File size: 10,549 Bytes
77ce35a
 
 
 
 
 
 
 
 
 
 
615c7af
77ce35a
25a52b8
77ce35a
 
ac6a5dc
77ce35a
 
 
 
 
 
 
22b2b1e
7544677
d970326
ac6a5dc
 
77ce35a
615c7af
 
 
7544677
 
 
 
615c7af
ca15024
615c7af
7544677
615c7af
77ce35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fcd2a4
 
 
cc89c75
426b04a
c68a8b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03d32ae
c68a8b8
03d32ae
c68a8b8
03d32ae
c68a8b8
03d32ae
 
 
c68a8b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426b04a
78b8c5f
 
c68a8b8
77ce35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c31db
 
 
77ce35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07f7dd
77ce35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575b473
9894fac
77ce35a
575b473
eff3c23
3ee10b1
575b473
72cd214
615c7af
 
72cd214
575b473
 
 
 
9894fac
cbdbeb8
 
2680167
77ce35a
 
 
 
 
d970326
 
77ce35a
 
 
d970326
77ce35a
ea7ec77
77ce35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ee10b1
77ce35a
 
 
 
 
 
9894fac
 
 
 
 
 
77ce35a
 
 
 
 
 
 
 
 
 
 
7544677
d970326
d1259bb
d970326
 
7544677
 
 
 
77ce35a
 
 
 
 
 
 
 
 
 
 
 
a07f7dd
77ce35a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import streamlit as st
import os
from streamlit_chat import message
import numpy as np
import pandas as pd
from io import StringIO
import io
import PyPDF2
import pymupdf
import tempfile
import base64
# from tqdm.auto import tqdm
import math
# from transformers import pipeline

from collections import Counter
import nltk
from nltk.corpus import stopwords


from sentence_transformers import SentenceTransformer
import torch
from langchain_community.llms.ollama import Ollama
from langchain.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS

from langchain_community.llms import HuggingFaceHub
# from langchain.vectorstores import faiss
# from langchain.vectorstores import FAISS

import time
from time import sleep
from stqdm import stqdm
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")

print(os.environ)

device = 'cuda' if torch.cuda.is_available() else 'cpu'

# if device != 'cuda':
#     st.markdown(f"you are using {device}. This is much slower than using "
#     "a CUDA-enabled GPU. If on colab you can change this by "
#     "clicking Runtime > change runtime type > GPU.")

model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2", device=device)
def display_title():
    selected_value = st.session_state["value"]

    st.header(f'Vedic Scriptures: {selected_value} :blue[book] :books:')

question = "ask anything about scriptures"
def open_chat():
    question = st.session_state["faq"]

    

if "value" not in st.session_state:
    st.session_state["value"] = None

if "faq" not in st.session_state:
    st.session_state["faq"] = None

st.divider()

def upload_file():
    uploaded_file = st.file_uploader("Upload a file", type=["pdf"])
    if uploaded_file is not None:
        st.write(uploaded_file.name)
        return uploaded_file.name

def create_pickle_file(filepath):

    from langchain_community.document_loaders import PyMuPDFLoader
    loader = PyMuPDFLoader(filepath)
    pages = loader.load()

    # Load a pre-trained sentence transformer model
    model_name = "sentence-transformers/all-mpnet-base-v2"
    model_kwargs = {'device': 'cpu'}
    encode_kwargs = {'normalize_embeddings': False}

    # Create a HuggingFaceEmbeddings object
    from langchain_community.embeddings import HuggingFaceEmbeddings
    embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs)

    # from pathlib import Path

    # path = Path(filepath)

    filename = filepath.split(".")

    print(filename[0])

    filename = filename[0]

    from datetime import datetime

    # Get current date and time
    now = datetime.now()

    # Format as string with milliseconds
    formatted_datetime = now.strftime("%Y-%m-%d_%H:%M:%S.%f")[:-3]

    print(formatted_datetime)

    # Create FAISS index with the HuggingFace embeddings
    faiss_index = FAISS.from_documents(pages, embeddings)
    with open(f"./{filename}_{formatted_datetime}.pkl", "wb") as f:
        pickle.dump(faiss_index, f)


uploaded_file_name = upload_file()
if uploaded_file_name is not None:
    create_pickle_file(uploaded_file_name)

def highlight_pdf(file_path, text_to_highlight, page_numbers):
    # Create a temporary file to save the modified PDF
    # temp_pdf_path = "temp_highlighted_pdf.pdf"
    # Create a temporary file to save the modified PDF
    # with tempfile.NamedTemporaryFile(delete=False) as temp_file:
    #     temp_pdf_path = temp_file.name

    # Open the original PDF
    doc = pymupdf.open(file_path)

    pages_to_display = [doc.load_page(page_number) for page_number in page_numbers]

    print("pages_to_display") 
    print(pages_to_display)

    # Tokenize the text into words
    words = text_to_highlight.split()

   

    # Remove stopwords
    stop_words = set(stopwords.words("english"))
    words = [word for word in words if word.lower() not in stop_words]
    
    print(words)
    
    # Count the frequency of each word
    word_counts = Counter(words)

    # Get the top N most frequent words
    # top_words = [word for word, _ in word_counts.most_common(5)]

    # Iterate over each page in the PDF
    for page in pages_to_display:
        
        # Highlight the specified words on the canvas
        for word in words:
            highlight_rect = page.search_for(word, quads=True)
            # Highlight the text
            # highlight_rect = pymupdf.Rect(word)
        # highlight_annot = page.add_highlight_annot(highlight_rect)
        # highlight_annot.set_colors({"stroke": pymupdf.utils.getColor("yellow")})
        # highlight_annot.update()
            page.add_highlight_annot(highlight_rect)
    
