File size: 4,075 Bytes
1c3eb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import math
from typing import Optional
import numpy as np
from typing import Dict, Optional, Union
from mmengine.registry import HOOKS
from .param_scheduler_hook import ParamSchedulerHook

DATA_BATCH = Optional[Union[dict, tuple, list]]


def linear_fn(lr_factor: float, max_epochs: int):
    """Generate linear function."""
    return lambda x: (1 - x / max_epochs) * (1.0 - lr_factor) + lr_factor


def cosine_fn(lr_factor: float, max_epochs: int):
    """Generate cosine function."""
    return lambda x: (
        (1 - math.cos(x * math.pi / max_epochs)) / 2) * (lr_factor - 1) + 1


@HOOKS.register_module()
class YOLOv5ParamSchedulerHook(ParamSchedulerHook):
    """A hook to update learning rate and momentum in optimizer of YOLOv5."""
    priority = 9

    scheduler_maps = {'linear': linear_fn, 'cosine': cosine_fn}

    def __init__(self,
                 scheduler_type: str = 'linear',
                 lr_factor: float = 0.01,
                 max_epochs: int = 300,
                 warmup_epochs: int = 3,
                 warmup_bias_lr: float = 0.1,
                 warmup_momentum: float = 0.8,
                 warmup_mim_iter: int = 500,
                 **kwargs):

        assert scheduler_type in self.scheduler_maps

        self.warmup_epochs = warmup_epochs
        self.warmup_bias_lr = warmup_bias_lr
        self.warmup_momentum = warmup_momentum
        self.warmup_mim_iter = warmup_mim_iter

        kwargs.update({'lr_factor': lr_factor, 'max_epochs': max_epochs})
        self.scheduler_fn = self.scheduler_maps[scheduler_type](**kwargs)

        self._warmup_end = False
        self._base_lr = None
        self._base_momentum = None


    def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        optimizer = trainer.optimizers[0]
        for group in optimizer.param_groups:
            # If the param is never be scheduled, record the current value
            # as the initial value.
            group.setdefault('initial_lr', group['lr'])
            group.setdefault('initial_momentum', group.get('momentum', -1))

        self._base_lr = [
            group['initial_lr'] for group in optimizer.param_groups
        ]
        self._base_momentum = [
            group['initial_momentum'] for group in optimizer.param_groups
        ]

    def on_before_backward(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", loss) -> None:
        cur_iters = trainer.global_step
        cur_epoch = trainer.current_epoch
        optimizer = trainer.optimizers[0]

        # The minimum warmup is self.warmup_mim_iter
        warmup_total_iters = max(
            round(self.warmup_epochs * len(trainer.train_dataloader)),
            self.warmup_mim_iter)

        if cur_iters <= warmup_total_iters:
            xp = [0, warmup_total_iters]
            for group_idx, param in enumerate(optimizer.param_groups):
                if group_idx == 2:
                    # bias learning rate will be handled specially
                    yp = [
                        self.warmup_bias_lr,
                        self._base_lr[group_idx] * self.scheduler_fn(cur_epoch)
                    ]
                else:
                    yp = [
                        0.0,
                        self._base_lr[group_idx] * self.scheduler_fn(cur_epoch)
                    ]
                param['lr'] = np.interp(cur_iters, xp, yp)

                if 'momentum' in param:
                    param['momentum'] = np.interp(
                        cur_iters, xp,
                        [self.warmup_momentum, self._base_momentum[group_idx]])
        else:
            self._warmup_end = True

    def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
        if not self._warmup_end:
            return

        cur_epoch = trainer.current_epoch
        optimizer = trainer.optimizers[0]
        for group_idx, param in enumerate(optimizer.param_groups):
            param['lr'] = self._base_lr[group_idx] * self.scheduler_fn(
                cur_epoch)