Spaces:
Runtime error
Runtime error
File size: 12,016 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from itertools import chain
from typing import Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn.bricks import build_activation_layer, build_norm_layer
from torch.jit.annotations import List
from mmpretrain.registry import MODELS
from .base_backbone import BaseBackbone
class DenseLayer(BaseBackbone):
"""DenseBlock layers."""
def __init__(self,
in_channels,
growth_rate,
bn_size,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
drop_rate=0.,
memory_efficient=False):
super(DenseLayer, self).__init__()
self.norm1 = build_norm_layer(norm_cfg, in_channels)[1]
self.conv1 = nn.Conv2d(
in_channels,
bn_size * growth_rate,
kernel_size=1,
stride=1,
bias=False)
self.act = build_activation_layer(act_cfg)
self.norm2 = build_norm_layer(norm_cfg, bn_size * growth_rate)[1]
self.conv2 = nn.Conv2d(
bn_size * growth_rate,
growth_rate,
kernel_size=3,
stride=1,
padding=1,
bias=False)
self.drop_rate = float(drop_rate)
self.memory_efficient = memory_efficient
def bottleneck_fn(self, xs):
# type: (List[torch.Tensor]) -> torch.Tensor
concated_features = torch.cat(xs, 1)
bottleneck_output = self.conv1(
self.act(self.norm1(concated_features))) # noqa: T484
return bottleneck_output
# todo: rewrite when torchscript supports any
def any_requires_grad(self, x):
# type: (List[torch.Tensor]) -> bool
for tensor in x:
if tensor.requires_grad:
return True
return False
# This decorator indicates to the compiler that a function or method
# should be ignored and replaced with the raising of an exception.
# Here this function is incompatible with torchscript.
@torch.jit.unused # noqa: T484
def call_checkpoint_bottleneck(self, x):
# type: (List[torch.Tensor]) -> torch.Tensor
def closure(*xs):
return self.bottleneck_fn(xs)
# Here use torch.utils.checkpoint to rerun a forward-pass during
# backward in bottleneck to save memories.
return cp.checkpoint(closure, *x)
def forward(self, x): # noqa: F811
# type: (List[torch.Tensor]) -> torch.Tensor
# assert input features is a list of Tensor
assert isinstance(x, list)
if self.memory_efficient and self.any_requires_grad(x):
if torch.jit.is_scripting():
raise Exception('Memory Efficient not supported in JIT')
bottleneck_output = self.call_checkpoint_bottleneck(x)
else:
bottleneck_output = self.bottleneck_fn(x)
new_features = self.conv2(self.act(self.norm2(bottleneck_output)))
if self.drop_rate > 0:
new_features = F.dropout(
new_features, p=self.drop_rate, training=self.training)
return new_features
class DenseBlock(nn.Module):
"""DenseNet Blocks."""
def __init__(self,
num_layers,
in_channels,
bn_size,
growth_rate,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
drop_rate=0.,
memory_efficient=False):
super(DenseBlock, self).__init__()
self.block = nn.ModuleList([
DenseLayer(
in_channels + i * growth_rate,
growth_rate=growth_rate,
bn_size=bn_size,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
drop_rate=drop_rate,
memory_efficient=memory_efficient) for i in range(num_layers)
])
def forward(self, init_features):
features = [init_features]
for layer in self.block:
new_features = layer(features)
features.append(new_features)
return torch.cat(features, 1)
class DenseTransition(nn.Sequential):
"""DenseNet Transition Layers."""
def __init__(self,
in_channels,
out_channels,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU')):
super(DenseTransition, self).__init__()
self.add_module('norm', build_norm_layer(norm_cfg, in_channels)[1])
self.add_module('act', build_activation_layer(act_cfg))
self.add_module(
'conv',
nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1,
bias=False))
self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))
@MODELS.register_module()
class DenseNet(BaseBackbone):
"""DenseNet.
A PyTorch implementation of : `Densely Connected Convolutional Networks
<https://arxiv.org/pdf/1608.06993.pdf>`_
Modified from the `official repo
<https://github.com/liuzhuang13/DenseNet>`_
and `pytorch
<https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py>`_.
Args:
arch (str | dict): The model's architecture. If string, it should be
one of architecture in ``DenseNet.arch_settings``. And if dict, it
should include the following two keys:
- growth_rate (int): Each layer of DenseBlock produce `k` feature
maps. Here refers `k` as the growth rate of the network.
