Spaces:
Runtime error
Runtime error
File size: 25,324 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from mmcv.cnn import build_activation_layer, build_norm_layer
from mmcv.cnn.bricks import DropPath
from mmengine.model import BaseModule
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from mmpretrain.registry import MODELS
from .base_backbone import BaseBackbone
def conv_bn(in_channels,
out_channels,
kernel_size,
stride,
padding,
groups,
dilation=1,
norm_cfg=dict(type='BN')):
"""Construct a sequential conv and bn.
Args:
in_channels (int): Dimension of input features.
out_channels (int): Dimension of output features.
kernel_size (int): kernel_size of the convolution.
stride (int): stride of the convolution.
padding (int): stride of the convolution.
groups (int): groups of the convolution.
dilation (int): dilation of the convolution. Default to 1.
norm_cfg (dict): dictionary to construct and config norm layer.
Default to ``dict(type='BN', requires_grad=True)``.
Returns:
nn.Sequential(): A conv layer and a batch norm layer.
"""
if padding is None:
padding = kernel_size // 2
result = nn.Sequential()
result.add_module(
'conv',
nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=False))
result.add_module('bn', build_norm_layer(norm_cfg, out_channels)[1])
return result
def conv_bn_relu(in_channels,
out_channels,
kernel_size,
stride,
padding,
groups,
dilation=1):
"""Construct a sequential conv, bn and relu.
Args:
in_channels (int): Dimension of input features.
out_channels (int): Dimension of output features.
kernel_size (int): kernel_size of the convolution.
stride (int): stride of the convolution.
padding (int): stride of the convolution.
groups (int): groups of the convolution.
dilation (int): dilation of the convolution. Default to 1.
Returns:
nn.Sequential(): A conv layer, batch norm layer and a relu function.
"""
if padding is None:
padding = kernel_size // 2
result = conv_bn(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
dilation=dilation)
result.add_module('nonlinear', nn.ReLU())
return result
def fuse_bn(conv, bn):
"""Fuse the parameters in a branch with a conv and bn.
Args:
conv (nn.Conv2d): The convolution module to fuse.
bn (nn.BatchNorm2d): The batch normalization to fuse.
Returns:
tuple[torch.Tensor, torch.Tensor]: The parameters obtained after
fusing the parameters of conv and bn in one branch.
The first element is the weight and the second is the bias.
"""
kernel = conv.weight
running_mean = bn.running_mean
running_var = bn.running_var
gamma = bn.weight
beta = bn.bias
eps = bn.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
class ReparamLargeKernelConv(BaseModule):
"""Super large kernel implemented by with large convolutions.
Input: Tensor with shape [B, C, H, W].
Output: Tensor with shape [B, C, H, W].
Args:
in_channels (int): Dimension of input features.
out_channels (int): Dimension of output features.
kernel_size (int): kernel_size of the large convolution.
stride (int): stride of the large convolution.
groups (int): groups of the large convolution.
small_kernel (int): kernel_size of the small convolution.
small_kernel_merged (bool): Whether to switch the model structure to
deployment mode (merge the small kernel to the large kernel).
Default to False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride,
groups,
small_kernel,
small_kernel_merged=False,
init_cfg=None):
super(ReparamLargeKernelConv, self).__init__(init_cfg)
self.kernel_size = kernel_size
self.small_kernel = small_kernel
self.small_kernel_merged = small_kernel_merged
# We assume the conv does not change the feature map size,
# so padding = k//2.
# Otherwise, you may configure padding as you wish,
# and change the padding of small_conv accordingly.
padding = kernel_size // 2
if small_kernel_merged:
self.lkb_reparam = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=1,
groups=groups,
bias=True)
else:
self.lkb_origin = conv_bn(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=1,
groups=groups)
if small_kernel is not None:
assert small_kernel <= kernel_size
self.small_conv = conv_bn(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=small_kernel,
stride=stride,
padding=small_kernel // 2,
groups=groups,
dilation=1)
def forward(self, inputs):
if hasattr(self, 'lkb_reparam'):
out = self.lkb_reparam(inputs)
else:
out = self.lkb_origin(inputs)
if hasattr(self, 'small_conv'):
out += self.small_conv(inputs)
return out
def get_equivalent_kernel_bias(self):
eq_k, eq_b = fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn)
if hasattr(self, 'small_conv'):
small_k, small_b = fuse_bn(self.small_conv.conv,
self.small_conv.bn)
eq_b += small_b
# add to the central part
eq_k += nn.functional.pad(
small_k, [(self.kernel_size - self.small_kernel) // 2] * 4)
return eq_k, eq_b
def merge_kernel(self):
"""Switch the model structure from training mode to deployment mode."""
