File size: 45,478 Bytes
4d0eb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import warnings
from functools import partial
from typing import List, Optional, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn.bricks.drop import build_dropout
from mmengine.model import BaseModule
from mmengine.model.weight_init import trunc_normal_
from mmengine.utils import digit_version

from mmpretrain.registry import MODELS
from .helpers import to_2tuple
from .layer_scale import LayerScale

# After pytorch v1.10.0, use torch.meshgrid without indexing
# will raise extra warning. For more details,
# refers to https://github.com/pytorch/pytorch/issues/50276
if digit_version(torch.__version__) >= digit_version('1.10.0'):
    torch_meshgrid = partial(torch.meshgrid, indexing='ij')
else:
    torch_meshgrid = torch.meshgrid


def scaled_dot_product_attention_pyimpl(query,
                                        key,
                                        value,
                                        attn_mask=None,
                                        dropout_p=0.,
                                        scale=None,
                                        is_causal=False):
    scale = scale or query.size(-1)**0.5
    if is_causal and attn_mask is not None:
        attn_mask = torch.ones(
            query.size(-2), key.size(-2), dtype=torch.bool).tril(diagonal=0)
    if attn_mask is not None and attn_mask.dtype == torch.bool:
        attn_mask = attn_mask.masked_fill(not attn_mask, -float('inf'))

    attn_weight = query @ key.transpose(-2, -1) / scale
    if attn_mask is not None:
        attn_weight += attn_mask
    attn_weight = torch.softmax(attn_weight, dim=-1)
    attn_weight = torch.dropout(attn_weight, dropout_p, True)
    return attn_weight @ value


if digit_version(torch.__version__) >= digit_version('2.0.0'):
    scaled_dot_product_attention = F.scaled_dot_product_attention
else:
    scaled_dot_product_attention = scaled_dot_product_attention_pyimpl


class WindowMSA(BaseModule):
    """Window based multi-head self-attention (W-MSA) module with relative
    position bias.

    Args:
        embed_dims (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
            Defaults to True.
        qk_scale (float, optional): Override default qk scale of
            ``head_dim ** -0.5`` if set. Defaults to None.
        attn_drop (float, optional): Dropout ratio of attention weight.
            Defaults to 0.
        proj_drop (float, optional): Dropout ratio of output. Defaults to 0.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 window_size,
                 num_heads,
                 qkv_bias=True,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.,
                 init_cfg=None):

        super().__init__(init_cfg)
        self.embed_dims = embed_dims
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads
        head_embed_dims = embed_dims // num_heads
        self.scale = qk_scale or head_embed_dims**-0.5

        # define a parameter table of relative position bias
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
                        num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # About 2x faster than original impl
        Wh, Ww = self.window_size
        rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww)
        rel_position_index = rel_index_coords + rel_index_coords.T
        rel_position_index = rel_position_index.flip(1).contiguous()
        self.register_buffer('relative_position_index', rel_position_index)

        self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(embed_dims, embed_dims)
        self.proj_drop = nn.Dropout(proj_drop)

        self.softmax = nn.Softmax(dim=-1)

    def init_weights(self):
        super(WindowMSA, self).init_weights()

        trunc_normal_(self.relative_position_bias_table, std=0.02)

    def forward(self, x, mask=None):
        """
        Args:

            x (tensor): input features with shape of (num_windows*B, N, C)
            mask (tensor, Optional): mask with shape of (num_windows, Wh*Ww,
                Wh*Ww), value should be between (-inf, 0].
        """
        B_, N, C = x.shape
        qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
                                  C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[
            2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1],
                -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N,
                             N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    @staticmethod
    def double_step_seq(step1, len1, step2, len2):
        seq1 = torch.arange(0, step1 * len1, step1)
        seq2 = torch.arange(0, step2 * len2, step2)
        return (seq1[:, None] + seq2[None, :]).reshape(1, -1)


class WindowMSAV2(BaseModule):
    """Window based multi-head self-attention (W-MSA) module with relative
    position bias.

    Based on implementation on Swin Transformer V2 original repo. Refers to
    https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer_v2.py
    for more details.

    Args:
        embed_dims (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool): If True, add a learnable bias to q, k, v.
            Defaults to True.
        attn_drop (float): Dropout ratio of attention weight.
            Defaults to 0.
        proj_drop (float): Dropout ratio of output. Defaults to 0.
        cpb_mlp_hidden_dims (int): The hidden dimensions of the continuous
            relative position bias network. Defaults to 512.
        pretrained_window_size (tuple(int)): The height and width of the window
            in pre-training. Defaults to (0, 0), which means not load
            pretrained model.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 window_size,
                 num_heads,
                 qkv_bias=True,
                 attn_drop=0.,
                 proj_drop=0.,
                 cpb_mlp_hidden_dims=512,
                 pretrained_window_size=(0, 0),
                 init_cfg=None):

        super().__init__(init_cfg)
        self.embed_dims = embed_dims
        self.window_size = window_size  # Wh, Ww
        self.num_heads = num_heads

