KwabsHug commited on
Commit
134bdb1
·
1 Parent(s): d091b1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +513 -100
app.py CHANGED
@@ -22,6 +22,9 @@ import pykakasi
22
  import hangul_romanize
23
  import pinyin
24
  from langdetect import detect
 
 
 
25
 
26
  #Uncomment these for Huggingface
27
  nltk.download('maxent_ne_chunker') #Chunker
@@ -38,6 +41,8 @@ nltk.download('names') #People Names NER
38
  nltk.download('gazetteers') #Location NER
39
  nltk.download('opinion_lexicon') #Sentiment words
40
  nltk.download('averaged_perceptron_tagger') #Parts of Speech Tagging
 
 
41
 
42
  spacy.cli.download("en_core_web_sm")
43
  spacy.cli.download('ko_core_news_sm')
@@ -520,6 +525,7 @@ def UnknownTrackTexttoApp(text): #Copy of def OptimisedTtAppForUNWFWO(text):
520
  FinalOutput = ""
521
  #sentence = "One Piece chapter 1049 spoilers Thanks to Etenboby from WG forums Chapter 1049: **\"The world we should aspire to\"** * In the cover, someone burned Niji and Yonji\u2019s book * Kaido flashback time. We see his childhood in Vodka Kingdom, and where a few years later he met Whitebeard who told him that Rocks wants to meet him * In the present, part of Raizo\u2019s water leaves the castle and flame clouds disappear. But Momo makes a new one. * Luffy says he will create a world where none of his friends would starve, then he hits Kaido and Kaido falls to the ground of the flower capital. * In another flashback, Kaido tells King that Joy Boy will be the man that can defeat him. **Additional info** *Flashback to Kaidou as a kid* *- His country tries to sell him to the marines but he escapes* *- He rampages in Hachinosu(i think it's blackbeard's island) and Rocks invites him to his crew* *- Young WB appears* *- Rocks flashback suddenly ends* *- Higurashi invites Kaidou* *- The flashback ends with Kaidou telling King he knows who Joy Boy is.* *Back to the present* \\- *Denjirou hugs Hiyori* \\- *Luffy's punch hits Kaidou* *Flashback continues* \\- *King asks: Who is it then?* \\- *Kaidou: The one who will defeat me* \\- *King: Then he will not appear* \\- *Onigashima falls near the capital* \\- *Momo falls* **BREAK NEXT WEEK** https://www.reddit.com/r/OnePiece/comments/umu2h0/one_piece_chapter_1049_spoilers/" #@param {type: "string"}
522
  HTMLMainbody = ""
 
523
 
524
  doc = nlp(text)
525
  iIDNumber = 0
@@ -534,18 +540,22 @@ def UnknownTrackTexttoApp(text): #Copy of def OptimisedTtAppForUNWFWO(text):
534
  for token in doc:
535
  if (token.pos_ == "VERB") or (token.pos_ == "AUX"):
536
  HTMLMainbody = HTMLMainbody + "<button id='btn" + str(iVerbCount) + "' onclick=HighlightWord('btn" + str(iVerbCount) + "')> " + token.text + "</button> "
 
537
  allverbids = allverbids + str(iVerbCount) + " "
538
  iVerbCount += 1
539
  iWords += 1
540
  allverbs = allverbs + token.text + " "
541
  elif token.pos_ == "NOUN":
542
- HTMLMainbody = HTMLMainbody + "<label class='Nouns' id='lbl" + token.text + "'>" + token.text + " </label>"
 
543
  iNounCount += 1
544
  iWords += 1
545
  elif token.pos_ == "PUNCT":
546
  HTMLMainbody = HTMLMainbody + token.text
 
547
  else:
548
  HTMLMainbody = HTMLMainbody + token.text + " "
 
549
  iWords += 1
550
  iIDNumber += 1
551
 
@@ -553,6 +563,7 @@ def UnknownTrackTexttoApp(text): #Copy of def OptimisedTtAppForUNWFWO(text):
553
  allverbidslist = allverbids.split()
554
 
555
  FinalHTML = ""
 
556
  FinalCSS = ""
557
  FinalJS = ""
558
 
@@ -619,7 +630,9 @@ def UnknownTrackTexttoApp(text): #Copy of def OptimisedTtAppForUNWFWO(text):
619
  }
620
  '''
621
 
 
622
  FinalHTML = FinalHTML + "\n<div><hr>\n" + HTMLMainbody + "\n"
 
623
  #FinalHTML = FinalHTML + '''</div><hr>
624
  #<button onclick=OnlyUnknownSentences() id="btnOnlyUnknownSentences">Only Unknown Sentences Put this function in a timer to keep up to date without input</button>
625
  #'''
@@ -648,14 +661,21 @@ def UnknownTrackTexttoApp(text): #Copy of def OptimisedTtAppForUNWFWO(text):
648
  \n
649
  '''
650
 
 
 
 
 
 
651
  FinalOutput = FinalHTML + FinalCSS + FinalJS
 
 
652
 
653
  HTMLDownloadTemp = f'UnknownVerbTrack.html'
654
 
655
  with open(HTMLDownloadTemp, 'w') as f:
656
  f.write(FinalOutput)
657
 
658
- return HTMLDownloadTemp, FinalOutput, FinalOutput
659
 
660
  #Kathryn Lingel - Pyambic Pentameter Example - PyCon US
661
  #Basic Language Model Code
@@ -789,15 +809,15 @@ def changeexposuretext(text):
789
 
790
  #-------------------------------------------------------------------------------------------------------------------------------
791
 
792
- def arrealtimetestidea(img):
793
- return "Unfinished. The aim is to do realtime translation google but based on knowledge domains instead of language - Look at HF Models and spaces"
794
 
795
- #------------------------------------------------------------------------------------------------------------------------------
 
796
 
797
- def ImageTranslationTest(text, video):
798
 
799
- Finalvideo = video
800
- return Finalvideo
801
 
802
  def AutoSyllablePractice(String):
803
  FinalOutput = ""
@@ -926,6 +946,248 @@ def GuidedReading(textspreprocess,seperator):
926
 
927
  return FinalOutput
928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929
  guidedreadingseperator = gr.Dropdown(choices=[".", ",", "lines", "Sentences"], value=".", interactive=True)
930
  textspreprocess = [
931
  ["Bing created this example \nApple is looking at buying U.K. startup for $1 billion \nApple schaut sich für 1 Milliarde Dollar ein Startup aus Großbritannien an \nApple está mirando comprar una startup del Reino Unido por mil millones de dólares \n애플은 영국의 스타트업을 10억 달러에 사려고 한다 \nアップルは、英国のスタートアップを10億ドルで買収する予定だ \n苹果正考虑以10亿美元收购英国初创公司", "\n"]
@@ -933,7 +1195,7 @@ textspreprocess = [
933
 
934
  LLPromptIdeas = """
935
 
936
- <p> Lets try this I will give you the english word and you find the <<chinese>> word and then mix the meaning of the word with the mnemonic <p/>
937
 
938
  Bings Explanation
939
  Youre welcome. Im happy to help. If I wanted to explain the rules of this game clearly and concisely, I would do something like this:
@@ -946,7 +1208,7 @@ The player who finds the <<Chinese>> word and makes the mnemonic should write th
946
 
947
  <hr>
948
 
949
- <p> Make jokes while following rules for a syllogism jokes game:
950
 
951
  The game can be played with any number of people.
952
  One person starts by stating a syllogism, which is a logical argument that consists of three parts: a major premise, a minor premise, and a conclusion.
@@ -976,11 +1238,24 @@ next sentence is AI Town is a virtual town where AI characters live, chat and so
976
 
977
  """
978
 
 
 
 
 
 
 
 
979
  def display_website(link):
980
  html = f"<iframe src='{link}' width='100%' height='1000px'></iframe>"
981
- #gr.Warning("If 404 then the space/page has probably been disabled - normally due to a better alternative")
982
  return html
983
 
 
 
 
 
 
 
984
 
985
  randomExposuremessageText = ["Great Test for LLM function calling (with Gradio Client)", "Unknown Tracker Tab = Incomplete Reading Assistant Idea - HTML app based on text to be read", "Bing mnemonic - lost = dont ignore unusual sounds here inside lost cave", "1000 verbs in lists of 100, verbs = easy setence structure estimation (SVO, SOV, etc.)", "Can put any message here in the navigatoin tab"]
986
 
@@ -990,6 +1265,49 @@ def randommarquee():
990
  #randomExposuremessagelistitem2 = str(random.sample(randomExposuremessageText, 1)).replace("['", "").replace("']", "")
991
  return f" <marquee> { randomExposuremessagelistitem } </marquee> "
992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
993
 
994
  # Define the Gradio interface inputs and outputs for video split
995
  spvvideo_file_input = gr.File(label='Video File')
@@ -1007,53 +1325,86 @@ randomExposuremessage = randommarquee()
1007
  randomExposuremessage2 = randommarquee()
1008
 
1009
  VideoTestInput = gr.File(label="select a mp4 video file", file_types=[".mp4"])
 
 
1010
 
1011
  with gr.Blocks() as lliface: #theme=gr.themes.Glass(primary_hue='green', secondary_hue='red', neutral_hue='blue', )
1012
- gr.HTML('<div style="display: flex; justify-content: center; align-items: center; height: 100%;"> ---- Under Construction: Slowly figuring out what AI intergrated interface means (Chat vs Forms vs Function calling vs Sensor + Trigger) ----</div>')
1013
- with gr.Row():
1014
- PracticeExposure = gr.HTML(randomExposuremessage)
1015
- PracticeExposure2 = gr.HTML(randomExposuremessage2)
1016
- with gr.Row():
1017
- with gr.Column(scale=1):
1018
- gr.HTML("Advanced Repitition = Combinatorics --> to understand a sentence properly you need understanding of every word --> in language that means use with other words --> Combos within the unique words in a sentence, paragraph, page, etc. --> as close to 3 word sentences")
1019
- with gr.Column(scale=1):
1020
- gr.HTML("<p>Timing Practice - Repitition: Run from it, Dread it, Repitition is inevitable - Thanos --> Repitition of reaction - Foreign in eyes/ears native in mind (For beginners) | Repitition is a multitask activity like driving must be subconcious process to show mastery </p>")
1021
- gr.HTML(""" <a href='https://github.com/eugeneyan/open-llms'> -- Opensource List -- </a> | <a href='https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard'> -- Open LLM Leaderboard -- </a> | <a href='https://huggingface.co/spaces/sanchit-gandhi/whisper-jax'> -- Whisper JAX -- </a> | <a href="https://translate.google.com/?hl=en&tab=TT"> -- Google Translate -- </a> | <a href='https://huggingface.co/spaces/damo-vilab/modelscope-text-to-video-synthesis'> -- Modelscope Text to Video -- </a> | <a href='https://huggingface.co/spaces/stabilityai/stable-diffusion'> -- stable-diffusion 2 -- </a> | <a href='https://huggingface.co/spaces/stabilityai/stable-diffusion-1'> -- stable-diffusion 1 -- </a> | <a href='https://huggingface.co/spaces/kakaobrain/karlo'> -- karlo 1 -- </a> | <a href='https://huggingface.co/spaces/suno/bark'> -- Bark (TTS) -- </a> | <a href='https://chat.lmsys.org/'> -- Offline Text Model Demos -- </a> | <a href='https://huggingface.co/spaces/curt-park/segment-anything-with-clip'> -- SAM with Clip -- </a> | <a href='https://beta.elevenlabs.io/'> -- Eleven Labs -- </a> | <a href='https://www.d-id.com/'> -- Animate an Image -- </a> | <a href='https://voice.ai/'> -- Clone a voice -- </a> | <a href='https://openai.com/pricing'> -- OpenAI pricing -- </a> | <a href='https://huggingface.co/spaces/sohojoe/soho-clip-embeddings-explorer'> -- Image Training Data Search -- </a> | <a href='https://huggingface.co/spaces/huggingchat/chat-ui'> -- Huggingface Chat -- </a> | <a href='https://huggingface.co/spaces/bguisard/stable-diffusion-nano'> -- 128x128 Stable Diffusion (Fast) -- </a> | <a href='https://huggingface.co/spaces/colonelwatch/abstracts-index'> -- Search 95 million research abstracts -- </a> | <a href='https://huggingface.co/datasets/roneneldan/TinyStories'> -- Tiny Stories Dataset -- </a> | <a href='https://huggingface.co/spaces/lykeven/visualglm-6b'> -- Visualglm6b - Discuss images -- </a> | <a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- RAM and Tag2Text -- </a> | <a href='https://huggingface.co/camenduru/potat1'> -- Potat1 Text2vid -- </a> | <a href='https://twitter.com/willdepue/status/1661781355452325889'> -- Alexandria Prohect (Will Deque) - Free Embeddings -- </a> | <a href='https://artsandculture.google.com/'> -- Google Arts and Culture Portal -- </a> | <a href='https://huggingface.co/spaces/Matthijs/whisper_word_timestamps'> -- Word Level Timestamps -- </a> | <a href='https://huggingface.co/spaces/zaanind/NLLB-translation'> -- NLLB 600M Demo -- </a> | <a href='https://huggingface.co/spaces/hysts/zeroscope-v2'> -- Zeroscope v2 Text to video -- </a> | <a href='https://huggingface.co/spaces/SpacesExamples/ComfyUI'> -- ComfyUI Text to Image -- </a> | <a href='https://huggingface.co/spaces/DeepFloyd/IF'> -- Deepfloyd IF - Text in image -- </a> | <a href='https://huggingface.co/spaces/ysharma/ChatGPT-Plugins-in-Gradio'> -- ChatGPT Custom Plugins Test Space -- </a> | <a href='https://www.reddit.com/r/LocalLLaMA/'> -- r/LocalLlama -- </a> | <a href='https://www.reddit.com/r/singularity/'> -- r/Singularity -- </a> | <a href='https://huggingface.co/spaces/hysts/SD-XL'> -- SD-XL Test Space -- </a> | <a href='https://huggingface.co/spaces/facebook/seamless_m4t'> -- Seamless M4T - Translation one stop shop -- </a> | <a href='https://huggingface.co/spaces/codellama/codellama-playground'> -- Code Llama playground -- </a> | <a href='https://huggingface.co/spaces/Voicemod/Text-to-Sing'> -- Text to sing -- </a> | <a href='https://huggingface.co/spaces/camenduru-com/webui'> -- Stable Diffusion Webui (Camenduru Space) -- </a> | <a href='https://huggingface.co/spaces/ysharma/WizardCoder34b'> -- Wizard Coder 34B -- </a> | <a href='https://huggingface.co/spaces/chansung/co-write-with-llama2'> -- Cowrite with llama2 -- </a> | <a href='https://huggingface.co/spaces/fffiloni/Image-to-Story'> -- Image to Story -- </a> | <a href='https://huggingface.co/spaces/fffiloni/CLIP-Interrogator-2'> -- Clip interrogator 2 -- </a> | <a href='https://github.com/THUDM/AgentBench'> -- Agent Benchmarks -- </a> | <a href='https://www.convex.dev/ai-town'> -- AI Town Live Demo -- </a> = <a href='https://github.com/a16z-infra/ai-town'> -- AI Town Repository (Deployment]) -- </a> | <a href='https://github.com/joonspk-research/generative_agents/tree/main'> -- Generative Agents: Interactive Simulacra of Human Behavior (Research paper Repository) -- </a> | """)
1022
- with gr.Accordion("LLM HF Spaces (Click Here to Open) - Ask for Translation of image tags made below, sentence to emojis, Wordlists, Test Conversations, Get Grammar Explanations etc., Can use GPT-4 or new SOTA to review the conversation", open=False):
1023
  with gr.Row():
1024
- linktochat = gr.Dropdown(choices=["https://sdk.vercel.ai/docs", "https://lmsys-chatbot-arena.hf.space", "https://huggingface-projects-llama-2-7b-chat.hf.space", "https://ysharma-explore-llamav2-with-tgi.hf.space", "https://mosaicml-mpt-30b-chat.hf.space", "https://huggingfaceh4-falcon-chat.hf.space", "https://uwnlp-guanaco-playground-tgi.hf.space", "https://stabilityai-stablelm-tuned-alpha-chat.hf.space", "https://mosaicml-mpt-7b-storywriter.hf.space", "https://huggingfaceh4-starchat-playground.hf.space", "https://bigcode-bigcode-playground.hf.space", "https://mosaicml-mpt-7b-chat.hf.space", "https://huggingchat-chat-ui.hf.space", "https://togethercomputer-openchatkit.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
1025
  chatspacebtn = gr.Button("Use the chosen URL to load interface with a chat model. For sdk.vercel click the chat button on the top left")
1026
- with gr.Row():
1027
- chatspace = gr.HTML("Chat Space Chosen will load here")
1028
- chatspacebtn.click(display_website, inputs=linktochat, outputs=chatspace)
 
