Spaces:
Runtime error
Runtime error
File size: 22,087 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from mmcv.cnn import (ConvModule, build_activation_layer, build_conv_layer,
build_norm_layer)
from mmengine.model import BaseModule, Sequential
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from torch import nn
from mmpretrain.registry import MODELS
from ..utils.se_layer import SELayer
from .base_backbone import BaseBackbone
class RepVGGBlock(BaseModule):
"""RepVGG block for RepVGG backbone.
Args:
in_channels (int): The input channels of the block.
out_channels (int): The output channels of the block.
stride (int): Stride of the 3x3 and 1x1 convolution layer. Default: 1.
padding (int): Padding of the 3x3 convolution layer.
dilation (int): Dilation of the 3x3 convolution layer.
groups (int): Groups of the 3x3 and 1x1 convolution layer. Default: 1.
padding_mode (str): Padding mode of the 3x3 convolution layer.
Default: 'zeros'.
se_cfg (None or dict): The configuration of the se module.
Default: None.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
conv_cfg (dict, optional): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
deploy (bool): Whether to switch the model structure to
deployment mode. Default: False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
in_channels,
out_channels,
stride=1,
padding=1,
dilation=1,
groups=1,
padding_mode='zeros',
se_cfg=None,
with_cp=False,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
deploy=False,
init_cfg=None):
super(RepVGGBlock, self).__init__(init_cfg)
assert se_cfg is None or isinstance(se_cfg, dict)
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.se_cfg = se_cfg
self.with_cp = with_cp
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.deploy = deploy
if deploy:
self.branch_reparam = build_conv_layer(
conv_cfg,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=True,
padding_mode=padding_mode)
else:
# judge if input shape and output shape are the same.
# If true, add a normalized identity shortcut.
if out_channels == in_channels and stride == 1 and \
padding == dilation:
self.branch_norm = build_norm_layer(norm_cfg, in_channels)[1]
else:
self.branch_norm = None
self.branch_3x3 = self.create_conv_bn(
kernel_size=3,
dilation=dilation,
padding=padding,
)
self.branch_1x1 = self.create_conv_bn(kernel_size=1)
if se_cfg is not None:
self.se_layer = SELayer(channels=out_channels, **se_cfg)
else:
self.se_layer = None
self.act = build_activation_layer(act_cfg)
def create_conv_bn(self, kernel_size, dilation=1, padding=0):
conv_bn = Sequential()
conv_bn.add_module(
'conv',
build_conv_layer(
self.conv_cfg,
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=kernel_size,
stride=self.stride,
dilation=dilation,
padding=padding,
groups=self.groups,
bias=False))
conv_bn.add_module(
'norm',
build_norm_layer(self.norm_cfg, num_features=self.out_channels)[1])
return conv_bn
def forward(self, x):
def _inner_forward(inputs):
if self.deploy:
return self.branch_reparam(inputs)
if self.branch_norm is None:
branch_norm_out = 0
else:
branch_norm_out = self.branch_norm(inputs)
inner_out = self.branch_3x3(inputs) + self.branch_1x1(
inputs) + branch_norm_out
if self.se_cfg is not None:
inner_out = self.se_layer(inner_out)
return inner_out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.act(out)
return out
def switch_to_deploy(self):
"""Switch the model structure from training mode to deployment mode."""
if self.deploy:
return
assert self.norm_cfg['type'] == 'BN', \
"Switch is not allowed when norm_cfg['type'] != 'BN'."
reparam_weight, reparam_bias = self.reparameterize()
self.branch_reparam = build_conv_layer(
self.conv_cfg,
self.in_channels,
self.out_channels,
kernel_size=3,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
bias=True)
self.branch_reparam.weight.data = reparam_weight
self.branch_reparam.bias.data = reparam_bias
for param in self.parameters():
param.detach_()
delattr(self, 'branch_3x3')
delattr(self, 'branch_1x1')
delattr(self, 'branch_norm')
self.deploy = True
def reparameterize(self):
"""Fuse all the parameters of all branches.
