File size: 4,788 Bytes
4d0eb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmengine.model.weight_init import trunc_normal_

from mmpretrain.registry import MODELS
from .vision_transformer import VisionTransformer


@MODELS.register_module()
class DistilledVisionTransformer(VisionTransformer):
    """Distilled Vision Transformer.

    A PyTorch implement of : `Training data-efficient image transformers &
    distillation through attention <https://arxiv.org/abs/2012.12877>`_

    Args:
        arch (str | dict): Vision Transformer architecture. If use string,
            choose from 'small', 'base', 'large', 'deit-tiny', 'deit-small'
            and 'deit-base'. If use dict, it should have below keys:

            - **embed_dims** (int): The dimensions of embedding.
            - **num_layers** (int): The number of transformer encoder layers.
            - **num_heads** (int): The number of heads in attention modules.
            - **feedforward_channels** (int): The hidden dimensions in
              feedforward modules.

            Defaults to 'deit-base'.
        img_size (int | tuple): The expected input image shape. Because we
            support dynamic input shape, just set the argument to the most
            common input image shape. Defaults to 224.
        patch_size (int | tuple): The patch size in patch embedding.
            Defaults to 16.
        in_channels (int): The num of input channels. Defaults to 3.
        out_indices (Sequence | int): Output from which stages.
            Defaults to -1, means the last stage.
        drop_rate (float): Probability of an element to be zeroed.
            Defaults to 0.
        drop_path_rate (float): stochastic depth rate. Defaults to 0.
        qkv_bias (bool): Whether to add bias for qkv in attention modules.
            Defaults to True.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        final_norm (bool): Whether to add a additional layer to normalize
            final feature map. Defaults to True.
        out_type (str): The type of output features. Please choose from

            - ``"cls_token"``: A tuple with the class token and the
              distillation token. The shapes of both tensor are (B, C).
            - ``"featmap"``: The feature map tensor from the patch tokens
              with shape (B, C, H, W).
            - ``"avg_featmap"``: The global averaged feature map tensor
              with shape (B, C).
            - ``"raw"``: The raw feature tensor includes patch tokens and
              class tokens with shape (B, L, C).

            Defaults to ``"cls_token"``.
        interpolate_mode (str): Select the interpolate mode for position
            embeding vector resize. Defaults to "bicubic".
        patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
        layer_cfgs (Sequence | dict): Configs of each transformer layer in
            encoder. Defaults to an empty dict.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """
    num_extra_tokens = 2  # class token and distillation token

    def __init__(self, arch='deit-base', *args, **kwargs):
        super(DistilledVisionTransformer, self).__init__(
            arch=arch,
            with_cls_token=True,
            *args,
            **kwargs,
        )
        self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))

    def forward(self, x):
        B = x.shape[0]
        x, patch_resolution = self.patch_embed(x)

        # stole cls_tokens impl from Phil Wang, thanks
        cls_tokens = self.cls_token.expand(B, -1, -1)
        dist_token = self.dist_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, dist_token, x), dim=1)
        x = x + self.resize_pos_embed(
            self.pos_embed,
            self.patch_resolution,
            patch_resolution,
            mode=self.interpolate_mode,
            num_extra_tokens=self.num_extra_tokens)
        x = self.drop_after_pos(x)

        outs = []
        for i, layer in enumerate(self.layers):
            x = layer(x)

            if i == len(self.layers) - 1 and self.final_norm:
                x = self.ln1(x)

            if i in self.out_indices:
                outs.append(self._format_output(x, patch_resolution))

        return tuple(outs)

    def _format_output(self, x, hw):
        if self.out_type == 'cls_token':
            return x[:, 0], x[:, 1]

        return super()._format_output(x, hw)

    def init_weights(self):
        super(DistilledVisionTransformer, self).init_weights()

        if not (isinstance(self.init_cfg, dict)
                and self.init_cfg['type'] == 'Pretrained'):
            trunc_normal_(self.dist_token, std=0.02)