 
 
 
1029
  with gr.Row():
1030
  with gr.Column(scale=1):
1031
- with gr.Tab("Rep - HTML"):
1032
- gr.HTML("UNNWFWO = Unknown Native Word Foreign Word Order i.e. during active listening practice you only need the words you dont know")
1033
- gr.HTML("""<iframe height="1200" style="width: 100%;" scrolling="no" title="Memorisation Aid" src="https://codepen.io/kwabs22/embed/GRXKQgj?default-tab=result&editable=true" frameborder="no" loading="lazy" allowtransparency="true" allowfullscreen="true">
1034
- See the Pen <a href="https://codepen.io/kwabs22/pen/GRXKQgj"> Memorisation Aid</a> by kwabs22 (<a href="https://codepen.io/kwabs22">@kwabs22</a>) on <a href="https://codepen.io">CodePen</a>. </iframe>""")
1035
- with gr.Tab("Rep - Gradio"):
1036
- gr.Interface(fn=group_words, inputs=groupinput_text, outputs=groupoutput_text, description="Word Grouping and Rotation - Group a list of words into sets of 10 and rotate them every 60 seconds.") #.queue()
1037
- with gr.Tab("Navigation"):
1038
- gr.HTML("Picture Annotation <br> Chorus Focused Word List <br> Merged Subtitles <br> Repetitive Audio (TTS) <br> Word and Sentence Jumbling <br> Unkown: Wordnet <br> Unknown: Wikipeadia <br>")
1039
- PracticeExposureInput = gr.Textbox("", placeholder="Exposure practice = look up", label="Exposure at the top")
1040
- PracticeExposurebtn = gr.Button("Change Default")
1041
- PracticeExposurebtn.click(fn=changeexposuretext, inputs=PracticeExposureInput, outputs=PracticeExposure)
1042
- with gr.Tab("Words Lists"):
1043
- gr.HTML("Stop, Sight(Dolch) and other Wordlists")
1044
- gr.HTML("Wikipeadia <br> Basic: <a href='https://en.wikipedia.org/wiki/Dolch_word_list'> -- Dolch (Sight) Words -- </a> | <br> Advanced: <a href='https://en.wikipedia.org/wiki/Blend_word'> -- Blend Word -- </a> | <a href='https://en.wikipedia.org/wiki/List_of_portmanteaus'> -- List_of_portmanteaus -- </a> | ")
1045
- gr.HTML("Reddit <br> <a href='https://www.reddit.com/r/wordplay/'> -- Wordplay -- </a> | ")
1046
- gr.HTML("Language Tests <br> ")
1047
- gr.HTML("Other <br> <a href='https://english.stackexchange.com/'> -- English (StackExchange) -- </a> | <a href='https://english.stackexchange.com/questions/572884/what-is-it-called-when-two-words-are-combined-by-overlapping-each-other'> -- Overlapping Blends (StackExchange) -- </a> | ")
1048
- with gr.Tab("Vector Database = Memorisation"):
1049
- gr.HTML("Phrasebook on demand in realtime <br><br> Open AI - 10000 * 1000tokens (+- 4000 characters) = 1$ (0.0001 per 1000 tokens / 750 words), Cohere Multilingual = free for personal use / Commercial use = \n Vector Database query = Better than text search but not for logical relationships")
 
 
 
 
 
1050
  with gr.Column(scale=3):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1051
  with gr.Tab("Beginner - Listen + Read"):
1052
- gr.Label("1 new word a minute while recycling the words from the previous minutes")
1053
  with gr.Row():
1054
  with gr.Column(scale=1):
1055
  gr.HTML("Listening - Songs - Chorus <br> Anticipation of the item to remember is how you learn lyrics that is why songs are easy as if you heard it 10 times already your capacity to anticipate the words is great <br><br> This is where TTS helps as you are ignoring all words except the words just before the actual <br> <b>Tiny Stories dataset is like a graded reader</b> <br>")
1056
  gr.Interface(fn=TTSforListeningPractice, inputs=["text", TTSLangOptions, "checkbox"], outputs="audio", description="Paste chorus lyrics from below here and use TTS or make notes to save here (Or paste anything)")
 
 
 
 
 
1057
  gr.HTML("<p>Fastest way to learn words = is to have your own sound reference --> probably why babies learn fast as they make random noise</p> <p>If you know the flow of the song you can remember the spelling easier</p><p>Essentially if the sounds are repeated or long notes they are easy to remember</p>")
1058
  gr.Interface(fn=AutoChorusInvestigator, inputs="text", outputs="text", description="Paste Full Lyrics to try find only chorus lines")
1059
  gr.Interface(fn=AutoChorusPerWordScheduler, inputs="text", outputs="text", description="Create order of repitition for tts practice")
@@ -1073,10 +1424,52 @@ with gr.Blocks() as lliface: #theme=gr.themes.Glass(primary_hue='green', seconda
1073
  gr.Interface(fn=add_text_to_image , inputs=["image", "text"], outputs="image", description="Create Annotated images (Can create using stable diffusion and use the prompt) - Describe from one side to the other to make guessing easy")
1074
  #with gr.Tab("Transcribe - RASMUS Whisper"):
1075
  #gr.Interface.load("spaces/RASMUS/Whisper-youtube-crosslingual-subtitles", title="Subtitles")
1076
- with gr.Tab("Beginner - Vague Language"):
1077
- gr.HTML("Some Vague Words - Quantifiers, Pronouns, etc. <br/> <br/> Very, Many, Few, Lots, <hr> Find Replace all nouns with something/someone or and for verbs figure out how to generalise them")
1078
-
1079
- with gr.Tab("Advanced - LingQ Addon Ideas"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
  gr.HTML("<a href='https://www.lingq.com/en/'>Find LingQ Here --> https://www.lingq.com/en/</a>")
1081
  with gr.Tab("Visual - Multiline Custom Video Subtitles"):
1082
  gr.HTML("LingQ Companion Idea - i.e. Full Translation Read along, and eventually Videoplayer watch along like RAMUS whisper space <br><br>Extra functions needed - Persitent Sentence translation, UNWFWO, POS tagging and Word Count per user of words in their account. Macaronic Text is also another way to practice only the important information")
@@ -1135,65 +1528,85 @@ with gr.Blocks() as lliface: #theme=gr.themes.Glass(primary_hue='green', seconda
1135
  gr.Textbox("Merged Spelling Practice Placeholder - Spell multiple words simultaneously for simultaneous access", lines=3)
1136
  gr.HTML("<p> Spell multiple words simultaneously for simultaneous access </p> <p> Spelling Simplification - Use a dual language list? | Spelling is the end goal, you already know many letter orders called words so you need leverage them to remember random sequences")
1137
  gr.Interface(fn=create_dictionary, inputs="text", outputs="text", title="Sort Text by first two letters")
1138
- gr.Interface(fn=keep_nouns_verbs, inputs=["text"], outputs="text", description="Noun and Verbs only (Plus punctuation)")
1139
- with gr.Tab("Unknown Tracker"):
1140
- gr.HTML("Repitition of things you know is a waste of time when theres stuff you dont know <p> In Language the goal is bigger vocab --> Knowledge equivalent = question answer pairs but to get to those you need related information pairs</p> <p> Vocab = Glossary + all non text wall(lists, diagrams, etc.)</p>")
1141
- gr.Textbox("Placeholder for a function that creates a set list and can takes a list for known words and auto find replaces the stuff you know out of the content")
1142
- gr.Textbox("Place holder for a translate to english interface so that highlighting can still work as only english supported for now")
1143
- gr.Interface(fn=UnknownTrackTexttoApp, inputs="text", outputs=["file", "html", "text"], description="HTML mini App - UNNWFWO (To track verbs you dont know for listening practice). Use the text from here to create lists you use for the TTS section")
1144
- with gr.Tab("Unique word ID - use in Infranodus"):
1145
- with gr.Accordion(label="Infranodus", open=False):
1146
- gr.HTML(" <a href='https://infranodus.com/'> -- Infranodus - Word Level Knowledge graphs -- </a> | <br> Use the below interfaces to find the items that dont have entries --> These will represent new concepts or people which need to be understood individually to fully understand the text --> Infranodus search will help find related and unrelated investigation paths <br><br> TODO Figure Output Zoom / Image Dimensions")
1147
- gr.Image(source="upload", label="Open Infranodus Screenshot")
1148
- gr.Image(source="upload", label="Open Infranodus Screenshot")
1149
- gr.Interface(fn=unique_word_count, inputs="text", outputs="text", description="Wordcounter")
1150
- gr.Interface(fn=SepHypandSynExpansion, inputs="text", outputs=["text", "text"], description="Word suggestions - Analyse the unique words in infranodus")
1151
- gr.Interface(fn=WikiSearch, inputs="text", outputs="text", description="One word at a time Unique word suggestions (wiki articles)")
1152
- with gr.Tab("Automating related information linking"):
1153
- gr.HTML("Questions - Taking and suggesting questions to ask = new education --> Esp. Infranodus type outer discourse identification as question generation")
1154
- gr.HTML("The point of reading is to refine future actions especially problem solving --> Creating problem scenarios = thinking ahead of time = One form of effective reading")
1155
  with gr.Tab("Thinking Practice (POS)"):
1156
  gr.HTML("By removing all nouns and verbs you get a format to practice thinking about your words to use to make sentences which make sense within constraints")
1157
- with gr.Tab("Sentence to Practice Format"):
1158
- gr.Interface(fn=split_verbs_nouns , inputs="text", outputs=["text", "text", "text"], description="Comprehension reading and Sentence Format Creator")
 