if self.small_kernel_merged:
return
eq_k, eq_b = self.get_equivalent_kernel_bias()
self.lkb_reparam = nn.Conv2d(
in_channels=self.lkb_origin.conv.in_channels,
out_channels=self.lkb_origin.conv.out_channels,
kernel_size=self.lkb_origin.conv.kernel_size,
stride=self.lkb_origin.conv.stride,
padding=self.lkb_origin.conv.padding,
dilation=self.lkb_origin.conv.dilation,
groups=self.lkb_origin.conv.groups,
bias=True)
self.lkb_reparam.weight.data = eq_k
self.lkb_reparam.bias.data = eq_b
self.__delattr__('lkb_origin')
if hasattr(self, 'small_conv'):
self.__delattr__('small_conv')
self.small_kernel_merged = True
class ConvFFN(BaseModule):
"""Mlp implemented by with 1*1 convolutions.
Input: Tensor with shape [B, C, H, W].
Output: Tensor with shape [B, C, H, W].
Args:
in_channels (int): Dimension of input features.
internal_channels (int): Dimension of hidden features.
out_channels (int): Dimension of output features.
drop_path (float): Stochastic depth rate. Defaults to 0.
norm_cfg (dict): dictionary to construct and config norm layer.
Default to ``dict(type='BN', requires_grad=True)``.
act_cfg (dict): The config dict for activation between pointwise
convolution. Defaults to ``dict(type='GELU')``.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
in_channels,
internal_channels,
out_channels,
drop_path,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='GELU'),
init_cfg=None):
super(ConvFFN, self).__init__(init_cfg)
self.drop_path = DropPath(
drop_prob=drop_path) if drop_path > 0. else nn.Identity()
self.preffn_bn = build_norm_layer(norm_cfg, in_channels)[1]
self.pw1 = conv_bn(
in_channels=in_channels,
out_channels=internal_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1)
self.pw2 = conv_bn(
in_channels=internal_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
padding=0,
groups=1)
self.nonlinear = build_activation_layer(act_cfg)
def forward(self, x):
out = self.preffn_bn(x)
out = self.pw1(out)
out = self.nonlinear(out)
out = self.pw2(out)
return x + self.drop_path(out)
class RepLKBlock(BaseModule):
"""RepLKBlock for RepLKNet backbone.
Args:
in_channels (int): The input channels of the block.
dw_channels (int): The intermediate channels of the block,
i.e., input channels of the large kernel convolution.
block_lk_size (int): size of the super large kernel. Defaults: 31.
small_kernel (int): size of the parallel small kernel. Defaults: 5.
drop_path (float): Stochastic depth rate. Defaults: 0.
small_kernel_merged (bool): Whether to switch the model structure to
deployment mode (merge the small kernel to the large kernel).
Default to False.
norm_cfg (dict): dictionary to construct and config norm layer.
Default to ``dict(type='BN', requires_grad=True)``.
act_cfg (dict): Config dict for activation layer.
Default to ``dict(type='ReLU')``.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default to None
"""
def __init__(self,
in_channels,
dw_channels,
block_lk_size,
small_kernel,
drop_path,
small_kernel_merged=False,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
init_cfg=None):
super(RepLKBlock, self).__init__(init_cfg)
self.pw1 = conv_bn_relu(in_channels, dw_channels, 1, 1, 0, groups=1)
self.pw2 = conv_bn(dw_channels, in_channels, 1, 1, 0, groups=1)
self.large_kernel = ReparamLargeKernelConv(
in_channels=dw_channels,
out_channels=dw_channels,
kernel_size=block_lk_size,
stride=1,
groups=dw_channels,
small_kernel=small_kernel,
small_kernel_merged=small_kernel_merged)
self.lk_nonlinear = build_activation_layer(act_cfg)
self.prelkb_bn = build_norm_layer(norm_cfg, in_channels)[1]
self.drop_path = DropPath(
drop_prob=drop_path) if drop_path > 0. else nn.Identity()
# print('drop path:', self.drop_path)
def forward(self, x):
out = self.prelkb_bn(x)
out = self.pw1(out)
out = self.large_kernel(out)
out = self.lk_nonlinear(out)
out = self.pw2(out)
return x + self.drop_path(out)
class RepLKNetStage(BaseModule):
"""
generate RepLKNet blocks for a stage
return: RepLKNet blocks
Args:
channels (int): The input channels of the stage.
num_blocks (int): The number of blocks of the stage.
stage_lk_size (int): size of the super large kernel. Defaults: 31.
drop_path (float): Stochastic depth rate. Defaults: 0.
small_kernel (int): size of the parallel small kernel. Defaults: 5.
dw_ratio (float): The intermediate channels
expansion ratio of the block. Defaults: 1.
ffn_ratio (float): Mlp expansion ratio. Defaults to 4.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default to False.
small_kernel_merged (bool): Whether to switch the model structure to
deployment mode (merge the small kernel to the large kernel).
