Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,206 +1,211 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import numpy as np
|
4 |
import matplotlib.pyplot as plt
|
5 |
-
|
6 |
-
import
|
7 |
-
import
|
8 |
-
import
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
|
|
53 |
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
ax.barh(range(len(sections)), [r[2] for r in risks], color='red', height=0.4)
|
67 |
|
68 |
-
ax.
|
69 |
-
ax.
|
70 |
-
|
71 |
-
ax.set_title('Risk Heatmap of Contract Sections')
|
72 |
|
|
|
73 |
plt.tight_layout()
|
74 |
return fig
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
sf = get_salesforce_connection()
|
79 |
-
if not sf:
|
80 |
-
logger.error("Salesforce connection failed. Cannot upload file.")
|
81 |
-
return None
|
82 |
-
|
83 |
-
with open(file_path, "rb") as f:
|
84 |
-
file_data = f.read()
|
85 |
-
|
86 |
-
encoded_file_data = base64.b64encode(file_data).decode('utf-8')
|
87 |
-
content_version_data = {
|
88 |
-
"Title": file_name,
|
89 |
-
"PathOnClient": file_name,
|
90 |
-
"VersionData": encoded_file_data,
|
91 |
-
}
|
92 |
-
|
93 |
-
if record_id:
|
94 |
-
content_version_data["FirstPublishLocationId"] = record_id
|
95 |
-
|
96 |
-
content_version = sf.ContentVersion.create(content_version_data)
|
97 |
-
return content_version["id"]
|
98 |
-
|
99 |
-
# Function to generate a PDF report
|
100 |
-
def generate_pdf_report(project_title, risk_tags, ai_plan_score, estimated_duration, location, weather, gantt_chart_path=None):
|
101 |
-
pdf_file = BytesIO()
|
102 |
-
doc = SimpleDocTemplate(pdf_file, pagesize=letter)
|
103 |
-
styles = getSampleStyleSheet()
|
104 |
-
elements = []
|
105 |
-
|
106 |
-
title_style = ParagraphStyle('Title', parent=styles['Heading1'], fontSize=18, alignment=1, spaceAfter=20)
|
107 |
-
elements.append(Paragraph(f"Project Report: {project_title}", title_style))
|
108 |
-
|
109 |
-
details_style = styles['BodyText']
|
110 |
-
details = [
|
111 |
-
f"<b>Location:</b> {location}",
|
112 |
-
f"<b>Weather:</b> {weather.capitalize()}",
|
113 |
-
f"<b>Estimated Duration:</b> {estimated_duration} days",
|
114 |
-
f"<b>AI Plan Score:</b> {ai_plan_score:.1f}%",
|
115 |
-
]
|
116 |
-
for detail in details:
|
117 |
-
elements.append(Paragraph(detail, details_style))
|
118 |
-
|
119 |
-
elements.append(Spacer(1, 12))
|
120 |
-
elements.append(Paragraph("<b>Risk Assessment:</b>", styles['Heading2']))
|
121 |
-
|
122 |
-
for risk in risk_tags.split("\n"):
|
123 |
-
elements.append(Paragraph(f"β’ {risk}", details_style))
|
124 |
-
|
125 |
-
if gantt_chart_path:
|
126 |
-
elements.append(Spacer(1, 24))
|
127 |
-
elements.append(Paragraph("<b>Project Timeline:</b>", styles['Heading2']))
|
128 |
-
img = Image(gantt_chart_path, width=6 * inch, height=4 * inch)
|
129 |
-
elements.append(img)
|
130 |
-
|
131 |
-
doc.build(elements)
|
132 |
-
pdf_file.seek(0)
|
133 |
-
return pdf_file
|
134 |
-
|
135 |
-
# Function to send project data to Salesforce
|
136 |
-
def send_to_salesforce(project_title, gantt_chart_url, ai_plan_score, estimated_duration, risk_tags, status="Draft", record_id=None, location="", weather_type=""):
|
137 |
-
sf = get_salesforce_connection()
|
138 |
-
if not sf:
|
139 |
-
logger.error("Salesforce connection failed. Cannot proceed with record creation/update.")