 
 
 
 
1159
  with gr.Tab("Knowledge Ideas - Notetaking"):
1160
  gr.HTML("""<p>Good knowledge = ability to answer questions --> find Questions you cant answer and look for hidden answer within them </p>
1161
  <p>My One Word Theory = We only use more words than needed when we have to or are bored --> Headings exist because title is not sufficient, subheadings exist because headings are not sufficient, Book Text exists because subheadings are not sufficient</p>
1162
  <p>Big Picture = Expand the Heading and the subheadings and compare them to each other</p>
1163
  <p>Application of Knowledge = App Version of the text (eg. Jupyter Notebooks) is what you create and learn first</p>
1164
  """)
 
1165
  gr.Interface(fn=TextCompFormat, inputs=["textarea", HTMLCompMode], outputs="text", description="Convert Text to HTML Dropdown or Links which you paste in any html file")
1166
  gr.Interface(fn=create_collapsiblebutton, inputs=["textbox", "textbox", "textarea"], outputs="textbox", description="Button and Div HTML Generator, Generate the HTML for a button and the corresponding div element.")
1167
- with gr.Tab("Automated Reading Assitant"):
1168
- gr.Interface(fn=GuidedReading, inputs=["text", guidedreadingseperator], outputs="text", description="POS Tag and Transliteration", examples=textspreprocess)
1169
- gr.Textbox('Parts of Speech based | Automating the Notetaking Tab either directly or using visual llm to use this interface efficiently')
1170
- gr.HTML("Types of comprehension agent <hr> Speed of Comprehension = Verb comprehension <br> From the following please extract the verbs <br> now explain each in context <br> Next, use picture descriptions for each word in the verb list <br> Create combinations using the verb list <hr> ")
1171
- gr.HTML("How VERBS RELATE TO EACH OTHER --> Shared Nodes - what other verbs are connected to the noun in a INFRANODUS With POS Tag filters")
1172
- gr.HTML("Tree and Branches approach to learning = familiarity with keywords/headings/summaries before reading the whole text <hr> Productivity/Work revolves around repitition which can be found looking for plurals and grouping terms eg. Headings and Hyper/Hyponyms Analysis")
1173
- gr.HTML("Sentence to PyDot graph")
1174
- gr.HTML("Currently a bug that locks all buttons in the space when you use this above example - Reload to fix")
1175
- with gr.Tab("Video/AR"):
1176
- gr.HTML("HUD Experiment - so far sending the frame directly to a html frame --> that only solves image but the audio will be skipping so how do we solve that")
1177
- gr.Interface(fn=ImageTranslationTest , inputs=["text", VideoTestInput], outputs="video")
1178
- gr.HTML("Nicolai Nielsen Youtube channel - aruco markers = position --> can test using premade ones from an image search")
1179
- gr.Textbox("Alpha Test version = Real time Lablling of All things in view using SAM and Clip Interrogator and OpenCV on pydroid --> Adjusted Demo")
1180
- gr.HTML("Some Prompt ideas --> Prompt: Describe the place where these descriptions may be (You job is to be speculative for brainstorming purposes): A dog and a boy, the area is texas, the weather is sunny, the date is 01 May 2021 <hr> Prompt Content Ideas Ideas Clip Interrogator + Location Data aka tags for place, location and time + general news updates on the location + overview of the items in the location <br> Location based advise is most important but after that is information observed by appliances in the location eg. Times Computer turned on, times geyser inspected, amount of time keys havent been touched etc. <br> each location will have an ai personality that will relay more information ")
1181
- gr.HTML("<a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- RAM and Tag2Text -- </a> | <a href='https://huggingface.co/spaces/curt-park/segment-anything-with-clip'> -- SAM with Clip -- </a>")
1182
- gr.Interface(fn=arrealtimetestidea, inputs='image', outputs="text", description="Vision Assistant - see and execute")
1183
- gr.Textbox("Placeholder for webcam stream")
1184
- gr.Interface(fn=arrealtimetestidea, inputs="text", outputs="text", description="Vision Assistant aka Free Observation llm judgement (GPT Vision API goes here when released). FPS is the difference between realtime app and static image")
1185
- with gr.Tab("Random Ideas"):
1186
- gr.HTML("""<p>Spaces Test - Still Undercontruction --> Next Milestone is Turning this interface handsfree | Knowledge is a Language but productive knowledge is find replace as well | LingQ is good option for per word state management</p> <p> Arrows app json creator for easy knowledge graphing and spacy POS graph? --> Questions? -->
1187
- <p> ChatGPT Turns Learning into a read only what you dont know ask only what you dont know feedback loop --> All you have to do is keep track of what prompts you have asked in the past</p> """)
1188
- gr.HTML("<p>Target 0: Mnemonics as title of images --> Comprehensible input <br> Target 1: Dual audio at word Level while using repitition to train random recall --> Word level Time <br> Target 2: Video --> Split by sentence --> each word repeated (60) + each phrase (10) + each sentence (10) --> TTS file for practice --> State Management/Known word Tracker <br>-----------------------<br> The trick is minimum one minute of focus on a new word --> Listening is hard because there are new word within seconds and you need repeated focus on each to learn </p> <p>Audio = best long form attention mechanism AS it is ANTICIPATION (Awareness of something before it happens like knowing song Lyrics) FOCUSED - Attention (Focused Repitition) + Exposure (Random Repitition) </p> <p>Listening is hard due to different word order and word combinations (collocations more important than single words)</p> <hr>")
1189
- gr.HTML("Predictable to identify the parts of picture being described --> The description moves in one direction from one side of the image to the other side is easiest <hr>")
1190
- gr.HTML("Image = instant comprehension like Stable Diffusion --> Audiovisual experience is the most optimal reading experience <br> Manga with summary descriptions for the chapters = Most aligned visual to audio experience")
1191
- with gr.Tab("LLM Prompts and games"):
1192
- gr.HTML("TODO = Llama-cpp-python with falcon 7b / openllama 7b intergrated into each of the interfaces in this space aka --> interfaces as tools for open source llm <br><br> <b>Test using gradio space/interfaces through the api as function calls for gpt3.5 and 4</b>")
1193
- with gr.Accordion("Some prompt ideas"):
1194
- gr.HTML(LLPromptIdeas)
1195
- with gr.Tab("Gradio Client Tests"):
1196
- gr.HTML("How to return componets here in gradio (as each client interface needs different inputs) like in react")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197
 
1198
-
1199
  lliface.queue().launch() #(inbrowser="true")
 
22
  import hangul_romanize
23
  import pinyin
24
  from langdetect import detect
25
+ import datetime
26
+ import cv2
27
+ import math
28
 
29
  #Uncomment these for Huggingface
30
  nltk.download('maxent_ne_chunker') #Chunker
 
41
  nltk.download('gazetteers') #Location NER
42
  nltk.download('opinion_lexicon') #Sentiment words
43
  nltk.download('averaged_perceptron_tagger') #Parts of Speech Tagging
44
+ nltk.download('udhr') # Declaration of Human rights in many languages
45
+
46
 
47
  spacy.cli.download("en_core_web_sm")
48
  spacy.cli.download('ko_core_news_sm')
 
525
  FinalOutput = ""
526
  #sentence = "One Piece chapter 1049 spoilers Thanks to Etenboby from WG forums Chapter 1049: **\"The world we should aspire to\"** * In the cover, someone burned Niji and Yonji\u2019s book * Kaido flashback time. We see his childhood in Vodka Kingdom, and where a few years later he met Whitebeard who told him that Rocks wants to meet him * In the present, part of Raizo\u2019s water leaves the castle and flame clouds disappear. But Momo makes a new one. * Luffy says he will create a world where none of his friends would starve, then he hits Kaido and Kaido falls to the ground of the flower capital. * In another flashback, Kaido tells King that Joy Boy will be the man that can defeat him. **Additional info** *Flashback to Kaidou as a kid* *- His country tries to sell him to the marines but he escapes* *- He rampages in Hachinosu(i think it's blackbeard's island) and Rocks invites him to his crew* *- Young WB appears* *- Rocks flashback suddenly ends* *- Higurashi invites Kaidou* *- The flashback ends with Kaidou telling King he knows who Joy Boy is.* *Back to the present* \\- *Denjirou hugs Hiyori* \\- *Luffy's punch hits Kaidou* *Flashback continues* \\- *King asks: Who is it then?* \\- *Kaidou: The one who will defeat me* \\- *King: Then he will not appear* \\- *Onigashima falls near the capital* \\- *Momo falls* **BREAK NEXT WEEK** https://www.reddit.com/r/OnePiece/comments/umu2h0/one_piece_chapter_1049_spoilers/" #@param {type: "string"}
527
  HTMLMainbody = ""
528
+ GradHTMLMainbody = "" #HTML in gradio components doesnt do css and js properly so nned to highlight
529
 
530
  doc = nlp(text)
531
  iIDNumber = 0
 
540
  for token in doc:
541
  if (token.pos_ == "VERB") or (token.pos_ == "AUX"):
542
  HTMLMainbody = HTMLMainbody + "<button id='btn" + str(iVerbCount) + "' onclick=HighlightWord('btn" + str(iVerbCount) + "')> " + token.text + "</button> "
543
+ GradHTMLMainbody = GradHTMLMainbody + "<button id='btn" + str(iVerbCount) + "' style='background-color: green;' onclick=HighlightWord('btn" + str(iVerbCount) + "')> " + token.text + "</button> "
544
  allverbids = allverbids + str(iVerbCount) + " "
545
  iVerbCount += 1
546
  iWords += 1
547
  allverbs = allverbs + token.text + " "
548
  elif token.pos_ == "NOUN":
549
+ HTMLMainbody = HTMLMainbody + "<label class='Nouns' id='lbl" + token.text + "'>" + token.text + " </label>"
550
+ GradHTMLMainbody = GradHTMLMainbody + "<label class='Nouns' id='lbl" + token.text + "' style='background-color: blue;'>" + token.text + " </label>"
551
  iNounCount += 1
552
  iWords += 1
553
  elif token.pos_ == "PUNCT":
554
  HTMLMainbody = HTMLMainbody + token.text
555
+ GradHTMLMainbody = GradHTMLMainbody + token.text
556
  else:
557
  HTMLMainbody = HTMLMainbody + token.text + " "
558
+ GradHTMLMainbody = GradHTMLMainbody + token.text + " "
559
  iWords += 1
560
  iIDNumber += 1
561
 
 
563
  allverbidslist = allverbids.split()
564
 
565
  FinalHTML = ""
566
+ FinalGradHTML = ""
567
  FinalCSS = ""
568
  FinalJS = ""
569
 
 
630
  }
631
  '''
632
 
633
+ FinalGradHTML = FinalHTML + "\n<div><hr>\n" + GradHTMLMainbody + "\n" #HTML in gradio components doesnt do css and js properly so nned to highlight
634
  FinalHTML = FinalHTML + "\n<div><hr>\n" + HTMLMainbody + "\n"
635
+
636
  #FinalHTML = FinalHTML + '''</div><hr>
637
  #<button onclick=OnlyUnknownSentences() id="btnOnlyUnknownSentences">Only Unknown Sentences Put this function in a timer to keep up to date without input</button>
638
  #'''
 
661
  \n
662
  '''
663
 
664
+ FinalGradHTML = FinalGradHTML + '''<br><hr><br>
665
+ <div id='PD2'> Only Unknown List</div>
666
+ \n
667
+ '''
668
+
669
  FinalOutput = FinalHTML + FinalCSS + FinalJS
670
+ FinalGradOutput = FinalGradHTML + FinalCSS + FinalJS
671
+
672
 
673
  HTMLDownloadTemp = f'UnknownVerbTrack.html'
674
 
675
  with open(HTMLDownloadTemp, 'w') as f:
676
  f.write(FinalOutput)
677
 
678
+ return HTMLDownloadTemp, FinalGradOutput, FinalOutput
679
 
680
  #Kathryn Lingel - Pyambic Pentameter Example - PyCon US
681
  #Basic Language Model Code
 
809
 
810
  #-------------------------------------------------------------------------------------------------------------------------------
811
 
812
+ def ImageTranslationTest(video, subtitle):
813
+ #Inputs from file Returns a <tempfile._TemporaryFileWrapper object at ___> so the path is item.name
814
 
815
+ if subtitle is None:
816
+ return video.name
817
 
818
+ return [video.name, subtitle.name]
819
 
820
+ #------------------------------------------------------------------------------------------------------------------------------
 
821
 
822
  def AutoSyllablePractice(String):
823
  FinalOutput = ""
 
