Spaces:
Runtime error
Runtime error
File size: 24,265 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
# Copyright (c) OpenMMLab. All rights reserved.
import sys
import numpy as np
import torch
from mmcv.cnn.bricks.drop import build_dropout
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed
from mmengine.model import BaseModule, ModuleList
from mmengine.model.weight_init import trunc_normal_
from torch import nn
from torch.autograd import Function as Function
from mmpretrain.models.backbones.base_backbone import BaseBackbone
from mmpretrain.registry import MODELS
from ..utils import (MultiheadAttention, build_norm_layer, resize_pos_embed,
to_2tuple)
class RevBackProp(Function):
"""Custom Backpropagation function to allow (A) flushing memory in forward
and (B) activation recomputation reversibly in backward for gradient
calculation.
Inspired by
https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py
"""
@staticmethod
def forward(
ctx,
x,
layers,
buffer_layers, # List of layer ids for int activation to buffer
):
"""Reversible Forward pass.
Any intermediate activations from `buffer_layers` are cached in ctx for
forward pass. This is not necessary for standard usecases. Each
reversible layer implements its own forward pass logic.
"""
buffer_layers.sort()
x1, x2 = torch.chunk(x, 2, dim=-1)
intermediate = []
for layer in layers:
x1, x2 = layer(x1, x2)
if layer.layer_id in buffer_layers:
intermediate.extend([x1.detach(), x2.detach()])
if len(buffer_layers) == 0:
all_tensors = [x1.detach(), x2.detach()]
else:
intermediate = [torch.LongTensor(buffer_layers), *intermediate]
all_tensors = [x1.detach(), x2.detach(), *intermediate]
ctx.save_for_backward(*all_tensors)
ctx.layers = layers
return torch.cat([x1, x2], dim=-1)
@staticmethod
def backward(ctx, dx):
"""Reversible Backward pass.
Any intermediate activations from `buffer_layers` are recovered from
ctx. Each layer implements its own loic for backward pass (both
activation recomputation and grad calculation).
"""
d_x1, d_x2 = torch.chunk(dx, 2, dim=-1)
# retrieve params from ctx for backward
x1, x2, *int_tensors = ctx.saved_tensors
# no buffering
if len(int_tensors) != 0:
buffer_layers = int_tensors[0].tolist()
else:
buffer_layers = []
layers = ctx.layers
for _, layer in enumerate(layers[::-1]):
if layer.layer_id in buffer_layers:
x1, x2, d_x1, d_x2 = layer.backward_pass(
y1=int_tensors[buffer_layers.index(layer.layer_id) * 2 +
1],
y2=int_tensors[buffer_layers.index(layer.layer_id) * 2 +
2],
d_y1=d_x1,
d_y2=d_x2,
)
else:
x1, x2, d_x1, d_x2 = layer.backward_pass(
y1=x1,
y2=x2,
d_y1=d_x1,
d_y2=d_x2,
)
dx = torch.cat([d_x1, d_x2], dim=-1)
del int_tensors
del d_x1, d_x2, x1, x2
return dx, None, None
class RevTransformerEncoderLayer(BaseModule):
"""Reversible Transformer Encoder Layer.
This module is a building block of Reversible Transformer Encoder,
which support backpropagation without storing activations.
The residual connection is not applied to the FFN layer.
Args:
embed_dims (int): The feature dimension.
num_heads (int): Parallel attention heads.
feedforward_channels (int): The hidden dimension for FFNs.
drop_rate (float): Probability of an element to be zeroed.
Default: 0.0
attn_drop_rate (float): The drop out rate for attention layer.
Default: 0.0
drop_path_rate (float): stochastic depth rate.
Default 0.0
num_fcs (int): The number of linear in FFN
Default: 2
qkv_bias (bool): enable bias for qkv if True.
Default: True
act_cfg (dict): The activation config for FFNs.
Default: dict(type='GELU')
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='LN')
layer_id (int): The layer id of current layer. Used in RevBackProp.
