Spaces:
Running
Running
File size: 17,305 Bytes
2c4ef8c 8c74afb 196b595 4cc9c49 b325a26 32962aa 7f40716 196b595 41df859 196b595 2c4ef8c 0aafd85 2c4ef8c 0aafd85 2c4ef8c 0aafd85 2c4ef8c e9e3195 0aafd85 e9e3195 0aafd85 2c4ef8c 0aafd85 e9e3195 0aafd85 e9e3195 2c4ef8c 4cc9c49 ac8d93f e5579ec 42fd0f6 2931540 42fd0f6 9c949f0 b325a26 9c949f0 fb38229 c7cc4f2 b910e0e b325a26 9c949f0 b325a26 32962aa 24185ae 454d167 eec7d18 ac8d93f eec7d18 ac8d93f 7f40716 454d167 2c4ef8c f174f81 b325a26 97d5756 b325a26 f174f81 9b637cf f174f81 b325a26 9b637cf 97d5756 b325a26 97d5756 32962aa dc21082 32962aa b325a26 7f40716 b325a26 97d5756 554aad0 b325a26 7bbaac1 24185ae eec7d18 24185ae 7f40716 24185ae 7bbaac1 b325a26 2c4ef8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
from googletrans import Translator
import spacy
import gradio as gr
import nltk
from nltk.corpus import wordnet
import wikipedia
import re
import time
import random
import os
import zipfile
import gradio as gr
import ffmpeg
nltk.download('maxent_ne_chunker') #Chunker
nltk.download('stopwords') #Stop Words List (Mainly Roman Languages)
nltk.download('words') #200 000+ Alphabetical order list
nltk.download('punkt') #Tokenizer
nltk.download('verbnet') #For Description of Verbs
nltk.download('omw')
nltk.download('omw-1.4') #Multilingual Wordnet
nltk.download('wordnet') #For Definitions, Antonyms and Synonyms
nltk.download('shakespeare')
nltk.download('dolch') #Sight words
nltk.download('names') #People Names NER
nltk.download('gazetteers') #Location NER
nltk.download('opinion_lexicon') #Sentiment words
nltk.download('averaged_perceptron_tagger') #Parts of Speech Tagging
spacy.cli.download("en_core_web_sm")
nlp = spacy.load('en_core_web_sm')
translator = Translator()
def Sentencechunker(sentence):
Sentchunks = sentence.split(" ")
chunks = []
for i in range(len(Sentchunks)):
chunks.append(" ".join(Sentchunks[:i+1]))
return " | ".join(chunks)
def ReverseSentenceChunker(sentence):
reversed_sentence = " ".join(reversed(sentence.split()))
chunks = Sentencechunker(reversed_sentence)
return chunks
def three_words_chunk(sentence):
words = sentence.split()
chunks = [words[i:i+3] for i in range(len(words)-2)]
chunks = [" ".join(chunk) for chunk in chunks]
return " | ".join(chunks)
def keep_nouns_verbs(sentence):
doc = nlp(sentence)
nouns_verbs = []
for token in doc:
if token.pos_ in ['NOUN','VERB','PUNCT']:
nouns_verbs.append(token.text)
return " ".join(nouns_verbs)
def unique_word_count(text="", state=None):
if state is None:
state = {}
words = text.split()
word_counts = state
for word in words:
if word in word_counts:
word_counts[word] += 1
else:
word_counts[word] = 1
sorted_word_counts = sorted(word_counts.items(), key=lambda x: x[1], reverse=True)
return sorted_word_counts,
def Wordchunker(word):
chunks = []
for i in range(len(word)):
chunks.append(word[:i+1])
return chunks
def BatchWordChunk(sentence):
words = sentence.split(" ")
FinalOutput = ""
Currentchunks = ""
ChunksasString = ""
for word in words:
ChunksasString = ""
Currentchunks = Wordchunker(word)
for chunk in Currentchunks:
ChunksasString += chunk + " "
FinalOutput += "\n" + ChunksasString
return FinalOutput
# Translate from English to French
langdest = gr.Dropdown(choices=["af", "de", "es", "ko", "ja", "zh-cn"], label="Choose Language", value="de")
ChunkModeDrop = gr.Dropdown(choices=["Chunks", "Reverse", "Three Word Chunks", "Spelling Chunks"], label="Choose Chunk Type", value="Chunks")
def FrontRevSentChunk (Chunkmode, Translate, Text, langdest):
FinalOutput = ""
TransFinalOutput = ""
if Chunkmode=="Chunks":
FinalOutput += Sentencechunker(Text)
if Chunkmode=="Reverse":
FinalOutput += ReverseSentenceChunker(Text)
if Chunkmode=="Three Word Chunks":
FinalOutput += three_words_chunk(Text)
if Chunkmode=="Spelling Chunks":
FinalOutput += BatchWordChunk(Text)
if Translate:
TransFinalOutput = FinalOutput
translated = translator.translate(TransFinalOutput, dest=langdest)
FinalOutput += "\n" + translated.text
return FinalOutput
# Define a function to filter out non-verb, noun, or adjective words
def filter_words(words):