946
 
947
  return FinalOutput
948
 
949
+
950
+ def create_acronym_map(text):
951
+ """Create an acronym map from the provided text."""
952
+ lines = text.split('\n')
953
+ acronym_map = {}
954
+ allacronyms = ""
955
+
956
+ for line in lines:
957
+ # Remove any special characters and split by whitespace
958
+ words = line.split()
959
+ acronym = ''.join([word[0].upper() for word in words if word])
960
+ if acronym: # Avoid adding empty lines
961
+ acronym_map[line] = acronym
962
+ allacronyms += acronym + " | "
963
+
964
+ return acronym_map, allacronyms
965
+
966
+ def onlyplurals(Inputtext): #NLP or Simple Suffix check
967
+ doc = nlp(Inputtext)
968
+ Pluralwords = ""
969
+ for token in doc:
970
+ if token.tag_ == "NNS" or token.tag_ == "NNPS":
971
+ Pluralwords = Pluralwords + token.text + " "
972
+ TextToks = Pluralwords.split(' ')
973
+ PluralCounts = Counter(elem for elem in TextToks)
974
+ return Pluralwords, PluralCounts
975
+
976
+ def LoadNLTKUDHRText(text):
977
+ NLTKtext = nltk.corpus.udhr.raw(text)
978
+ CountNLTKText = Counter(NLTKtext.split()).most_common(100)
979
+
980
+ return CountNLTKText, NLTKtext
981
+
982
+ NLTKudhr = gr.Dropdown(choices=['English-Latin1', 'Akuapem_Twi-UTF8', 'Zulu-Latin1', 'Afrikaans-Latin1', 'German_Deutsch-Latin1', 'Japanese_Nihongo-EUC', 'Japanese_Nihongo-SJIS', 'Japanese_Nihongo-UTF8', 'Spanish-Latin1', 'Korean_Hankuko-UTF8', 'Chinese_Mandarin-GB2312', 'Abkhaz-Cyrillic+Abkh', 'Abkhaz-UTF8', 'Achehnese-Latin1', 'Achuar-Shiwiar-Latin1', 'Adja-UTF8', 'Afaan_Oromo_Oromiffa-Latin1', 'Afrikaans-Latin1', 'Aguaruna-Latin1', 'Akuapem_Twi-UTF8', 'Albanian_Shqip-Latin1', 'Amahuaca', 'Amahuaca-Latin1', 'Amarakaeri-Latin1', 'Amuesha-Yanesha-UTF8', 'Arabela-Latin1', 'Arabic_Alarabia-Arabic', 'Asante-UTF8', 'Ashaninca-Latin1', 'Asheninca-Latin1', 'Asturian_Bable-Latin1', 'Aymara-Latin1', 'Balinese-Latin1', 'Bambara-UTF8', 'Baoule-UTF8', 'Basque_Euskara-Latin1', 'Batonu_Bariba-UTF8', 'Belorus_Belaruski-Cyrillic', 'Belorus_Belaruski-UTF8', 'Bemba-Latin1', 'Bengali-UTF8', 'Beti-UTF8', 'Bichelamar-Latin1', 'Bikol_Bicolano-Latin1', 'Bora-Latin1', 'Bosnian_Bosanski-Cyrillic', 'Bosnian_Bosanski-Latin2', 'Bosnian_Bosanski-UTF8', 'Breton-Latin1', 'Bugisnese-Latin1', 'Bulgarian_Balgarski-Cyrillic', 'Bulgarian_Balgarski-UTF8', 'Cakchiquel-Latin1', 'Campa_Pajonalino-Latin1', 'Candoshi-Shapra-Latin1', 'Caquinte-Latin1', 'Cashibo-Cacataibo-Latin1', 'Cashinahua-Latin1', 'Catalan-Latin1', 'Catalan_Catala-Latin1', 'Cebuano-Latin1', 'Chamorro-Latin1', 'Chayahuita-Latin1', 'Chechewa_Nyanja-Latin1', 'Chickasaw-Latin1', 'Chinanteco-Ajitlan-Latin1', 'Chinanteco-UTF8', 'Chinese_Mandarin-GB2312', 'Chuuk_Trukese-Latin1', 'Cokwe-Latin1', 'Corsican-Latin1', 'Croatian_Hrvatski-Latin2', 'Czech-Latin2', 'Czech-UTF8', 'Czech_Cesky-Latin2', 'Czech_Cesky-UTF8', 'Dagaare-UTF8', 'Dagbani-UTF8', 'Dangme-UTF8', 'Danish_Dansk-Latin1', 'Dendi-UTF8', 'Ditammari-UTF8', 'Dutch_Nederlands-Latin1', 'Edo-Latin1', 'English-Latin1', 'Esperanto-UTF8', 'Estonian_Eesti-Latin1', 'Ewe_Eve-UTF8', 'Fante-UTF8', 'Faroese-Latin1', 'Farsi_Persian-UTF8', 'Farsi_Persian-v2-UTF8', 'Fijian-Latin1', 'Filipino_Tagalog-Latin1', 'Finnish_Suomi-Latin1', 'Fon-UTF8', 'French_Francais-Latin1', 'Frisian-Latin1', 'Friulian_Friulano-Latin1', 'Ga-UTF8', 'Gagauz_Gagauzi-UTF8', 'Galician_Galego-Latin1', 'Garifuna_Garifuna-Latin1', 'German_Deutsch-Latin1', 'Gonja-UTF8', 'Greek_Ellinika-Greek', 'Greek_Ellinika-UTF8', 'Greenlandic_Inuktikut-Latin1', 'Guarani-Latin1', 'Guen_Mina-UTF8', 'HaitianCreole_Kreyol-Latin1', 'HaitianCreole_Popular-Latin1', 'Hani-Latin1', 'Hausa_Haoussa-Latin1', 'Hawaiian-UTF8', 'Hebrew_Ivrit-Hebrew', 'Hebrew_Ivrit-UTF8', 'Hiligaynon-Latin1', 'Hindi-UTF8', 'Hindi_web-UTF8', 'Hmong_Miao-Sichuan-Guizhou-Yunnan-Latin1', 'Hmong_Miao-SouthernEast-Guizhou-Latin1', 'Hmong_Miao_Northern-East-Guizhou-Latin1', 'Hrvatski_Croatian-Latin2', 'Huasteco-Latin1', 'Huitoto_Murui-Latin1', 'Hungarian_Magyar-Latin1', 'Hungarian_Magyar-Latin2', 'Hungarian_Magyar-UTF8', 'Ibibio_Efik-Latin1', 'Icelandic_Yslenska-Latin1', 'Ido-Latin1', 'Igbo-UTF8', 'Iloko_Ilocano-Latin1', 'Indonesian-Latin1', 'Interlingua-Latin1', 'Inuktikut_Greenlandic-Latin1', 'IrishGaelic_Gaeilge-Latin1', 'Italian-Latin1', 'Italian_Italiano-Latin1', 'Japanese_Nihongo-EUC', 'Japanese_Nihongo-SJIS', 'Japanese_Nihongo-UTF8', 'Javanese-Latin1', 'Jola-Fogny_Diola-UTF8', 'Kabye-UTF8', 'Kannada-UTF8', 'Kaonde-Latin1', 'Kapampangan-Latin1', 'Kasem-UTF8', 'Kazakh-Cyrillic', 'Kazakh-UTF8', 'Kiche_Quiche-Latin1', 'Kicongo-Latin1', 'Kimbundu_Mbundu-Latin1', 'Kinyamwezi_Nyamwezi-Latin1', 'Kinyarwanda-Latin1', 'Kituba-Latin1', 'Korean_Hankuko-UTF8', 'Kpelewo-UTF8', 'Krio-UTF8', 'Kurdish-UTF8', 'Lamnso_Lam-nso-UTF8', 'Latin_Latina-Latin1', 'Latin_Latina-v2-Latin1', 'Latvian-Latin1', 'Limba-UTF8', 'Lingala-Latin1', 'Lithuanian_Lietuviskai-Baltic', 'Lozi-Latin1', 'Luba-Kasai_Tshiluba-Latin1', 'Luganda_Ganda-Latin1', 'Lunda_Chokwe-lunda-Latin1', 'Luvale-Latin1', 'Luxembourgish_Letzebuergeusch-Latin1', 'Macedonian-UTF8', 'Madurese-Latin1', 'Makonde-Latin1', 'Malagasy-Latin1', 'Malay_BahasaMelayu-Latin1', 'Maltese-UTF8', 'Mam-Latin1', 'Maninka-UTF8', 'Maori-Latin1', 'Mapudungun_Mapuzgun-Latin1', 'Mapudungun_Mapuzgun-UTF8', 'Marshallese-Latin1', 'Matses-Latin1', 'Mayan_Yucateco-Latin1', 'Mazahua_Jnatrjo-UTF8', 'Mazateco-Latin1', 'Mende-UTF8', 'Mikmaq_Micmac-Mikmaq-Latin1', 'Minangkabau-Latin1', 'Miskito_Miskito-Latin1', 'Mixteco-Latin1', 'Mongolian_Khalkha-Cyrillic', 'Mongolian_Khalkha-UTF8', 'Moore_More-UTF8', 'Nahuatl-Latin1', 'Ndebele-Latin1', 'Nepali-UTF8', 'Ngangela_Nyemba-Latin1', 'NigerianPidginEnglish-Latin1', 'Nomatsiguenga-Latin1', 'NorthernSotho_Pedi-Sepedi-Latin1', 'Norwegian-Latin1', 'Norwegian_Norsk-Bokmal-Latin1', 'Norwegian_Norsk-Nynorsk-Latin1', 'Nyanja_Chechewa-Latin1', 'Nyanja_Chinyanja-Latin1', 'Nzema-UTF8', 'OccitanAuvergnat-Latin1', 'OccitanLanguedocien-Latin1', 'Oromiffa_AfaanOromo-Latin1', 'Osetin_Ossetian-UTF8', 'Oshiwambo_Ndonga-Latin1', 'Otomi_Nahnu-Latin1', 'Paez-Latin1', 'Palauan-Latin1', 'Peuhl-UTF8', 'Picard-Latin1', 'Pipil-Latin1', 'Polish-Latin2', 'Polish_Polski-Latin2', 'Ponapean-Latin1', 'Portuguese_Portugues-Latin1', 'Pulaar-UTF8', 'Punjabi_Panjabi-UTF8', 'Purhepecha-UTF8', 'Qechi_Kekchi-Latin1', 'Quechua-Latin1', 'Quichua-Latin1', 'Rarotongan_MaoriCookIslands-Latin1', 'Rhaeto-Romance_Rumantsch-Latin1', 'Romani-Latin1', 'Romani-UTF8', 'Romanian-Latin2', 'Romanian_Romana-Latin2', 'Rukonzo_Konjo-Latin1', 'Rundi_Kirundi-Latin1', 'Runyankore-rukiga_Nkore-kiga-Latin1', 'Russian-Cyrillic', 'Russian-UTF8', 'Russian_Russky-Cyrillic', 'Russian_Russky-UTF8', 'Sami_Lappish-UTF8', 'Sammarinese-Latin1', 'Samoan-Latin1', 'Sango_Sangho-Latin1', 'Sanskrit-UTF8', 'Saraiki-UTF8', 'Sardinian-Latin1', 'ScottishGaelic_GaidhligAlbanach-Latin1', 'Seereer-UTF8', 'Serbian_Srpski-Cyrillic', 'Serbian_Srpski-Latin2', 'Serbian_Srpski-UTF8', 'Sharanahua-Latin1', 'Shipibo-Conibo-Latin1', 'Shona-Latin1', 'Sinhala-UTF8', 'Siswati-Latin1', 'Slovak-Latin2', 'Slovak_Slovencina-Latin2', 'Slovenian_Slovenscina-Latin2', 'SolomonsPidgin_Pijin-Latin1', 'Somali-Latin1', 'Soninke_Soninkanxaane-UTF8', 'Sorbian-Latin2', 'SouthernSotho_Sotho-Sesotho-Sutu-Sesutu-Latin1', 'Spanish-Latin1', 'Spanish_Espanol-Latin1', 'Sukuma-Latin1', 'Sundanese-Latin1', 'Sussu_Soussou-Sosso-Soso-Susu-UTF8', 'Swaheli-Latin1', 'Swahili_Kiswahili-Latin1', 'Swedish_Svenska-Latin1', 'Tahitian-UTF8', 'Tenek_Huasteco-Latin1', 'Tetum-Latin1', 'Themne_Temne-UTF8', 'Tiv-Latin1', 'Toba-UTF8', 'Tojol-abal-Latin1', 'TokPisin-Latin1', 'Tonga-Latin1', 'Tongan_Tonga-Latin1', 'Totonaco-Latin1', 'Trukese_Chuuk-Latin1', 'Turkish_Turkce-Turkish', 'Turkish_Turkce-UTF8', 'Tzeltal-Latin1', 'Tzotzil-Latin1', 'Uighur_Uyghur-Latin1', 'Uighur_Uyghur-UTF8', 'Ukrainian-Cyrillic', 'Ukrainian-UTF8', 'Umbundu-Latin1', 'Urarina-Latin1', 'Uzbek-Latin1', 'Vietnamese-ALRN-UTF8', 'Vietnamese-UTF8', 'Vlach-Latin1', 'Walloon_Wallon-Latin1', 'Wama-UTF8', 'Waray-Latin1', 'Wayuu-Latin1', 'Welsh_Cymraeg-Latin1', 'WesternSotho_Tswana-Setswana-Latin1', 'Wolof-Latin1', 'Xhosa-Latin1', 'Yagua-Latin1', 'Yao-Latin1', 'Yapese-Latin1', 'Yoruba-UTF8', 'Zapoteco-Latin1', 'Zapoteco-SanLucasQuiavini-Latin1', 'Zhuang-Latin1', 'Zulu-Latin1'], label="Choose one the below languages")
983
+
984
+ def SimultaneousSpellingPrac(text):
985
+ TextToks = text.split()
986
+ FinalOutput = "For Sentences wrap in another function that calls function per sentences (Spacy) \n"
987
+
988
+ iLongestWord = 0
989
+ for tok in TextToks:
990
+ if len(tok) > iLongestWord: iLongestWord = len(tok)
991
+
992
+ Equaltok = ""
993
+ for tok in TextToks:
994
+ Equaltok = Equaltok + tok.ljust(iLongestWord, '0') + " " #https://stackoverflow.com/questions/23216512/python-make-string-equal-length
995
+
996
+ SimulList = []
997
+ for i in range(0, iLongestWord):
998
+ for tok in Equaltok.split():
999
+ SimulList.append(tok[i])
1000
+
1001
+ iWordSpaces = 0
1002
+ ZerosFinalOutput = ""
1003
+
1004
+ for item in SimulList:
1005
+ iWordSpaces += 1
1006
+ ZerosFinalOutput = ZerosFinalOutput + item
1007
+ if iWordSpaces == len(TextToks):
1008
+ ZerosFinalOutput = ZerosFinalOutput + " "
1009
+ iWordSpaces = 0
1010
+
1011
+ FinalOutput = FinalOutput + ZerosFinalOutput + " \n\n" + ZerosFinalOutput.replace("0", "") + " \n\n" + str(iLongestWord)
1012
+ return FinalOutput
1013
+
1014
+ def FirstLetterSummary(Text):
1015
+ TextToks = Text.split(" ")
1016
+ FinalOutput = ''
1017
+ for tok in TextToks:
1018
+ FinalOutput = FinalOutput + tok[0] + " "
1019
+
1020
+ WordSuggestLetters = FinalOutput.replace(" ","")
1021
+ WordSuggestToks = [(WordSuggestLetters[i:i+5]) for i in range(0, len(WordSuggestLetters), 5)]
1022
+ WordsSuggest = ""
1023
+
1024
+ for text in WordSuggestToks:
1025
+ WordsSuggest = WordsSuggest + " " + text
1026
+
1027
+ return FinalOutput, WordsSuggest
1028
+
1029
+ #-------
1030
+
1031
+ def imagebasedreading(inputtext):
1032
+ # Read the user input text file
1033
+ #with open("inputtext.txt", "r", encoding="utf-8") as file:
1034
+ # inputtext = file.read()
1035
+
1036
+ inputtextlines = inputtext.splitlines()
1037
+
1038
+ htmlpart1 = """
1039
+ <!DOCTYPE html>
1040
+ <html>
1041
+ <head>
1042
+ <title>Image Placeholder with Text Background</title>
1043
+ <style>
1044
+ .grid-container {
1045
+ display: grid;
1046
+ grid-template-columns: repeat(4, 1fr);
1047
+ gap: 16px;
1048
+ }
1049
+ .image-container {
1050
+ width: 300px;
1051
+ height: 300px;
1052
+ margin: 10px;
1053
+ border: 1px solid black;
1054
+ }
1055
+ img {
1056
+ width: 100%;
1057
+ height: 100%;
1058
+ }
1059
+ </style>
1060
+ </head>
1061
+ <body>
1062
+ <button onclick="saveState()">Save State</button>
1063
+ <button onclick="saveFilePaths()">Save File Paths</button>
1064
+ <input type="file" id="loadStateFile" onchange="loadState(event)">
1065
+ <button onclick="updateCounter()">Update Counter</button>
1066
+ <label id="counterLabel">0 / """ + str(len(inputtextlines)) + """ images complete</label>
1067
+ <div class="grid-container">
1068
+ """
1069
+
1070
+ htmlpart2 = """
1071
+ </div>
1072
+
1073
+ <script>
1074
+
1075
+ function clearState() {
1076
+ const imageContainers = document.querySelectorAll(".image-container img");
1077
+ imageContainers.forEach((img) => {
1078
+ img.src = "";
1079
+ });
1080
+ }
1081
+
1082
+
1083
+ let filePaths = {};
1084
+
1085
+ function loadImage(idx) {
1086
+ const fileInput = document.getElementById("fileInput" + idx);
1087
+ const image = document.getElementById("image" + idx);
1088
+ const file = fileInput.files[0];
1089
+ const reader = new FileReader();
1090
+
1091
+ reader.addEventListener("load", function () {
1092
+ image.src = reader.result;
1093
+ filePaths["image" + idx] = file.name;
1094
+ updateCounter();
1095
+ }, false);
1096
+
1097
+ if (file) {
1098
+ reader.readAsDataURL(file);
1099
+ }
1100
+ }
1101
+
1102
+ function saveState() {
1103
+ let state = {};
1104
+ const imageContainers = document.querySelectorAll(".image-container img");
1105
+ imageContainers.forEach((img, idx) => {
1106
+ if (img.src && img.src !== window.location.href) {
1107
+ state["image" + idx] = img.src;
1108
+ }
1109
+ });
1110
+
1111
+ const blob = new Blob([JSON.stringify(state)], { type: 'text/plain' });
1112
+ const a = document.createElement('a');
1113
+ a.href = URL.createObjectURL(blob);
1114
+ a.download = 'image_state.txt';
1115
+ a.click();
1116
+ }
1117
+
1118
+ function saveFilePaths() {
1119
+ const blob = new Blob([JSON.stringify(filePaths)], { type: 'text/plain' });
1120
+ const a = document.createElement('a');
1121
+ a.href = URL.createObjectURL(blob);
1122
+ a.download = 'file_paths.txt';
1123
+ a.click();
1124
+ }
1125
+
1126
+ function loadState(event) {
1127
+ clearState(); // Clear existing state
1128
+
1129
+ const file = event.target.files[0];
1130
+ if (file) {
1131
+ const reader = new FileReader();
1132
+ reader.onload = function(e) {
1133
+ const state = JSON.parse(e.target.result);
1134
+ for (const [key, value] of Object.entries(state)) {
1135
+ const image = document.getElementById(key);
1136
+ if (image) {
1137
+ image.src = value;
1138
+ }
1139
+ }
1140
+ };
1141
+ reader.readAsText(file);
1142
+ }
1143
+ }
1144
+
1145
+ function updateCounter() {
1146
+ const totalPlaceholders = document.querySelectorAll(".image-container").length;
1147
+ let loadedImages = 0;
1148
+
1149
+ const imageContainers = document.querySelectorAll(".image-container img");
1150
+ imageContainers.forEach((img) => {
1151
+ if (img.src && img.src !== window.location.href) {
1152
+ loadedImages += 1;
1153
+ }
1154
+ });
1155
+
1156
+ document.getElementById("counterLabel").innerText = loadedImages + " / " + totalPlaceholders + " images complete";
1157
+ }
1158
+ </script>
1159
+
1160
+ </body>
1161
+ </html>
1162
+ """
1163
+
1164
+ #If you have a gpu and imagepipeline then src in img tag = filepath of generate image
1165
+ def generate_html(textlines):
1166
+ num_containers = len(textlines)
1167
+ html_string = ""
1168
+ for i in range(num_containers):
1169
+ container = f'''
1170
+ <div class="image-container">
1171
+ <input type="file" id="fileInput{i}" onchange="loadImage({i})">
1172
+ <img id="image{i}" src="" alt="{textlines[i]} - Placeholder {i + 1}" onerror="this.style.background = 'grey url(data:image/svg+xml;utf8,&lt;svg xmlns=\'http://www.w3.org/2000/svg\' viewBox=\'0 0 100 100\'&gt;&lt;text y=\'.9em\' font-size=\'90\'&gt;Placeholder {i + 1}&lt;/text&gt;&lt;/svg&gt;) no-repeat center; this.style.border = \'1px solid black\';">
1173
+ </div>
1174
+ '''
1175
+ html_string += container
1176
+ return html_string
1177
+
1178
+ # Generate the HTML based on the number of lines
1179
+ output_html = htmlpart1 + "\n" + generate_html(inputtextlines) + "\n" + htmlpart2
1180
+
1181
+ # Save the generated HTML
1182
+ now = datetime.datetime.now()
1183
+ filename = f"ImagePlaceholder{now.strftime('%Y-%m-%d_%H-%M')}_{inputtext[:16]}.html"
1184
+ with open(filename, "w", encoding="utf-8") as file:
1185
+ file.write(output_html)
1186
+
1187
+ return filename, output_html, output_html
1188
+
1189
+ #--------
1190
+
1191
  guidedreadingseperator = gr.Dropdown(choices=[".", ",", "lines", "Sentences"], value=".", interactive=True)
1192
  textspreprocess = [
1193
  ["Bing created this example \nApple is looking at buying U.K. startup for $1 billion \nApple schaut sich für 1 Milliarde Dollar ein Startup aus Großbritannien an \nApple está mirando comprar una startup del Reino Unido por mil millones de dólares \n애플은 영국의 스타트업을 10억 달러에 사려고 한다 \nアップルは、英国のスタートアップを10億ドルで買収する予定だ \n苹果正考虑以10亿美元收购英国初创公司", "\n"]
 