|
140 |
-
return None
|
141 |
-
|
142 |
-
sf_data = {
|
143 |
-
"Name": project_title[:80],
|
144 |
-
"Project_Title__c": project_title,
|
145 |
-
"Estimated_Duration__c": estimated_duration,
|
146 |
-
"AI_Plan_Score__c": ai_plan_score,
|
147 |
-
"Status__c": status,
|
148 |
-
"Location__c": location,
|
149 |
-
"Weather_Type__c": weather_type,
|
150 |
-
"Risk_Tags__c": risk_tags,
|
151 |
-
}
|
152 |
-
|
153 |
-
if gantt_chart_url:
|
154 |
-
sf_data["Gantt_Chart_PDF__c"] = gantt_chart_url
|
155 |
-
|
156 |
-
if record_id:
|
157 |
-
sf.AI_Project_Timeline__c.update(record_id, sf_data)
|
158 |
-
return record_id
|
159 |
-
else:
|
160 |
-
project_record = sf.AI_Project_Timeline__c.create(sf_data)
|
161 |
-
return project_record['id']
|
162 |
-
|
163 |
-
# Gradio interface function
|
164 |
-
def gradio_interface(contract_file, weather, location, project_title):
|
165 |
try:
|
166 |
-
|
167 |
-
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
#
|
174 |
-
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
pdf_content_id, pdf_url = upload_file_to_salesforce(pdf_report, project_title)
|
178 |
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
except Exception as e:
|
181 |
-
|
182 |
-
return None, f"Error in Gradio interface: {str(e)}", None, None
|
183 |
|
184 |
-
# Gradio interface
|
185 |
-
|
186 |
-
|
187 |
-
gr.Markdown("
|
188 |
-
gr.Markdown("Upload a contract, and the system will generate a heatmap and PDF report highlighting risk-prone clauses.")
|
189 |
|
190 |
with gr.Row():
|
191 |
with gr.Column():
|
192 |
-
|
193 |
-
|
194 |
-
location = gr.Textbox(label="Location", placeholder="Enter project location")
|
195 |
-
project_title = gr.Textbox(label="Project Title", placeholder="Enter project title")
|
196 |
-
submit_btn = gr.Button("Analyze Contract")
|
197 |
|
198 |
with gr.Column():
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
|
205 |
if __name__ == "__main__":
|
206 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import pdfplumber
|
|
|
3 |
import matplotlib.pyplot as plt
|
4 |
+
import numpy as np
|
5 |
+
from word2number import w2n
|
6 |
+
import re
|
7 |
+
from typing import Tuple, List, Dict
|
8 |
+
|
9 |
+
# Custom CSS for styling
|
10 |
+
css = """
|
11 |
+
.risk-low { color: #28a745; font-weight: bold; }
|
12 |
+
.risk-medium { color: #ffc107; font-weight: bold; }
|
13 |
+
.risk-high { color: #dc3545; font-weight: bold; }
|
14 |
+
.result-box { padding: 20px; border-radius: 5px; margin-bottom: 20px; }
|
15 |
+
.penalty-box { background-color: #f8f9fa; }
|
16 |
+
.obligation-box { background-color: #f8f9fa; }
|
17 |
+
.delay-box { background-color: #f8f9fa; }
|
18 |
+
"""
|
19 |
+
|
20 |
+
def extract_text_from_pdf(pdf_path: str) -> str:
|
21 |
+
"""Extract text from PDF using pdfplumber"""
|
22 |
+
text = ""
|
23 |
+
with pdfplumber.open(pdf_path) as pdf:
|
24 |
+
for page in pdf.pages:
|
25 |
+
text += page.extract_text() or ""
|
26 |
+
return text
|
27 |
+
|
28 |
+
def count_keywords(text: str, keywords: List[str]) -> Dict[str, int]:
|
29 |
+
"""Count occurrences of keywords in text"""
|
30 |
+
counts = {}
|
31 |
+
for keyword in keywords:
|
32 |
+
counts[keyword] = len(re.findall(r'\b' + re.escape(keyword) + r'\b', text, flags=re.IGNORECASE))
|
33 |
+
return counts
|
34 |
+
|
35 |
+
def find_penalty_values(text: str) -> List[float]:
|
36 |
+
"""Find penalty amounts in the text"""
|
37 |
+
patterns = [
|
38 |
+
r'\$\s*[\d,]+(?:\.\d+)?',
|
39 |
+
r'(?:USD|usd)\s*[\d,]+(?:\.\d+)?',
|
40 |
+
r'\d+\s*(?:percent|%)',
|
41 |
+
r'(?:\b[a-z]+\s*)+dollars',
