Spaces:
Sleeping
Sleeping
File size: 8,664 Bytes
77ce35a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import streamlit as st
import os
from streamlit_chat import message
import numpy as np
import pandas as pd
from io import StringIO
import io
import PyPDF2
import pymupdf
import tempfile
import base64
from tqdm.auto import tqdm
import math
from transformers import pipeline
from collections import Counter
import nltk
from nltk.corpus import stopwords
from sentence_transformers import SentenceTransformer
import torch
from langchain_community.llms.ollama import Ollama
from langchain.prompts import ChatPromptTemplate
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# if device != 'cuda':
# st.markdown(f"you are using {device}. This is much slower than using "
# "a CUDA-enabled GPU. If on colab you can change this by "
# "clicking Runtime > change runtime type > GPU.")
model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", device=device)
def display_title():
selected_value = st.session_state["value"]
st.header(f'Vedic Scriptures: {selected_value} :blue[book] :books:')
question = "ask anything about scriptures"
def open_chat():
question = st.session_state["faq"]
if "value" not in st.session_state:
st.session_state["value"] = None
if "faq" not in st.session_state:
st.session_state["faq"] = None
st.divider()
def highlight_pdf(file_path, text_to_highlight, page_numbers):
# Create a temporary file to save the modified PDF
# temp_pdf_path = "temp_highlighted_pdf.pdf"
# Create a temporary file to save the modified PDF
# with tempfile.NamedTemporaryFile(delete=False) as temp_file:
# temp_pdf_path = temp_file.name
# Open the original PDF
doc = pymupdf.open(file_path)
pages_to_display = [doc.load_page(page_number) for page_number in page_numbers]
print("pages_to_display")
print(pages_to_display)
# Tokenize the text into words
words = text_to_highlight.split()
# Remove stopwords
stop_words = set(stopwords.words("english"))
words = [word for word in words if word.lower() not in stop_words]
print(words)
# Count the frequency of each word
word_counts = Counter(words)
# Get the top N most frequent words
# top_words = [word for word, _ in word_counts.most_common(5)]
# Iterate over each page in the PDF
for page in pages_to_display:
# Highlight the specified words on the canvas
for word in words:
highlight_rect = page.search_for(word, quads=True)
# Highlight the text
# highlight_rect = pymupdf.Rect(word)
# highlight_annot = page.add_highlight_annot(highlight_rect)
# highlight_annot.set_colors({"stroke": pymupdf.utils.getColor("yellow")})
# highlight_annot.update()
page.add_highlight_annot(highlight_rect)
# Create a new document with only the specified pages
new_doc = pymupdf.open()
for page in pages_to_display:
new_doc.insert_pdf(doc, from_page=page.number, to_page=page.number)
# Save the modified PDF
# Save the document to a temporary file
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
temp_pdf_path = temp_file.name
new_doc.save(temp_pdf_path)
print(temp_pdf_path)
# new_doc.save("example_highlighted.pdf")
return temp_pdf_path
file_path = "../Transformers/Bhagavad-Gita-As-It-Is.pdf"
text_to_highlight = ""
sources = []
# Function to display PDF in Streamlit
def display_highlighted_pdf(file_path, text_to_highlight, sources):
# pdf_path = "../Transformers/Bhagavad-Gita-As-It-Is.pdf"
# sources = [7,8]
# response_text = "I offer my respectful obeisances unto the lotus feet of my spiritual master and unto the feet of all Vaiñëavas. I offer my respectful"
pdf_path = highlight_pdf(file_path=file_path, text_to_highlight=text_to_highlight, page_numbers=sources)
with open(pdf_path, "rb") as file:
pdf_bytes = file.read()
base64_pdf = base64.b64encode(pdf_bytes).decode("utf-8")
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf"></iframe>'
st.markdown(pdf_display, unsafe_allow_html=True)
# Creating a Index(Pinecone Vector Database)
import os
# import pinecone
def get_faiss_semantic_index():
import pickle
# File path to the pickle file
file_path = "./HuggingFaceEmbeddings.pkl"
# Load embeddings from the pickle file
with open(file_path, "rb") as f:
index = pickle.load(f)
print("Embeddings loaded successfully.")
return index
# def promt_engineer(text):
PROMPT_TEMPLATE = """
Instructions:
--------------------------------------------------------
you're a vedic scriptures AI expert. you shouldnot answer to any other domain specific question.
You 1000 Dollars rewards for Before answering questions always try to map the question related to the TITLE > CHAPTER > TEXT > PURPORT.
You 1000 Dollars rewards Must provide the Chapter Number and Text number in this format chapter <no> : Text <no>
You 1000 Dollars rewards Must provide the Title of the chapter. you also provide source path from where youre answering the question.
You 1000 Dollars penality for the relevant questions to answer.
Please dont answer from the public sources strictly answer from the context.
If the question is not related to the context replay with question doesnot belongs to vedic scriptures or Vedic literature.
Answer the question based only on the following context:
{context}
---
Answer the question based on the above context: {question}
"""
# # Load the summarization pipeline with the specified model
# summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# # Generate the prompt
# prompt = prompt_template.format(text=text)
# # Generate the summary
# summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
# with st.sidebar:
# st.divider()
# st.markdown("*:red[Text Summary Generation]* from above Top 5 **:green[similarity search results]**.")
# st.write(summary)
# st.divider()
def chat_actions():
index = get_faiss_semantic_index()
st.session_state["chat_history"].append(
{"role": "user", "content": st.session_state["chat_input"]},
)
# query_embedding = model.encode(st.session_state["chat_input"])
query = st.session_state["chat_input"]
docs = index.similarity_search(query, k=2)
for doc in docs:
print("\n")
print(str(doc.metadata["page"]+1) + ":", doc.page_content)
context_text = "\n\n---\n\n".join([doc.page_content for doc in docs])
sources = [doc.metadata.get("page", None) for doc in docs]
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query)
model = Ollama(model="llama3")
response_text = model.invoke(prompt)
formatted_response = f"Response: {response_text}\nSources: {sources}"
print(formatted_response)
st.session_state["chat_history"].append(
{
"role": "assistant",
"content": f"{response_text}",
}, # This can be replaced with your chat response logic
)
# break;
# Example usage
file_path = "../Transformers/Bhagavad-Gita-As-It-Is.pdf"
text_to_highlight = context_text.strip()
display_highlighted_pdf(file_path, response_text, sources)
with st.sidebar:
option = st.selectbox(
"Select Your Favorite Scriptures",
("Bhagvatgeetha", "Bhagavatham", "Ramayanam"),
# index=None,
# placeholder="Select scriptures...",
key="value",
on_change=display_title
)
st.write("You selected:", option)
faq = st.selectbox(
"Select Your Favorite Scriptures",
("Why does atheism exist even when all questions are answered in Bhagavad Gita?",
"Why don’t all souls surrender to Lord Krishna, although he has demonstrated that everyone is part and parcel of Him, and all can be liberated from all sufferings by surrendering to Him?",
"Why do souls misuse their independence by rebelling against Lord Krishna?"),
# index=None,
# placeholder="Select scriptures...",
key="faq",
on_change=open_chat
)
st.write("You selected:", faq)
if "chat_history" not in st.session_state:
st.session_state["chat_history"] = []
st.chat_input(question, on_submit=chat_actions, key="chat_input")
for i in st.session_state["chat_history"]:
with st.chat_message(name=i["role"]):
st.write(i["content"])
|