# Use NLTK to tag each word with its part of speech
tagged_words = nltk.pos_tag(words)
# Define a set of parts of speech to keep (verbs, nouns, adjectives)
keep_pos = {'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'NN', 'NNS', 'NNP', 'NNPS', 'JJ', 'JJR', 'JJS'}
# Filter the list to only include words with the desired parts of speech
filtered_words = [word for word, pos in tagged_words if pos in keep_pos]
return filtered_words
def SepHypandSynExpansion(text):
# Tokenize the text
tokens = nltk.word_tokenize(text)
NoHits = ""
FinalOutput = ""
# Find synonyms and hypernyms of each word in the text
for token in tokens:
synonyms = []
hypernyms = []
for synset in wordnet.synsets(token):
synonyms += synset.lemma_names()
hypernyms += [hypernym.name() for hypernym in synset.hypernyms()]
if not synonyms and not hypernyms:
NoHits += f"{token} | "
else:
FinalOutput += "\n" f"{token}: hypernyms={hypernyms}, synonyms={synonyms} \n"
NoHits = set(NoHits.split(" | "))
NoHits = filter_words(NoHits)
NoHits = "Words to pay special attention to: \n" + str(NoHits)
return NoHits, FinalOutput
def WikiSearch(term):
termtoks = term.split(" ")
for item in termtoks:
# Search for the term on Wikipedia and get the first result
result = wikipedia.search(item, results=20)
return result
def create_dictionary(word_list, word_dict = {}):
word_list = set(word_list.split(" "))
for word in word_list:
key = word[:2]
if key not in word_dict:
word_dict[key] = [word]
else:
word_dict[key].append(word)
return word_dict
def merge_lines(roman_file, w4w_file, full_mean_file, macaronic_file):
files = [roman_file, w4w_file, full_mean_file, macaronic_file]
merged_lines = []
with open(roman_file.name, "r") as f1, open(w4w_file.name, "r") as f2, \
open(full_mean_file.name, "r") as f3, open(macaronic_file.name, "r") as f4:
for lines in zip(f1, f2, f3, f4):
merged_line = "\n".join(line.strip() for line in lines)
merged_lines.append(merged_line)
return "\n".join(merged_lines)
def TTSforListeningPractice(text):
return "not finished"
def group_words(inlist):
inlisttoks = inlist.split(" ")
inlistset = set(inlisttoks)
word_groups = []
current_group = []
for word in inlisttoks:
current_group.append(word)
if len(current_group) == 10:
word_groups.append(current_group)
current_group = []
if current_group:
word_groups.append(current_group)
current_group_index = 0
current_group_time = 0
while True:
if current_group_time == 60:
current_group_index = (current_group_index + 1) % len(word_groups)
current_group_time = 0
else:
if current_group_time % 10 == 0:
random.shuffle(word_groups[current_group_index])
current_group_time += 10
yield " ".join(word_groups[current_group_index])
time.sleep(10)
def split_verbs_nouns(text):
nlp = spacy.load("en_core_web_sm")
doc = nlp(text)
verbs_nouns = []
other_words = []
for token in doc:
if token.pos_ in ["VERB", "NOUN"]:
verbs_nouns.append(token.text)
elif token.text in [punct.text for punct in doc if punct.is_punct]:
verbs_nouns.append(token.text)
other_words.append(token.text)
else:
other_words.append(token.text)
verbs_nouns_text = " ".join(verbs_nouns)
other_words_text = " ".join(other_words)
return verbs_nouns_text, other_words_text
def split_srt_file(text): #file_path):
# Open the SRT file and read its contents
#with open(file_path, 'r') as f:
# srt_contents = f.read()
srt_contents = text
# Split the SRT file by timestamp
srt_sections = srt_contents.split('\n\n')
# Loop through each section of the SRT file
for i in range(len(srt_sections)):
# Split the section into its timestamp and subtitle text
section_lines = srt_sections[i].split('\n')
timestamp = section_lines[1]
subtitle_text = ' | '.join(section_lines[2:])
# Replace spaces in the subtitle text with " | "
subtitle_text = subtitle_text.replace(' ', ' | ')
# Reconstruct the section with the updated subtitle text
srt_sections[i] = f"{section_lines[0]}\n{timestamp}\n{subtitle_text[3:]}"
# Join the SRT sections back together into a single string
return '\n\n'.join(srt_sections)
def find_string_positions(s, string):
positions = []
start = 0
while True:
position = s.find(string, start)
