Spaces:
Runtime error
Runtime error
File size: 18,201 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import torch
import torch.nn as nn
from mmcv.cnn import build_activation_layer, fuse_conv_bn
from mmcv.cnn.bricks import DropPath
from mmengine.model import BaseModule, ModuleList, Sequential
from mmpretrain.models.backbones.base_backbone import BaseBackbone
from mmpretrain.registry import MODELS
from ..utils import build_norm_layer
class HybridBackbone(BaseModule):
def __init__(
self,
embed_dim,
kernel_size=3,
stride=2,
pad=1,
dilation=1,
groups=1,
act_cfg=dict(type='HSwish'),
conv_cfg=None,
norm_cfg=dict(type='BN'),
init_cfg=None,
):
super(HybridBackbone, self).__init__(init_cfg=init_cfg)
self.input_channels = [
3, embed_dim // 8, embed_dim // 4, embed_dim // 2
]
self.output_channels = [
embed_dim // 8, embed_dim // 4, embed_dim // 2, embed_dim
]
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.patch_embed = Sequential()
for i in range(len(self.input_channels)):
conv_bn = ConvolutionBatchNorm(
self.input_channels[i],
self.output_channels[i],
kernel_size=kernel_size,
stride=stride,
pad=pad,
dilation=dilation,
groups=groups,
norm_cfg=norm_cfg,
)
self.patch_embed.add_module('%d' % (2 * i), conv_bn)
if i < len(self.input_channels) - 1:
self.patch_embed.add_module('%d' % (i * 2 + 1),
build_activation_layer(act_cfg))
def forward(self, x):
x = self.patch_embed(x)
return x
class ConvolutionBatchNorm(BaseModule):
def __init__(
self,
in_channel,
out_channel,
kernel_size=3,
stride=2,
pad=1,
dilation=1,
groups=1,
norm_cfg=dict(type='BN'),
):
super(ConvolutionBatchNorm, self).__init__()
self.conv = nn.Conv2d(
in_channel,
out_channel,
kernel_size=kernel_size,
stride=stride,
padding=pad,
dilation=dilation,
groups=groups,
bias=False)
self.bn = build_norm_layer(norm_cfg, out_channel)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
@torch.no_grad()
def fuse(self):
return fuse_conv_bn(self).conv
class LinearBatchNorm(BaseModule):
def __init__(self, in_feature, out_feature, norm_cfg=dict(type='BN1d')):
super(LinearBatchNorm, self).__init__()
self.linear = nn.Linear(in_feature, out_feature, bias=False)
self.bn = build_norm_layer(norm_cfg, out_feature)
def forward(self, x):
x = self.linear(x)
x = self.bn(x.flatten(0, 1)).reshape_as(x)
return x
@torch.no_grad()
def fuse(self):
w = self.bn.weight / (self.bn.running_var + self.bn.eps)**0.5
w = self.linear.weight * w[:, None]
b = self.bn.bias - self.bn.running_mean * self.bn.weight / \
(self.bn.running_var + self.bn.eps) ** 0.5
factory_kwargs = {
'device': self.linear.weight.device,
'dtype': self.linear.weight.dtype
}
bias = nn.Parameter(
torch.empty(self.linear.out_features, **factory_kwargs))
self.linear.register_parameter('bias', bias)
self.linear.weight.data.copy_(w)
self.linear.bias.data.copy_(b)
return self.linear
class Residual(BaseModule):
def __init__(self, block, drop_path_rate=0.):
super(Residual, self).__init__()
self.block = block
if drop_path_rate > 0:
self.drop_path = DropPath(drop_path_rate)
else:
self.drop_path = nn.Identity()
def forward(self, x):
x = x + self.drop_path(self.block(x))
return x
class Attention(BaseModule):
def __init__(
self,
dim,
key_dim,
num_heads=8,
attn_ratio=4,
act_cfg=dict(type='HSwish'),
resolution=14,
):
super(Attention, self).__init__()
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
self.qkv = LinearBatchNorm(dim, h)
self.proj = nn.Sequential(
build_activation_layer(act_cfg), LinearBatchNorm(self.dh, dim))
points = list(itertools.product(range(resolution), range(resolution)))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(
torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs',
torch.LongTensor(idxs).view(N, N))
@torch.no_grad()
def train(self, mode=True):
"""change the mode of model."""
