Spaces:
Sleeping
Sleeping
File size: 10,549 Bytes
77ce35a 615c7af 77ce35a 25a52b8 77ce35a ac6a5dc 77ce35a 22b2b1e 7544677 d970326 ac6a5dc 77ce35a 615c7af 7544677 615c7af ca15024 615c7af 7544677 615c7af 77ce35a 9fcd2a4 cc89c75 426b04a c68a8b8 03d32ae c68a8b8 03d32ae c68a8b8 03d32ae c68a8b8 03d32ae c68a8b8 426b04a 78b8c5f c68a8b8 77ce35a 83c31db 77ce35a a07f7dd 77ce35a 575b473 9894fac 77ce35a 575b473 eff3c23 3ee10b1 575b473 72cd214 615c7af 72cd214 575b473 9894fac cbdbeb8 2680167 77ce35a d970326 77ce35a d970326 77ce35a ea7ec77 77ce35a 3ee10b1 77ce35a 9894fac 77ce35a 7544677 d970326 d1259bb d970326 7544677 77ce35a a07f7dd 77ce35a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import streamlit as st
import os
from streamlit_chat import message
import numpy as np
import pandas as pd
from io import StringIO
import io
import PyPDF2
import pymupdf
import tempfile
import base64
# from tqdm.auto import tqdm
import math
# from transformers import pipeline
from collections import Counter
import nltk
from nltk.corpus import stopwords
from sentence_transformers import SentenceTransformer
import torch
from langchain_community.llms.ollama import Ollama
from langchain.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFaceHub
# from langchain.vectorstores import faiss
# from langchain.vectorstores import FAISS
import time
from time import sleep
from stqdm import stqdm
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
print(os.environ)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# if device != 'cuda':
# st.markdown(f"you are using {device}. This is much slower than using "
# "a CUDA-enabled GPU. If on colab you can change this by "
# "clicking Runtime > change runtime type > GPU.")
model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", device=device)
def display_title():
selected_value = st.session_state["value"]
st.header(f'Vedic Scriptures: {selected_value} :blue[book] :books:')
question = "ask anything about scriptures"
def open_chat():
question = st.session_state["faq"]
if "value" not in st.session_state:
st.session_state["value"] = None
if "faq" not in st.session_state:
st.session_state["faq"] = None
st.divider()
def upload_file():
uploaded_file = st.file_uploader("Upload a file", type=["pdf"])
if uploaded_file is not None:
st.write(uploaded_file.name)
return uploaded_file.name
def create_pickle_file(filepath):
from langchain_community.document_loaders import PyMuPDFLoader
loader = PyMuPDFLoader(filepath)
pages = loader.load()
# Load a pre-trained sentence transformer model
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
# Create a HuggingFaceEmbeddings object
from langchain_community.embeddings import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs)
# from pathlib import Path
# path = Path(filepath)
filename = filepath.split(".")
print(filename[0])
filename = filename[0]
from datetime import datetime
# Get current date and time
now = datetime.now()
# Format as string with milliseconds
formatted_datetime = now.strftime("%Y-%m-%d_%H:%M:%S.%f")[:-3]
print(formatted_datetime)
# Create FAISS index with the HuggingFace embeddings
faiss_index = FAISS.from_documents(pages, embeddings)
with open(f"./{filename}_{formatted_datetime}.pkl", "wb") as f:
pickle.dump(faiss_index, f)
uploaded_file_name = upload_file()
if uploaded_file_name is not None:
create_pickle_file(uploaded_file_name)
def highlight_pdf(file_path, text_to_highlight, page_numbers):
# Create a temporary file to save the modified PDF
# temp_pdf_path = "temp_highlighted_pdf.pdf"
# Create a temporary file to save the modified PDF
# with tempfile.NamedTemporaryFile(delete=False) as temp_file:
# temp_pdf_path = temp_file.name
# Open the original PDF
doc = pymupdf.open(file_path)
pages_to_display = [doc.load_page(page_number) for page_number in page_numbers]
print("pages_to_display")
print(pages_to_display)
# Tokenize the text into words
words = text_to_highlight.split()
# Remove stopwords
stop_words = set(stopwords.words("english"))
words = [word for word in words if word.lower() not in stop_words]
print(words)
# Count the frequency of each word
word_counts = Counter(words)
# Get the top N most frequent words
# top_words = [word for word, _ in word_counts.most_common(5)]
# Iterate over each page in the PDF
for page in pages_to_display:
# Highlight the specified words on the canvas
for word in words:
highlight_rect = page.search_for(word, quads=True)
# Highlight the text
# highlight_rect = pymupdf.Rect(word)
# highlight_annot = page.add_highlight_annot(highlight_rect)
# highlight_annot.set_colors({"stroke": pymupdf.utils.getColor("yellow")})
# highlight_annot.update()
page.add_highlight_annot(highlight_rect)
# Create a new document with only the specified pages
new_doc = pymupdf.open()
for page in pages_to_display:
new_doc.insert_pdf(doc, from_page=page.number, to_page=page.number)
# Save the modified PDF
# Save the document to a temporary file
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
temp_pdf_path = temp_file.name
new_doc.save(temp_pdf_path)
print(temp_pdf_path)
# new_doc.save("example_highlighted.pdf")
return temp_pdf_path
file_path = "Bhagavad-Gita-As-It-Is.pdf"
text_to_highlight = ""
sources = []
# Function to display PDF in Streamlit
def display_highlighted_pdf(file_path, text_to_highlight, sources):
# pdf_path = "../Transformers/Bhagavad-Gita-As-It-Is.pdf"
# sources = [7,8]
# response_text = "I offer my respectful obeisances unto the lotus feet of my spiritual master and unto the feet of all Vaiñëavas. I offer my respectful"
pdf_path = highlight_pdf(file_path=file_path, text_to_highlight=text_to_highlight, page_numbers=sources)
with open(pdf_path, "rb") as file:
pdf_bytes = file.read()
base64_pdf = base64.b64encode(pdf_bytes).decode("utf-8")
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf"></iframe>'
st.markdown(pdf_display, unsafe_allow_html=True)
# Creating a Index(Pinecone Vector Database)
import os
# import pinecone
import pickle
@st.cache_data
def get_faiss_semantic_index():
try:
index_path = "./HuggingFaceEmbeddings.pkl"
print(index_path)
# Load embeddings from the pickle file
for _ in stqdm(range(5)):
with open(index_path, "rb") as f:
faiss_index = pickle.load(f)
sleep(0.1)
st.write("Embeddings loaded successfully.")
return faiss_index
except Exception as e:
st.error(f"Error loading embeddings: {e}")
return None
faiss_index = get_faiss_semantic_index()
print(faiss_index)
# def promt_engineer(text):
PROMPT_TEMPLATE = """
Instructions:
--------------------------------------------------------
Answer the question based only on the following context:
Please dont show human instructions in the answer
----------------------------------------------------------
{context}
-----------------------------------------------------------
Answer the question based on the above context: {question}
"""
# # Load the summarization pipeline with the specified model
# summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# # Generate the prompt
# prompt = prompt_template.format(text=text)
# # Generate the summary
# summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
# with st.sidebar:
# st.divider()
# st.markdown("*:red[Text Summary Generation]* from above Top 5 **:green[similarity search results]**.")
# st.write(summary)
# st.divider()
def chat_actions():
st.session_state["chat_history"].append(
{"role": "user", "content": st.session_state["chat_input"]},
)
# query_embedding = model.encode(st.session_state["chat_input"])
query = st.session_state["chat_input"]
if faiss_index is not None:
docs = faiss_index.similarity_search(query, k=2)
else:
st.error("Failed to load embeddings.")
# docs = faiss_index.similarity_search(query, k=2)
for doc in docs:
print("\n")
print(str(doc.metadata["page"]+1) + ":", doc.page_content)
context_text = "\n\n---\n\n".join([doc.page_content for doc in docs])
sources = [doc.metadata.get("page", None) for doc in docs]
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query)
try:
llm = HuggingFaceHub(
repo_id="meta-llama/Meta-Llama-3-8B-Instruct"
)
response_text = llm.invoke(prompt)
st.write(response_text)
except Exception as e:
st.error(f"Error invoke: {e}")
formatted_response = f"Response: {response_text}\nSources: {sources}"
print(formatted_response)
st.session_state["chat_history"].append(
{
"role": "assistant",
"content": f"{response_text}",
}, # This can be replaced with your chat response logic
)
# break;
# Example usage
file_path = "Bhagavad-Gita-As-It-Is.pdf"
text_to_highlight = context_text.strip()
display_highlighted_pdf(file_path, response_text, sources)
with st.sidebar:
option = st.selectbox(
"Select Your Favorite Scriptures",
("Bhagvatgeetha", "Bhagavatham", "Ramayanam"),
# index=None,
# placeholder="Select scriptures...",
key="value",
on_change=display_title
)
st.write("You selected:", option)
faq = st.selectbox(
"Select Your Favorite Scriptures",
("Why does atheism exist even when all questions are answered in Bhagavad Gita?",
"Why don’t all souls surrender to Lord Krishna, although he has demonstrated that everyone is part and parcel of Him, and all can be liberated from all sufferings by surrendering to Him?",
"Why do souls misuse their independence by rebelling against Lord Krishna?"),
# index=None,
# placeholder="Select scriptures...",
key="faq",
on_change=open_chat
)
st.write("You selected:", faq)
if "chat_history" not in st.session_state:
st.session_state["chat_history"] = []
st.chat_input(question, on_submit=chat_actions, key="chat_input")
for i in st.session_state["chat_history"]:
with st.chat_message(name=i["role"]):
st.write(i["content"])
|