1195
 
1196
  LLPromptIdeas = """
1197
 
1198
+ Lets try this I will give you the english word and you find the <<chinese>> word and then mix the meaning of the word with the mnemonic
1199
 
1200
  Bings Explanation
1201
  Youre welcome. Im happy to help. If I wanted to explain the rules of this game clearly and concisely, I would do something like this:
 
1208
 
1209
  <hr>
1210
 
1211
+ Make jokes while following rules for a syllogism jokes game:
1212
 
1213
  The game can be played with any number of people.
1214
  One person starts by stating a syllogism, which is a logical argument that consists of three parts: a major premise, a minor premise, and a conclusion.
 
1238
 
1239
  """
1240
 
1241
+ LLPromptIdeasasbtns = LLPromptIdeas.split("<hr>")
1242
+
1243
+ def loadforcopybuttonllmpromptideas():
1244
+ global LLPromptIdeasasbtns
1245
+ list = LLPromptIdeasasbtns
1246
+ return "Load the examples with the button below, Alternatively copy paste manually above", list[0], list[1], list[2], list[3], list[4]
1247
+
1248
  def display_website(link):
1249
  html = f"<iframe src='{link}' width='100%' height='1000px'></iframe>"
1250
+ gr.Info("If 404 then the space/page has probably been disabled - normally due to a better alternative")
1251
  return html
1252
 
1253
+ def RepititionPracticeTimeCalculator(text, reps_per_item, seconds_per_item):
1254
+ textlines = text.splitlines()
1255
+ lines = len(textlines)
1256
+ FinalOutput = f"Total Time is estimated: { lines * reps_per_item * seconds_per_item / 60 } minutes ( {lines} lines)"
1257
+ return FinalOutput
1258
+
1259
 
1260
  randomExposuremessageText = ["Great Test for LLM function calling (with Gradio Client)", "Unknown Tracker Tab = Incomplete Reading Assistant Idea - HTML app based on text to be read", "Bing mnemonic - lost = dont ignore unusual sounds here inside lost cave", "1000 verbs in lists of 100, verbs = easy setence structure estimation (SVO, SOV, etc.)", "Can put any message here in the navigatoin tab"]
1261
 
 
1265
  #randomExposuremessagelistitem2 = str(random.sample(randomExposuremessageText, 1)).replace("['", "").replace("']", "")
1266
  return f" <marquee> { randomExposuremessagelistitem } </marquee> "
1267
 
1268
+ def TabNavigation():
1269
+ return gr.Tabs.update(selected=1) #, tabs1=nav1)
1270
+
1271
+ def segment_video_with_opencv(file_path, segment_duration=60):
1272
+ # Open the video file
1273
+ cap = cv2.VideoCapture(file_path.name)
1274
+
1275
+ # Get video properties
1276
+ fps = int(cap.get(cv2.CAP_PROP_FPS))
1277
+ total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
1278
+
1279
+ # Calculate total segments required
1280
+ total_segments = math.ceil(total_frames / (fps * segment_duration))
1281
+
1282
+ # List to store the file paths of the generated chunks
1283
+ generated_files = []
1284
+
1285
+ for segment in range(total_segments):
1286
+ # Define the codec and create VideoWriter object
1287
+ # For .mp4 output, use the H.264 codec with the tag 'mp4v'
1288
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
1289
+ output_filename = f'chunk_{segment}.mp4'
1290
+ out = cv2.VideoWriter(output_filename, fourcc, fps, (int(cap.get(3)), int(cap.get(4))))
1291
+
1292
+ for frame_num in range(fps * segment_duration):
1293
+ ret, frame = cap.read()
1294
+ if ret:
1295
+ out.write(frame)
1296
+ else:
1297
+ break
1298
+ out.release()
1299
+
1300
+ # Append the file path of the generated chunk to the list
1301
+ generated_files.append(output_filename)
1302
+
1303
+ cap.release()
1304
+
1305
+ return generated_files
1306
+
1307
+ # For testing purposes
1308
+ # file_paths = segment_video_with_opencv("path_to_your_video.mp4")
1309
+ # print(file_paths)
1310
+
1311
 
