Spaces:
Runtime error
Runtime error
File size: 40,362 Bytes
1c3eb47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 |
import copy
import logging
import os
import os.path as osp
import pickle
import platform
import time
import warnings
from collections import OrderedDict
from functools import partial
from typing import Callable, Dict, List, Optional, Sequence, Union
import torch
import torch.nn as nn
from lightning.pytorch.loggers import Logger
from torch.nn.parallel.distributed import DistributedDataParallel
from torch.optim import Optimizer
from torch.utils.data import DataLoader
import mmengine
from mmengine.config import Config, ConfigDict
from mmengine.dataset import worker_init_fn
from mmengine.device import get_device
from mmengine.dist import (broadcast, get_dist_info, get_rank, init_dist,
is_distributed, master_only)
from mmengine.evaluator import Evaluator
from mmengine.fileio import FileClient, join_path
from mmengine.hooks import Hook
from mmengine.logging import MessageHub, MMLogger, print_log
from mmengine.model import (MMDistributedDataParallel, convert_sync_batchnorm,
is_model_wrapper, revert_sync_batchnorm)
from mmengine.optim import (OptimWrapper, OptimWrapperDict, _ParamScheduler,
build_optim_wrapper)
from mmengine.registry import (DATA_SAMPLERS, DATASETS, EVALUATOR, FUNCTIONS,
HOOKS, LOG_PROCESSORS, LOOPS, MODEL_WRAPPERS,
OPTIM_WRAPPERS, PARAM_SCHEDULERS,
RUNNERS, VISUALIZERS, DefaultScope)
from mmengine.utils import digit_version, get_git_hash, is_seq_of
from mmengine.utils.dl_utils import (TORCH_VERSION, collect_env,
set_multi_processing)
from mmengine.visualization import Visualizer
from mmengine.runner.base_loop import BaseLoop
from mmengine.runner.checkpoint import (_load_checkpoint, _load_checkpoint_to_model,
find_latest_checkpoint, get_state_dict,
save_checkpoint, weights_to_cpu)
from mmengine.runner.log_processor import LogProcessor
from mmengine.runner.loops import EpochBasedTrainLoop, IterBasedTrainLoop, TestLoop, ValLoop
from mmengine.runner.priority import Priority, get_priority
from mmengine.runner.utils import set_random_seed
ConfigType = Union[Dict, Config, ConfigDict]
ParamSchedulerType = Union[List[_ParamScheduler], Dict[str, List[_ParamScheduler]]]
OptimWrapperType = Union[OptimWrapper, OptimWrapperDict]
from mmpl.registry import MODELS, LOGGERS
import lightning.pytorch as pl
from mmpl.models import build_pler
@RUNNERS.register_module()
class PLRunner:
def __init__(
self,
trainer_cfg: Dict,
model_cfg: Union[pl.LightningModule, Dict],
datamodule_cfg: Optional[Dict] = None,
cfg: Optional[ConfigType] = None
):
self.trainer_cfg = copy.deepcopy(trainer_cfg)
self.model_cfg = copy.deepcopy(model_cfg)
self.datamodule_cfg = copy.deepcopy(datamodule_cfg)
mmengine.mkdir_or_exist(trainer_cfg['default_root_dir'])
timestamp = torch.tensor(time.time(), dtype=torch.float64)
# broadcast timestamp from 0 process to other processes
broadcast(timestamp)
self.timestamp = time.strftime('%Y%m%d_%H%M%S',
time.localtime(timestamp.item()))
if cfg is not None:
if isinstance(cfg, Config):
self.cfg = copy.deepcopy(cfg)
elif isinstance(cfg, dict):
self.cfg = Config(cfg)
else:
self.cfg = Config(dict())
compiled_model = trainer_cfg.pop('compiled_model', False)
# build logger
loggers = self.build_logger(
trainer_cfg.get('logger', False),
trainer_cfg.get('default_root_dir', f'{self.timestamp}')
)
trainer_cfg['logger'] = loggers
# build visualizer used for writing log or visualizing all kinds of data
self.visualizer = self.build_visualizer(
self.cfg.get('visualizer', None),
trainer_cfg.get('default_root_dir', f'{self.timestamp}')
)
if self.cfg:
self.visualizer.add_config(self.cfg)
# build callbacks
callbacks = self.build_hooks(
trainer_cfg.get('callbacks', None),
)
trainer_cfg['callbacks'] = callbacks
# build strategy
strategy = self.build_strategy(
trainer_cfg.get('strategy', 'auto'),
)
trainer_cfg['strategy'] = strategy
self.trainer = pl.Trainer(**trainer_cfg)
model_cfg.update({'config_cfg': copy.deepcopy(cfg).to_dict()})
model = self.build_model(model_cfg)
if cfg.get('load_from', None) is not None:
self.load_checkpoint(model, cfg['load_from'])
if compiled_model:
# default, reduce-overhead, and max-autotune.
self.model = torch.compile(model)
else:
self.model = model
# dump `cfg` to `work_dir`
self.dump_config()
# # Collect and log environment information.
# self._log_env(env_cfg)
# log hooks information
# self.logger.info(f'Hooks will be executed in the following '
# f'order:\n{self.get_hooks_info()}')
def build_visualizer(
self,
visualizer: Optional[Union[Visualizer,
Dict]] = None,
default_root_dir = 'tmp'
) -> Visualizer:
"""Build a global asscessable Visualizer.
Args:
visualizer (Visualizer or dict, optional): A Visualizer object
or a dict to build Visualizer object. If ``visualizer`` is a
Visualizer object, just returns itself. If not specified,
default config will be used to build Visualizer object.
Defaults to None.
Returns:
Visualizer: A Visualizer object build from ``visualizer``.
"""
if visualizer is None:
visualizer = dict(
name=os.path.basename(default_root_dir),
vis_backends=[dict(type='LocalVisBackend')],
save_dir=default_root_dir+'/visualizer'
)
return Visualizer.get_instance(**visualizer)
if isinstance(visualizer, Visualizer):
return visualizer
if isinstance(visualizer, dict):
# ensure visualizer containing name key
visualizer.setdefault('name', os.path.basename(default_root_dir))
visualizer.setdefault('save_dir', default_root_dir+'/visualizer')
return VISUALIZERS.build(visualizer)
else:
raise TypeError(
'visualizer should be Visualizer object, a dict or None, '
f'but got {visualizer}')
def build_hooks(self, hooks: Union[Dict, List[Dict]] = None) -> List[Hook]:
"""Build hooks from config.
Args:
hooks_cfg (dict): Config dict of hooks.
Returns:
list[Hook]: A list of hooks.
"""
if hooks is not None:
if isinstance(hooks, dict):
hooks = [hooks]
tmp_hooks = []
for hook in hooks:
hook = HOOKS.build(hook)
tmp_hooks.append(hook)
hooks = tmp_hooks
return hooks
@classmethod
def from_cfg(cls, cfg: ConfigType) -> 'Runner':
cfg = copy.deepcopy(cfg)
runner = cls(
trainer_cfg=cfg.get('trainer_cfg'),
model_cfg=cfg['model_cfg'],
datamodule_cfg=cfg.get('datamodule_cfg'),
cfg=cfg
)
return runner
def build_logger(self, loggers: Union[Dict, List[Dict]] = None, default_root_dir='logger'):
if loggers is not None and loggers:
if isinstance(loggers, Dict):
loggers = [loggers]
tmp_loggers = []
for logger in loggers:
if logger.get('save_dir', None) is None:
logger['save_dir'] = default_root_dir
mmengine.mkdir_or_exist(logger['save_dir'])
tmp_loggers.append(LOGGERS.build(logger))
loggers = tmp_loggers
return loggers
def build_strategy(self, strategy='auto'):
if isinstance(strategy, str):
return strategy
elif isinstance(strategy, dict):
if strategy.get('type', '') == 'FSDPStrategy':
from torch.distributed.fsdp import CPUOffload
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
import functools
strategy.update(
dict(
