File size: 6,258 Bytes
1c3eb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
from mmengine.structures import InstanceData
from typing import List, Any

from mmpl.registry import MODELS
from mmseg.utils import SampleList
from .base_pler import BasePLer
import torch.nn.functional as F
from modules.sam import sam_model_registry


@MODELS.register_module()
class SegSAMDetPLer(BasePLer):
    def __init__(self,
                 whole_model,
                 backbone,
                 neck=None,
                 panoptic_head=None,
                 need_train_names=None,
                 train_cfg=None,
                 test_cfg=None,
                 *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.save_hyperparameters()
        self.need_train_names = need_train_names

        self.whole_model = MODELS.build(whole_model)
        backbone_type = backbone.pop('type')
        self.backbone = sam_model_registry[backbone_type](**backbone)

        if neck is not None:
            self.neck = MODELS.build(neck)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

    def setup(self, stage: str) -> None:
        super().setup(stage)
        if self.need_train_names is not None:
            self._set_grad(self.need_train_names, noneed_train_names=[])

    def init_weights(self):
        import ipdb; ipdb.set_trace()
        pass

    def train(self, mode=True):
        if self.need_train_names is not None:
            return self._set_train_module(mode, self.need_train_names)
        else:
            super().train(mode)
            return self

    def validation_step(self, batch, batch_idx):
        data = self.whole_model.data_preprocessor(batch, False)
        batch_data_samples = self.whole_model._run_forward(data, mode='predict')  # type: ignore

        batch_inputs = data['inputs']
        feat, inter_features = self.backbone.image_encoder(batch_inputs)
        # import ipdb; ipdb.set_trace()
        for idx, data_sample in enumerate(batch_data_samples):
            bboxes = data_sample.pred_instances['bboxes']
            ori_img_shape = data_sample.ori_shape
            if len(bboxes) == 0:
                im_mask = torch.zeros(
                    0,
                    ori_img_shape[0],
                    ori_img_shape[1],
                    device=self.device,
                    dtype=torch.bool)
            else:
                scale_factor = data_sample.scale_factor
                repeat_num = int(bboxes.size(-1) / 2)
                scale_factor = bboxes.new_tensor(scale_factor).repeat((1, repeat_num))
                bboxes = bboxes * scale_factor

                # Embed prompts
                sparse_embeddings, dense_embeddings = self.backbone.prompt_encoder(
                    points=None,
                    boxes=bboxes,
                    masks=None,
                )

                # Predict masks
                low_res_masks, iou_predictions = self.backbone.mask_decoder(
                    image_embeddings=feat[idx:idx + 1],
                    image_pe=self.backbone.prompt_encoder.get_dense_pe(),
                    sparse_prompt_embeddings=sparse_embeddings,
                    dense_prompt_embeddings=dense_embeddings,
                    multimask_output=False,
                )
                # Upscale the masks to the original image resolution
                im_mask = F.interpolate(low_res_masks, ori_img_shape, mode="bilinear", align_corners=False)
                im_mask = im_mask > 0
                im_mask = im_mask.squeeze(1)
            data_sample.pred_instances.masks = im_mask

        self.val_evaluator.update(batch, batch_data_samples)

    def training_step(self, batch, batch_idx):
        data = self.whole_model.data_preprocessor(batch, True)
        losses = self.whole_model._run_forward(data, mode='loss')  # type: ignore
        parsed_losses, log_vars = self.parse_losses(losses)
        log_vars = {f'train_{k}': v for k, v in log_vars.items()}
        log_vars['loss'] = parsed_losses
        self.log_dict(log_vars, prog_bar=True)
        return log_vars

    def on_before_optimizer_step(self, optimizer) -> None:
        self.log_grad(module=self.whole_model)

    def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any:
        data = self.whole_model.data_preprocessor(batch, False)
        batch_data_samples = self.whole_model._run_forward(data, mode='predict')  # type: ignore

        batch_inputs = data['inputs']
        feat, inter_features = self.backbone.image_encoder(batch_inputs)
        # import ipdb; ipdb.set_trace()
        for idx, data_sample in enumerate(batch_data_samples):
            bboxes = data_sample.pred_instances['bboxes']
            ori_img_shape = data_sample.ori_shape
            if len(bboxes) == 0:
                im_mask = torch.zeros(
                    0,
                    ori_img_shape[0],
                    ori_img_shape[1],
                    device=self.device,
                    dtype=torch.bool)
            else:
                scale_factor = data_sample.scale_factor
                repeat_num = int(bboxes.size(-1) / 2)
                scale_factor = bboxes.new_tensor(scale_factor).repeat((1, repeat_num))
                bboxes = bboxes * scale_factor

                # Embed prompts
                sparse_embeddings, dense_embeddings = self.backbone.prompt_encoder(
                    points=None,
                    boxes=bboxes,
                    masks=None,
                )

                # Predict masks
                low_res_masks, iou_predictions = self.backbone.mask_decoder(
                    image_embeddings=feat[idx:idx + 1],
                    image_pe=self.backbone.prompt_encoder.get_dense_pe(),
                    sparse_prompt_embeddings=sparse_embeddings,
                    dense_prompt_embeddings=dense_embeddings,
                    multimask_output=False,
                )
                # Upscale the masks to the original image resolution
                im_mask = F.interpolate(low_res_masks, ori_img_shape, mode="bilinear", align_corners=False)
                im_mask = im_mask > 0
                im_mask = im_mask.squeeze(1)
            data_sample.pred_instances.masks = im_mask

        return batch_data_samples