Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from PIL import Image
|
3 |
+
from io import BytesIO
|
4 |
+
import base64
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import CLIPProcessor, CLIPModel
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Replace with your own API key
|
10 |
+
STABLE_DIFFUSION_API_KEY = "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"
|
11 |
+
|
12 |
+
# Load the CLIP model and processor
|
13 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
14 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
15 |
+
|
16 |
+
def get_mood_from_image(image: Image.Image):
|
17 |
+
moods = ["fear", "anger", "joy", "sadness", "disgust", "surprise"]
|
18 |
+
|
19 |
+
# Create unique prompts for each mood
|
20 |
+
prompts = [
|
21 |
+
"The emotion conveyed by this image is fear. The person looks scared and tense.",
|
22 |
+
"The emotion conveyed by this image is anger. The person looks furious and irritated.",
|
23 |
+
"The emotion conveyed by this image is joy. The person looks happy and cheerful.",
|
24 |
+
"The emotion conveyed by this image is sadness. The person looks unhappy and gloomy.",
|
25 |
+
"The emotion conveyed by this image is disgust. The person looks repulsed and sickened.",
|
26 |
+
"The emotion conveyed by this image is surprise. The person looks astonished and amazed.",
|
27 |
+
]
|
28 |
+
|
29 |
+
# Prepare the inputs for the model
|
30 |
+
inputs = processor(text=prompts, images=image, return_tensors="pt", padding=True)
|
31 |
+
|
32 |
+
# Run the model
|
33 |
+
logits = model(**inputs).logits_per_image
|
34 |
+
probs = logits.softmax(dim=-1).tolist()
|
35 |
+
|
36 |
+
# Calculate the scores for each mood
|
37 |
+
mood_scores = {}
|
38 |
+
for mood, score in zip(moods, probs[0]):
|
39 |
+
mood_scores[mood] = score
|
40 |
+
print("Mood Scores:", mood_scores)
|
41 |
+
# Select the mood with the highest score
|
42 |
+
selected_mood = max(mood_scores, key=mood_scores.get)
|
43 |
+
|
44 |
+
return selected_mood
|
45 |
+
|
46 |
+
def generate_art(mood):
|
47 |
+
# Implement art generation logic using the Stable Diffusion API
|
48 |
+
prompt = f"{mood} generative art with vibrant colors and intricate patterns"
|
49 |
+
...
|
50 |
+
|
51 |
+
headers = {
|
52 |
+
"Authorization": f"Bearer {STABLE_DIFFUSION_API_KEY}",
|
53 |
+
"Accept": "image/jpeg", # Set the Accept header to receive an image directly
|
54 |
+
}
|
55 |
+
|
56 |
+
json_data = {
|
57 |
+
"inputs": prompt
|
58 |
+
}
|
59 |
+
|
60 |
+
response = requests.post('https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5', headers=headers, json=json_data)
|
61 |
+
|
62 |
+
# Check if the response status is not 200 (OK)
|
63 |
+
if response.status_code != 200:
|
64 |
+
print(f"Error: API response status code {response.status_code}")
|
65 |
+
print("Response content:")
|
66 |
+
print(response.content)
|
67 |
+
return None
|
68 |
+
|
69 |
+
# Load the image directly from the response content
|
70 |
+
image = Image.open(BytesIO(response.content))
|
71 |
+
|
72 |
+
return image
|
73 |
+
|
74 |
+
mood_emojis = {
|
75 |
+
"fear": "๐จ",
|
76 |
+
"anger": "๐ ",
|
77 |
+
"joy": "๐",
|
78 |
+
"sadness": "๐ข",
|
79 |
+
"disgust": "๐คข",
|
80 |
+
"surprise": "๐ฎ",
|
81 |
+
}
|
82 |
+
|
83 |
+
def mood_art_generator(image):
|
84 |
+
mood = get_mood_from_image(image)
|
85 |
+
print("Mood:", mood)
|
86 |
+
if mood:
|
87 |
+
art = generate_art(mood)
|
88 |
+
emoji = mood_emojis[mood
|
89 |
+
output_text = f"You seem to be {mood} {emoji}. Here's an artwork representing it!"
|
90 |
+
return art, output_text
|
91 |
+
else:
|
92 |
+
return None, "Failed to generate artwork."
|
93 |
+
|
94 |
+
iface = gr.Interface(
|
95 |
+
fn=mood_art_generator,
|
96 |
+
inputs=gr.inputs.Image(shape=(224, 224), image_mode="RGB", source="upload"),
|
97 |
+
outputs=[gr.outputs.Image(type="pil"), gr.outputs.Textbox()],
|
98 |
+
title="Mood-based Art Generator",
|
99 |
+
description="Upload an image of yourself and let the AI generate artwork based on your mood.",
|
100 |
+
allow_flagging=False,
|
101 |
+
analytics_enabled=False
|
102 |
+
)
|
103 |
+
|
104 |
+
iface.launch(share=True)
|