# cpu_offload=CPUOffload(offload_params=True),
auto_wrap_policy=functools.partial(
size_based_auto_wrap_policy, min_num_params=int(5e7)
)
)
)
strategy = MODEL_WRAPPERS.build(strategy)
return strategy
return strategy
def build_model(self, model: Union[pl.LightningModule, Dict]) -> pl.LightningModule:
if isinstance(model, pl.LightningModule):
return model
elif isinstance(model, dict):
model = build_pler(model)
return model # type: ignore
else:
raise TypeError('model should be a nn.Module object or dict, '
f'but got {model}')
def _init_model_weights(self) -> None:
"""Initialize the model weights if the model has
:meth:`init_weights`"""
if hasattr(self.model, 'module'):
model = self.model.module
else:
model = self.model
if hasattr(model, 'init_weights'):
model.init_weights()
# sync params and buffers
for name, params in model.state_dict().items():
broadcast(params)
def get_hooks_info(self) -> str:
# Get hooks info in each stage
stage_hook_map: Dict[str, list] = {stage: [] for stage in Hook.stages}
for hook in self.hooks:
try:
priority = Priority(hook.priority).name # type: ignore
except ValueError:
priority = hook.priority # type: ignore
classname = hook.__class__.__name__
hook_info = f'({priority:<12}) {classname:<35}'
for trigger_stage in hook.get_triggered_stages():
stage_hook_map[trigger_stage].append(hook_info)
stage_hook_infos = []
for stage in Hook.stages:
hook_infos = stage_hook_map[stage]
if len(hook_infos) > 0:
info = f'{stage}:\n'
info += '\n'.join(hook_infos)
info += '\n -------------------- '
stage_hook_infos.append(info)
return '\n'.join(stage_hook_infos)
def load_or_resume(self) -> None:
"""load or resume checkpoint."""
if self._has_loaded:
return None
# decide to load from checkpoint or resume from checkpoint
resume_from = None
if self._resume and self._load_from is None:
# auto resume from the latest checkpoint
resume_from = find_latest_checkpoint(self.work_dir)
self.logger.info(
f'Auto resumed from the latest checkpoint {resume_from}.')
elif self._resume and self._load_from is not None:
# resume from the specified checkpoint
resume_from = self._load_from
if resume_from is not None:
self.resume(resume_from)
self._has_loaded = True
elif self._load_from is not None:
self.load_checkpoint(self._load_from)
self._has_loaded = True
@staticmethod
def build_datamodule(datamodule_cfg: Union[pl.LightningDataModule, Dict]):
if isinstance(datamodule_cfg, pl.LightningDataModule):
return datamodule_cfg
datamodule_cfg = copy.deepcopy(datamodule_cfg)
# build datamodule
datamodule = DATASETS.build(datamodule_cfg)
return datamodule
def run(self, status, *args, **kwargs):
assert status in ['fit', 'test', 'predict', 'validate']
trainer_func = self.trainer.__getattribute__(status)
self.datamodule = self.build_datamodule(self.datamodule_cfg)
return trainer_func(model=self.model, datamodule=self.datamodule, *args, **kwargs)