Returns:
tuple[torch.Tensor, torch.Tensor]: Parameters after fusion of all
branches. the first element is the weights and the second is
the bias.
"""
weight_3x3, bias_3x3 = self._fuse_conv_bn(self.branch_3x3)
weight_1x1, bias_1x1 = self._fuse_conv_bn(self.branch_1x1)
# pad a conv1x1 weight to a conv3x3 weight
weight_1x1 = F.pad(weight_1x1, [1, 1, 1, 1], value=0)
weight_norm, bias_norm = 0, 0
if self.branch_norm:
tmp_conv_bn = self._norm_to_conv3x3(self.branch_norm)
weight_norm, bias_norm = self._fuse_conv_bn(tmp_conv_bn)
return (weight_3x3 + weight_1x1 + weight_norm,
bias_3x3 + bias_1x1 + bias_norm)
def _fuse_conv_bn(self, branch):
"""Fuse the parameters in a branch with a conv and bn.
Args:
branch (mmcv.runner.Sequential): A branch with conv and bn.
Returns:
tuple[torch.Tensor, torch.Tensor]: The parameters obtained after
fusing the parameters of conv and bn in one branch.
The first element is the weight and the second is the bias.
"""
if branch is None:
return 0, 0
conv_weight = branch.conv.weight
running_mean = branch.norm.running_mean
running_var = branch.norm.running_var
gamma = branch.norm.weight
beta = branch.norm.bias
eps = branch.norm.eps
std = (running_var + eps).sqrt()
fused_weight = (gamma / std).reshape(-1, 1, 1, 1) * conv_weight
fused_bias = -running_mean * gamma / std + beta
return fused_weight, fused_bias
def _norm_to_conv3x3(self, branch_nrom):
"""Convert a norm layer to a conv3x3-bn sequence.
Args:
branch (nn.BatchNorm2d): A branch only with bn in the block.
Returns:
tmp_conv3x3 (mmcv.runner.Sequential): a sequential with conv3x3 and
bn.
"""
input_dim = self.in_channels // self.groups
conv_weight = torch.zeros((self.in_channels, input_dim, 3, 3),
dtype=branch_nrom.weight.dtype)
for i in range(self.in_channels):
conv_weight[i, i % input_dim, 1, 1] = 1
conv_weight = conv_weight.to(branch_nrom.weight.device)
tmp_conv3x3 = self.create_conv_bn(kernel_size=3)
tmp_conv3x3.conv.weight.data = conv_weight
tmp_conv3x3.norm = branch_nrom
return tmp_conv3x3
class MTSPPF(BaseModule):
"""MTSPPF block for YOLOX-PAI RepVGG backbone.
Args:
in_channels (int): The input channels of the block.
out_channels (int): The output channels of the block.
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
kernel_size (int): Kernel size of pooling. Default: 5.
"""
def __init__(self,
in_channels,
out_channels,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
kernel_size=5):
super().__init__()
hidden_features = in_channels // 2 # hidden channels
self.conv1 = ConvModule(
in_channels,
hidden_features,
1,
stride=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.conv2 = ConvModule(
hidden_features * 4,
out_channels,
1,
stride=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
self.maxpool = nn.MaxPool2d(
kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
def forward(self, x):
x = self.conv1(x)
y1 = self.maxpool(x)
y2 = self.maxpool(y1)
return self.conv2(torch.cat([x, y1, y2, self.maxpool(y2)], 1))
@MODELS.register_module()
class RepVGG(BaseBackbone):
"""RepVGG backbone.
A PyTorch impl of : `RepVGG: Making VGG-style ConvNets Great Again
<https://arxiv.org/abs/2101.03697>`_
Args:
arch (str | dict): RepVGG architecture. If use string, choose from
'A0', 'A1`', 'A2', 'B0', 'B1', 'B1g2', 'B1g4', 'B2', 'B2g2',
'B2g4', 'B3', 'B3g2', 'B3g4' or 'D2se'. If use dict, it should
have below keys:
- **num_blocks** (Sequence[int]): Number of blocks in each stage.
