Spaces:
Runtime error
Runtime error
File size: 18,959 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
# Copyright (c) OpenMMLab. All rights reserved.
# Adapted from official impl at https://github.com/raoyongming/HorNet.
try:
import torch.fft
fft = True
except ImportError:
fft = None
import copy
from functools import partial
from typing import Sequence
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from mmcv.cnn.bricks import DropPath
from mmpretrain.models.backbones.base_backbone import BaseBackbone
from mmpretrain.registry import MODELS
from ..utils import LayerScale
def get_dwconv(dim, kernel_size, bias=True):
"""build a pepth-wise convolution."""
return nn.Conv2d(
dim,
dim,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
bias=bias,
groups=dim)
class HorNetLayerNorm(nn.Module):
"""An implementation of LayerNorm of HorNet.
The differences between HorNetLayerNorm & torch LayerNorm:
1. Supports two data formats channels_last or channels_first.
Args:
normalized_shape (int or list or torch.Size): input shape from an
expected input of size.
eps (float): a value added to the denominator for numerical stability.
Defaults to 1e-5.
data_format (str): The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape (batch_size, height,
width, channels) while channels_first corresponds to inputs with
shape (batch_size, channels, height, width).
Defaults to 'channels_last'.
"""
def __init__(self,
normalized_shape,
eps=1e-6,
data_format='channels_last'):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ['channels_last', 'channels_first']:
raise ValueError(
'data_format must be channels_last or channels_first')
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == 'channels_last':
return F.layer_norm(x, self.normalized_shape, self.weight,
self.bias, self.eps)
elif self.data_format == 'channels_first':
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class GlobalLocalFilter(nn.Module):
"""A GlobalLocalFilter of HorNet.
Args:
dim (int): Number of input channels.
h (int): Height of complex_weight.
Defaults to 14.
w (int): Width of complex_weight.
Defaults to 8.
"""
def __init__(self, dim, h=14, w=8):
super().__init__()
self.dw = nn.Conv2d(
dim // 2,
dim // 2,
kernel_size=3,
padding=1,
bias=False,
groups=dim // 2)
self.complex_weight = nn.Parameter(
torch.randn(dim // 2, h, w, 2, dtype=torch.float32) * 0.02)
self.pre_norm = HorNetLayerNorm(
dim, eps=1e-6, data_format='channels_first')
self.post_norm = HorNetLayerNorm(
dim, eps=1e-6, data_format='channels_first')
def forward(self, x):
x = self.pre_norm(x)
x1, x2 = torch.chunk(x, 2, dim=1)
x1 = self.dw(x1)
x2 = x2.to(torch.float32)
B, C, a, b = x2.shape
x2 = torch.fft.rfft2(x2, dim=(2, 3), norm='ortho')
weight = self.complex_weight
if not weight.shape[1:3] == x2.shape[2:4]:
weight = F.interpolate(
weight.permute(3, 0, 1, 2),
size=x2.shape[2:4],
mode='bilinear',
align_corners=True).permute(1, 2, 3, 0)
weight = torch.view_as_complex(weight.contiguous())
x2 = x2 * weight
x2 = torch.fft.irfft2(x2, s=(a, b), dim=(2, 3), norm='ortho')
x = torch.cat([x1.unsqueeze(2), x2.unsqueeze(2)],
dim=2).reshape(B, 2 * C, a, b)
x = self.post_norm(x)
return x
class gnConv(nn.Module):
"""A gnConv of HorNet.
Args:
dim (int): Number of input channels.
order (int): Order of gnConv.
Defaults to 5.
dw_cfg (dict): The Config for dw conv.
Defaults to ``dict(type='DW', kernel_size=7)``.
scale (float): Scaling parameter of gflayer outputs.
Defaults to 1.0.
