File size: 3,632 Bytes
1c3eb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import copy
import inspect
from typing import List, Union

import torch
import torch.nn as nn
import lightning

from mmengine.config import Config, ConfigDict
from mmengine.device import is_npu_available
from mmpl.registry import LOGGERS


def register_pl_loggers() -> List[str]:
    """Register loggers in ``lightning.pytorch.loggers`` to the ``LOGGERS`` registry.

    Returns:
        List[str]: A list of registered optimizers' name.
    """
    pl_loggers = []
    for module_name in dir(lightning.pytorch.loggers):
        if module_name.startswith('__'):
            continue
        _logger = getattr(lightning.pytorch.loggers, module_name)
        if inspect.isclass(_logger) and issubclass(_logger, lightning.pytorch.loggers.logger.Logger):
            LOGGERS.register_module(module=_logger)
            pl_loggers.append(module_name)
    return pl_loggers


PL_LOGGERS = register_pl_loggers()


def register_dadaptation_optimizers() -> List[str]:
    """Register optimizers in ``dadaptation`` to the ``OPTIMIZERS`` registry.

    Returns:
        List[str]: A list of registered optimizers' name.
    """
    dadaptation_optimizers = []
    try:
        import dadaptation
    except ImportError:
        pass
    else:
        for module_name in ['DAdaptAdaGrad', 'DAdaptAdam', 'DAdaptSGD']:
            _optim = getattr(dadaptation, module_name)
            if inspect.isclass(_optim) and issubclass(_optim,
                                                      torch.optim.Optimizer):
                OPTIMIZERS.register_module(module=_optim)
                dadaptation_optimizers.append(module_name)
    return dadaptation_optimizers


# DADAPTATION_OPTIMIZERS = register_dadaptation_optimizers()


def register_lion_optimizers() -> List[str]:
    """Register Lion optimizer to the ``OPTIMIZERS`` registry.

    Returns:
        List[str]: A list of registered optimizers' name.
    """
    optimizers = []
    try:
        from lion_pytorch import Lion
    except ImportError:
        pass
    else:
        OPTIMIZERS.register_module(module=Lion)
        optimizers.append('Lion')
    return optimizers


# LION_OPTIMIZERS = register_lion_optimizers()


def build_optim_wrapper(model: nn.Module,
                        cfg: Union[dict, Config, ConfigDict]):
    """Build function of OptimWrapper.

    If ``constructor`` is set in the ``cfg``, this method will build an
    optimizer wrapper constructor, and use optimizer wrapper constructor to
    build the optimizer wrapper. If ``constructor`` is not set, the
    ``DefaultOptimWrapperConstructor`` will be used by default.

    Args:
        model (nn.Module): Model to be optimized.
        cfg (dict): Config of optimizer wrapper, optimizer constructor and
            optimizer.

    Returns:
        OptimWrapper: The built optimizer wrapper.
    """
    optim_wrapper_cfg = copy.deepcopy(cfg)
    constructor_type = optim_wrapper_cfg.pop('constructor',
                                             'DefaultOptimWrapperConstructor')
    paramwise_cfg = optim_wrapper_cfg.pop('paramwise_cfg', None)

    # Since the current generation of NPU(Ascend 910) only supports
    # mixed precision training, here we turn on mixed precision by default
    # on the NPU to make the training normal
    if is_npu_available():
        optim_wrapper_cfg['type'] = 'AmpOptimWrapper'

    optim_wrapper_constructor = OPTIM_WRAPPER_CONSTRUCTORS.build(
        dict(
            type=constructor_type,
            optim_wrapper_cfg=optim_wrapper_cfg,
            paramwise_cfg=paramwise_cfg))
    optim_wrapper = optim_wrapper_constructor(model)
    return optim_wrapper