Default: 0
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
embed_dims: int,
num_heads: int,
feedforward_channels: int,
drop_rate: float = 0.,
attn_drop_rate: float = 0.,
drop_path_rate: float = 0.,
num_fcs: int = 2,
qkv_bias: bool = True,
act_cfg: dict = dict(type='GELU'),
norm_cfg: dict = dict(type='LN'),
layer_id: int = 0,
init_cfg=None):
super(RevTransformerEncoderLayer, self).__init__(init_cfg=init_cfg)
self.drop_path_cfg = dict(type='DropPath', drop_prob=drop_path_rate)
self.embed_dims = embed_dims
self.ln1 = build_norm_layer(norm_cfg, self.embed_dims)
self.attn = MultiheadAttention(
embed_dims=embed_dims,
num_heads=num_heads,
attn_drop=attn_drop_rate,
proj_drop=drop_rate,
qkv_bias=qkv_bias)
self.ln2 = build_norm_layer(norm_cfg, self.embed_dims)
self.ffn = FFN(
embed_dims=embed_dims,
feedforward_channels=feedforward_channels,
num_fcs=num_fcs,
ffn_drop=drop_rate,
act_cfg=act_cfg,
add_identity=False)
self.layer_id = layer_id
self.seeds = {}
def init_weights(self):
super(RevTransformerEncoderLayer, self).init_weights()
for m in self.ffn.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.normal_(m.bias, std=1e-6)
def seed_cuda(self, key):
"""Fix seeds to allow for stochastic elements such as dropout to be
reproduced exactly in activation recomputation in the backward pass."""
# randomize seeds
# use cuda generator if available
if (hasattr(torch.cuda, 'default_generators')
and len(torch.cuda.default_generators) > 0):
# GPU
device_idx = torch.cuda.current_device()
seed = torch.cuda.default_generators[device_idx].seed()
else:
# CPU
seed = int(torch.seed() % sys.maxsize)
self.seeds[key] = seed
torch.manual_seed(self.seeds[key])
def forward(self, x1, x2):
"""
Implementation of Reversible TransformerEncoderLayer
`
x = x + self.attn(self.ln1(x))
x = self.ffn(self.ln2(x), identity=x)
`
"""
self.seed_cuda('attn')
# attention output
f_x2 = self.attn(self.ln1(x2))
# apply droppath on attention output
self.seed_cuda('droppath')
f_x2_dropped = build_dropout(self.drop_path_cfg)(f_x2)
y1 = x1 + f_x2_dropped
# free memory
if self.training:
del x1
# ffn output
self.seed_cuda('ffn')
g_y1 = self.ffn(self.ln2(y1))
# apply droppath on ffn output
torch.manual_seed(self.seeds['droppath'])
g_y1_dropped = build_dropout(self.drop_path_cfg)(g_y1)
# final output
y2 = x2 + g_y1_dropped
# free memory
if self.training:
del x2
return y1, y2
def backward_pass(self, y1, y2, d_y1, d_y2):
"""Activation re-compute with the following equation.
x2 = y2 - g(y1), g = FFN
x1 = y1 - f(x2), f = MSHA
"""
# temporarily record intermediate activation for G
# and use them for gradient calculation of G
with torch.enable_grad():
y1.requires_grad = True
torch.manual_seed(self.seeds['ffn'])
g_y1 = self.ffn(self.ln2(y1))
torch.manual_seed(self.seeds['droppath'])
g_y1 = build_dropout(self.drop_path_cfg)(g_y1)
g_y1.backward(d_y2, retain_graph=True)
# activate recomputation is by design and not part of
# the computation graph in forward pass
with torch.no_grad():
x2 = y2 - g_y1
del g_y1
d_y1 = d_y1 + y1.grad
y1.grad = None
# record F activation and calculate gradients on F
with torch.enable_grad():
x2.requires_grad = True
torch.manual_seed(self.seeds['attn'])
f_x2 = self.attn(self.ln1(x2))
torch.manual_seed(self.seeds['droppath'])
f_x2 = build_dropout(self.drop_path_cfg)(f_x2)
f_x2.backward(d_y1, retain_graph=True)
# propagate reverse computed activations at the
# start of the previous block
with torch.no_grad():
x1 = y1 - f_x2
del f_x2, y1
d_y2 = d_y2 + x2.grad
x2.grad = None
x2 = x2.detach()
return x1, x2, d_y1, d_y2
class TwoStreamFusion(nn.Module):
"""A general constructor for neural modules fusing two equal sized tensors
in forward.
