Kushalmanda commited on
Commit
3069766
Β·
verified Β·
1 Parent(s): 82a7d0e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +184 -179
app.py CHANGED
@@ -1,206 +1,211 @@
1
  import gradio as gr
2
- import pandas as pd
3
- import numpy as np
4
  import matplotlib.pyplot as plt
5
- from io import BytesIO
6
- import os
7
- import logging
8
- import base64
9
- from simple_salesforce import Salesforce
10
- from transformers import BertTokenizer, BertForSequenceClassification
11
- import torch
12
-
13
- # Configure logging to show detailed messages
14
- logging.basicConfig(level=logging.DEBUG)
15
- logger = logging.getLogger(__name__)
16
-
17
- # Salesforce credentials (use environment variables in production)
18
- SALESFORCE_USERNAME = os.getenv("SALESFORCE_USERNAME", "username")
19
- SALESFORCE_PASSWORD = os.getenv("SALESFORCE_PASSWORD", "password")
20
- SALESFORCE_SECURITY_TOKEN = os.getenv("SALESFORCE_SECURITY_TOKEN", "token")
21
- SALESFORCE_DOMAIN = os.getenv("SALESFORCE_DOMAIN", "login")
22
-
23
- # Load the BERT model and tokenizer for risk classification
24
- model = BertForSequenceClassification.from_pretrained('path_to_model') # Replace with the path to your fine-tuned model
25
- tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
26
-
27
- # Function to authenticate with Salesforce
28
- def get_salesforce_connection():
29
- try:
30
- sf = Salesforce(
31
- username=SALESFORCE_USERNAME,
32
- password=SALESFORCE_PASSWORD,
33
- security_token=SALESFORCE_SECURITY_TOKEN,
34
- domain=SALESFORCE_DOMAIN
35
- )
36
- return sf
37
- except Exception as e:
38
- logger.error(f"Failed to connect to Salesforce: {str(e)}", exc_info=True)
39
- return None
40
-
41
- # Function to process the contract text and predict risk score using BERT
42
- def process_contract(contract_text):
43
- inputs = tokenizer(contract_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
44
 
45
- with torch.no_grad():
46
- outputs = model(**inputs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- logits = outputs.logits
49
- predicted_class = torch.argmax(logits, dim=1).item()
 
 
 
 
 
 
 
 
50
 
51
- risk_labels = ["low", "medium", "high"]
52
- risk_tag = risk_labels[predicted_class]
 
53
 
54
- return risk_tag, logits.max().item()
 
 
 
 
 
55
 
56
- # Function to generate heatmap of risk levels across contract sections
57
- def generate_heatmap(contract_text):
58
- sections = contract_text.split("\n\n") # Split contract into sections (paragraphs)
59
- risks = []
60
- for section in sections:
61
- risk_tag, score = process_contract(section)
62
- risks.append((section, risk_tag, score))
 
 
 
63
 
64
- # Create a heatmap
65
- fig, ax = plt.subplots(figsize=(10, len(sections) * 0.5))
66
- ax.barh(range(len(sections)), [r[2] for r in risks], color='red', height=0.4)
67
 
68
- ax.set_yticks(range(len(sections)))
69
- ax.set_yticklabels([r[0][:50] for r in risks]) # Display first 50 characters of each section
70
- ax.set_xlabel('Risk Score')
71
- ax.set_title('Risk Heatmap of Contract Sections')
72
 