|
42 |
+
]
|
43 |
|
44 |
+
penalties = []
|
45 |
+
for pattern in patterns:
|
46 |
+
matches = re.finditer(pattern, text, flags=re.IGNORECASE)
|
47 |
+
for match in matches:
|
48 |
+
penalty_text = match.group()
|
49 |
+
try:
|
50 |
+
if any(word in penalty_text.lower() for word in ['one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'hundred', 'thousand', 'million']):
|
51 |
+
penalty_value = w2n.word_to_num(penalty_text.split('dollars')[0].strip())
|
52 |
+
else:
|
53 |
+
penalty_value = float(re.sub(r'[^\d.]', '', penalty_text))
|
54 |
+
penalties.append(penalty_value)
|
55 |
+
except:
|
56 |
+
continue
|
57 |
+
return penalties
|
58 |
+
|
59 |
+
def calculate_risk_score(penalty_count: int, penalty_values: List[float], obligation_count: int, delay_count: int) -> Tuple[float, str]:
|
60 |
+
"""Calculate risk score based on various factors"""
|
61 |
+
score = 0
|
62 |
+
score += min(penalty_count * 5, 30)
|
63 |
|
64 |
+
if penalty_values:
|
65 |
+
avg_penalty = sum(penalty_values) / len(penalty_values)
|
66 |
+
if avg_penalty > 1000000:
|
67 |
+
score += 40
|
68 |
+
elif avg_penalty > 100000:
|
69 |
+
score += 25
|
70 |
+
elif avg_penalty > 10000:
|
71 |
+
score += 15
|
72 |
+
else:
|
73 |
+
score += 5
|
74 |
|
75 |
+
score += min(obligation_count * 2, 20)
|
76 |
+
score += min(delay_count * 10, 30)
|
77 |
+
score = min(score, 100)
|
78 |
|
79 |
+
if score < 30:
|
80 |
+
return score, "Low"
|
81 |
+
elif score < 70:
|
82 |
+
return score, "Medium"
|
83 |
+
else:
|
84 |
+
return score, "High"
|
85 |
|
86 |
+
def generate_heatmap(risk_level: str):
|
87 |
+
"""Generate a simple heatmap based on risk level"""
|
88 |
+
fig, ax = plt.subplots(figsize=(8, 2))
|
89 |
+
|
90 |
+
if risk_level == "Low":
|
91 |
+
cmap = plt.cm.Greens
|
92 |
+
elif risk_level == "Medium":
|
93 |
+
cmap = plt.cm.Oranges
|
94 |
+
else:
|
95 |
+
cmap = plt.cm.Reds
|
96 |
|
97 |
+
gradient = np.linspace(0, 1, 256).reshape(1, -1)
|
98 |
+
gradient = np.vstack((gradient, gradient))
|
|
|
99 |
|
100 |
+
ax.imshow(gradient, aspect='auto', cmap=cmap)
|
101 |
+
ax.text(128, 0.5, f"{risk_level} Risk", color='white' if risk_level == "High" else 'black',
|
102 |
+
ha='center', va='center', fontsize=24, fontweight='bold')
|
|
|
103 |
|
104 |
+
ax.set_axis_off()
|
105 |
plt.tight_layout()
|
106 |
return fig
|
107 |
|
108 |
+
def analyze_pdf(file_obj) -> List:
|
109 |
+
"""Main analysis function for Gradio interface"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
try:
|
111 |
+
# Extract text from the uploaded file
|
112 |
+
text = extract_text_from_pdf(file_obj.name)
|
113 |
|
114 |
+
# Define keywords to search for
|
115 |
+
penalty_keywords = ["penalty", "fine", "forfeit", "liquidated damages", "breach"]
|
116 |
+
obligation_keywords = ["shall", "must", "required to", "obligated to", "duty"]
|
117 |
+
delay_keywords = ["delay", "late", "overdue", "extension", "time is of the essence"]
|
118 |
+
|
119 |
+
# Count keyword occurrences
|
120 |
+
penalty_counts = count_keywords(text, penalty_keywords)
|
121 |
+
obligation_counts = count_keywords(text, obligation_keywords)
|
122 |
+
delay_counts = count_keywords(text, delay_keywords)
|
123 |
+
|
124 |
+
# Find penalty values
|
125 |
+
penalty_values = find_penalty_values(text)
|
126 |
+
|
127 |
+
# Calculate total counts
|
128 |
+
total_penalties = sum(penalty_counts.values())
|
129 |
+
total_obligations = sum(obligation_counts.values())
|
130 |
+
total_delays = sum(delay_counts.values())
|
131 |
+
|
132 |
+
# Calculate risk score
|
133 |
+