Args:
mode (str): The mode of fusion. Options are 'add', 'max', 'min',
'avg', 'concat'.
"""
def __init__(self, mode: str):
super().__init__()
self.mode = mode
if mode == 'add':
self.fuse_fn = lambda x: torch.stack(x).sum(dim=0)
elif mode == 'max':
self.fuse_fn = lambda x: torch.stack(x).max(dim=0).values
elif mode == 'min':
self.fuse_fn = lambda x: torch.stack(x).min(dim=0).values
elif mode == 'avg':
self.fuse_fn = lambda x: torch.stack(x).mean(dim=0)
elif mode == 'concat':
self.fuse_fn = lambda x: torch.cat(x, dim=-1)
else:
raise NotImplementedError
def forward(self, x):
# split the tensor into two halves in the channel dimension
x = torch.chunk(x, 2, dim=2)
return self.fuse_fn(x)
@MODELS.register_module()
class RevVisionTransformer(BaseBackbone):
"""Reversible Vision Transformer.
A PyTorch implementation of : `Reversible Vision Transformers
<https://openaccess.thecvf.com/content/CVPR2022/html/Mangalam_Reversible_Vision_Transformers_CVPR_2022_paper.html>`_ # noqa: E501
Args:
arch (str | dict): Vision Transformer architecture. If use string,
choose from 'small', 'base', 'large', 'deit-tiny', 'deit-small'
and 'deit-base'. If use dict, it should have below keys:
- **embed_dims** (int): The dimensions of embedding.
- **num_layers** (int): The number of transformer encoder layers.
- **num_heads** (int): The number of heads in attention modules.
- **feedforward_channels** (int): The hidden dimensions in
feedforward modules.
Defaults to 'base'.
img_size (int | tuple): The expected input image shape. Because we
support dynamic input shape, just set the argument to the most
common input image shape. Defaults to 224.
patch_size (int | tuple): The patch size in patch embedding.
Defaults to 16.
in_channels (int): The num of input channels. Defaults to 3.
drop_rate (float): Probability of an element to be zeroed.
Defaults to 0.
drop_path_rate (float): stochastic depth rate. Defaults to 0.
qkv_bias (bool): Whether to add bias for qkv in attention modules.
Defaults to True.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Defaults to True.
out_type (str): The type of output features. Please choose from
- ``"cls_token"``: The class token tensor with shape (B, C).
- ``"featmap"``: The feature map tensor from the patch tokens
with shape (B, C, H, W).
- ``"avg_featmap"``: The global averaged feature map tensor
with shape (B, C).
- ``"raw"``: The raw feature tensor includes patch tokens and
class tokens with shape (B, L, C).
Defaults to ``"avg_featmap"``.
with_cls_token (bool): Whether concatenating class token into image
tokens as transformer input. Defaults to False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
interpolate_mode (str): Select the interpolate mode for position
embeding vector resize. Defaults to "bicubic".
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
layer_cfgs (Sequence | dict): Configs of each transformer layer in
encoder. Defaults to an empty dict.
fusion_mode (str): The fusion mode of transformer layers.
Defaults to 'concat'.
no_custom_backward (bool): Whether to use custom backward.