- **width_factor** (Sequence[float]): Width deflator in each stage.
- **group_layer_map** (dict | None): RepVGG Block that declares
the need to apply group convolution.
- **se_cfg** (dict | None): SE Layer config.
- **stem_channels** (int, optional): The stem channels, the final
stem channels will be
``min(stem_channels, base_channels*width_factor[0])``.
If not set here, 64 is used by default in the code.
in_channels (int): Number of input image channels. Defaults to 3.
base_channels (int): Base channels of RepVGG backbone, work with
width_factor together. Defaults to 64.
out_indices (Sequence[int]): Output from which stages.
Defaults to ``(3, )``.
strides (Sequence[int]): Strides of the first block of each stage.
Defaults to ``(2, 2, 2, 2)``.
dilations (Sequence[int]): Dilation of each stage.
Defaults to ``(1, 1, 1, 1)``.
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
not freezing any parameters. Defaults to -1.
conv_cfg (dict | None): The config dict for conv layers.
Defaults to None.
norm_cfg (dict): The config dict for norm layers.
Defaults to ``dict(type='BN')``.
act_cfg (dict): Config dict for activation layer.
Defaults to ``dict(type='ReLU')``.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
deploy (bool): Whether to switch the model structure to deployment
mode. Defaults to False.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
add_ppf (bool): Whether to use the MTSPPF block. Defaults to False.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]
g2_layer_map = {layer: 2 for layer in groupwise_layers}
g4_layer_map = {layer: 4 for layer in groupwise_layers}
arch_settings = {
'A0':
dict(
num_blocks=[2, 4, 14, 1],
width_factor=[0.75, 0.75, 0.75, 2.5],
group_layer_map=None,
se_cfg=None),
'A1':
dict(
num_blocks=[2, 4, 14, 1],
width_factor=[1, 1, 1, 2.5],
group_layer_map=None,
se_cfg=None),
'A2':
dict(
num_blocks=[2, 4, 14, 1],
width_factor=[1.5, 1.5, 1.5, 2.75],
group_layer_map=None,
se_cfg=None),
'B0':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[1, 1, 1, 2.5],
group_layer_map=None,
se_cfg=None,
stem_channels=64),
'B1':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2, 2, 2, 4],
group_layer_map=None,
se_cfg=None),
'B1g2':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2, 2, 2, 4],
group_layer_map=g2_layer_map,
se_cfg=None),
'B1g4':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2, 2, 2, 4],
group_layer_map=g4_layer_map,
se_cfg=None),
'B2':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2.5, 2.5, 2.5, 5],
group_layer_map=None,
se_cfg=None),
'B2g2':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2.5, 2.5, 2.5, 5],
group_layer_map=g2_layer_map,
se_cfg=None),
'B2g4':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[2.5, 2.5, 2.5, 5],
group_layer_map=g4_layer_map,
se_cfg=None),
'B3':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[3, 3, 3, 5],
group_layer_map=None,
se_cfg=None),
'B3g2':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[3, 3, 3, 5],
group_layer_map=g2_layer_map,
se_cfg=None),
'B3g4':
dict(
num_blocks=[4, 6, 16, 1],
width_factor=[3, 3, 3, 5],
group_layer_map=g4_layer_map,
se_cfg=None),
'D2se':
dict(
num_blocks=[8, 14, 24, 1],
width_factor=[2.5, 2.5, 2.5, 5],
group_layer_map=None,
se_cfg=dict(ratio=16, divisor=1)),
'yolox-pai-small':
dict(
num_blocks=[3, 5, 7, 3],
width_factor=[1, 1, 1, 1],
group_layer_map=None,
se_cfg=None,
stem_channels=32),
}
def __init__(self,
arch,
in_channels=3,
base_channels=64,
out_indices=(3, ),
strides=(2, 2, 2, 2),
dilations=(1, 1, 1, 1),
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU'),
with_cp=False,
deploy=False,