Default to False.
norm_intermediate_features (bool): Construct and config norm layer
or not.
Using True will normalize the intermediate features for
downstream dense prediction tasks.
norm_cfg (dict): dictionary to construct and config norm layer.
Default to ``dict(type='BN', requires_grad=True)``.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default to None
"""
def __init__(
self,
channels,
num_blocks,
stage_lk_size,
drop_path,
small_kernel,
dw_ratio=1,
ffn_ratio=4,
with_cp=False, # train with torch.utils.checkpoint to save memory
small_kernel_merged=False,
norm_intermediate_features=False,
norm_cfg=dict(type='BN'),
init_cfg=None):
super(RepLKNetStage, self).__init__(init_cfg)
self.with_cp = with_cp
blks = []
for i in range(num_blocks):
block_drop_path = drop_path[i] if isinstance(drop_path,
list) else drop_path
# Assume all RepLK Blocks within a stage share the same lk_size.
# You may tune it on your own model.
replk_block = RepLKBlock(
in_channels=channels,
dw_channels=int(channels * dw_ratio),
block_lk_size=stage_lk_size,
small_kernel=small_kernel,
drop_path=block_drop_path,
small_kernel_merged=small_kernel_merged)
convffn_block = ConvFFN(
in_channels=channels,
internal_channels=int(channels * ffn_ratio),
out_channels=channels,
drop_path=block_drop_path)
blks.append(replk_block)
blks.append(convffn_block)
self.blocks = nn.ModuleList(blks)
if norm_intermediate_features:
self.norm = build_norm_layer(norm_cfg, channels)[1]
else:
self.norm = nn.Identity()
def forward(self, x):
for blk in self.blocks:
if self.with_cp:
x = checkpoint.checkpoint(blk, x) # Save training memory
else:
x = blk(x)
return x
@MODELS.register_module()
class RepLKNet(BaseBackbone):
"""RepLKNet backbone.
A PyTorch impl of :
`Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs
<https://arxiv.org/abs/2203.06717>`_
Args:
arch (str | dict): The parameter of RepLKNet.
If it's a dict, it should contain the following keys:
- large_kernel_sizes (Sequence[int]):
Large kernel size in each stage.
- layers (Sequence[int]): Number of blocks in each stage.
- channels (Sequence[int]): Number of channels in each stage.
- small_kernel (int): size of the parallel small kernel.
- dw_ratio (float): The intermediate channels
expansion ratio of the block.
in_channels (int): Number of input image channels. Default to 3.
ffn_ratio (float): Mlp expansion ratio. Defaults to 4.
out_indices (Sequence[int]): Output from which stages.
Default to (3, ).
strides (Sequence[int]): Strides of the first block of each stage.
Default to (2, 2, 2, 2).
dilations (Sequence[int]): Dilation of each stage.
Default to (1, 1, 1, 1).
frozen_stages (int): Stages to be frozen
(all param fixed). -1 means not freezing any parameters.
Default to -1.
conv_cfg (dict | None): The config dict for conv layers.
Default to None.
norm_cfg (dict): The config dict for norm layers.
Default to ``dict(type='BN')``.
act_cfg (dict): Config dict for activation layer.
Default to ``dict(type='ReLU')``.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default to False.
deploy (bool): Whether to switch the model structure to deployment
mode. Default to False.
norm_intermediate_features (bool): Construct and
config norm layer or not.
