File size: 10,670 Bytes
9c1188f 6af00ba 4213f50 e3894fb 079e3f7 7d94414 079e3f7 7e3fb58 d9e0520 6af00ba d9e0520 0ebff8f ee032a8 d9e0520 0ebff8f 6af00ba 0ebff8f 6af00ba 0ebff8f 6af00ba 0ebff8f d9e0520 6af00ba b46f5ab 0ebff8f 6af00ba 3267959 43b1821 3267959 43b1821 3267959 43b1821 3267959 43b1821 e8f7917 098fa9f 35fa9a6 35ed179 098fa9f 9c1188f bbb68cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
import psutil
import subprocess
import time
#placeholders for api use
def generate_response_by_api(user_message):
FinalOutput = ""
#return FinalOutput
pass
def custom_generate_response_by_api(cust_user_message, prompt_index, prompts_list):
prompt, ending = prompts_list[prompt_index] # Unpack the prompt and its ending from the provided list
cust_user_message = f"{prompt}\n\n{cust_user_message}\n\n{ending}"
#return generate_response(cust_user_message)
pass
#-----------------------------------------------------------------------------------------------------------------------
#Local gguf model using llama.cpp
def generate_response(user_message): #generate_response_token_by_token
cmd = [
"/app/llama.cpp/main", # Path to the executable
"-m", "/app/llama.cpp/models/stablelm-2-zephyr-1_6b-Q4_0.gguf",
"-p", user_message,
"-n", "400",
"-e"
]
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
process_monitor = psutil.Process(process.pid)
start_time = time.time()
monitor_start_time = time.time()
alltokens = ""
token_buffer = ''
tokencount = 0
try:
while True:
# Read one character at a time
char = process.stdout.read(1)
if char == '' and process.poll() is not None:
break
if char != '':
token_buffer += char
if char == ' ' or char == '\n': # Token delimiters
elapsed_time = time.time() - start_time # Calculate elapsed time
alltokens += token_buffer
tokencount += 1
yield f"{alltokens} \n\n [Inference time: {elapsed_time:.2f} seconds | Tokens: { tokencount }]"
token_buffer = '' # Reset token buffer
# Log resource usage every minute
if time.time() - monitor_start_time > 60:
cpu_usage = process_monitor.cpu_percent()
memory_usage = process_monitor.memory_info().rss # in bytes
print(f"Subprocess CPU Usage: {cpu_usage}%, Memory Usage: {memory_usage / 1024 ** 2} MB")
monitor_start_time = time.time() # Reset the timer
# Yield the last token if there is any
if token_buffer:
elapsed_time = time.time() - start_time # Calculate elapsed time
alltokens += token_buffer
yield f"{alltokens} \n\n [Inference time: {elapsed_time:.2f} seconds | Average Tokens per second: { round(tokencount / elapsed_time, 2) }]"
finally:
try:
# Wait for the process to complete, with a timeout
process.wait(timeout=60) # Timeout in seconds
except subprocess.TimeoutExpired:
print("Process didn't complete within the timeout. Killing it.")
process.kill()
process.wait() # Ensure proper cleanup
# Wait for the subprocess to finish if it hasn't already
process.stdout.close()
process.stderr.close()
# Check for any errors
if process.returncode != 0:
error_message = process.stderr.read()
print(f"Error: {error_message}")
def custom_generate_response(cust_user_message, prompt_index, prompts_list):
"""
Generates a custom response based on the user message, the selected prompt,
and the provided list of prompts, including a custom ending specific to the prompt.
Parameters:
- cust_user_message: The message input from the user.
- prompt_index: The index of the custom prompt to use.
- prompts_list: The list of prompts to use for generating the response.