#
# if is_model_wrapper(self.model):
# ori_model = self.model.module
# else:
# ori_model = self.model
# assert hasattr(ori_model, 'train_step'), (
# 'If you want to train your model, please make sure your model '
# 'has implemented `train_step`.')
#
# if self._val_loop is not None:
# assert hasattr(ori_model, 'val_step'), (
# 'If you want to validate your model, please make sure your '
# 'model has implemented `val_step`.')
#
# if self._train_loop is None:
# raise RuntimeError(
# '`self._train_loop` should not be None when calling train '
# 'method. Please provide `train_dataloader`, `train_cfg`, '
# '`optimizer` and `param_scheduler` arguments when '
# 'initializing runner.')
#
# self._train_loop = self.build_train_loop(
# self._train_loop) # type: ignore
#
# # `build_optimizer` should be called before `build_param_scheduler`
# # because the latter depends on the former
# self.optim_wrapper = self.build_optim_wrapper(self.optim_wrapper)
# # Automatically scaling lr by linear scaling rule
# self.scale_lr(self.optim_wrapper, self.auto_scale_lr)
#
# if self.param_schedulers is not None:
# self.param_schedulers = self.build_param_scheduler( # type: ignore
# self.param_schedulers) # type: ignore
#
# if self._val_loop is not None:
# self._val_loop = self.build_val_loop(
# self._val_loop) # type: ignore
# # TODO: add a contextmanager to avoid calling `before_run` many times
# self.call_hook('before_run')
#
# # initialize the model weights
# self._init_model_weights()
# # make sure checkpoint-related hooks are triggered after `before_run`
# self.load_or_resume()
#
# # Initiate inner count of `optim_wrapper`.
# self.optim_wrapper.initialize_count_status(
# self.model,
# self._train_loop.iter, # type: ignore
# self._train_loop.max_iters) # type: ignore
#
# # Maybe compile the model according to options in self.cfg.compile
# # This must be called **AFTER** model has been wrapped.
# self._maybe_compile('train_step')
#
# model = self.train_loop.run() # type: ignore
# self.call_hook('after_run')
# return model
def register_hook(
self,
hook: Union[Hook, Dict],
priority: Optional[Union[str, int, Priority]] = None) -> None:
"""Register a hook into the hook list.
The hook will be inserted into a priority queue, with the specified
priority (See :class:`Priority` for details of priorities).
For hooks with the same priority, they will be triggered in the same
order as they are registered.
Priority of hook will be decided with the following priority:
- ``priority`` argument. If ``priority`` is given, it will be priority
of hook.
- If ``hook`` argument is a dict and ``priority`` in it, the priority
will be the value of ``hook['priority']``.
- If ``hook`` argument is a dict but ``priority`` not in it or ``hook``
is an instance of ``hook``, the priority will be ``hook.priority``.
Args:
hook (:obj:`Hook` or dict): The hook to be registered.
priority (int or str or :obj:`Priority`, optional): Hook priority.
Lower value means higher priority.
"""
if not isinstance(hook, (Hook, dict)):
raise TypeError(
f'hook should be an instance of Hook or dict, but got {hook}')
_priority = None
if isinstance(hook, dict):
if 'priority' in hook:
_priority = hook.pop('priority')
hook_obj = HOOKS.build(hook)
else:
hook_obj = hook
if priority is not None:
hook_obj.priority = priority
elif _priority is not None:
hook_obj.priority = _priority
inserted = False
for i in range(len(self._hooks) - 1, -1, -1):
if get_priority(hook_obj.priority) >= get_priority(
self._hooks[i].priority):
self._hooks.insert(i + 1, hook_obj)
inserted = True
break
if not inserted:
self._hooks.insert(0, hook_obj)
def register_default_hooks(
self,
hooks: Optional[Dict[str, Union[Hook, Dict]]] = None) -> None:
"""Register default hooks into hook list.
``hooks`` will be registered into runner to execute some default
actions like updating model parameters or saving checkpoints.
Default hooks and their priorities:
+----------------------+-------------------------+
| Hooks | Priority |
+======================+=========================+
| RuntimeInfoHook | VERY_HIGH (10) |
+----------------------+-------------------------+
| IterTimerHook | NORMAL (50) |
+----------------------+-------------------------+
| DistSamplerSeedHook | NORMAL (50) |
+----------------------+-------------------------+
| LoggerHook | BELOW_NORMAL (60) |
+----------------------+-------------------------+
| ParamSchedulerHook | LOW (70) |
+----------------------+-------------------------+
| CheckpointHook | VERY_LOW (90) |
+----------------------+-------------------------+
If ``hooks`` is None, above hooks will be registered by
default::
default_hooks = dict(
runtime_info=dict(type='RuntimeInfoHook'),
timer=dict(type='IterTimerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
logger=dict(type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
)
If not None, ``hooks`` will be merged into ``default_hooks``.
If there are None value in default_hooks, the corresponding item will
be popped from ``default_hooks``::
hooks = dict(timer=None)
The final registered default hooks will be :obj:`RuntimeInfoHook`,
:obj:`DistSamplerSeedHook`, :obj:`LoggerHook`,
:obj:`ParamSchedulerHook` and :obj:`CheckpointHook`.