Defaults to False.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
"""
arch_zoo = {
**dict.fromkeys(
['s', 'small'], {
'embed_dims': 768,
'num_layers': 8,
'num_heads': 8,
'feedforward_channels': 768 * 3,
}),
**dict.fromkeys(
['b', 'base'], {
'embed_dims': 768,
'num_layers': 12,
'num_heads': 12,
'feedforward_channels': 3072
}),
**dict.fromkeys(
['l', 'large'], {
'embed_dims': 1024,
'num_layers': 24,
'num_heads': 16,
'feedforward_channels': 4096
}),
**dict.fromkeys(
['h', 'huge'],
{
# The same as the implementation in MAE
# <https://arxiv.org/abs/2111.06377>
'embed_dims': 1280,
'num_layers': 32,
'num_heads': 16,
'feedforward_channels': 5120
}),
**dict.fromkeys(
['deit-t', 'deit-tiny'], {
'embed_dims': 192,
'num_layers': 12,
'num_heads': 3,
'feedforward_channels': 192 * 4
}),
**dict.fromkeys(
['deit-s', 'deit-small'], {
'embed_dims': 384,
'num_layers': 12,
'num_heads': 6,
'feedforward_channels': 384 * 4
}),
**dict.fromkeys(
['deit-b', 'deit-base'], {
'embed_dims': 768,
'num_layers': 12,
'num_heads': 12,
'feedforward_channels': 768 * 4
}),
}
num_extra_tokens = 0 # The official RevViT doesn't have class token
OUT_TYPES = {'raw', 'cls_token', 'featmap', 'avg_featmap'}
def __init__(self,
arch='base',
img_size=224,
patch_size=16,
in_channels=3,
drop_rate=0.,
drop_path_rate=0.,
qkv_bias=True,
norm_cfg=dict(type='LN', eps=1e-6),
final_norm=True,
out_type='avg_featmap',
with_cls_token=False,
frozen_stages=-1,
interpolate_mode='bicubic',
patch_cfg=dict(),
layer_cfgs=dict(),
fusion_mode='concat',
no_custom_backward=False,
init_cfg=None):
super(RevVisionTransformer, self).__init__(init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {
'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels'
}
assert isinstance(arch, dict) and essential_keys <= set(arch), \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.embed_dims = self.arch_settings['embed_dims']
self.num_layers = self.arch_settings['num_layers']
self.img_size = to_2tuple(img_size)
self.no_custom_backward = no_custom_backward
# Set patch embedding
_patch_cfg = dict(
in_channels=in_channels,
input_size=img_size,
embed_dims=self.embed_dims,
conv_type='Conv2d',
kernel_size=patch_size,
stride=patch_size,
)
_patch_cfg.update(patch_cfg)
self.patch_embed = PatchEmbed(**_patch_cfg)
self.patch_resolution = self.patch_embed.init_out_size
num_patches = self.patch_resolution[0] * self.patch_resolution[1]
# Set out type
if out_type not in self.OUT_TYPES:
raise ValueError(f'Unsupported `out_type` {out_type}, please '
f'choose from {self.OUT_TYPES}')
self.out_type = out_type
# Set cls token
if with_cls_token:
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))
self.num_extra_tokens = 1
elif out_type != 'cls_token':
self.cls_token = None
self.num_extra_tokens = 0
else:
raise ValueError(
'with_cls_token must be True when `out_type="cls_token"`.')
# Set position embedding
self.interpolate_mode = interpolate_mode
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + self.num_extra_tokens,
self.embed_dims))
self._register_load_state_dict_pre_hook(self._prepare_pos_embed)
self.drop_after_pos = nn.Dropout(p=drop_rate)
# stochastic depth decay rule
dpr = np.linspace(0, drop_path_rate, self.num_layers)
self.layers = ModuleList()
if isinstance(layer_cfgs, dict):
layer_cfgs = [layer_cfgs] * self.num_layers
for i in range(self.num_layers):
_layer_cfg = dict(
embed_dims=self.embed_dims,
num_heads=self.arch_settings['num_heads'],
feedforward_channels=self.