        # Use small network for continuous relative position bias
        self.cpb_mlp = nn.Sequential(
            nn.Linear(
                in_features=2, out_features=cpb_mlp_hidden_dims, bias=True),
            nn.ReLU(inplace=True),
            nn.Linear(
                in_features=cpb_mlp_hidden_dims,
                out_features=num_heads,
                bias=False))

        # Add learnable scalar for cosine attention
        self.logit_scale = nn.Parameter(
            torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)

        # get relative_coords_table
        relative_coords_h = torch.arange(
            -(self.window_size[0] - 1),
            self.window_size[0],
            dtype=torch.float32)
        relative_coords_w = torch.arange(
            -(self.window_size[1] - 1),
            self.window_size[1],
            dtype=torch.float32)
        relative_coords_table = torch.stack(
            torch_meshgrid([relative_coords_h, relative_coords_w])).permute(
                1, 2, 0).contiguous().unsqueeze(0)  # 1, 2*Wh-1, 2*Ww-1, 2
        if pretrained_window_size[0] > 0:
            relative_coords_table[:, :, :, 0] /= (
                pretrained_window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (
                pretrained_window_size[1] - 1)
        else:
            relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
        relative_coords_table *= 8  # normalize to -8, 8
        relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
            torch.abs(relative_coords_table) + 1.0) / np.log2(8)
        self.register_buffer('relative_coords_table', relative_coords_table)

        # get pair-wise relative position index
        # for each token inside the window
        indexes_h = torch.arange(self.window_size[0])
        indexes_w = torch.arange(self.window_size[1])
        coordinates = torch.stack(
            torch_meshgrid([indexes_h, indexes_w]), dim=0)  # 2, Wh, Ww
        coordinates = torch.flatten(coordinates, start_dim=1)  # 2, Wh*Ww
        # 2, Wh*Ww, Wh*Ww
        relative_coordinates = coordinates[:, :, None] - coordinates[:,
                                                                     None, :]
        relative_coordinates = relative_coordinates.permute(
            1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2

        relative_coordinates[:, :, 0] += self.window_size[
            0] - 1  # shift to start from 0
        relative_coordinates[:, :, 1] += self.window_size[1] - 1
        relative_coordinates[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coordinates.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer('relative_position_index',
                             relative_position_index)

        self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(embed_dims))
            self.v_bias = nn.Parameter(torch.zeros(embed_dims))
        else:
            self.q_bias = None
            self.v_bias = None
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(embed_dims, embed_dims)
        self.proj_drop = nn.Dropout(proj_drop)

        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:

            x (tensor): input features with shape of (num_windows*B, N, C)
            mask (tensor, Optional): mask with shape of (num_windows, Wh*Ww,
                Wh*Ww), value should be between (-inf, 0].
        """
        B_, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat(
                (self.q_bias,
                 torch.zeros_like(self.v_bias,
                                  requires_grad=False), self.v_bias))
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B_, N, 3, self.num_heads,
                          C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[
            2]  # make torchscript happy (cannot use tensor as tuple)

        # cosine attention
        attn = (
            F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
        logit_scale = torch.clamp(
            self.logit_scale, max=np.log(1. / 0.01)).exp()
        attn = attn * logit_scale

        relative_position_bias_table = self.cpb_mlp(
            self.relative_coords_table).view(-1, self.num_heads)
        relative_position_bias = relative_position_bias_table[
            self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1],
                -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(
            2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N,
                             N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


@MODELS.register_module()
class ShiftWindowMSA(BaseModule):
    """Shift Window Multihead Self-Attention Module.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (int): The height and width of the window.
        shift_size (int, optional): The shift step of each window towards
            right-bottom. If zero, act as regular window-msa. Defaults to 0.
        dropout_layer (dict, optional): The dropout_layer used before output.
            Defaults to dict(type='DropPath', drop_prob=0.).
        pad_small_map (bool): If True, pad the small feature map to the window
            size, which is common used in detection and segmentation. If False,
            avoid shifting window and shrink the window size to the size of
            feature map, which is common used in classification.
            Defaults to False.
        window_msa (Callable): To build a window multi-head attention module.
            Defaults to :class:`WindowMSA`.
        init_cfg (dict, optional): The extra config for initialization.
            Defaults to None.
        **kwargs: Other keyword arguments to build the window multi-head
            attention module.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size,
                 shift_size=0,
                 dropout_layer=dict(type='DropPath', drop_prob=0.),
                 pad_small_map=False,
                 window_msa=WindowMSA,
                 init_cfg=None,
                 **kwargs):
        super().__init__(init_cfg)

        self.shift_size = shift_size
        self.window_size = window_size
        assert 0 <= self.shift_size < self.window_size