 
73
  plt.tight_layout()
74
  return fig
75
 
76
- # Function to upload contract result (PDF, heatmap, etc.) to Salesforce
77
- def upload_file_to_salesforce(file_path, file_name, record_id=None):
78
- sf = get_salesforce_connection()
79
- if not sf:
80
- logger.error("Salesforce connection failed. Cannot upload file.")
81
- return None
82
-
83
- with open(file_path, "rb") as f:
84
- file_data = f.read()
85
-
86
- encoded_file_data = base64.b64encode(file_data).decode('utf-8')
87
- content_version_data = {
88
- "Title": file_name,
89
- "PathOnClient": file_name,
90
- "VersionData": encoded_file_data,
91
- }
92
-
93
- if record_id:
94
- content_version_data["FirstPublishLocationId"] = record_id
95
-
96
- content_version = sf.ContentVersion.create(content_version_data)
97
- return content_version["id"]
98
-
99
- # Function to generate a PDF report
100
- def generate_pdf_report(project_title, risk_tags, ai_plan_score, estimated_duration, location, weather, gantt_chart_path=None):
101
- pdf_file = BytesIO()
102
- doc = SimpleDocTemplate(pdf_file, pagesize=letter)
103
- styles = getSampleStyleSheet()
104
- elements = []
105
-
106
- title_style = ParagraphStyle('Title', parent=styles['Heading1'], fontSize=18, alignment=1, spaceAfter=20)
107
- elements.append(Paragraph(f"Project Report: {project_title}", title_style))
108
-
109
- details_style = styles['BodyText']
110
- details = [
111
- f"<b>Location:</b> {location}",
112
- f"<b>Weather:</b> {weather.capitalize()}",
113
- f"<b>Estimated Duration:</b> {estimated_duration} days",
114
- f"<b>AI Plan Score:</b> {ai_plan_score:.1f}%",
115
- ]
116
- for detail in details:
117
- elements.append(Paragraph(detail, details_style))
118
-
119
- elements.append(Spacer(1, 12))
120
- elements.append(Paragraph("<b>Risk Assessment:</b>", styles['Heading2']))
121
-
122
- for risk in risk_tags.split("\n"):
123
- elements.append(Paragraph(f"β€’ {risk}", details_style))
124
-
125
- if gantt_chart_path:
126
- elements.append(Spacer(1, 24))
127
- elements.append(Paragraph("<b>Project Timeline:</b>", styles['Heading2']))
128
- img = Image(gantt_chart_path, width=6 * inch, height=4 * inch)
129
- elements.append(img)
130
-
131
- doc.build(elements)
132
- pdf_file.seek(0)
133
- return pdf_file
134
-
135
- # Function to send project data to Salesforce
136
- def send_to_salesforce(project_title, gantt_chart_url, ai_plan_score, estimated_duration, risk_tags, status="Draft", record_id=None, location="", weather_type=""):
137
- sf = get_salesforce_connection()
138
- if not sf:
139
- logger.error("Salesforce connection failed. Cannot proceed with record creation/update.")
140
- return None
141
-
142
- sf_data = {
143
- "Name": project_title[:80],
144
- "Project_Title__c": project_title,
145
- "Estimated_Duration__c": estimated_duration,
146
- "AI_Plan_Score__c": ai_plan_score,
147
- "Status__c": status,
148
- "Location__c": location,
149
- "Weather_Type__c": weather_type,
150
- "Risk_Tags__c": risk_tags,
151
- }
152
-
153
- if gantt_chart_url:
154
- sf_data["Gantt_Chart_PDF__c"] = gantt_chart_url
155
-
156
- if record_id:
157
- sf.AI_Project_Timeline__c.update(record_id, sf_data)
158
- return record_id
159
- else:
160
- project_record = sf.AI_Project_Timeline__c.create(sf_data)
161
- return project_record['id']
162
-
163
- # Gradio interface function
164
- def gradio_interface(contract_file, weather, location, project_title):
165
  try:
166
- contract_text = contract_file.read().decode("utf-8") # Assuming it's a text file; adapt if PDF
167
- fig = generate_heatmap(contract_text)
168
 
169
- risk_tags = "Risk tags will be displayed here..." # Logic for extracting risk tags based on contract analysis
170
-
171
- ai_plan_score = 90 # Placeholder AI plan score based on risk level
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
- # Generate PDF report
174
- pdf_report = generate_pdf_report(project_title, risk_tags, ai_plan_score, estimated_duration=30, location=location, weather=weather)
 