risk_score, risk_level = calculate_risk_score(
|
134 |
+
total_penalties, penalty_values, total_obligations, total_delays
|
135 |
+
)
|
136 |
+
|
137 |
+
# Generate heatmap
|
138 |
+
heatmap = generate_heatmap(risk_level)
|
139 |
|
140 |
+
# Prepare results
|
141 |
+
penalty_details = "\n".join([f"- {kw}: {count}" for kw, count in penalty_counts.items()])
|
142 |
+
obligation_details = "\n".join([f"- {kw}: {count}" for kw, count in obligation_counts.items()])
|
143 |
+
delay_details = "\n".join([f"- {kw}: {count}" for kw, count in delay_counts.items()])
|
144 |
|
145 |
+
penalty_amounts = "\n".join([f"- ${amt:,.2f}" for amt in penalty_values[:5]]) if penalty_values else "No specific penalty amounts found"
|
|
|
146 |
|
147 |
+
# Find example sentences with penalties
|
148 |
+
penalty_sentences = []
|
149 |
+
for sentence in re.split(r'(?<=[.!?])\s+', text):
|
150 |
+
if any(kw.lower() in sentence.lower() for kw in penalty_keywords):
|
151 |
+
penalty_sentences.append(sentence.strip())
|
152 |
+
|
153 |
+
penalty_examples = "\n\n".join([f"{i+1}. {sent}" for i, sent in enumerate(penalty_sentences[:3])]) if penalty_sentences else "No penalty clauses found"
|
154 |
+
|
155 |
+
# Return all results
|
156 |
+
return [
|
157 |
+
f"<div class='risk-{risk_level.lower()}'>{risk_score:.1f}/100</div>",
|
158 |
+
f"<div class='risk-{risk_level.lower()}'>{risk_level}</div>",
|
159 |
+
heatmap,
|
160 |
+
f"Total: {total_penalties}\n\n{penalty_details}",
|
161 |
+
f"{len(penalty_values)} amounts found\n\n{penalty_amounts}",
|
162 |
+
f"Total: {total_obligations}\n\n{obligation_details}",
|
163 |
+
f"Total: {total_delays}\n\n{delay_details}",
|
164 |
+
penalty_examples
|
165 |
+
]
|
166 |
except Exception as e:
|
167 |
+
return [f"Error: {str(e)}"] * 8
|
|
|
168 |
|
169 |
+
# Create Gradio interface
|
170 |
+
with gr.Blocks(css=css, title="PDF Contract Risk Analyzer") as demo:
|
171 |
+
gr.Markdown("# π PDF Contract Risk Analyzer")
|
172 |
+
gr.Markdown("Upload a contract PDF to analyze penalties, obligations, and delays.")
|
|
|
173 |
|
174 |
with gr.Row():
|
175 |
with gr.Column():
|
176 |
+
file_input = gr.File(label="Upload PDF", file_types=[".pdf"])
|
177 |
+
submit_btn = gr.Button("Analyze PDF", variant="primary")
|
|
|
|
|
|
|
178 |
|
179 |
with gr.Column():
|
180 |
+
gr.Markdown("### π Overall Risk Assessment")
|
181 |
+
risk_score = gr.HTML(label="Risk Score")
|
182 |
+
risk_level = gr.HTML(label="Risk Level")
|
183 |
+
heatmap = gr.Plot(label="Risk Heatmap")
|
184 |
+
|
185 |
+
with gr.Row():
|
186 |
+
with gr.Column():
|
187 |
+
gr.Markdown("### π Penalties Analysis")
|
188 |
+
penalty_count = gr.Textbox(label="Penalty Clauses", lines=5)
|
189 |
+
penalty_amounts = gr.Textbox(label="Penalty Amounts", lines=5)
|
190 |
+
|
191 |
+
with gr.Column():
|
192 |
+
gr.Markdown("### βοΈ Obligations Analysis")
|
193 |
+
obligation_count = gr.Textbox(label="Obligation Clauses", lines=5)
|
194 |
+
|
195 |
+
with gr.Column():
|
196 |
+
gr.Markdown("### β±οΈ Delays Analysis")
|
197 |
+
delay_count = gr.Textbox(label="Delay Clauses", lines=5)
|
198 |
+
|
199 |
+
with gr.Row():
|
200 |
+
gr.Markdown("### π Extracted Penalty Clauses")
|
201 |
+
penalty_examples = gr.Textbox(label="Example Penalty Clauses", lines=5)
|
202 |
+
|
203 |
+
submit_btn.click(
|
204 |
+
fn=analyze_pdf,
|
205 |
+
inputs=file_input,
|
206 |
+
outputs=[risk_score, risk_level, heatmap, penalty_count, penalty_amounts,
|
207 |
+
obligation_count, delay_count, penalty_examples]
|
208 |
+
)
|
209 |
|
210 |
if __name__ == "__main__":
|
211 |
+
demo.launch()
|