super(Attention, self).train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x): # x (B,N,C)
B, N, C = x.shape # 2 196 128
qkv = self.qkv(x) # 2 196 128
q, k, v = qkv.view(B, N, self.num_heads, -1).split(
[self.key_dim, self.key_dim, self.d],
dim=3) # q 2 196 4 16 ; k 2 196 4 16; v 2 196 4 32
q = q.permute(0, 2, 1, 3) # 2 4 196 16
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
attn = ((q @ k.transpose(-2, -1)) *
self.scale # 2 4 196 16 * 2 4 16 196 -> 2 4 196 196
+ (self.attention_biases[:, self.attention_bias_idxs]
if self.training else self.ab))
attn = attn.softmax(dim=-1) # 2 4 196 196 -> 2 4 196 196
x = (attn @ v).transpose(1, 2).reshape(
B, N,
self.dh) # 2 4 196 196 * 2 4 196 32 -> 2 4 196 32 -> 2 196 128
x = self.proj(x)
return x
class MLP(nn.Sequential):
def __init__(self, embed_dim, mlp_ratio, act_cfg=dict(type='HSwish')):
super(MLP, self).__init__()
h = embed_dim * mlp_ratio
self.linear1 = LinearBatchNorm(embed_dim, h)
self.activation = build_activation_layer(act_cfg)
self.linear2 = LinearBatchNorm(h, embed_dim)
def forward(self, x):
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
return x
class Subsample(BaseModule):
def __init__(self, stride, resolution):
super(Subsample, self).__init__()
self.stride = stride
self.resolution = resolution
def forward(self, x):
B, _, C = x.shape
# B, N, C -> B, H, W, C
x = x.view(B, self.resolution, self.resolution, C)
x = x[:, ::self.stride, ::self.stride]
x = x.reshape(B, -1, C) # B, H', W', C -> B, N', C
return x
class AttentionSubsample(nn.Sequential):
def __init__(self,
in_dim,
out_dim,
key_dim,
num_heads=8,
attn_ratio=2,
act_cfg=dict(type='HSwish'),
stride=2,
resolution=14):
super(AttentionSubsample, self).__init__()
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * self.num_heads
self.attn_ratio = attn_ratio
self.sub_resolution = (resolution - 1) // stride + 1
h = self.dh + nh_kd
self.kv = LinearBatchNorm(in_dim, h)
self.q = nn.Sequential(
Subsample(stride, resolution), LinearBatchNorm(in_dim, nh_kd))
self.proj = nn.Sequential(
build_activation_layer(act_cfg), LinearBatchNorm(self.dh, out_dim))
self.stride = stride
self.resolution = resolution
points = list(itertools.product(range(resolution), range(resolution)))
sub_points = list(
itertools.product(
range(self.sub_resolution), range(self.sub_resolution)))
N = len(points)
N_sub = len(sub_points)
attention_offsets = {}
idxs = []
for p1 in sub_points:
for p2 in points:
size = 1
offset = (abs(p1[0] * stride - p2[0] + (size - 1) / 2),
abs(p1[1] * stride - p2[1] + (size - 1) / 2))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(
torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs',
torch.LongTensor(idxs).view(N_sub, N))
@torch.no_grad()
def train(self, mode=True):
super(AttentionSubsample, self).train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x):
B, N, C = x.shape
k, v = self.kv(x).view(B, N, self.num_heads,
-1).split([self.key_dim, self.d], dim=3)
k = k.permute(0, 2, 1, 3) # BHNC
v = v.permute(0, 2, 1, 3) # BHNC
q = self.q(x).view(B, self.sub_resolution**2, self.num_heads,
self.key_dim).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale + \
(self.attention_biases[:, self.attention_bias_idxs]
if self.training else self.ab)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, -1, self.dh)
x = self.proj(x)
return x
@MODELS.register_module()
class LeViT(BaseBackbone):
"""LeViT backbone.
A PyTorch implementation of `LeViT: A Vision Transformer in ConvNet's
Clothing for Faster Inference <https://arxiv.org/abs/2104.01136>`_
Modified from the official implementation:
https://github.com/facebookresearch/LeViT
Args:
arch (str | dict): LeViT architecture.
If use string, choose from '128s', '128', '192', '256' and '384'.
If use dict, it should have below keys:
- **embed_dims** (List[int]): The embed dimensions of each stage.
- **key_dims** (List[int]): The embed dimensions of the key in the
attention layers of each stage.
- **num_heads** (List[int]): The number of heads in each stage.
- **depths** (List[int]): The number of blocks in each stage.
img_size (int): Input image size
patch_size (int | tuple): The patch size. Deault to 16
attn_ratio (int): Ratio of hidden dimensions of the value in attention
layers. Defaults to 2.
mlp_ratio (int): Ratio of hidden dimensions in MLP layers.
Defaults to 2.
act_cfg (dict): The config of activation functions.
Defaults to ``dict(type='HSwish')``.
hybrid_backbone (callable): A callable object to build the patch embed
module. Defaults to use :class:`HybridBackbone`.