1312
  # Define the Gradio interface inputs and outputs for video split
1313
  spvvideo_file_input = gr.File(label='Video File')
 
1325
  randomExposuremessage2 = randommarquee()
1326
 
1327
  VideoTestInput = gr.File(label="select a mp4 video file", file_types=[".mp4"])
1328
+ VideoTestSubtitleInput = gr.File(label="select a subtitle file", file_types=[".txt", ".srt", ".vtt"])
1329
+ VideoSplitTestInput = gr.File(label="select a mp4 video file", file_types=[".mp4"])
1330
 
1331
  with gr.Blocks() as lliface: #theme=gr.themes.Glass(primary_hue='green', secondary_hue='red', neutral_hue='blue', )
1332
+ gr.HTML('<div style="display: flex; justify-content: center; align-items: center; height: 100%;"> ---- Under Construction: Very Slowly figuring out what AI intergrated interface means (Chat vs Forms vs Function calling vs Sensor + Trigger vs Agent) | How to end copy paste once and for all? ---- </div> <div style="display: flex; justify-content: center; align-items: center; height: 100%;"> All the apis from the below space need to be treated like RAG as notes for the LLM to read before providing its answer </div>')
1333
+ with gr.Accordion("LLM HF Spaces (Click Here to Open) - Use 'Acronym Map Creation Space' Tab with this - Ask for Translation of image tags made below, sentence to emojis, Wordlists, Test Conversations, Get Grammar Explanations etc., Can use GPT-4 or new SOTA to review the conversation", open=False):
 
 
 
 
 
 
 
 
 
1334
  with gr.Row():
1335
+ linktochat = gr.Dropdown(choices=["https://sdk.vercel.ai/docs", "https://labs.perplexity.ai/", "https://chat.lmsys.org", "https://huggingfaceh4-zephyr-chat.hf.space", "https://osanseviero-mistral-super-fast.hf.space", "https://artificialguybr-qwen-14b-chat-demo.hf.space", "https://huggingface-projects-llama-2-7b-chat.hf.space", "https://ysharma-explore-llamav2-with-tgi.hf.space", "https://mosaicml-mpt-30b-chat.hf.space", "https://huggingfaceh4-falcon-chat.hf.space", "https://uwnlp-guanaco-playground-tgi.hf.space", "https://stabilityai-stablelm-tuned-alpha-chat.hf.space", "https://mosaicml-mpt-7b-storywriter.hf.space", "https://huggingfaceh4-starchat-playground.hf.space", "https://bigcode-bigcode-playground.hf.space", "https://mosaicml-mpt-7b-chat.hf.space", "https://huggingchat-chat-ui.hf.space", "https://togethercomputer-openchatkit.hf.space"], label="Choose/Cancel type any .hf.space link here (can also type a link)'", allow_custom_value=True)
1336
  chatspacebtn = gr.Button("Use the chosen URL to load interface with a chat model. For sdk.vercel click the chat button on the top left")
1337
+ with gr.Accordion("Some prompt ideas", open=False):
1338
+ with gr.Accordion("Prompts in text (Manual copy paste)", open=False):
1339
+ gr.HTML(LLPromptIdeas)
1340
+ gr.Interface(loadforcopybuttonllmpromptideas, inputs=None, outputs=["html", "code", "code", "code", "code", "code"])
1341
+ chatspace = gr.HTML("Chat Space Chosen will load here")
1342
+ chatspacebtn.click(display_website, inputs=linktochat, outputs=chatspace)
1343
+ gr.HTML("<div style='display: flex; justify-content: center; align-items: center; height: 100%;'><a href='https://github.com/KillianLucas/open-interpreter'> -- Open Interpreter = Function Calling Killer = (Almost) All functions are now just prompt engineering away from existing = Modding any app in the world especially games = custom learning environments -- </a> | </div>")
1344
  with gr.Row():
1345
  with gr.Column(scale=1):
1346
+ with gr.Tabs() as nav1:
1347
+ with gr.Tab("Rep - HTML"):
1348
+ gr.HTML("UNNWFWO = Unknown Native Word Foreign Word Order i.e. during active listening practice you only need the words you dont know")
1349
+ gr.HTML("""<iframe height="1200" style="width: 100%;" scrolling="no" title="Memorisation Aid" src="https://codepen.io/kwabs22/embed/GRXKQgj?default-tab=result&editable=true" frameborder="no" loading="lazy" allowtransparency="true" allowfullscreen="true">
1350
+ See the Pen <a href="https://codepen.io/kwabs22/pen/GRXKQgj"> Memorisation Aid</a> by kwabs22 (<a href="https://codepen.io/kwabs22">@kwabs22</a>) on <a href="https://codepen.io">CodePen</a>. </iframe>""")
1351
+ with gr.Tab("Rep - Gradio"):
1352
+ gr.Interface(fn=group_words, inputs=groupinput_text, outputs=groupoutput_text, description="Word Grouping and Rotation - Group a list of words into sets of 10 and rotate them every 60 seconds.") #.queue()
1353
+ with gr.Tab("Navigation"):
1354
+ gr.HTML("Primary goal of this space is to help with memorisation --> Two main forms read or listen (rewriting is also an option for mission critical information - acronym map (too time comsuming))")
1355
+ gr.HTML("Picture Annotation <br> Chorus Focused Word List <br> Merged Subtitles <br> Repetitive Audio (TTS) <br> Word and Sentence Jumbling <br> Unkown: Wordnet <br> Unknown: Wikipeadia <br>")
1356
+ PracticeExposureInput = gr.Textbox("", placeholder="Exposure practice = look up", label="Exposure at the top")
1357
+ PracticeExposurebtn = gr.Button("Change Default") #Button CLick is defined under the variable it needs to manipulate to avoid undefined error
1358
+ gr.Button("Tab Navigation").click(TabNavigation, inputs=None, outputs=[nav1])
1359
+ with gr.Tab("Words Lists"):
1360
+ gr.HTML("Stop, Sight(Dolch) and other Wordlists")
1361
+ gr.HTML("Wikipeadia <br> Basic: <a href='https://en.wikipedia.org/wiki/Dolch_word_list'> -- Dolch (Sight) Words -- </a> | <br> Advanced: <a href='https://en.wikipedia.org/wiki/Blend_word'> -- Blend Word -- </a> | <a href='https://en.wikipedia.org/wiki/List_of_portmanteaus'> -- List_of_portmanteaus -- </a> | ")
1362
+ gr.HTML("Reddit <br> <a href='https://www.reddit.com/r/wordplay/'> -- Wordplay -- </a> | ")
1363
+ gr.HTML("Language Tests <br> ")
1364
+ gr.HTML("Other <br> <a href='https://english.stackexchange.com/'> -- English (StackExchange) -- </a> | <a href='https://english.stackexchange.com/questions/572884/what-is-it-called-when-two-words-are-combined-by-overlapping-each-other'> -- Overlapping Blends (StackExchange) -- </a> | ")
1365
+ with gr.Tab("Vector Database = Memorisation"):
1366
+ gr.HTML("Phrasebook on demand in realtime <br><br> Open AI - 10000 * 1000tokens (+- 4000 characters) = 1$ (0.0001 per 1000 tokens / 750 words), Cohere Multilingual = free for personal use / Commercial use = \n Vector Database query = Better than text search but not for logical relationships")
1367
+ with gr.Tab("Time Estimate Calculator"):
1368
+ gr.HTML("Repitition = A subconcious time gaame - transparent screens + below repitition assist (Vision) or (Audio) ")
1369
+ gr.Interface(fn=RepititionPracticeTimeCalculator, inputs=["text", "number", "number"], outputs="text")
1370
  with gr.Column(scale=3):
1371
+ with gr.Tab("Workflows"):
1372
+ gr.HTML("General Ideas in this space - Speed of Learning = Avoid Things you know like the plague -- How to track what you know -- Counter is easiest and How you feel is the hardest (The more you know, the more confusion on what you dont know as you probably werent keeping track) <br><br> Visulisation of long text - Bottom of this page <br> Wordlist - 1 new word at a time per minute in the space to the left <br> Youtube Video Watching - Subtitles Tab <br> Reading - Unknown Tracker Tabs <br> Longer Text Memorising - Acronym Map Creation Tab and Transition Tab <br> Brainstorming - Reading Assistant <br> Random Exposure <br> ")
1373
+ with gr.Row():
1374
+ PracticeExposure = gr.HTML(randomExposuremessage)
1375
+ PracticeExposure2 = gr.HTML(randomExposuremessage2)
1376
+ PracticeExposurebtn.click(fn=changeexposuretext, inputs=PracticeExposureInput, outputs=PracticeExposure)
1377
+ with gr.Row():
1378
+ with gr.Column(scale=1):
1379
+ gr.HTML("Advanced Repitition = Combinatorics --> to understand a sentence properly you need understanding of every word --> in language that means use with other words --> Combos within the unique words in a sentence, paragraph, page, etc. --> as close to 3 word sentences")
1380
+ with gr.Column(scale=1):
1381
+ gr.HTML("<p>Timing Practice - Repitition: Run from it, Dread it, Repitition is inevitable - Thanos --> Repitition of reaction - Foreign in eyes/ears native in mind (For beginners) | Repitition is a multitask activity like driving must be subconcious process to show mastery </p>")
1382
+ gr.HTML(""" <a href='https://github.com/eugeneyan/open-llms'> -- Opensource List -- </a> | <a href='https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard'> -- Open LLM Leaderboard -- </a> | <a href='https://huggingface.co/spaces/sanchit-gandhi/whisper-jax'> -- Whisper JAX -- </a> | <a href="https://translate.google.com/?hl=en&tab=TT"> -- Google Translate -- </a> | <a href='https://huggingface.co/spaces/damo-vilab/modelscope-text-to-video-synthesis'> -- Modelscope Text to Video -- </a> | <a href='https://huggingface.co/spaces/stabilityai/stable-diffusion'> -- stable-diffusion 2 -- </a> | <a href='https://huggingface.co/spaces/stabilityai/stable-diffusion-1'> -- stable-diffusion 1 -- </a> | <a href='https://huggingface.co/spaces/kakaobrain/karlo'> -- karlo 1 -- </a> | <a href='https://huggingface.co/spaces/suno/bark'> -- Bark (TTS) -- </a> | <a href='https://chat.lmsys.org/'> -- Offline Text Model Demos -- </a> | <a href='https://huggingface.co/spaces/curt-park/segment-anything-with-clip'> -- SAM with Clip -- </a> | <a href='https://beta.elevenlabs.io/'> -- Eleven Labs -- </a> | <a href='https://www.d-id.com/'> -- Animate an Image -- </a> | <a href='https://voice.ai/'> -- Clone a voice -- </a> | <a href='https://openai.com/pricing'> -- OpenAI pricing -- </a> | <a href='https://huggingface.co/spaces/sohojoe/soho-clip-embeddings-explorer'> -- Image Training Data Search -- </a> | <a href='https://huggingface.co/spaces/huggingchat/chat-ui'> -- Huggingface Chat -- </a> | <a href='https://huggingface.co/spaces/bguisard/stable-diffusion-nano'> -- 128x128 Stable Diffusion (Fast) -- </a> | <a href='https://huggingface.co/spaces/colonelwatch/abstracts-index'> -- Search 95 million research abstracts -- </a> | <a href='https://huggingface.co/datasets/roneneldan/TinyStories'> -- Tiny Stories Dataset -- </a> | <a href='https://huggingface.co/spaces/lykeven/visualglm-6b'> -- Visualglm6b - Discuss images -- </a> | <a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- RAM and Tag2Text -- </a> | <a href='https://huggingface.co/camenduru/potat1'> -- Potat1 Text2vid -- </a> | <a href='https://twitter.com/willdepue/status/1661781355452325889'> -- Alexandria Prohect (Will Deque) - Free Embeddings -- </a> | <a href='https://artsandculture.google.com/'> -- Google Arts and Culture Portal -- </a> | <a href='https://huggingface.co/spaces/Matthijs/whisper_word_timestamps'> -- Word Level Timestamps -- </a> | <a href='https://huggingface.co/spaces/zaanind/NLLB-translation'> -- NLLB 600M Demo -- </a> = <a href='https://github.com/facebookresearch/fairseq/tree/nllb'> -- NLLB Github -- </a> | <a href='https://huggingface.co/spaces/hysts/zeroscope-v2'> -- Zeroscope v2 Text to video -- </a> | <a href='https://huggingface.co/spaces/SpacesExamples/ComfyUI'> -- ComfyUI Text to Image -- </a> | <a href='https://huggingface.co/spaces/DeepFloyd/IF'> -- Deepfloyd IF - Text in image -- </a> | <a href='https://huggingface.co/spaces/ysharma/ChatGPT-Plugins-in-Gradio'> -- ChatGPT Custom Plugins Test Space -- </a> | <a href='https://www.reddit.com/r/LocalLLaMA/'> -- r/LocalLlama -- </a> | <a href='https://www.reddit.com/r/singularity/'> -- r/Singularity -- </a> | <a href='https://huggingface.co/spaces/hysts/SD-XL'> -- SD-XL Test Space -- </a> | <a href='https://huggingface.co/spaces/facebook/seamless_m4t'> -- Seamless M4T - Translation one stop shop -- </a> | <a href='https://huggingface.co/spaces/codellama/codellama-playground'> -- Code Llama playground -- </a> | <a href='https://huggingface.co/spaces/Voicemod/Text-to-Sing'> -- Text to sing -- </a> | <a href='https://huggingface.co/spaces/camenduru-com/webui'> -- Stable Diffusion Webui (Camenduru Space) -- </a> | <a href='https://huggingface.co/spaces/ysharma/WizardCoder34b'> -- Wizard Coder 34B -- </a> | <a href='https://huggingface.co/spaces/chansung/co-write-with-llama2'> -- Cowrite with llama2 -- </a> | <a href='https://huggingface.co/spaces/fffiloni/Image-to-Story'> -- Image to Story -- </a> | <a href='https://huggingface.co/spaces/fffiloni/CLIP-Interrogator-2'> -- Clip interrogator 2 -- </a> | <a href='https://github.com/THUDM/AgentBench'> -- Agent Benchmarks -- </a> | <a href='https://www.convex.dev/ai-town'> -- AI Town Live Demo -- </a> = <a href='https://github.com/a16z-infra/ai-town'> -- AI Town Repository (Deployment]) -- </a> | <a href='https://github.com/joonspk-research/generative_agents/tree/main'> -- Generative Agents: Interactive Simulacra of Human Behavior (Research paper Repository) -- </a> | <a href='https://huggingface.co/spaces/HuggingFaceM4/idefics_playground'> -- IDEFICS - open Multimodal model -- </a> | <a href='https://github.com/facebookresearch/belebele'> -- Belebele (Meta Dataset) -- </a> | <a href='https://huggingface.co/spaces/jbilcke-hf/ai-comic-factory'> -- AI Comic Factory -- </a> | <a href='https://github.com/camenduru'> -- CAMENDURU REPOS -- </a> | <a href='https://huggingface.co/datasets/b-mc2/sql-create-context'> -- SQL Dataset - A list of simple questions -- </a> | <a href='https://github.com/KillianLucas/open-interpreter'> -- Open Interpreter (alt to ChatGPT Pro) -- </a> | <a href='https://easywithai.com/fun-ai-tools/'> -- List - Easy with AI -- </a> | <a href='https://huggingface.co/spaces/Xenova/whisper-web'> -- Whisper Web (UI) -- </a> | <a href='https://blog.roblox.com/2023/09/revolutionizing-creation-roblox/'> -- Roblox Assistant -- </a> | <a href='https://huggingface.co/spaces/AP123/IllusionDiffusion'> -- Illusion Diffusion (Hide words or shapes in the image) -- </a> | <a href='https://huggingface.co/spaces/Shopify/background-replacement'> -- Background replacement - Shopify -- </a> | <a href='https://huggingface.co/spaces/multimodalart/LoraTheExplorer'> -- Lora The Explorer (SDXL) -- </a> | <a href='https://huggingface.co/spaces/XCLiu/InstaFlow'> -- InstaFlow (Under 1 second Inference) -- </a> | <a href='https://github.com/tairov/llama2.mojo'> -- TinyStories on mojo (230+ tk/s) -- </a> | <a href='https://emojis.alexandru.so/p/OHVEmfMwQl'> -- Any Emoji you want - emojijs -- </a> | <a href='https://huggingface.co/spaces/google/sdxl'> -- SDXL on TPUv5 -- </a> | """)
1383
+ gr.HTML("Placeholder for every images of each sentence - Good ChatGPT + Dall-E ")
1384
+ with gr.Row():
1385
+ with gr.Column(scale=4):
1386
+ imageplaceholderinput = gr.TextArea()
1387
+ with gr.Column(scale=1):
1388
+ gr.Label("Enter Text and Get a line by line placeholder for image associated with the text")
1389
+ imageplaceholderdownload = gr.File()
1390
+ imageplaceholderbtn = gr.Button("Create the image placeholder")
1391
+ with gr.Row():
1392
+ with gr.Column(scale=3):
1393
+ imageplaceholderoutput = gr.HTML("Preview will load here")
1394
+ with gr.Column(scale=2):
1395
+ imageplaceholdertextoutput = gr.Code("The code for the HTML created will come here")
1396
+ imageplaceholderbtn.click(fn=imagebasedreading, inputs=[imageplaceholderinput], outputs=[imageplaceholderdownload, imageplaceholderoutput, imageplaceholdertextoutput])
1397
  with gr.Tab("Beginner - Listen + Read"):
1398
+ gr.Label("Closed Eye Recital per new word | 1 new word a minute while recycling the words from the previous minutes")
1399
  with gr.Row():
1400
  with gr.Column(scale=1):
1401
  gr.HTML("Listening - Songs - Chorus <br> Anticipation of the item to remember is how you learn lyrics that is why songs are easy as if you heard it 10 times already your capacity to anticipate the words is great <br><br> This is where TTS helps as you are ignoring all words except the words just before the actual <br> <b>Tiny Stories dataset is like a graded reader</b> <br>")
1402
  gr.Interface(fn=TTSforListeningPractice, inputs=["text", TTSLangOptions, "checkbox"], outputs="audio", description="Paste chorus lyrics from below here and use TTS or make notes to save here (Or paste anything)")
1403
+ with gr.Accordion("TTS Spaces", open=False):
1404
+ TTSspaceoptions = gr.Dropdown(choices=["https://huggingface.co/spaces/suno/bark"], label="existing whisper spaces")
1405
+ TTSspaceoptionsbtn = gr.Button("Load a Image as prompt Space")
1406
+ TTSspaceoptionsOut = gr.HTML()
1407
+ TTSspaceoptionsbtn.click(fn=display_website, inputs=TTSspaceoptions, outputs=TTSspaceoptionsOut)
1408
  gr.HTML("<p>Fastest way to learn words = is to have your own sound reference --> probably why babies learn fast as they make random noise</p> <p>If you know the flow of the song you can remember the spelling easier</p><p>Essentially if the sounds are repeated or long notes they are easy to remember</p>")
1409
  gr.Interface(fn=AutoChorusInvestigator, inputs="text", outputs="text", description="Paste Full Lyrics to try find only chorus lines")
1410
  gr.Interface(fn=AutoChorusPerWordScheduler, inputs="text", outputs="text", description="Create order of repitition for tts practice")
 