arch_settings['feedforward_channels'],
drop_rate=drop_rate,
drop_path_rate=dpr[i],
qkv_bias=qkv_bias,
layer_id=i,
norm_cfg=norm_cfg)
_layer_cfg.update(layer_cfgs[i])
self.layers.append(RevTransformerEncoderLayer(**_layer_cfg))
# fusion operation for the final output
self.fusion_layer = TwoStreamFusion(mode=fusion_mode)
self.frozen_stages = frozen_stages
self.final_norm = final_norm
if final_norm:
self.ln1 = build_norm_layer(norm_cfg, self.embed_dims * 2)
# freeze stages only when self.frozen_stages > 0
if self.frozen_stages > 0:
self._freeze_stages()
def init_weights(self):
super(RevVisionTransformer, self).init_weights()
if not (isinstance(self.init_cfg, dict)
and self.init_cfg['type'] == 'Pretrained'):
trunc_normal_(self.pos_embed, std=0.02)
def _prepare_pos_embed(self, state_dict, prefix, *args, **kwargs):
name = prefix + 'pos_embed'
if name not in state_dict.keys():
return
ckpt_pos_embed_shape = state_dict[name].shape
if self.pos_embed.shape != ckpt_pos_embed_shape:
from mmengine.logging import MMLogger
logger = MMLogger.get_current_instance()
logger.info(
f'Resize the pos_embed shape from {ckpt_pos_embed_shape} '
f'to {self.pos_embed.shape}.')
ckpt_pos_embed_shape = to_2tuple(
int(np.sqrt(ckpt_pos_embed_shape[1] - self.num_extra_tokens)))
pos_embed_shape = self.patch_embed.init_out_size
state_dict[name] = resize_pos_embed(state_dict[name],
ckpt_pos_embed_shape,
pos_embed_shape,
self.interpolate_mode,
self.num_extra_tokens)
@staticmethod
def resize_pos_embed(*args, **kwargs):
"""Interface for backward-compatibility."""
return resize_pos_embed(*args, **kwargs)
def _freeze_stages(self):
# freeze position embedding
self.pos_embed.requires_grad = False
# set dropout to eval model
self.drop_after_pos.eval()
# freeze patch embedding
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
# freeze cls_token
if self.cls_token is not None:
self.cls_token.requires_grad = False
# freeze layers
for i in range(1, self.frozen_stages + 1):
m = self.layers[i - 1]
m.eval()
for param in m.parameters():
param.requires_grad = False
# freeze the last layer norm
if self.frozen_stages == len(self.layers) and self.final_norm:
self.ln1.eval()
for param in self.ln1.parameters():
param.requires_grad = False
def forward(self, x):
B = x.shape[0]
x, patch_resolution = self.patch_embed(x)
if self.cls_token is not None:
cls_token = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_token, x), dim=1)
x = x + resize_pos_embed(
self.pos_embed,
self.patch_resolution,
patch_resolution,
mode=self.interpolate_mode,
num_extra_tokens=self.num_extra_tokens)
x = self.drop_after_pos(x)
x = torch.cat([x, x], dim=-1)
# forward with different conditions
if not self.training or self.no_custom_backward:
# in eval/inference model
executing_fn = RevVisionTransformer._forward_vanilla_bp
else:
# use custom backward when self.training=True.
executing_fn = RevBackProp.apply
x = executing_fn(x, self.layers, [])
if self.final_norm:
x = self.ln1(x)
x = self.fusion_layer(x)
return (self._format_output(x, patch_resolution), )
@staticmethod
def _forward_vanilla_bp(hidden_state, layers, buffer=[]):
"""Using reversible layers without reversible backpropagation.
Debugging purpose only. Activated with self.no_custom_backward
"""
# split into ffn state(ffn_out) and attention output(attn_out)
ffn_out, attn_out = torch.chunk(hidden_state, 2, dim=-1)
del hidden_state
for _, layer in enumerate(layers):
attn_out, ffn_out = layer(attn_out, ffn_out)
return torch.cat([attn_out, ffn_out], dim=-1)
def _format_output(self, x, hw):
if self.out_type == 'raw':
return x
if self.out_type == 'cls_token':
return x[:, 0]
patch_token = x[:, self.num_extra_tokens:]
if self.out_type == 'featmap':
B = x.size(0)
# (B, N, C) -> (B, H, W, C) -> (B, C, H, W)
return patch_token.reshape(B, *hw, -1).permute(0, 3, 1, 2)
if self.out_type == 'avg_featmap':
return patch_token.mean(dim=1)
|