Using True will normalize the intermediate features
for downstream dense prediction tasks.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default to False.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
arch_settings = {
'31B':
dict(
large_kernel_sizes=[31, 29, 27, 13],
layers=[2, 2, 18, 2],
channels=[128, 256, 512, 1024],
small_kernel=5,
dw_ratio=1),
'31L':
dict(
large_kernel_sizes=[31, 29, 27, 13],
layers=[2, 2, 18, 2],
channels=[192, 384, 768, 1536],
small_kernel=5,
dw_ratio=1),
'XL':
dict(
large_kernel_sizes=[27, 27, 27, 13],
layers=[2, 2, 18, 2],
channels=[256, 512, 1024, 2048],
small_kernel=None,
dw_ratio=1.5),
}
def __init__(self,
arch,
in_channels=3,
ffn_ratio=4,
out_indices=(3, ),
strides=(2, 2, 2, 2),
dilations=(1, 1, 1, 1),
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
with_cp=False,
drop_path_rate=0.3,
small_kernel_merged=False,
norm_intermediate_features=False,
norm_eval=False,
init_cfg=[
dict(type='Kaiming', layer=['Conv2d']),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm'])
]):
super(RepLKNet, self).__init__(init_cfg)
if isinstance(arch, str):
assert arch in self.arch_settings, \
f'"arch": "{arch}" is not one of the arch_settings'
arch = self.arch_settings[arch]
elif not isinstance(arch, dict):
raise TypeError('Expect "arch" to be either a string '
f'or a dict, got {type(arch)}')
assert len(arch['layers']) == len(
arch['channels']) == len(strides) == len(dilations)
assert max(out_indices) < len(arch['layers'])
self.arch = arch
self.in_channels = in_channels
self.out_indices = out_indices
self.strides = strides
self.dilations = dilations
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.with_cp = with_cp
self.drop_path_rate = drop_path_rate
self.small_kernel_merged = small_kernel_merged
self.norm_eval = norm_eval
self.norm_intermediate_features = norm_intermediate_features
self.out_indices = out_indices
base_width = self.arch['channels'][0]
self.norm_intermediate_features = norm_intermediate_features
self.num_stages = len(self.arch['layers'])
self.stem = nn.ModuleList([
conv_bn_relu(
in_channels=in_channels,
out_channels=base_width,
kernel_size=3,
stride=2,
padding=1,
groups=1),
conv_bn_relu(
in_channels=base_width,
out_channels=base_width,
kernel_size=3,
stride=1,
padding=1,
groups=base_width),
conv_bn_relu(
in_channels=base_width,
out_channels=base_width,
kernel_size=1,
stride=1,
padding=0,
groups=1),
conv_bn_relu(
in_channels=base_width,
out_channels=base_width,
kernel_size=3,
stride=2,
padding=1,
groups=base_width)
])
# stochastic depth. We set block-wise drop-path rate.
# The higher level blocks are more likely to be dropped.
# This implementation follows Swin.
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate,
sum(self.arch['layers']))
]
self.stages = nn.ModuleList()
self.transitions = nn.ModuleList()
for stage_idx in range(self.num_stages):
layer = RepLKNetStage(
channels=self.arch['channels'][stage_idx],
num_blocks=self.arch['layers'][stage_idx],
stage_lk_size=self.arch['large_kernel_sizes'][stage_idx],
drop_path=dpr[sum(self.arch['layers'][:stage_idx]
):sum(self.arch['layers'][:stage_idx + 1])],
small_kernel=self.arch['small_kernel'],
dw_ratio=self.arch['dw_ratio'],
ffn_ratio=ffn_ratio,
with_cp=with_cp,
small_kernel_merged=small_kernel_merged,
norm_intermediate_features=(stage_idx in out_indices))
self.stages.append(layer)
if stage_idx < len(self.arch['layers']) - 1:
transition = nn.Sequential(
conv_bn_relu(
self.arch['channels'][stage_idx],
self.arch['channels'][stage_idx + 1],
1,
1,
0,
groups=1),
conv_bn_relu(
self.arch['channels'][stage_idx + 1],
self.arch['channels'][stage_idx + 1],
3,
stride=2,
padding=1,
groups=self.arch['channels'][stage_idx + 1]))
self.transitions.append(transition)
def forward_features(self, x):
x = self.stem[0](x)
for stem_layer in self.stem[1:]:
if self.with_cp:
x = checkpoint.checkpoint(stem_layer, x) # save memory
else:
x = stem_layer(x)
# Need the intermediate feature maps
outs = []
for stage_idx in range(self.num_stages):
x = self.stages[stage_idx](x)
if stage_idx in self.out_indices:
outs.append(self.stages[stage_idx].norm(x))
# For RepLKNet-XL normalize the features
# before feeding them into the heads
if stage_idx < self.num_stages - 1:
x = self.transitions[stage_idx](x)
return outs
def forward(self, x):
x = self.forward_features(x)
return tuple(x)
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.stem.eval()
for param in self.stem.parameters():
param.requires_grad = False
for i in range(self.frozen_stages):
stage = self.stages[i]
stage.eval()
for param in stage.parameters():
param.requires_grad = False
def train(self, mode=True):
super(RepLKNet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
def switch_to_deploy(self):
for m in self.modules():
if hasattr(m, 'merge_kernel'):
m.merge_kernel()
self.small_kernel_merged = True
|