"""
prompt, ending = prompts_list[prompt_index] # Unpack the prompt and its ending from the provided list
cust_user_message = f"{prompt}\n\n{cust_user_message}\n\n{ending}"
yield from generate_response(cust_user_message)
Allprompts = {
"Custom Prompts" : [
("Write a Class Diagram based on the following text:", "Class Diagram:"),
("Write a Pydot code based on the following text:", "Pydot Code:"),
("Describe what a standard happy scene in any movie would be planned in great detail, based on the following text:", "Scene Details"),
("Explain a teardown of the product mentioned in the following text:", "Teardown Details:"),
("Explain the manufacturing of the product mentioned in the following text:", "Manufacturing Details:"),
("Explain the marketing considerations of the product mentioned in the following text:", "Considerations:"),
("Explain the target users considerations of the product mentioned in the following text:", "Target Users Considerations:"),
("My problem to solve is", "- please make 10 sub problems have to solve from this:"),
],
"Business Prompts" : [
("Suggest Product ideas just based off the following text:", "Products:"),
("Write an outline for a business plan for: " , ""),
("Write an example of a detailed report for a Executive Summary for " , "Executive Summary:"),
("Write an example of a detailed report for a Company Description for " , "Company Description:"),
("Write an example of a detailed report for a Market Analysis for " , "Market Analysis:"),
("Write an example of a detailed report for a Marketing and Sales Strategy for " , "Marketing and Sales Strategy:"),
("Write an example of a detailed report for a Product Development for " , "Product Development:"),
("Write an example of a detailed report for a Operations and Management for " , "Operations and Management:"),
("Write an example of a detailed report for a Financial Projections for " , "Financial Projections:"),
("Explain how this to make this product unique from competitors:", "Considerations:"),
],
"Programming Pattern Prompts" : [
("Demonstrate a builder pattern in go:", ""),
("Demonstrate a zero cost abstractions in go:", ""),
("Demonstrate a builder pattern in rust:", ""),
("Demonstrate a Polymorphism in rust:", ""),
("Explain how RAII pattern affects rust:", ""),
("Demonstrate a builder pattern in c++:", ""),
("Explain when to consider using a builder pattern in go:", ""),
],
"Creativity Prompts" : [
("Make the following text more vague:", "Vague version:"),
("Turn the following text into a bunch of rules:", "Rules:"),
("What Syllogisms can be made from this text:", "Syllogisms:"),
("Reimagine the following text:", ""),
],
"Game Based" : [
("What obstacles to growth exist in the following text:", "Obstacles:"),
("Write a story for the basis of a random game", ""),
("What are common themes in games?", ""),
("Write Three factions and why they are at conflict based on the following text:", "Faction 1:"),
]
}
with gr.Blocks() as iface:
with gr.Tab("Single prompt"):
gr.HTML("<a href='https://huggingface.co/spaces/stabilityai/stablelm-2-1_6b-zephyr'> -- Original StabilityAI demo -- </a> | ")
gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=2, placeholder="Type your message here..."),
outputs="text",
title="Stable LM 2 Zephyr (1.6b) LLama.cpp Interface Test (Inconsistent Performance - 100 tokens in 50 secs (when this HF space is updated) or 800+ secs(HF space open for long))",
description="No Prompt template used yet (Essentially autocomplete). No Message History for now - Enter your message and get a response.",
flagging_dir="/usr/src/app/flagged",
)
gr.HTML("Any standard way of thinking / Repetitive idea / rule of thumb / advice can be turned into a button (In a timeline?)")
gr.HTML("LLM powered Buttons as the new notetaking? (Youtube Video to prompt pipeline?)<br><br>List to buttons (Instead of buttons tabs and dropdowns maybe?)")
MainOutput = gr.TextArea(placeholder='Output will show here')
CustomButtonInput = gr.TextArea(lines=1, placeholder='Prompt goes here')
# with gr.Accordion("Random Ideas"):
# with gr.Group():
# for index, (prompt, _) in enumerate(CustomPrompts):
# button = gr.Button(prompt)
# # Pass CustomPrompts list as an argument
# button.click(custom_generate_response, inputs=[CustomButtonInput, gr.State(index), gr.State(CustomPrompts)], outputs=MainOutput)
# with gr.Accordion("General Product and Business based", open=False):
# with gr.Group():
# for index, (prompt, _) in enumerate(BusinessPrompts):
# button = gr.Button(prompt)
# # Pass BusinessPrompts list as an argument
# button.click(custom_generate_response, inputs=[CustomButtonInput, gr.State(index), gr.State(BusinessPrompts)], outputs=MainOutput)
# with gr.Accordion("General Programming Pattern based", open=False):
# with gr.Group():
# for index, (prompt, _) in enumerate(ProgrammingPatternPrompts):
# button = gr.Button(prompt)
# # Pass BusinessPrompts list as an argument
# button.click(custom_generate_response, inputs=[CustomButtonInput, gr.State(index), gr.State(ProgrammingPatternPrompts)], outputs=MainOutput)
# with gr.Accordion("General Creativity Pattern based", open=False):
# with gr.Group():
# for index, (prompt, _) in enumerate(CreativityPrompts):
# button = gr.Button(prompt)
# # Pass BusinessPrompts list as an argument
# button.click(custom_generate_response, inputs=[CustomButtonInput, gr.State(index), gr.State(CreativityPrompts)], outputs=MainOutput)
for category_name, category_prompts in Allprompts.items():
with gr.Accordion(f"General {category_name} Pattern based"):
with gr.Group():
for index, (prompt, _) in enumerate(category_prompts):
button = gr.Button(prompt)
button.click(generate_response, inputs=[CustomButtonInput, gr.State(index), gr.State(category_name)], outputs=MainOutput)
with gr.Tab("Workflow Brainstom"):
gr.HTML("Workflow = premeditated events --- need a timeline before prompts")
iface.queue().launch(server_name="0.0.0.0", share=True) |