x, *args, **kwargs): - if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: - weight, bias = self.weight, self.bias - else: - weight = cast_to(self.weight, self.computation_dtype, self.computation_device) - bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device) - return torch.nn.functional.linear(x, weight, bias) - - -def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0): - for name, module in model.named_children(): - for source_module, target_module in module_map.items(): - if isinstance(module, source_module): - num_param = sum(p.numel() for p in module.parameters()) - if max_num_param is not None and total_num_param + num_param > max_num_param: - module_config_ = overflow_module_config - else: - module_config_ = module_config - module_ = target_module(module, **module_config_) - setattr(model, name, module_) - total_num_param += num_param - break - else: - total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param) - return total_num_param - - -def enable_vram_management(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None): - enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0) - model.vram_management_enabled = True -