Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 2,748 Bytes
f69cd15 eaa8689 f69cd15 1ecb321 eaa8689 1ecb321 eaa8689 1ecb321 eaa8689 1ecb321 534e5bb f69cd15 1ecb321 f69cd15 1ecb321 f69cd15 1ecb321 f69cd15 1ecb321 f69cd15 1ecb321 f69cd15 fe775c6 f69cd15 fe775c6 eaa8689 fe775c6 1ecb321 f69cd15 534e5bb 1ecb321 eaa8689 1ecb321 f69cd15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import os
import cv2
from PIL import Image
import gradio as gr
import numpy as np
import random
import base64
def start_tryon(person_img, garment_img, seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
encoded_person_img = cv2.imencode('.jpg', person_img)[1].tobytes()
encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
encoded_garment_img = cv2.imencode('.jpg', garment_img)[1].tobytes()
encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')
return person_img, seed
MAX_SEED = 999999
example_path = os.path.join(os.path.dirname(__file__), 'assets')
garm_list = os.listdir(os.path.join(example_path,"cloth"))
garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
human_list = os.listdir(os.path.join(example_path,"human"))
human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
css="""
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
#button {
color: blue;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
with gr.Blocks(css=css) as Tryon:
gr.HTML(load_description("assets/title.md"))
with gr.Row():
with gr.Column():
imgs = gr.Image(label="Person image", sources='upload', type="pil")
# category = gr.Dropdown(label="Garment category", choices=['upper_body', 'lower_body', 'dresses'], value="upper_body")
example = gr.Examples(
inputs=imgs,
examples_per_page=10,
examples=human_list_path
)
with gr.Column():
garm_img = gr.Image(label="Garment image", sources='upload', type="pil")
example = gr.Examples(
inputs=garm_img,
examples_per_page=10,
examples=garm_list_path)
with gr.Column():
image_out = gr.Image(label="Output", show_share_button=False)
seed_used = gr.Number(label="Seed Used")
try_button = gr.Button(value="Try-on", elem_id="button")
with gr.Column():
with gr.Accordion(label="Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used], api_name='tryon')
Tryon.queue(max_size=10).launch()
|