 
175
 
176
- # Upload to Salesforce
177
- pdf_content_id, pdf_url = upload_file_to_salesforce(pdf_report, project_title)
178
 
179
- return fig, risk_tags, pdf_url, pdf_report
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
  except Exception as e:
181
- logger.error(f"Error in Gradio interface: {str(e)}")
182
- return None, f"Error in Gradio interface: {str(e)}", None, None
183
 
184
- # Gradio interface setup
185
- demo = gr.Blocks()
186
- with demo:
187
- gr.Markdown("## Contract Risk Analyzer")
188
- gr.Markdown("Upload a contract, and the system will generate a heatmap and PDF report highlighting risk-prone clauses.")
189
 
190
  with gr.Row():
191
  with gr.Column():
192
- contract_file = gr.File(label="Upload Contract (PDF or Text)")
193
- weather = gr.Dropdown(label="Weather", choices=["sunny", "rainy", "cloudy"], value="sunny")
194
- location = gr.Textbox(label="Location", placeholder="Enter project location")
195
- project_title = gr.Textbox(label="Project Title", placeholder="Enter project title")
196
- submit_btn = gr.Button("Analyze Contract")
197
 
198
  with gr.Column():
199
- plot_output = gr.Plot(label="Heatmap Visualization")
200
- risk_tags_output = gr.Textbox(label="Risk Tags")
201
- download_pdf = gr.File(label="Download Full Report (PDF)")
202
-
203
- submit_btn.click(fn=gradio_interface, inputs=[contract_file, weather, location, project_title], outputs=[plot_output, risk_tags_output, download_pdf])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
 
205
  if __name__ == "__main__":
206
- demo.launch()
 
1
  import gradio as gr
2
+ import pdfplumber
 
3
  import matplotlib.pyplot as plt
4
+ import numpy as np
5
+ from word2number import w2n
6
+ import re
7
+ from typing import Tuple, List, Dict
8
+
9
+ # Custom CSS for styling
10
+ css = """
11
+ .risk-low { color: #28a745; font-weight: bold; }
12
+ .risk-medium { color: #ffc107; font-weight: bold; }
13
+ .risk-high { color: #dc3545; font-weight: bold; }
14
+ .result-box { padding: 20px; border-radius: 5px; margin-bottom: 20px; }
15
+ .penalty-box { background-color: #f8f9fa; }
16
+ .obligation-box { background-color: #f8f9fa; }
17
+ .delay-box { background-color: #f8f9fa; }
18
+ """
19
+
20
+ def extract_text_from_pdf(pdf_path: str) -> str:
21
+ """Extract text from PDF using pdfplumber"""
22
+ text = ""
23
+ with pdfplumber.open(pdf_path) as pdf:
24
+ for page in pdf.pages:
25
+ text += page.extract_text() or ""
26
+ return text
27
+
28
+ def count_keywords(text: str, keywords: List[str]) -> Dict[str, int]:
29
+ """Count occurrences of keywords in text"""
30
+ counts = {}
31
+ for keyword in keywords:
32
+ counts[keyword] = len(re.findall(r'\b' + re.escape(keyword) + r'\b', text, flags=re.IGNORECASE))
33
+ return counts
34
+
35
+ def find_penalty_values(text: str) -> List[float]:
36
+ """Find penalty amounts in the text"""
37
+ patterns = [
38
+ r'\$\s*[\d,]+(?:\.\d+)?',
39
+ r'(?:USD|usd)\s*[\d,]+(?:\.\d+)?',
40
+ r'\d+\s*(?:percent|%)',
41
+ r'(?:\b[a-z]+\s*)+dollars',
42
+ ]
43
 