1424
  gr.Interface(fn=add_text_to_image , inputs=["image", "text"], outputs="image", description="Create Annotated images (Can create using stable diffusion and use the prompt) - Describe from one side to the other to make guessing easy")
1425
  #with gr.Tab("Transcribe - RASMUS Whisper"):
1426
  #gr.Interface.load("spaces/RASMUS/Whisper-youtube-crosslingual-subtitles", title="Subtitles")
1427
+ with gr.Tab("Beginner - Reading Assitant + Unknown Tracker"):
1428
+ gr.HTML(" <a href='https://www.onenote.com/learningtools'> -- Microsoft Immersive Reader (Comprehension) -- </a> | <a href='https://www.lingq.com/en/'> LingQ - (Word Familiarity based) </a> ")
1429
+ gr.HTML("Repitition of things you know is a waste of time when theres stuff you dont know <p> In Language the goal is bigger vocab --> Knowledge equivalent = question answer pairs but to get to those you need related information pairs</p> <p> Vocab = Glossary + all non text wall(lists, diagrams, etc.)</p>")
1430
+ gr.Textbox("Placeholder for a function that creates a set list and can takes a list for known words and auto find replaces the stuff you know out of the content")
1431
+ gr.Interface(fn=GuidedReading, inputs=["text", guidedreadingseperator], outputs="text", description="Manual POS Tag and Transliteration", examples=textspreprocess)
1432
+ gr.HTML("Place holder for a translate to english interface so that highlighting can still work as only english supported for now - <a href='https://translate.google.com/'> -- Google Translate -- </a>")
1433
+ gr.Interface(fn=UnknownTrackTexttoApp, inputs="text", outputs=["file", "html", "text"], description="HTML mini App - UNNWFWO (To track verbs you dont know for listening practice). Use the text from here to create lists you use for the TTS section")
1434
+ with gr.Tab("Unique word ID - use in Infranodus"):
1435
+ with gr.Accordion(label="Infranodus", open=False):
1436
+ gr.HTML(" <a href='https://infranodus.com/'> -- Infranodus - Word Level Knowledge graphs -- </a> | <br> Use the below interfaces to find the items that dont have entries --> These will represent new concepts or people which need to be understood individually to fully understand the text --> Infranodus search will help find related and unrelated investigation paths <br><br> TODO Figure Output Zoom / Image Dimensions")
1437
+ gr.Image(source="upload", label="Open Infranodus Screenshot")
1438
+ gr.Image(source="upload", label="Open Infranodus Screenshot")
1439
+ gr.Interface(fn=unique_word_count, inputs="text", outputs="text", description="Wordcounter")
1440
+ gr.HTML("Use the below interface to fill in the space in this format and then use the chat iframe at the top to ask llm to analyse this: <br><br> Consider how the following sentence meaning will change if the each if the selected word is replaced with one hypernym at a time: <br>Sentence: <br>Hypernyms: ")
1441
+ gr.Interface(fn=SepHypandSynExpansion, inputs="text", outputs=["text", "text"], description="Word suggestions - Analyse the unique words in infranodus")
1442
+ gr.Interface(fn=WikiSearch, inputs="text", outputs="text", description="One word at a time Unique word suggestions (wiki articles)")
1443
+ with gr.Tab("Automating related information linking"):
1444
+ gr.HTML("Questions - Taking and suggesting questions to ask = new education --> Esp. Infranodus type outer discourse identification as question generation")
1445
+ gr.HTML("The point of reading is to refine future actions especially problem solving --> Creating problem scenarios = thinking ahead of time = One form of effective reading")
1446
+ with gr.Tab("Beginner - Vague Language and Guessing POS"):
1447
+ with gr.Row():
1448
+ gr.HTML("Some Vague Words - Quantifiers, Pronouns, etc. <br/> <br/> Very, Many, Few, Lots, <br> Lets add 40 words to this list <br> <hr> Find Replace all nouns with something/someone or and for verbs figure out how to generalise them")
1449
+ gr.HTML("Parts of speech recognition = comprehension <br> Three word sentences will give a easier guessing chance")
1450
+ gr.HTML('<iframe src="https://spacy-gradio-pipeline-visualizer.hf.space" frameborder="0" width="100%" height="600"></iframe>')
1451
+ with gr.Tab("Advanced - Making Questions = Reading"):
1452
+ gr.HTML("Some Example Prompts <br><br>Please make 10 questions baseed on this text: <br>")
1453
+ with gr.Row():
1454
+ gr.TextArea("Paste the text to read here", interactive=True)
1455
+ gr.TextArea("Make as many questions on the text as you can in native language and then translate", interactive=True)
1456
+ gr.Dropdown(["Placeholder chunk 1", "Placeholder chunk 2", "Placeholder chunk 3"])
1457
+ gr.HTML("Load the current chunk here and Put a Dataframe where you have only one column for the questions")
1458
+ with gr.Tab('Acronym Map Creation Space'):
1459
+ gr.HTML("Acronym cant be read with previous attentive reading - accurate measure of known vs unknown")
1460
+ with gr.Row():
1461
+ with gr.Accordion('Acronym Map/Skeleton Creator'):
1462
+ gr.Interface(create_acronym_map, inputs='text', outputs=['text', 'text'])
1463
+ with gr.Accordion('Test with LLM'):
1464
+ gr.Label('Letters are always easier to recall than whole words. GPT 4 and above best suited for this prompt but can test anywhere')
1465
+ gr.HTML('Please help me study by making a acronym map for the maths ontology (Ask if theres questions)')
1466
+ gr.TextArea('', label='Paste LLM response')
1467
+ gr.HTML('Good but we need to now create a 9 Acronym based words - 1 for the headings together and then one each for the subheadings')
1468
+ gr.TextArea('', label='Paste LLM response')
1469
+ with gr.Accordion(''):
1470
+ gr.HTML('If study content was a map the first letters shape of the whole text = Roads')
1471
+ gr.HTML('Known = ability to match an item to a retrieval cue instantly - Retrieval cue for the whole text = Acronym Map')
1472
+ with gr.Tab("Advanced - Youtube - Subtitles - LingQ Addon Ideas"):
1473
  gr.HTML("<a href='https://www.lingq.com/en/'>Find LingQ Here --> https://www.lingq.com/en/</a>")
1474
  with gr.Tab("Visual - Multiline Custom Video Subtitles"):
1475
  gr.HTML("LingQ Companion Idea - i.e. Full Translation Read along, and eventually Videoplayer watch along like RAMUS whisper space <br><br>Extra functions needed - Persitent Sentence translation, UNWFWO, POS tagging and Word Count per user of words in their account. Macaronic Text is also another way to practice only the important information")
 