Args:
hooks (dict[str, Hook or dict], optional): Default hooks or configs
to be registered.
"""
default_hooks: dict = dict(
runtime_info=dict(type='RuntimeInfoHook'),
timer=dict(type='IterTimerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
logger=dict(type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
)
if hooks is not None:
for name, hook in hooks.items():
if name in default_hooks and hook is None:
# remove hook from _default_hooks
default_hooks.pop(name)
else:
assert hook is not None
default_hooks[name] = hook
for hook in default_hooks.values():
self.register_hook(hook)
def register_custom_hooks(self, hooks: List[Union[Hook, Dict]]) -> None:
"""Register custom hooks into hook list.
Args:
hooks (list[Hook | dict]): List of hooks or configs to be
registered.
"""
for hook in hooks:
self.register_hook(hook)
def register_hooks(
self,
default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
custom_hooks: Optional[List[Union[Hook, Dict]]] = None) -> None:
"""Register default hooks and custom hooks into hook list.
Args:
default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks
to execute default actions like updating model parameters and
saving checkpoints. Defaults to None.
custom_hooks (list[dict] or list[Hook], optional): Hooks to execute
custom actions like visualizing images processed by pipeline.
Defaults to None.
"""
self.register_default_hooks(default_hooks)
if custom_hooks is not None:
self.register_custom_hooks(custom_hooks)
def resume(self,
filename: str,
resume_optimizer: bool = True,
resume_param_scheduler: bool = True,
map_location: Union[str, Callable] = 'default') -> None:
"""Resume model from checkpoint.
Args:
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``.
resume_optimizer (bool): Whether to resume optimizer state.
Defaults to True.
resume_param_scheduler (bool): Whether to resume param scheduler
state. Defaults to True.
map_location (str or callable):A string or a callable function to
specifying how to remap storage locations.
Defaults to 'default'.
"""
if map_location == 'default':
device = get_device()
checkpoint = self.load_checkpoint(filename, map_location=device)
else:
checkpoint = self.load_checkpoint(
filename, map_location=map_location)
self.train_loop._epoch = checkpoint['meta']['epoch']
self.train_loop._iter = checkpoint['meta']['iter']
# check whether the number of GPU used for current experiment
# is consistent with resuming from checkpoint
if 'config' in checkpoint['meta']:
config = mmengine.Config.fromstring(
checkpoint['meta']['config'], file_format='.py')
previous_gpu_ids = config.get('gpu_ids', None)
if (previous_gpu_ids is not None and len(previous_gpu_ids) > 0
and len(previous_gpu_ids) != self._world_size):
# TODO, should we modify the iteration?
self.logger.info(
'Number of GPU used for current experiment is not '
'consistent with resuming from checkpoint')
if (self.auto_scale_lr is None
or not self.auto_scale_lr.get('enable', False)):
raise RuntimeError(
'Cannot automatically rescale lr in resuming. Please '
'make sure the number of GPU is consistent with the '
'previous training state resuming from the checkpoint '
'or set `enable` in `auto_scale_lr to False.')
# resume random seed
resumed_seed = checkpoint['meta'].get('seed', None)
current_seed = self._randomness_cfg.get('seed')
if resumed_seed is not None and resumed_seed != current_seed:
if current_seed is not None:
print_log(
f'The value of random seed in the '
f'checkpoint "{resumed_seed}" is '
f'different from the value in '
f'`randomness` config "{current_seed}"',
logger='current',
level=logging.WARNING)
self._randomness_cfg.update(seed=resumed_seed)
self.set_randomness(**self._randomness_cfg)
resumed_dataset_meta = checkpoint['meta'].get('dataset_meta', None)
dataset_meta = getattr(self.train_dataloader.dataset, 'metainfo', None)