44
+ penalties = []
45
+ for pattern in patterns:
46
+ matches = re.finditer(pattern, text, flags=re.IGNORECASE)
47
+ for match in matches:
48
+ penalty_text = match.group()
49
+ try:
50
+ if any(word in penalty_text.lower() for word in ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'hundred', 'thousand', 'million']):
51
+ penalty_value = w2n.word_to_num(penalty_text.split('dollars')[0].strip())
52
+ else:
53
+ penalty_value = float(re.sub(r'[^\d.]', '', penalty_text))
54
+ penalties.append(penalty_value)
55
+ except:
56
+ continue
57
+ return penalties
58
+
59
+ def calculate_risk_score(penalty_count: int, penalty_values: List[float], obligation_count: int, delay_count: int) -> Tuple[float, str]:
60
+ """Calculate risk score based on various factors"""
61
+ score = 0
62
+ score += min(penalty_count * 5, 30)
63
 
64
+ if penalty_values:
65
+ avg_penalty = sum(penalty_values) / len(penalty_values)
66
+ if avg_penalty > 1000000:
67
+ score += 40
68
+ elif avg_penalty > 100000:
69
+ score += 25
70
+ elif avg_penalty > 10000:
71
+ score += 15
72
+ else:
73
+ score += 5
74
 
75
+ score += min(obligation_count * 2, 20)
76
+ score += min(delay_count * 10, 30)
77
+ score = min(score, 100)
78
 
79
+ if score < 30:
80
+ return score, "Low"
81
+ elif score < 70:
82
+ return score, "Medium"
83
+ else:
84
+ return score, "High"
85
 
86
+ def generate_heatmap(risk_level: str):
87
+ """Generate a simple heatmap based on risk level"""
88
+ fig, ax = plt.subplots(figsize=(8, 2))
89
+
90
+ if risk_level == "Low":
91
+ cmap = plt.cm.Greens
92
+ elif risk_level == "Medium":
93
+ cmap = plt.cm.Oranges
94
+ else:
95
+ cmap = plt.cm.Reds
96
 
97
+ gradient = np.linspace(0, 1, 256).reshape(1, -1)
98
+ gradient = np.vstack((gradient, gradient))
 
99
 
100
+ ax.imshow(gradient, aspect='auto', cmap=cmap)
101
+ ax.text(128, 0.5, f"{risk_level} Risk", color='white' if risk_level == "High" else 'black',
102
+ ha='center', va='center', fontsize=24, fontweight='bold')
 
103
 
104
+ ax.set_axis_off()
105
  plt.tight_layout()
106
  return fig
107
 
108
+ def analyze_pdf(file_obj) -> List:
109
+ """Main analysis function for Gradio interface"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  try:
111
+ # Extract text from the uploaded file
112
+ text = extract_text_from_pdf(file_obj.name)
113
 
114
+ # Define keywords to search for
115
+ penalty_keywords = ["penalty", "fine", "forfeit", "liquidated damages", "breach"]
116
+ obligation_keywords = ["shall", "must", "required to", "obligated to", "duty"]
117
+ delay_keywords = ["delay", "late", "overdue", "extension", "time is of the essence"]
118
+
119
+ # Count keyword occurrences
120
+ penalty_counts = count_keywords(text, penalty_keywords)
121
+ obligation_counts = count_keywords(text, obligation_keywords)
122
+ delay_counts = count_keywords(text, delay_keywords)
123
+
124
+ # Find penalty values
125
+ penalty_values = find_penalty_values(text)
126
+
127
+ # Calculate total counts
128
+ total_penalties = sum(penalty_counts.values())
129
+ total_obligations = sum(obligation_counts.values())
130
+ total_delays = sum(delay_counts.values())
131
+
132
+ # Calculate risk score
133
+ risk_score, risk_level = calculate_risk_score(
134
+ total_penalties, penalty_values, total_obligations, total_delays
135
+ )
136
+
137
+ # Generate heatmap
138
+ heatmap = generate_heatmap(risk_level)
139
 
