Spaces:
Sleeping
Sleeping
File size: 3,535 Bytes
3b80dc7 526fa04 0c79d96 657987d 0c79d96 526fa04 0c79d96 6f43b67 fc7e487 526fa04 8113b90 81b38f5 a36182a 526fa04 3b80dc7 c7552d0 8113b90 c7552d0 3765576 c7552d0 8113b90 c7552d0 657987d c7552d0 526fa04 9100935 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import gradio as gr
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import HuggingFaceHub
from langchain.embeddings import HuggingFaceHubEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
def loading_pdf():
return "Loading..."
def pdf_changes(pdf_doc, repo_id):
loader = OnlinePDFLoader(pdf_doc.name)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceHubEmbeddings()
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0.1, "max_new_tokens":250})
global qa
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
return "Ready"
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0])
history[-1][1] = response['result']
return history
def infer(question):
query = question
result = qa({"query": query})
return result
# CSS
css = """
#col-container {
max-width: 700px;
margin-left: auto;
margin-right: auto;
}
.title {
text-align: center;
max-width: 600px;
color: #000;
}
.pdf-doc {
margin-bottom: 10px;
}
.chatbot {
height: 350px;
border: 1px solid #ccc;
padding: 10px;
background-color: #fff;
font-family: sans-serif;
font-size: 16px;
line-height: 24px;
}
.chatbot .message {
color: #000;
}
.chatbot .user-message {
background-color: #eee;
}
.chatbot .bot-message {
background-color: #ccc;
}
"""
# HTML
title = """
<div style="text-align: center;max-width: 800px;">
<h1>Chat with PDF</h1>
<p style="text-align: center;">Upload a .pdf from local machine, click the "Load PDF🚀" button, <br />
When ready, you are all set to start asking questions from the pdf</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column(elem_id="col-container"):
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
repo_id = gr.Dropdown(label="LLM", choices=["mistralai/Mixtral-8x7B-v0.1","google/flan-ul2", "OpenAssistant/oasst-sft-1-pythia-12b", "bigscience/bloomz", "meta-llama/Llama-2-7b-chat-hf"], value="google/flan-ul2")
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Load pdf to langchain")
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
question = gr.Textbox(label="Question", placeholder="Type your Question and hit Enter ",elem_id="chatbot .user-message")
submit_btn = gr.Button("Send message")
#load_pdf.click(loading_pdf, None, langchain_status, queue=False)
repo_id.change(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False)
load_pdf.click(pdf_changes, inputs=[pdf_doc, repo_id], outputs=[langchain_status], queue=False)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
demo.launch() |