# `resumed_dataset_meta` and `dataset_meta` could be object like
# np.ndarray, which cannot be directly judged as equal or not,
# therefore we just compared their dumped results.
if pickle.dumps(resumed_dataset_meta) != pickle.dumps(dataset_meta):
print_log(
'The dataset metainfo from the resumed checkpoint is '
'different from the current training dataset, please '
'check the correctness of the checkpoint or the training '
'dataset.',
logger='current',
level=logging.WARNING)
self.message_hub.load_state_dict(checkpoint['message_hub'])
# resume optimizer
if 'optimizer' in checkpoint and resume_optimizer:
self.optim_wrapper = self.build_optim_wrapper(self.optim_wrapper)
self.optim_wrapper.load_state_dict( # type: ignore
checkpoint['optimizer'])
# resume param scheduler
if resume_param_scheduler and self.param_schedulers is None:
print_log(
'`resume_param_scheduler` is True but `self.param_schedulers` '
'is None, so skip resuming parameter schedulers',
logger='current',
level=logging.WARNING)
resume_param_scheduler = False
if 'param_schedulers' in checkpoint and resume_param_scheduler:
self.param_schedulers = self.build_param_scheduler( # type: ignore
self.param_schedulers) # type: ignore
if isinstance(self.param_schedulers, dict):
for name, schedulers in self.param_schedulers.items():
for scheduler, ckpt_scheduler in zip(
schedulers, checkpoint['param_schedulers'][name]):
scheduler.load_state_dict(ckpt_scheduler)
else:
for scheduler, ckpt_scheduler in zip(
self.param_schedulers, # type: ignore
checkpoint['param_schedulers']):
scheduler.load_state_dict(ckpt_scheduler)
self._has_loaded = True
self.logger.info(f'resumed epoch: {self.epoch}, iter: {self.iter}')
# def load_checkpoint(self,
# filename: str,
# model,
# map_location: Union[str, Callable] = 'cpu',
# strict: bool = False,
# revise_keys: list = [(r'^module.', '')]):
# """Load checkpoint from given ``filename``.
#
# Args:
# filename (str): Accept local filepath, URL, ``torchvision://xxx``,
# ``open-mmlab://xxx``.
# map_location (str or callable): A string or a callable function to
# specifying how to remap storage locations.
# Defaults to 'cpu'.
# strict (bool): strict (bool): Whether to allow different params for
# the model and checkpoint.
# revise_keys (list): A list of customized keywords to modify the
# state_dict in checkpoint. Each item is a (pattern, replacement)
# pair of the regular expression operations. Defaults to strip
# the prefix 'module.' by [(r'^module\\.', '')].
# """
# checkpoint = _load_checkpoint(filename, map_location=map_location)
#
# if is_model_wrapper(model):
# model = model.module
# else:
# model = model
#
# checkpoint = _load_checkpoint_to_model(
# model, checkpoint, strict, revise_keys=revise_keys)
#
# print(f'Load checkpoint from {filename}')
#
# return checkpoint
def load_checkpoint(self, model, file):
if isinstance(file, str):
file_path = file
state_dict = torch.load(file_path, map_location='cpu')['state_dict']
elif isinstance(file, dict):
file_path = file['file_path']
state_dict = torch.load(file_path, map_location='cpu')['state_dict']
for delete_key in file['delete_keys']:
del state_dict[delete_key]
else:
raise TypeError('file must be str or dict')
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
print('load from:', file_path)
print('load model missing_keys:', missing_keys)
print('load model unexpected_keys:', unexpected_keys)
@master_only
def save_checkpoint(
self,
out_dir: str,
filename: str,
file_client_args: Optional[dict] = None,
save_optimizer: bool = True,
save_param_scheduler: bool = True,
meta: dict = None,
by_epoch: bool = True,
backend_args: Optional[dict] = None,
):
"""Save checkpoints.
``CheckpointHook`` invokes this method to save checkpoints
periodically.
Args:
out_dir (str): The directory that checkpoints are saved.
filename (str): The checkpoint filename.
file_client_args (dict, optional): Arguments to instantiate a
FileClient. See :class:`mmengine.fileio.FileClient` for
details. Defaults to None. It will be deprecated in future.
Please use `backend_args` instead.
save_optimizer (bool): Whether to save the optimizer to
the checkpoint. Defaults to True.
save_param_scheduler (bool): Whether to save the param_scheduler
to the checkpoint. Defaults to True.
meta (dict, optional): The meta information to be saved in the
checkpoint. Defaults to None.
by_epoch (bool): Whether the scheduled momentum is updated by
epochs. Defaults to True.
backend_args (dict, optional): Arguments to instantiate the
prefix of uri corresponding backend. Defaults to None.