norm_eval=False,
add_ppf=False,
init_cfg=[
dict(type='Kaiming', layer=['Conv2d']),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm'])
]):
super(RepVGG, self).__init__(init_cfg)
if isinstance(arch, str):
assert arch in self.arch_settings, \
f'"arch": "{arch}" is not one of the arch_settings'
arch = self.arch_settings[arch]
elif not isinstance(arch, dict):
raise TypeError('Expect "arch" to be either a string '
f'or a dict, got {type(arch)}')
assert len(arch['num_blocks']) == len(
arch['width_factor']) == len(strides) == len(dilations)
assert max(out_indices) < len(arch['num_blocks'])
if arch['group_layer_map'] is not None:
assert max(arch['group_layer_map'].keys()) <= sum(
arch['num_blocks'])
if arch['se_cfg'] is not None:
assert isinstance(arch['se_cfg'], dict)
self.base_channels = base_channels
self.arch = arch
self.in_channels = in_channels
self.out_indices = out_indices
self.strides = strides
self.dilations = dilations
self.deploy = deploy
self.frozen_stages = frozen_stages
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.with_cp = with_cp
self.norm_eval = norm_eval
# defaults to 64 to prevert BC-breaking if stem_channels
# not in arch dict;
# the stem channels should not be larger than that of stage1.
channels = min(
arch.get('stem_channels', 64),
int(self.base_channels * self.arch['width_factor'][0]))
self.stem = RepVGGBlock(
self.in_channels,
channels,
stride=2,
se_cfg=arch['se_cfg'],
with_cp=with_cp,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
deploy=deploy)
next_create_block_idx = 1
self.stages = []
for i in range(len(arch['num_blocks'])):
num_blocks = self.arch['num_blocks'][i]
stride = self.strides[i]
dilation = self.dilations[i]
out_channels = int(self.base_channels * 2**i *
self.arch['width_factor'][i])
stage, next_create_block_idx = self._make_stage(
channels, out_channels, num_blocks, stride, dilation,
next_create_block_idx, init_cfg)
stage_name = f'stage_{i + 1}'
self.add_module(stage_name, stage)
self.stages.append(stage_name)
channels = out_channels
if add_ppf:
self.ppf = MTSPPF(
out_channels,
out_channels,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
kernel_size=5)
else:
self.ppf = nn.Identity()
def _make_stage(self, in_channels, out_channels, num_blocks, stride,
dilation, next_create_block_idx, init_cfg):
strides = [stride] + [1] * (num_blocks - 1)
dilations = [dilation] * num_blocks
blocks = []
for i in range(num_blocks):
groups = self.arch['group_layer_map'].get(
next_create_block_idx,
1) if self.arch['group_layer_map'] is not None else 1
blocks.append(
RepVGGBlock(
in_channels,
out_channels,
stride=strides[i],
padding=dilations[i],
dilation=dilations[i],
groups=groups,
se_cfg=self.arch['se_cfg'],
with_cp=self.with_cp,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg,
deploy=self.deploy,
init_cfg=init_cfg))
in_channels = out_channels
next_create_block_idx += 1
return Sequential(*blocks), next_create_block_idx
def forward(self, x):
x = self.stem(x)
outs = []
for i, stage_name in enumerate(self.stages):
stage = getattr(self, stage_name)
x = stage(x)
if i + 1 == len(self.stages):
x = self.ppf(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.stem.eval()
for param in self.stem.parameters():
param.requires_grad = False
for i in range(self.frozen_stages):
stage = getattr(self, f'stage_{i+1}')
stage.eval()
for param in stage.parameters():
param.requires_grad = False
def train(self, mode=True):
super(RepVGG, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
def switch_to_deploy(self):
for m in self.modules():
if isinstance(m, RepVGGBlock):
m.switch_to_deploy()
self.deploy = True
|