140
+ # Prepare results
141
+ penalty_details = "\n".join([f"- {kw}: {count}" for kw, count in penalty_counts.items()])
142
+ obligation_details = "\n".join([f"- {kw}: {count}" for kw, count in obligation_counts.items()])
143
+ delay_details = "\n".join([f"- {kw}: {count}" for kw, count in delay_counts.items()])
144
 
145
+ penalty_amounts = "\n".join([f"- ${amt:,.2f}" for amt in penalty_values[:5]]) if penalty_values else "No specific penalty amounts found"
 
146
 
147
+ # Find example sentences with penalties
148
+ penalty_sentences = []
149
+ for sentence in re.split(r'(?<=[.!?])\s+', text):
150
+ if any(kw.lower() in sentence.lower() for kw in penalty_keywords):
151
+ penalty_sentences.append(sentence.strip())
152
+
153
+ penalty_examples = "\n\n".join([f"{i+1}. {sent}" for i, sent in enumerate(penalty_sentences[:3])]) if penalty_sentences else "No penalty clauses found"
154
+
155
+ # Return all results
156
+ return [
157
+ f"<div class='risk-{risk_level.lower()}'>{risk_score:.1f}/100</div>",
158
+ f"<div class='risk-{risk_level.lower()}'>{risk_level}</div>",
159
+ heatmap,
160
+ f"Total: {total_penalties}\n\n{penalty_details}",
161
+ f"{len(penalty_values)} amounts found\n\n{penalty_amounts}",
162
+ f"Total: {total_obligations}\n\n{obligation_details}",
163
+ f"Total: {total_delays}\n\n{delay_details}",
164
+ penalty_examples
165
+ ]
166
  except Exception as e:
167
+ return [f"Error: {str(e)}"] * 8
 
168
 
169
+ # Create Gradio interface
170
+ with gr.Blocks(css=css, title="PDF Contract Risk Analyzer") as demo:
171
+ gr.Markdown("# πŸ“„ PDF Contract Risk Analyzer")
172
+ gr.Markdown("Upload a contract PDF to analyze penalties, obligations, and delays.")
 
173
 
174
  with gr.Row():
175
  with gr.Column():
176
+ file_input = gr.File(label="Upload PDF", file_types=[".pdf"])
177
+ submit_btn = gr.Button("Analyze PDF", variant="primary")
 
 
 
178
 
179
  with gr.Column():
180
+ gr.Markdown("### πŸ” Overall Risk Assessment")
181
+ risk_score = gr.HTML(label="Risk Score")
182
+ risk_level = gr.HTML(label="Risk Level")
183
+ heatmap = gr.Plot(label="Risk Heatmap")
184
+
185
+ with gr.Row():
186
+ with gr.Column():
187
+ gr.Markdown("### πŸ“Š Penalties Analysis")
188
+ penalty_count = gr.Textbox(label="Penalty Clauses", lines=5)
189
+ penalty_amounts = gr.Textbox(label="Penalty Amounts", lines=5)
190
+
191
+ with gr.Column():
192
+ gr.Markdown("### βš–οΈ Obligations Analysis")
193
+ obligation_count = gr.Textbox(label="Obligation Clauses", lines=5)
194
+
195
+ with gr.Column():
196
+ gr.Markdown("### ⏱️ Delays Analysis")
197
+ delay_count = gr.Textbox(label="Delay Clauses", lines=5)
198
+
199
+ with gr.Row():
200
+ gr.Markdown("### πŸ”Ž Extracted Penalty Clauses")
201
+ penalty_examples = gr.Textbox(label="Example Penalty Clauses", lines=5)
202
+
203
+ submit_btn.click(
204
+ fn=analyze_pdf,
205
+ inputs=file_input,
206
+ outputs=[risk_score, risk_level, heatmap, penalty_count, penalty_amounts,
207
+ obligation_count, delay_count, penalty_examples]
208
+ )
209
 
210
  if __name__ == "__main__":
211
+ demo.launch()