1528
  gr.Textbox("Merged Spelling Practice Placeholder - Spell multiple words simultaneously for simultaneous access", lines=3)
1529
  gr.HTML("<p> Spell multiple words simultaneously for simultaneous access </p> <p> Spelling Simplification - Use a dual language list? | Spelling is the end goal, you already know many letter orders called words so you need leverage them to remember random sequences")
1530
  gr.Interface(fn=create_dictionary, inputs="text", outputs="text", title="Sort Text by first two letters")
1531
+ gr.Interface(fn=keep_nouns_verbs, inputs=["text"], outputs="text", description="Noun and Verbs only (Plus punctuation)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532
  with gr.Tab("Thinking Practice (POS)"):
1533
  gr.HTML("By removing all nouns and verbs you get a format to practice thinking about your words to use to make sentences which make sense within constraints")
1534
+ with gr.Row():
1535
+ with gr.Column():
1536
+ with gr.Tab("Sentence to Practice Format"):
1537
+ gr.Interface(fn=split_verbs_nouns , inputs="text", outputs=["text", "text", "text"], description="Comprehension reading and Sentence Format Creator")
1538
+ with gr.Column():
1539
+ gr.HTML("<a href='https://huggingface.co/datasets/b-mc2/sql-create-context'> -- SQL Dataset - A list of simple questions -- </a> |")
1540
+ gr.Textbox(label='Use this text to hold translations of the SQL rows in the above linked dataset (A kind of What I say vs what I want)')
1541
  with gr.Tab("Knowledge Ideas - Notetaking"):
1542
  gr.HTML("""<p>Good knowledge = ability to answer questions --> find Questions you cant answer and look for hidden answer within them </p>
1543
  <p>My One Word Theory = We only use more words than needed when we have to or are bored --> Headings exist because title is not sufficient, subheadings exist because headings are not sufficient, Book Text exists because subheadings are not sufficient</p>
1544
  <p>Big Picture = Expand the Heading and the subheadings and compare them to each other</p>
1545
  <p>Application of Knowledge = App Version of the text (eg. Jupyter Notebooks) is what you create and learn first</p>
1546
  """)
1547
+ gr.Label('Placeholder for LLM api plus the drop down function below populate text for each line into dropdowns')
1548
  gr.Interface(fn=TextCompFormat, inputs=["textarea", HTMLCompMode], outputs="text", description="Convert Text to HTML Dropdown or Links which you paste in any html file")
1549
  gr.Interface(fn=create_collapsiblebutton, inputs=["textbox", "textbox", "textarea"], outputs="textbox", description="Button and Div HTML Generator, Generate the HTML for a button and the corresponding div element.")
1550
+ with gr.Tab("Real-Time AI - Video/Audio/AR"):
1551
+ gr.HTML("HUD Experiment (Waiting for GPT4V API)- Full context of user situation + Ability to communicate in real-time to user using images (H100+ and low enough resolution and low enough steps - it/s = fps) - just like google maps but for real life")
1552
+ gr.Interface(fn=ImageTranslationTest , inputs=[VideoTestInput, VideoTestSubtitleInput], outputs="video")
1553
+ with gr.Accordion("Whisper Spaces"):
1554
+ Whisperspaceoptions = gr.Dropdown(choices=["https://sanchit-gandhi-whisper-jax-diarization.hf.space", "https://sanchit-gandhi-whisper-jax.hf.space", "https://sanchit-gandhi-whisper-large-v2.hf.space", "https://facebook-seamless-m4t.hf.space"], label="existing whisper spaces")
1555
+ Whisperspaceoptionsbtn = gr.Button("Load Whisper Space")
1556
+ WhisperspaceoptionsOut = gr.HTML()
1557
+ Whisperspaceoptionsbtn.click(fn=display_website, inputs=Whisperspaceoptions, outputs=WhisperspaceoptionsOut)
1558
+ with gr.Accordion("Image as prompt Spaces"):
1559
+ Imagepromptspaceoptions = gr.Dropdown(choices=["https://badayvedat-llava.hf.space", "https://xinyu1205-recognize-anything.hf.space"], label="existing whisper spaces")
1560
+ Imagepromptspaceoptionsbtn = gr.Button("Load a Image as prompt Space")
1561
+ ImagepromptspaceoptionsOut = gr.HTML()
1562
+ Imagepromptspaceoptionsbtn.click(fn=display_website, inputs=Imagepromptspaceoptions, outputs=ImagepromptspaceoptionsOut)
1563
+ with gr.Accordion("Old Ideas to consider", open=False):
1564
+ gr.HTML("Nicolai Nielsen Youtube channel - aruco markers = position --> can test using premade ones from an image search")
1565
+ gr.Textbox("Alpha Test version = Real time Lablling of All things in view using SAM and Clip Interrogator and OpenCV on pydroid --> Adjusted Demo")
1566
+ gr.HTML("Some Prompt ideas --> Prompt: Describe the place where these descriptions may be (You job is to be speculative for brainstorming purposes): A dog and a boy, the area is texas, the weather is sunny, the date is 01 May 2021 <hr> Prompt Content Ideas Ideas Clip Interrogator + Location Data aka tags for place, location and time + general news updates on the location + overview of the items in the location <br> Location based advise is most important but after that is information observed by appliances in the location eg. Times Computer turned on, times geyser inspected, amount of time keys havent been touched etc. <br> each location will have an ai personality that will relay more information ")
1567
+ gr.HTML("<a href='https://huggingface.co/spaces/xinyu1205/Recognize_Anything-Tag2Text'> -- RAM and Tag2Text -- </a> | <a href='https://huggingface.co/spaces/curt-park/segment-anything-with-clip'> -- SAM with Clip -- </a>")
1568
+ with gr.Tab("Incomplete Tests and Experiments"):
1569
+ with gr.Tab("Graph Based Reading", id="1"):
1570
+ gr.Textbox('Parts of Speech based | Automating the Notetaking Tab either directly or using visual llm to use this interface efficiently')
1571
+ gr.HTML("Types of comprehension agent <hr> Speed of Comprehension = Verb comprehension <br> From the following please extract the verbs <br> now explain each in context <br> Next, use picture descriptions for each word in the verb list <br> Create combinations using the verb list <hr> ")
1572
+ gr.HTML("How VERBS RELATE TO EACH OTHER --> Shared Nodes - what other verbs are connected to the noun in a INFRANODUS With POS Tag filters")
1573
+ gr.HTML("Tree and Branches approach to learning = familiarity with keywords/headings/summaries before reading the whole text <hr> Productivity/Work revolves around repitition which can be found looking for plurals and grouping terms eg. Headings and Hyper/Hyponyms Analysis")
1574
+ gr.HTML("Sentence to PyDot graph")
1575
+ gr.HTML("Currently a bug that locks all buttons in the space when you use this above example - Reload to fix")
1576
+ with gr.Tab("Random Ideas"):
1577
+ gr.HTML("""<p>Spaces Test - Still Undercontruction --> Next Milestone is Turning this interface handsfree | Knowledge is a Language but productive knowledge is find replace as well | LingQ is good option for per word state management</p> <p> Arrows app json creator for easy knowledge graphing and spacy POS graph? --> Questions? -->
1578
+ <p> ChatGPT Turns Learning into a read only what you dont know ask only what you dont know feedback loop --> All you have to do is keep track of what prompts you have asked in the past</p> """)
1579
+ gr.HTML("<p>Target 0: Mnemonics as title of images --> Comprehensible input <br> Target 1: Dual audio at word Level while using repitition to train random recall --> Word level Time <br> Target 2: Video --> Split by sentence --> each word repeated (60) + each phrase (10) + each sentence (10) --> TTS file for practice --> State Management/Known word Tracker <br>-----------------------<br> The trick is minimum one minute of focus on a new word --> Listening is hard because there are new word within seconds and you need repeated focus on each to learn </p> <p>Audio = best long form attention mechanism AS it is ANTICIPATION (Awareness of something before it happens like knowing song Lyrics) FOCUSED - Attention (Focused Repitition) + Exposure (Random Repitition) </p> <p>Listening is hard due to different word order and word combinations (collocations more important than single words)</p> <hr>")
1580
+ gr.HTML("Predictable to identify the parts of picture being described --> The description moves in one direction from one side of the image to the other side is easiest <hr>")
1581
+ gr.HTML("Image = instant comprehension like Stable Diffusion --> Audiovisual experience is the most optimal reading experience <br> Manga with summary descriptions for the chapters = Most aligned visual to audio experience")
1582
+ with gr.Tab("AI Tools, Prompts and games"):
1583
+ gr.HTML("TODO = Llama-cpp-python with falcon 7b / openllama 7b intergrated into each of the interfaces in this space aka --> interfaces as tools for open source llm <br><br> <b>Test using gradio space/interfaces through the api as function calls for gpt3.5 and 4</b>")
1584
+ with gr.Accordion('Command Based Tools - Instant verification of ability to describe'):
1585
+ gr.HTML("Roblox - <a href='https://blog.roblox.com/2023/09/revolutionizing-creation-roblox/'> -- Roblox Assistant -- </a> | <br> ")
1586
+ #with gr.Tab("Gradio Client Tests"):
1587
+ # gr.HTML("How to return componets here in gradio (as each client interface needs different inputs) like in react")
1588
+ with gr.Tab("Current Ideas to edit old sections"):
1589
+ gr.HTML("The core themes = scheduling (randomisation and calendar marking), speed practice, visualisation, and audio, repitition, compression and finally Tracking and only learning the unknown")
1590
+ gr.HTML("Parts that are already done - Repition and scheduling (randomisation) on the sidebar, compresion using the acronym tab, Audio in the beginning tab, unknown partially in HTML creator")
1591
+ gr.HTML("Parts that are not done - Visualisation (of acronyms / duo word sets / nouns and verbs) - The image placeholder creator script, Tracking (private = database, public = textfile export), calendar based scheduling aka alert based ")
1592
+ gr.HTML("React Version of the app can combine all of these use cases into one component - so far tracking, placeholder and partially scheduling have been done")
1593
+ gr.Label('True speed simultaneous - which is a boolean state = practice at simulataneous to get simultaneous |||| Another way to be fast is to practice simultaneously with the varios SOVs i.e. when you read a noun the verb must appear immediately and vice versa |||| Simultaneous Spelling is the other way to practice |||| The main goal of all reading is that next time you read you take less time this time: |||| Spped = ability to anticipate the next word |||| Anticipation of a sentence = POV |||| ')
1594
+ with gr.Tab("Text to image for only nouns "):
1595
+ gr.Label("Placeholder for the transformers code Generator that can be used by anyone with gpu to turn all nouns in their text to pictures (The lambda labs code)")
1596
+ with gr.Tab("Simultanoues Practice Zone"):
1597
+ gr.Label("Audio based space where you must look at the corresponding text for the audio thats playing as simultaneous practice")
1598
+ gr.DataFrame(None, headers=["text", "audio"], label="Add text pairs to practice", interactive=True)
1599
+ gr.HTML("Below you can create and listen to the audio")
1600
+ gr.Interface(fn=SimultaneousSpellingPrac, inputs=["text"], outputs=["text"], title="Simultaneous SpellingOrder fast fast practice --> 1 letter a word = fastest read")
1601
+ gr.Interface(fn=FirstLetterSummary, inputs=["text"], outputs=["text"], title="Order fast fast practice --> 1 letter a word = fastest read")
1602
+ gr.Interface(fn=imagebasedreading, inputs=["text"], outputs=["file", "html", "text"], title="Placeholder for every newline")
1603
+ with gr.Tab("Long Text Analysis"):
1604
+ gr.Interface(fn=LoadNLTKUDHRText, inputs=NLTKudhr, outputs=["text", "textarea"])
1605
+ gr.HTML("For Long text searches are useful under time pressure and also bring all direct interactions with search terms - a word is defined by those around it")
1606
+ gr.Interface(fn=onlyplurals, inputs=["text"], outputs=["text"], title="Only plurals = optimal concepts to learn first as work = repitition")
1607
+ gr.Label("Placeholder for old code for concordance and word counting in other test space")
1608
+ with gr.Tab("Video Segmentation with OpenCV Test"):
1609
+ gr.Interface(fn=segment_video_with_opencv, inputs=VideoSplitTestInput, outputs="fileexplorer")
1610
+
1611
 
 
1612
  lliface.queue().launch() #(inbrowser="true")