if position == -1:
break
positions.append(position)
start = position + len(string)
return positions
def splittext(string):
split_positions = find_string_positions(string, " --> ")
split_strings = []
prepos = 0
for pos in split_positions:
pos -= 12
split_strings.append((string[prepos:pos])) #, string[pos:]))
prepos = pos
FinalOutput = ""
stoutput = ""
linenumber = 1
print(linenumber)
for item in split_strings[1:]:
stoutput = item[0:29] + "\n" + item[30:]
stspaces = find_string_positions(stoutput, " ")
FinalOutput += str(linenumber) + "\n" + stoutput[:stspaces[-2]] + "\n"
FinalOutput += "\n"
linenumber += 1
return FinalOutput[2:]
def VideotoSegment(video_file, subtitle_file):
# Read the subtitle file and extract the timings for each subtitle
timings = []
for line in subtitle_file:
if '-->' in line:
start, end = line.split('-->')
start_time = start.strip().replace(',', '.')
end_time = end.strip().replace(',', '.')
timings.append((start_time, end_time))
# Cut the video into segments based on the subtitle timings
video_segments = []
for i, (start_time, end_time) in enumerate(timings):
output_file = f'segment_{i}.mp4'
ffmpeg.input(video_file, ss=start_time, to=end_time).output(output_file, codec='copy').run()
video_segments.append(output_file)
# Convert each segment to an MP3 audio file using FFmpeg
audio_segments = []
for i in range(len(timings)):
output_file = f'segment_{i}.mp3'
ffmpeg.input(video_segments[i]).output(output_file, codec='libmp3lame', qscale='4').run()
audio_segments.append(output_file)
# Create a ZIP archive containing all of the segmented files
zip_file = zipfile.ZipFile('segmented_files.zip', 'w')
for segment in video_segments + audio_segments:
zip_file.write(segment)
os.remove(segment)
zip_file.close()
# Return the ZIP archive for download
return 'segmented_files.zip'
# Define the Gradio interface inputs and outputs for video split
spvvideo_file_input = gr.File(label='Video File')
spvsubtitle_file_input = gr.File(label='Subtitle File')
spvdownload_output = gr.File(label='Download Segmented Files')
groupinput_text = gr.inputs.Textbox(lines=2, label="Enter a list of words")
groupoutput_text = gr.outputs.Textbox(label="Grouped words")
with gr.Blocks() as lliface:
with gr.Tab("Welcome"):
gr.HTML("""<h1> Spaces Test - Still Undercontruction </h1> <p> You only learn when you convert things you dont know to known --> Normally Repetition is the only reliable method for everybody </p>
<p> Knowledge is a Language but productive knowledge is find replace as well </p> <p>LingQ is good option for per word state management</p> <p> Arrows app json creator for easy knowledge graphing and spacy POS graph? </p>
<p> Vocab = Glossary + all non text wall(lists, diagrams, etc.)</p>
<p> https://huggingface.co/spaces/vumichien/whisper-speaker-diarization<br></p>
<p> In Language the goal is bigger vocab --> Knowledge equivalent = question answer pairs but to get to those you need related information pairs</p>
<p> ChatGPT Turns Learning into a read only what you dont know ask only what you dont know feedback loop --> All you have to do is keep track of what prompts you have asked in the past</p>
<p> Spell multiple words simultaneously for simultaneous access </p>
""")
with gr.Tab("Unique word ID"):
gr.Interface(fn=unique_word_count, inputs="text", outputs="text", title="Wordcounter")
gr.Interface(fn=SepHypandSynExpansion, inputs="text", outputs=["text", "text"], title="Word suggestions")
gr.Interface(fn=WikiSearch, inputs="text", outputs="text", title="Unique word suggestions(wiki articles)")
with gr.Tab("Automating related information linking"):
gr.HTML("Questions - Tacking and suggesting questions to ask = new education")
with gr.Tab("Spelling and Chunks"):
gr.Text("Merged Spelling Practice Placeholder - Spell multiple words simultaneously for simultaneous access")
gr.HTML("<p> Spelling is the end goal, you already know many letter orders called words so you need leverage them to remember random sequences")
with gr.Tab("Spelling Simplification - Use a dual language list"):