"""
def __init__(self,
dim,
order=5,
dw_cfg=dict(type='DW', kernel_size=7),
scale=1.0):
super().__init__()
self.order = order
self.dims = [dim // 2**i for i in range(order)]
self.dims.reverse()
self.proj_in = nn.Conv2d(dim, 2 * dim, 1)
cfg = copy.deepcopy(dw_cfg)
dw_type = cfg.pop('type')
assert dw_type in ['DW', 'GF'],\
'dw_type should be `DW` or `GF`'
if dw_type == 'DW':
self.dwconv = get_dwconv(sum(self.dims), **cfg)
elif dw_type == 'GF':
self.dwconv = GlobalLocalFilter(sum(self.dims), **cfg)
self.proj_out = nn.Conv2d(dim, dim, 1)
self.projs = nn.ModuleList([
nn.Conv2d(self.dims[i], self.dims[i + 1], 1)
for i in range(order - 1)
])
self.scale = scale
def forward(self, x):
x = self.proj_in(x)
y, x = torch.split(x, (self.dims[0], sum(self.dims)), dim=1)
x = self.dwconv(x) * self.scale
dw_list = torch.split(x, self.dims, dim=1)
x = y * dw_list[0]
for i in range(self.order - 1):
x = self.projs[i](x) * dw_list[i + 1]
x = self.proj_out(x)
return x
class HorNetBlock(nn.Module):
"""A block of HorNet.
Args:
dim (int): Number of input channels.
order (int): Order of gnConv.
Defaults to 5.
dw_cfg (dict): The Config for dw conv.
Defaults to ``dict(type='DW', kernel_size=7)``.
scale (float): Scaling parameter of gflayer outputs.
Defaults to 1.0.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
use_layer_scale (bool): Whether to use use_layer_scale in HorNet
block. Defaults to True.
"""
def __init__(self,
dim,
order=5,
dw_cfg=dict(type='DW', kernel_size=7),
scale=1.0,
drop_path_rate=0.,
use_layer_scale=True):
super().__init__()
self.out_channels = dim
self.norm1 = HorNetLayerNorm(
dim, eps=1e-6, data_format='channels_first')
self.gnconv = gnConv(dim, order, dw_cfg, scale)
self.norm2 = HorNetLayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
if use_layer_scale:
self.gamma1 = LayerScale(dim, data_format='channels_first')
self.gamma2 = LayerScale(dim)
else:
self.gamma1, self.gamma2 = nn.Identity(), nn.Identity()
self.drop_path = DropPath(
drop_path_rate) if drop_path_rate > 0. else nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.gamma1(self.gnconv(self.norm1(x))))
input = x
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm2(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
x = self.gamma2(x)
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
@MODELS.register_module()
class HorNet(BaseBackbone):
"""HorNet backbone.
A PyTorch implementation of paper `HorNet: Efficient High-Order Spatial
Interactions with Recursive Gated Convolutions
<https://arxiv.org/abs/2207.14284>`_ .
Inspiration from https://github.com/raoyongming/HorNet
Args:
arch (str | dict): HorNet architecture.
If use string, choose from 'tiny', 'small', 'base' and 'large'.
If use dict, it should have below keys:
- **base_dim** (int): The base dimensions of embedding.
- **depths** (List[int]): The number of blocks in each stage.
- **orders** (List[int]): The number of order of gnConv in each
stage.
- **dw_cfg** (List[dict]): The Config for dw conv.
Defaults to 'tiny'.
in_channels (int): Number of input image channels. Defaults to 3.
drop_path_rate (float): Stochastic depth rate. Defaults to 0.
scale (float): Scaling parameter of gflayer outputs. Defaults to 1/3.
use_layer_scale (bool): Whether to use use_layer_scale in HorNet
block. Defaults to True.
out_indices (Sequence[int]): Output from which stages.