- depths (list[int]): Number of repeated layers in each DenseBlock.
- init_channels (int): The output channels of stem layers.
Defaults to '121'.
in_channels (int): Number of input image channels. Defaults to 3.
bn_size (int): Refers to channel expansion parameter of 1x1
convolution layer. Defaults to 4.
drop_rate (float): Drop rate of Dropout Layer. Defaults to 0.
compression_factor (float): The reduction rate of transition layers.
Defaults to 0.5.
memory_efficient (bool): If True, uses checkpointing. Much more memory
efficient, but slower. Defaults to False.
See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_.
norm_cfg (dict): The config dict for norm layers.
Defaults to ``dict(type='BN')``.
act_cfg (dict): The config dict for activation after each convolution.
Defaults to ``dict(type='ReLU')``.
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
frozen_stages (int): Stages to be frozen (all param fixed).
Defaults to 0, which means not freezing any parameters.
init_cfg (dict, optional): Initialization config dict.
"""
arch_settings = {
'121': {
'growth_rate': 32,
'depths': [6, 12, 24, 16],
'init_channels': 64,
},
'169': {
'growth_rate': 32,
'depths': [6, 12, 32, 32],
'init_channels': 64,
},
'201': {
'growth_rate': 32,
'depths': [6, 12, 48, 32],
'init_channels': 64,
},
'161': {
'growth_rate': 48,
'depths': [6, 12, 36, 24],
'init_channels': 96,
},
}
def __init__(self,
arch='121',
in_channels=3,
bn_size=4,
drop_rate=0,
compression_factor=0.5,
memory_efficient=False,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
out_indices=-1,
frozen_stages=0,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
if isinstance(arch, str):
assert arch in self.arch_settings, \
f'Unavailable arch, please choose from ' \
f'({set(self.arch_settings)}) or pass a dict.'
arch = self.arch_settings[arch]
elif isinstance(arch, dict):
essential_keys = {'growth_rate', 'depths', 'init_channels'}
assert isinstance(arch, dict) and essential_keys <= set(arch), \
f'Custom arch needs a dict with keys {essential_keys}'
self.growth_rate = arch['growth_rate']
self.depths = arch['depths']
self.init_channels = arch['init_channels']
self.act = build_activation_layer(act_cfg)
self.num_stages = len(self.depths)
# check out indices and frozen stages
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = self.num_stages + index
assert out_indices[i] >= 0, f'Invalid out_indices {index}'
self.out_indices = out_indices
self.frozen_stages = frozen_stages
# Set stem layers
self.stem = nn.Sequential(
nn.Conv2d(
in_channels,
self.init_channels,
kernel_size=7,
stride=2,
padding=3,
bias=False),
build_norm_layer(norm_cfg, self.init_channels)[1], self.act,
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
# Repetitions of DenseNet Blocks
self.stages = nn.ModuleList()
self.transitions = nn.ModuleList()
channels = self.init_channels
for i in range(self.num_stages):
depth = self.depths[i]
stage = DenseBlock(
num_layers=depth,
in_channels=channels,
bn_size=bn_size,
growth_rate=self.growth_rate,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
drop_rate=drop_rate,
memory_efficient=memory_efficient)
self.stages.append(stage)
channels += depth * self.growth_rate
if i != self.num_stages - 1:
transition = DenseTransition(
in_channels=channels,
out_channels=math.floor(channels * compression_factor),
norm_cfg=norm_cfg,
act_cfg=act_cfg,
)
channels = math.floor(channels * compression_factor)
else:
# Final layers after dense block is just bn with act.
# Unlike the paper, the original repo also put this in
# transition layer, whereas torchvision take this out.
# We reckon this as transition layer here.
transition = nn.Sequential(
build_norm_layer(norm_cfg, channels)[1],
self.act,
)
self.transitions.append(transition)
self._freeze_stages()
def forward(self, x):
x = self.stem(x)
outs = []
for i in range(self.num_stages):
x = self.stages[i](x)
x = self.transitions[i](x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def _freeze_stages(self):
for i in range(self.frozen_stages):
downsample_layer = self.transitions[i]
stage = self.stages[i]
downsample_layer.eval()
stage.eval()
for param in chain(downsample_layer.parameters(),
stage.parameters()):
param.requires_grad = False
def train(self, mode=True):
super(DenseNet, self).train(mode)
self._freeze_stages()
|