        # Create a new document with only the specified pages
    new_doc = pymupdf.open()
    for page in pages_to_display:
        new_doc.insert_pdf(doc, from_page=page.number, to_page=page.number)

    # Save the modified PDF
    # Save the document to a temporary file
    with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_file:
        temp_pdf_path = temp_file.name
        new_doc.save(temp_pdf_path)
    
    print(temp_pdf_path)

    # new_doc.save("example_highlighted.pdf")

    return temp_pdf_path

file_path = "Bhagavad-Gita-As-It-Is.pdf"
text_to_highlight = ""
sources = []

# Function to display PDF in Streamlit
def display_highlighted_pdf(file_path, text_to_highlight, sources):
    # pdf_path = "../Transformers/Bhagavad-Gita-As-It-Is.pdf"
    # sources = [7,8]
    # response_text = "I offer my respectful obeisances unto the lotus feet of my spiritual master and unto the feet of all Vaiñëavas. I offer my respectful"
    
    pdf_path = highlight_pdf(file_path=file_path, text_to_highlight=text_to_highlight, page_numbers=sources)

    with open(pdf_path, "rb") as file:
        pdf_bytes = file.read()
    base64_pdf = base64.b64encode(pdf_bytes).decode("utf-8")
    pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="1000" type="application/pdf"></iframe>'
    st.markdown(pdf_display, unsafe_allow_html=True)

# Creating a Index(Pinecone Vector Database)
import os
# import pinecone

import pickle
@st.cache_data
def get_faiss_semantic_index():
    try:
        index_path = "./HuggingFaceEmbeddings.pkl"
        print(index_path)
        # Load embeddings from the pickle file
        for _ in stqdm(range(5)):
            with open(index_path, "rb") as f:
                faiss_index = pickle.load(f)
                sleep(0.1)
        st.write("Embeddings loaded successfully.")
        return faiss_index
    except Exception as e:
        st.error(f"Error loading embeddings: {e}")
        return None
faiss_index = get_faiss_semantic_index()
print(faiss_index)

# def promt_engineer(text):
PROMPT_TEMPLATE = """
Instructions:
--------------------------------------------------------
Answer the question based only on the following context:
Please dont show human instructions in the answer
----------------------------------------------------------

{context}

-----------------------------------------------------------

Answer the question based on the above context: {question}
"""
    # # Load the summarization pipeline with the specified model
    # summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

    # # Generate the prompt
    # prompt = prompt_template.format(text=text)

    # # Generate the summary
    # summary = summarizer(prompt, max_length=1024, min_length=50)[0]["summary_text"]
    
    # with st.sidebar:
    #     st.divider()
    #     st.markdown("*:red[Text Summary Generation]* from above Top 5 **:green[similarity search results]**.")
    #     st.write(summary)
    #     st.divider()

def chat_actions():

    st.session_state["chat_history"].append(
        {"role": "user", "content": st.session_state["chat_input"]},
    )

    # query_embedding = model.encode(st.session_state["chat_input"])
    query = st.session_state["chat_input"]
    if faiss_index is not None:
        docs = faiss_index.similarity_search(query, k=2)
    else:
        st.error("Failed to load embeddings.")
    # docs = faiss_index.similarity_search(query, k=2)

    for doc in docs:
        print("\n")
        print(str(doc.metadata["page"]+1) + ":", doc.page_content)
    context_text = "\n\n---\n\n".join([doc.page_content for doc in docs])

    sources = [doc.metadata.get("page", None) for doc in docs]
    

    prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
    prompt = prompt_template.format(context=context_text, question=query)

    try:
        llm = HuggingFaceHub(
            repo_id="meta-llama/Meta-Llama-3-8B-Instruct"
        )
        response_text = llm.invoke(prompt)
        st.write(response_text)
    except Exception as e:
        st.error(f"Error invoke: {e}")


    formatted_response = f"Response: {response_text}\nSources: {sources}"
    print(formatted_response)

    st.session_state["chat_history"].append(
        {
            "role": "assistant",
            "content": f"{response_text}",
        },  # This can be replaced with your chat response logic
    )
        # break;
    # Example usage
    file_path = "Bhagavad-Gita-As-It-Is.pdf"
    text_to_highlight = context_text.strip()
    display_highlighted_pdf(file_path, response_text, sources)

with st.sidebar:
    option = st.selectbox(
    "Select Your Favorite Scriptures",
    ("Bhagvatgeetha", "Bhagavatham", "Ramayanam"),
    # index=None,
    # placeholder="Select scriptures...",
    key="value",
    on_change=display_title
    )

    st.write("You selected:", option)

    faq = st.selectbox(
    "Select Your Favorite Scriptures",
    ("Why does atheism exist even when all questions are answered in Bhagavad Gita?", 
     "Why don’t all souls surrender to Lord Krishna, although he has demonstrated that everyone is part and parcel of Him, and all can be liberated from all sufferings by surrendering to Him?",
     "Why do souls misuse their independence by rebelling against Lord Krishna?"),
    # index=None,
    # placeholder="Select scriptures...",
    key="faq",
    on_change=open_chat
    )
    st.write("You selected:", faq)
    

    if "chat_history" not in st.session_state:
        st.session_state["chat_history"] = []

    st.chat_input(question, on_submit=chat_actions, key="chat_input")

    for i in st.session_state["chat_history"]:
        with st.chat_message(name=i["role"]):
            st.write(i["content"])