New in v0.2.0.
"""
if meta is None:
meta = {}
elif not isinstance(meta, dict):
raise TypeError(
f'meta should be a dict or None, but got {type(meta)}')
if by_epoch:
# self.epoch increments 1 after
# `self.call_hook('after_train_epoch)` but `save_checkpoint` is
# called by `after_train_epoch`` method of `CheckpointHook` so
# `epoch` should be `self.epoch + 1`
meta.update(epoch=self.epoch + 1, iter=self.iter)
else:
meta.update(epoch=self.epoch, iter=self.iter + 1)
if file_client_args is not None:
warnings.warn(
'"file_client_args" will be deprecated in future. '
'Please use "backend_args" instead', DeprecationWarning)
if backend_args is not None:
raise ValueError(
'"file_client_args" and "backend_args" cannot be set at '
'the same time.')
file_client = FileClient.infer_client(file_client_args, out_dir)
filepath = file_client.join_path(out_dir, filename)
else:
filepath = join_path( # type: ignore
out_dir, filename, backend_args=backend_args)
meta.update(
cfg=self.cfg.pretty_text,
seed=self.seed,
experiment_name=self.experiment_name,
time=time.strftime('%Y%m%d_%H%M%S', time.localtime()),
mmengine_version=mmengine.__version__ + get_git_hash())
if hasattr(self.train_dataloader.dataset, 'metainfo'):
meta.update(dataset_meta=self.train_dataloader.dataset.metainfo)
if is_model_wrapper(self.model):
model = self.model.module
else:
model = self.model
checkpoint = {
'meta': meta,
'state_dict': weights_to_cpu(get_state_dict(model)),
'message_hub': self.message_hub.state_dict()
}
# save optimizer state dict to checkpoint
if save_optimizer:
if isinstance(self.optim_wrapper, OptimWrapper):
checkpoint['optimizer'] = self.optim_wrapper.state_dict()
else:
raise TypeError(
'self.optim_wrapper should be an `OptimWrapper` '
'or `OptimWrapperDict` instance, but got '
f'{self.optim_wrapper}')
# save param scheduler state dict
if save_param_scheduler and self.param_schedulers is None:
print_log(
'`save_param_scheduler` is True but `self.param_schedulers` '
'is None, so skip saving parameter schedulers',
logger='current',
level=logging.WARNING)
save_param_scheduler = False
if save_param_scheduler:
if isinstance(self.param_schedulers, dict):
checkpoint['param_schedulers'] = dict()
for name, schedulers in self.param_schedulers.items():
checkpoint['param_schedulers'][name] = []
for scheduler in schedulers:
state_dict = scheduler.state_dict()
checkpoint['param_schedulers'][name].append(state_dict)
else:
checkpoint['param_schedulers'] = []
for scheduler in self.param_schedulers: # type: ignore
state_dict = scheduler.state_dict() # type: ignore
checkpoint['param_schedulers'].append(state_dict)
self.call_hook('before_save_checkpoint', checkpoint=checkpoint)
save_checkpoint(checkpoint, filepath)
@master_only
def dump_config(self) -> None:
version = ''
if len(self.trainer.loggers) > 0:
version = self.trainer.loggers[0].version
version = version if isinstance(version, str) else f"version_{version}"
if version == '':
# if no loggers, use default_root_dir
version = 'version'
"""Dump config to `work_dir`."""
if self.cfg.filename is not None:
filename = osp.basename(self.cfg.filename)
else:
filename = f'{self.timestamp}.py'
path = f'{self.trainer.default_root_dir}/{version}_{filename}'
self.cfg.dump(path)
def _check_scheduler_cfg(
self, param_scheduler: Optional[Union[dict, list,
_ParamScheduler]]) -> None:
"""Parse `param_scheduler` to a list of parameter schedulers, or a
`dict` of which each value is a list of parameter schedulers.