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
deploy (bool): Whether to switch the model structure to
deployment mode. Defaults to False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
arch_zoo = {
'128s': {
'embed_dims': [128, 256, 384],
'num_heads': [4, 6, 8],
'depths': [2, 3, 4],
'key_dims': [16, 16, 16],
},
'128': {
'embed_dims': [128, 256, 384],
'num_heads': [4, 8, 12],
'depths': [4, 4, 4],
'key_dims': [16, 16, 16],
},
'192': {
'embed_dims': [192, 288, 384],
'num_heads': [3, 5, 6],
'depths': [4, 4, 4],
'key_dims': [32, 32, 32],
},
'256': {
'embed_dims': [256, 384, 512],
'num_heads': [4, 6, 8],
'depths': [4, 4, 4],
'key_dims': [32, 32, 32],
},
'384': {
'embed_dims': [384, 512, 768],
'num_heads': [6, 9, 12],
'depths': [4, 4, 4],
'key_dims': [32, 32, 32],
},
}
def __init__(self,
arch,
img_size=224,
patch_size=16,
attn_ratio=2,
mlp_ratio=2,
act_cfg=dict(type='HSwish'),
hybrid_backbone=HybridBackbone,
out_indices=-1,
deploy=False,
drop_path_rate=0,
init_cfg=None):
super(LeViT, self).__init__(init_cfg=init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch = self.arch_zoo[arch]
elif isinstance(arch, dict):
essential_keys = {'embed_dim', 'num_heads', 'depth', 'key_dim'}
assert isinstance(arch, dict) and set(arch) == essential_keys, \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch = arch
else:
raise TypeError('Expect "arch" to be either a string '
f'or a dict, got {type(arch)}')
self.embed_dims = self.arch['embed_dims']
self.num_heads = self.arch['num_heads']
self.key_dims = self.arch['key_dims']
self.depths = self.arch['depths']
self.num_stages = len(self.embed_dims)
self.drop_path_rate = drop_path_rate
self.patch_embed = hybrid_backbone(self.embed_dims[0])
self.resolutions = []
resolution = img_size // patch_size
self.stages = ModuleList()
for i, (embed_dims, key_dims, depth, num_heads) in enumerate(
zip(self.embed_dims, self.key_dims, self.depths,
self.num_heads)):
blocks = []
if i > 0:
downsample = AttentionSubsample(
in_dim=self.embed_dims[i - 1],
out_dim=embed_dims,
key_dim=key_dims,
num_heads=self.embed_dims[i - 1] // key_dims,
attn_ratio=4,
act_cfg=act_cfg,
stride=2,
resolution=resolution)
blocks.append(downsample)
resolution = downsample.sub_resolution
if mlp_ratio > 0: # mlp_ratio
blocks.append(
Residual(
MLP(embed_dims, mlp_ratio, act_cfg=act_cfg),
self.drop_path_rate))
self.resolutions.append(resolution)
for _ in range(depth):
blocks.append(
Residual(
Attention(
embed_dims,
key_dims,
num_heads,
attn_ratio=attn_ratio,
act_cfg=act_cfg,
resolution=resolution,
), self.drop_path_rate))
if mlp_ratio > 0:
blocks.append(
Residual(
MLP(embed_dims, mlp_ratio, act_cfg=act_cfg),
self.drop_path_rate))
self.stages.append(Sequential(*blocks))
if isinstance(out_indices, int):
out_indices = [out_indices]
elif isinstance(out_indices, tuple):
out_indices = list(out_indices)
elif not isinstance(out_indices, list):
raise TypeError('"out_indices" must by a list, tuple or int, '
f'get {type(out_indices)} instead.')
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = self.num_stages + index
assert 0 <= out_indices[i] < self.num_stages, \
f'Invalid out_indices {index}.'
self.out_indices = out_indices
self.deploy = False
if deploy:
self.switch_to_deploy()
def switch_to_deploy(self):
if self.deploy:
return
fuse_parameters(self)
self.deploy = True
def forward(self, x):
x = self.patch_embed(x)
x = x.flatten(2).transpose(1, 2) # B, C, H, W -> B, L, C
outs = []
for i, stage in enumerate(self.stages):
x = stage(x)
B, _, C = x.shape
if i in self.out_indices:
out = x.reshape(B, self.resolutions[i], self.resolutions[i], C)
out = out.permute(0, 3, 1, 2).contiguous()
outs.append(out)
return tuple(outs)
def fuse_parameters(module):
for child_name, child in module.named_children():
if hasattr(child, 'fuse'):
setattr(module, child_name, child.fuse())
else:
fuse_parameters(child)
|