File size: 6,339 Bytes
9c1188f 6af00ba 4213f50 e3894fb 7e3fb58 d9e0520 6af00ba d9e0520 0ebff8f ee032a8 d9e0520 0ebff8f 6af00ba 0ebff8f 6af00ba 0ebff8f 6af00ba 0ebff8f d9e0520 6af00ba b46f5ab 0ebff8f 6af00ba 279a4e6 b46f5ab 69fb1b1 fea7e7a 6f94d14 69fb1b1 6f94d14 69fb1b1 6f94d14 e8f7917 078637c cb5934e 2877fe7 e8f7917 078637c e8f7917 74d7e67 078637c 7e3fb58 c903cf3 2877fe7 762532e e8f7917 c903cf3 2877fe7 279a4e6 6f94d14 e8f7917 9c1188f bbb68cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
import psutil
import subprocess
import time
def generate_response(user_message): #generate_response_token_by_token
cmd = [
"/app/llama.cpp/main", # Path to the executable
"-m", "/app/llama.cpp/models/stablelm-2-zephyr-1_6b-Q4_0.gguf",
"-p", user_message,
"-n", "400",
"-e"
]
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1)
process_monitor = psutil.Process(process.pid)
start_time = time.time()
monitor_start_time = time.time()
alltokens = ""
token_buffer = ''
tokencount = 0
try:
while True:
# Read one character at a time
char = process.stdout.read(1)
if char == '' and process.poll() is not None:
break
if char != '':
token_buffer += char
if char == ' ' or char == '\n': # Token delimiters
elapsed_time = time.time() - start_time # Calculate elapsed time
alltokens += token_buffer
tokencount += 1
yield f"{alltokens} \n\n [Inference time: {elapsed_time:.2f} seconds | Tokens: { tokencount }]"
token_buffer = '' # Reset token buffer
# Log resource usage every minute
if time.time() - monitor_start_time > 60:
cpu_usage = process_monitor.cpu_percent()
memory_usage = process_monitor.memory_info().rss # in bytes
print(f"Subprocess CPU Usage: {cpu_usage}%, Memory Usage: {memory_usage / 1024 ** 2} MB")
monitor_start_time = time.time() # Reset the timer
# Yield the last token if there is any
if token_buffer:
elapsed_time = time.time() - start_time # Calculate elapsed time
alltokens += token_buffer
yield f"{alltokens} \n\n [Inference time: {elapsed_time:.2f} seconds | Average Tokens per second: { round(tokencount / elapsed_time, 2) }]"
finally:
try:
# Wait for the process to complete, with a timeout
process.wait(timeout=60) # Timeout in seconds
except subprocess.TimeoutExpired:
print("Process didn't complete within the timeout. Killing it.")
process.kill()
process.wait() # Ensure proper cleanup
# Wait for the subprocess to finish if it hasn't already
process.stdout.close()
process.stderr.close()
# Check for any errors
if process.returncode != 0:
error_message = process.stderr.read()
print(f"Error: {error_message}")
def custom_generate_response0(cust_user_message):
cust_user_message = CustomPrompts[0] + '\n\n' + cust_user_message + '\n\nClass Diagram:'
yield from generate_response(cust_user_message)
def custom_generate_response1(cust_user_message):
cust_user_message = CustomPrompts[1] + '\n\n' + cust_user_message + '\n\nPydot Code:'
yield from generate_response(cust_user_message)
def custom_generate_response2(cust_user_message):
cust_user_message = CustomPrompts[2] + '\n' + cust_user_message + '\n\nScene Details'
yield from generate_response(cust_user_message)
def custom_generate_response3(cust_user_message):
cust_user_message = CustomPrompts[3] + '\n' + cust_user_message + '\n\nTeardown Details:'
yield from generate_response(cust_user_message)
def custom_generate_response4(cust_user_message):
cust_user_message = CustomPrompts[4] + '\n' + cust_user_message + '\n\nManufacturing Details:'
yield from generate_response(cust_user_message)
def custom_generate_response5(cust_user_message):
cust_user_message = CustomPrompts[5] + '\n' + cust_user_message + '\n\nConsiderations:'
yield from generate_response(cust_user_message)
CustomPrompts = [
"Write a Class Diagram based on the following text:",
"Write a Pydot code based on the following text:",
"Describe what a standard happy scene in any movie would be planned in great detail, based on the following text:",
"Explain a teardown of the product mentioned in the following text:",
"Explain the manufacturing of the product mentioned in the following text:",
"Explain the marketing considerations of the product mentioned in the following text:",
]
with gr.Blocks() as iface:
gr.Interface(
fn=generate_response,
inputs=gr.Textbox(lines=2, placeholder="Type your message here..."),
outputs="text",
title="Stable LM 2 Zephyr (1.6b) LLama.cpp Interface Test (Inconsistent Performance - 100 tokens in 50 secs or 800+ secs)",
description="No Prompt template used yet (Essentially autocomplete). No Message History for now - Enter your message and get a response.",
flagging_dir="/usr/src/app/flagged",
)
#gr.Interface(fn=generate_response_token_by_token, inputs=gr.Textbox(lines=2, placeholder='Type prompt here...'), outputs="text", description="More Responsive streaming test")
with gr.Group():
gr.HTML("Test for wrapping generator (Instead of buttons tabs and dropdowns?)")
MainOutput = gr.TextArea(placeholder='Output will show here')
CustomButtonInput = gr.TextArea(lines=1, placeholder='Prompt goes here')
CustomButtonClassDiagram = gr.Button(CustomPrompts[3])
CustomButtonClassDiagram = gr.Button(CustomPrompts[4])
CustomButtonClassDiagram = gr.Button(CustomPrompts[5])
CustomButtonClassDiagram = gr.Button(CustomPrompts[0])
CustomButtonPydotcode = gr.Button(CustomPrompts[1])
CustomButtonHappyMovieScene = gr.Button(CustomPrompts[2])
CustomButtonClassDiagram.click(custom_generate_response0, inputs=[CustomButtonInput], outputs=MainOutput)
CustomButtonPydotcode.click(custom_generate_response1, inputs=[CustomButtonInput], outputs=MainOutput)
CustomButtonHappyMovieScene.click(custom_generate_response2, inputs=[CustomButtonInput], outputs=MainOutput)
CustomButtonHappyMovieScene.click(custom_generate_response3, inputs=[CustomButtonInput], outputs=MainOutput)
CustomButtonHappyMovieScene.click(custom_generate_response4, inputs=[CustomButtonInput], outputs=MainOutput)
iface.queue().launch(server_name="0.0.0.0", share=True) |