Default: ``(3, )``.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
gap_before_final_norm (bool): Whether to globally average the feature
map before the final norm layer. In the official repo, it's only
used in classification task. Defaults to True.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
arch_zoo = {
**dict.fromkeys(['t', 'tiny'],
{'base_dim': 64,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['t-gf', 'tiny-gf'],
{'base_dim': 64,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['s', 'small'],
{'base_dim': 96,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['s-gf', 'small-gf'],
{'base_dim': 96,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['b', 'base'],
{'base_dim': 128,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['b-gf', 'base-gf'],
{'base_dim': 128,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['b-gf384', 'base-gf384'],
{'base_dim': 128,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=24, w=12),
dict(type='GF', h=13, w=7)]}),
**dict.fromkeys(['l', 'large'],
{'base_dim': 192,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}),
**dict.fromkeys(['l-gf', 'large-gf'],
{'base_dim': 192,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=14, w=8),
dict(type='GF', h=7, w=4)]}),
**dict.fromkeys(['l-gf384', 'large-gf384'],
{'base_dim': 192,
'depths': [2, 3, 18, 2],
'orders': [2, 3, 4, 5],
'dw_cfg': [
dict(type='DW', kernel_size=7),
dict(type='DW', kernel_size=7),
dict(type='GF', h=24, w=12),
dict(type='GF', h=13, w=7)]}),
} # yapf: disable
def __init__(self,
arch='tiny',
in_channels=3,
drop_path_rate=0.,
scale=1 / 3,
use_layer_scale=True,
out_indices=(3, ),
frozen_stages=-1,
with_cp=False,
gap_before_final_norm=True,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
if fft is None:
raise RuntimeError(
'Failed to import torch.fft. Please install "torch>=1.7".')
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {'base_dim', 'depths', 'orders', 'dw_cfg'}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.scale = scale
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.with_cp = with_cp
self.gap_before_final_norm = gap_before_final_norm
base_dim = self.arch_settings['base_dim']
dims = list(map(lambda x: 2**x * base_dim, range(4)))
self.downsample_layers = nn.ModuleList()
stem = nn.Sequential(
nn.Conv2d(in_channels, dims[0], kernel_size=4, stride=4),
HorNetLayerNorm(dims[0], eps=1e-6, data_format='channels_first'))
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
HorNetLayerNorm(
dims[i], eps=1e-6, data_format='channels_first'),
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
total_depth = sum(self.arch_settings['depths'])
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, total_depth)
] # stochastic depth decay rule
cur_block_idx = 0
self.stages = nn.ModuleList()
for i in range(4):
stage = nn.Sequential(*[
HorNetBlock(
dim=dims[i],
order=self.arch_settings['orders'][i],
dw_cfg=self.arch_settings['dw_cfg'][i],
scale=self.scale,
drop_path_rate=dpr[cur_block_idx + j],
use_layer_scale=use_layer_scale)
for j in range(self.arch_settings['depths'][i])
])
self.stages.append(stage)
cur_block_idx += self.arch_settings['depths'][i]
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
out_indices = list(out_indices)
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = len(self.stages) + index
assert 0 <= out_indices[i] <= len(self.stages), \
f'Invalid out_indices {index}.'
self.out_indices = out_indices
norm_layer = partial(
HorNetLayerNorm, eps=1e-6, data_format='channels_first')
for i_layer in out_indices:
layer = norm_layer(dims[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
def train(self, mode=True):
super(HorNet, self).train(mode)
self._freeze_stages()
def _freeze_stages(self):
for i in range(0, self.frozen_stages + 1):
# freeze patch embed
m = self.downsample_layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
# freeze blocks
m = self.stages[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
if i in self.out_indices:
# freeze norm
m = getattr(self, f'norm{i + 1}')
m.eval()
for param in m.parameters():
param.requires_grad = False
def forward(self, x):
outs = []
for i in range(4):
x = self.downsample_layers[i](x)
if self.with_cp:
x = checkpoint.checkpoint_sequential(self.stages[i],
len(self.stages[i]), x)
else:
x = self.stages[i](x)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
if self.gap_before_final_norm:
gap = x.mean([-2, -1], keepdim=True)
outs.append(norm_layer(gap).flatten(1))
else:
# The output of LayerNorm2d may be discontiguous, which
# may cause some problem in the downstream tasks
outs.append(norm_layer(x).contiguous())
return tuple(outs)
|