gr.Interface(fn=create_dictionary, inputs="text", outputs="text", title="Sort Text by first two letters")
with gr.Tab("Chunks"):
gr.Interface(fn=FrontRevSentChunk, inputs=[ChunkModeDrop, "checkbox", "text", langdest], outputs="text")
gr.Interface(fn=keep_nouns_verbs, inputs=["text"], outputs="text", title="Noun and Verbs only (Plus punctuation)")
with gr.Tab("Timing Practice - Repitition"):
gr.HTML("<p>Run from it, Dread it, Repitition is inevitable - Thanos</p> <p>Next Milestone is Turning this interface handsfree</p>")
with gr.Tab("Gradio Version"):
gr.Interface(fn=group_words, inputs=groupinput_text, outputs=groupoutput_text, title="Word Grouping and Rotation", description="Group a list of words into sets of 10 and rotate them every 60 seconds.").queue()
with gr.Tab("HTML Version"):
gr.HTML("""<iframe height="1200" style="width: 100%;" scrolling="no" title="Memorisation Aid" src="https://codepen.io/kwabs22/embed/preview/GRXKQgj?default-tab=result&editable=true" frameborder="no" loading="lazy" allowtransparency="true" allowfullscreen="true">
See the Pen <a href="https://codepen.io/kwabs22/pen/GRXKQgj">
Memorisation Aid</a> by kwabs22 (<a href="https://codepen.io/kwabs22">@kwabs22</a>)
on <a href="https://codepen.io">CodePen</a>.
</iframe>""")
with gr.Tab("Knowledge Ideas"):
gr.HTML("""<p>Good knowledge = ability to answer questions --> find Questions you cant answer and look for hidden answer within them </p>
<p>My One Word Theory = We only use more words than needed when we have to or are bored --> Headings exist because title is not sufficient, subheadings exist because headings are not sufficient, Book Text exists because subheadings are not sufficient</p>
<p>Big Picture = Expand the Heading and the subheadings and compare them to each other</p>
<p>Application of Knowledge = App Version of the text (eg. Jupyter Notebooks) is what you create and learn first</p>
""")
with gr.Tab("Beginner - Songs - Chorus"):
gr.HTML("Essentially if the sounds are repeated or long notes they are easy to remember")
gr.Interface(fn=TTSforListeningPractice, inputs="text", outputs="text", title="Placeholder - paste chorus here and use TTS or make notes to save here")
with gr.Tab("Transcribe - RASMUS Whisper"):
gr.HTML("""<p>If this tab doesnt work use the link below ⬇️</p> <a href="https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles">https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles</a>""")
gr.Interface.load("spaces/RASMUS/Whisper-youtube-crosslingual-subtitles", title="Subtitles")
with gr.Tab("Advanced - LingQ Addons ideas"):
gr.HTML("Extra functions needed - Persitent Sentence translation, UNWFWO, POS tagging and Word Count per user of words in their account. Macaronic Text is also another way to practice only the important information")
with gr.Tab("Merged Subtitles"):
gr.HTML("SRT Contents to W4W Split SRT for Google Translate")
gr.Interface(fn=split_srt_file, inputs="text", outputs="text")
gr.HTML("Text for w4w creation in G Translate")
gr.Interface(fn=splittext, inputs="text", outputs="text")
with gr.Row():
RomanFile = gr.File(label="Paste Roman")
W4WFile = gr.File(label="Paste Word 4 Word")
FullMeanFile = gr.File(label="Paste Full Meaning")
MacaronicFile = gr.File(label="Paste Macaronic Text")
SentGramFormula = gr.File(label="Paste Sentence Grammar Formula Text")
with gr.Row():
MergeButton = gr.Button()
with gr.Row():
MergeOutput = gr.TextArea(label="Output")
MergeButton.click(merge_lines, inputs=[RomanFile, W4WFile, FullMeanFile, MacaronicFile], outputs=[MergeOutput])
with gr.Tab("Split video to segments"):
gr.Interface(VideotoSegment, inputs=[spvvideo_file_input, spvsubtitle_file_input], outputs=spvdownload_output)
with gr.Tab("Sentence to Format"):
gr.Interface(fn=split_verbs_nouns , inputs="text", outputs=["text", "text"], title="Comprehension reading and Sentence Format Creator")
gr.Text("Text to Closed Class + Adjectives + Punctuation or Noun Verb + Punctuation ")
with gr.Tab("Dictionary from text"):
gr.Interface(fn=create_dictionary, inputs="text", outputs="text", title="Two Letter Dictionary")
lliface.launch() |