Spaces:
Running
Running
import streamlit as st | |
import requests | |
import os | |
import io | |
from PIL import Image | |
from gradio_client import Client | |
# Get the API token from environment variable | |
API_TOKEN = os.environ.get("HF_API_TOKEN") | |
# Function to interact with Hugging Face API for text summarization | |
def generate_text_summary(inputs): | |
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1" | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
response = requests.post(API_URL, headers=headers, json={"inputs": inputs}) | |
return response.json() | |
# Function to interact with Hugging Face API for image generation | |
def generate_image(prompt): | |
API_URL = "https://api-inference.huggingface.co/models/Kvikontent/midjourney-v6" | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
image_response = requests.post(API_URL, headers=headers, json={"inputs": prompt}) | |
image_bytes = image_response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
with st.spinner("Resizing Image..."): | |
client_resize = Client("doevent/AnimateLCM-SVD") | |
resized_image = client_resize.predict(image, api_name="/resize_image") | |
with st.spinner("Animating Image..."): | |
client_animate = Client("doevent/AnimateLCM-SVD") | |
result = client_animate.predict( | |
resized_image, | |
0, | |
True, | |
1, | |
5, | |
1, | |
1.5, | |
576, | |
320, | |
20, | |
api_name="/video" | |
) | |
return result | |
# Streamlit interface for user inputs and displaying outputs | |
st.title("Morpheus - Dreams Generator") | |
st.write("Enter your feelings and moments of the day to generate a summarization along with an AI-generated animated image!") | |
inputs = st.text_area("Enter your emotions, expressions, best and worst moments of the day:", height=200, value="Today was a mix of emotions. I felt happy in the morning but sad in the evening. The best moment was meeting a friend, and the worst was a stressful meeting.") | |
if st.button("Generate Summary and Animated Image"): | |
summary = generate_text_summary(inputs) | |
st.write("Summary:", summary) | |
with st.spinner("Generating Image..."): | |
result = generate_image(inputs) | |
st.markdown(f"") |