If only one optimizer is used, the parsed config should be a
list of parameter scheduler configs or instances. If multiple
optimizers are used, the parsed config should be `dict`.
Its key should be consistent with the optimizer `dict` and its value
should be a list of parameter scheduler configs or instances. See
:meth:`build_param_scheduler` for more details.
Examples:
>>> # valid scheduler:
>>> # empty scheduler
>>> scheduler = None
>>> # Single scheduler
>>> scheduler = dict(type='MultiStepLR', milestones=[1, 2])
>>> # Single list schedulers
>>> scheduler = [dict(type='MultiStepLR', milestones=[1, 2]),
>>> dict(type='MultiStepLR', milestones=[2, 3])]
>>> # `dict` of schedulers
>>> scheduler = dict(linear1=dict(type='MultiStepLR', milestones=[1, 2]),
>>> linear2=dict(type='MultiStepLR', milestones=[1, 2]))
>>> # `dict` of `list` of schedulers
>>> scheduler = dict(linear1=[dict(type='MultiStepLR', milestones=[1, 2])],
>>> linear2=[dict(type='MultiStepLR', milestones=[1, 2])])
>>> # Single built scheduler
>>> from mmengine.optim import MultiStepLR
>>> scheduler = MultiStepLR(milestones=[1, 2], optimizer=optimizer)
>>> # Single built list schedulers
>>> scheduler = [MultiStepLR(milestones=[1, 2], optimizer=optimizer)]
>>> # dict of built scheduler
>>> scheduler = dict(linear1=MultiStepLR(milestones=[1, 2], optimizer=optimizer),
>>> linear2=MultiStepLR(milestones=[1, 2], optimizer=optimizer))
>>> # dict of built list schedulers
>>> scheduler = dict(linear1=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)],
>>> linear2=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)])
Args:
param_scheduler (dict or list): The original parameter scheduler.
""" # noqa: E501
param_schedulers: Union[dict, list, _ParamScheduler]
if param_scheduler is None:
return
if isinstance(param_scheduler, _ParamScheduler):
return
if is_seq_of(param_scheduler, _ParamScheduler):
return
if is_seq_of(param_scheduler, dict):
for _param_scheduler in param_scheduler:
assert 'type' in _param_scheduler, (
'Each parameter scheduler should contain the key type, '
f'but got {_param_scheduler}')
elif isinstance(param_scheduler, dict):
if 'type' not in param_scheduler:
for key, _param_scheduler in param_scheduler.items():
assert isinstance(
_param_scheduler,
(dict, tuple, list, _ParamScheduler)), (
'Each value of `param_scheduler` should be a '
f'dict or a list, but got {_param_scheduler} with '
f'type {type(_ParamScheduler)}')
else:
raise TypeError(
'`param_scheduler` should be a `_ParamScheduler`, `dict`, '
f'list or a tuple, but got {type(param_scheduler)}. If '
'`param_scheduler` is a list of dict, it means a list of '
'scheduler configs for single optimizer. If it is a dict and '
'contains key `type`, it means a scheduler config for a '
'single optimizer. If it does not contain key `type`, it '
'means multiple lists of schedulers for multiple optimizers.')
def _log_env(self, env_cfg: dict) -> None:
"""Logging environment information of the current task.
Args:
env_cfg (dict): The environment config of the runner.
"""
# Collect and log environment information.
env = collect_env()
runtime_env = OrderedDict()
runtime_env.update(env_cfg)
runtime_env.update(self._randomness_cfg)
runtime_env['Distributed launcher'] = self._launcher
runtime_env['Distributed training'] = self._distributed
runtime_env['GPU number'] = self._world_size
env_info = '\n ' + '\n '.join(f'{k}: {v}'
for k, v in env.items())
runtime_env_info = '\n ' + '\n '.join(
f'{k}: {v}' for k, v in runtime_env.items())
dash_line = '-' * 60
self.logger.info('\n' + dash_line + '\nSystem environment:' +
env_info + '\n'
'\nRuntime environment:' + runtime_env_info + '\n' +
dash_line + '\n')
self.logger.info(f'Config:\n{self.cfg.pretty_text}') |