File size: 1,063 Bytes
de43789
54b648a
 
d93e314
de43789
2be5891
db4e906
a1a96ab
 
3b76496
 
 
a1a96ab
db4e906
a1a96ab
db4e906
a1a96ab
c68709e
 
 
3b76496
a1a96ab
db4e906
 
 
 
a1a96ab
db4e906
 
a1a96ab
db4e906
 
a1a96ab
 
 
db4e906
a1a96ab
db4e906
 
a1a96ab
 
db4e906
a1a96ab
 
db4e906
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import streamlit as st
# from IPython.display import display
# from IPython.display import Markdown
import os


gemini_api_key = os.getenv("GEMINI_API_KEY")


# def to_markdown(text):
#   text = text.replace('•', '  *')
#   return Markdown(textwrap.indent(text, '> ', predicate=lambda _: True)

import google.generativeai as genai

genai.configure(api_key = gemini_api_key)

model = genai.GenerativeModel('gemini-pro')
response = model.generate_content("What is the meaning of life?")

st.text(response.text)

# Define a function that will be called when the user clicks the button
def greet_user():
    # Get the user's name from the text input
    name = st.text_input("Enter your name:")

    # Greet the user
    st.write(f"Hello, {name}!")

# Add a button to the app
st.button("Greet me!", greet_user)



st.title("Hello! Streamlit App")

x = st.slider('Select a value')
st.write(x, 'squared is', x * x)


# st.title('AI Fitness Trainer: Squats Analysis')


# recorded_file = 'output_sample.mp4'
# sample_vid = st.empty()
# sample_vid.video(recorded_file)