        self.w_msa = window_msa(
            embed_dims=embed_dims,
            num_heads=num_heads,
            window_size=to_2tuple(self.window_size),
            **kwargs,
        )

        self.drop = build_dropout(dropout_layer)
        self.pad_small_map = pad_small_map

    def forward(self, query, hw_shape):
        B, L, C = query.shape
        H, W = hw_shape
        assert L == H * W, f"The query length {L} doesn't match the input "\
            f'shape ({H}, {W}).'
        query = query.view(B, H, W, C)

        window_size = self.window_size
        shift_size = self.shift_size

        if min(H, W) == window_size:
            # If not pad small feature map, avoid shifting when the window size
            # is equal to the size of feature map. It's to align with the
            # behavior of the original implementation.
            shift_size = shift_size if self.pad_small_map else 0
        elif min(H, W) < window_size:
            # In the original implementation, the window size will be shrunk
            # to the size of feature map. The behavior is different with
            # swin-transformer for downstream tasks. To support dynamic input
            # shape, we don't allow this feature.
            assert self.pad_small_map, \
                f'The input shape ({H}, {W}) is smaller than the window ' \
                f'size ({window_size}). Please set `pad_small_map=True`, or ' \
                'decrease the `window_size`.'

        pad_r = (window_size - W % window_size) % window_size
        pad_b = (window_size - H % window_size) % window_size
        query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b))

        H_pad, W_pad = query.shape[1], query.shape[2]

        # cyclic shift
        if shift_size > 0:
            query = torch.roll(
                query, shifts=(-shift_size, -shift_size), dims=(1, 2))

        attn_mask = self.get_attn_mask((H_pad, W_pad),
                                       window_size=window_size,
                                       shift_size=shift_size,
                                       device=query.device)

        # nW*B, window_size, window_size, C
        query_windows = self.window_partition(query, window_size)
        # nW*B, window_size*window_size, C
        query_windows = query_windows.view(-1, window_size**2, C)

        # W-MSA/SW-MSA (nW*B, window_size*window_size, C)
        attn_windows = self.w_msa(query_windows, mask=attn_mask)

        # merge windows
        attn_windows = attn_windows.view(-1, window_size, window_size, C)

        # B H' W' C
        shifted_x = self.window_reverse(attn_windows, H_pad, W_pad,
                                        window_size)
        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(
                shifted_x, shifts=(shift_size, shift_size), dims=(1, 2))
        else:
            x = shifted_x

        if H != H_pad or W != W_pad:
            x = x[:, :H, :W, :].contiguous()

        x = x.view(B, H * W, C)

        x = self.drop(x)

        return x

    @staticmethod
    def window_reverse(windows, H, W, window_size):
        B = int(windows.shape[0] / (H * W / window_size / window_size))
        x = windows.view(B, H // window_size, W // window_size, window_size,
                         window_size, -1)
        x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
        return x

    @staticmethod
    def window_partition(x, window_size):
        B, H, W, C = x.shape
        x = x.view(B, H // window_size, window_size, W // window_size,
                   window_size, C)
        windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
        windows = windows.view(-1, window_size, window_size, C)
        return windows

    @staticmethod
    def get_attn_mask(hw_shape, window_size, shift_size, device=None):
        if shift_size > 0:
            img_mask = torch.zeros(1, *hw_shape, 1, device=device)
            h_slices = (slice(0, -window_size), slice(-window_size,
                                                      -shift_size),
                        slice(-shift_size, None))
            w_slices = (slice(0, -window_size), slice(-window_size,
                                                      -shift_size),
                        slice(-shift_size, None))
            cnt = 0
            for h in h_slices:
                for w in w_slices:
                    img_mask[:, h, w, :] = cnt
                    cnt += 1

            # nW, window_size, window_size, 1
            mask_windows = ShiftWindowMSA.window_partition(
                img_mask, window_size)
            mask_windows = mask_windows.view(-1, window_size * window_size)
            attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
            attn_mask = attn_mask.masked_fill(attn_mask != 0, -100.0)
            attn_mask = attn_mask.masked_fill(attn_mask == 0, 0.0)
        else:
            attn_mask = None
        return attn_mask


class MultiheadAttention(BaseModule):
    """Multi-head Attention Module.

    This module implements multi-head attention that supports different input
    dims and embed dims. And it also supports a shortcut from ``value``, which
    is useful if input dims is not the same with embed dims.

    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        input_dims (int, optional): The input dimension, and if None,
            use ``embed_dims``. Defaults to None.
        attn_drop (float): Dropout rate of the dropout layer after the
            attention calculation of query and key. Defaults to 0.
        proj_drop (float): Dropout rate of the dropout layer after the
            output projection. Defaults to 0.
        dropout_layer (dict): The dropout config before adding the shortcut.
            Defaults to ``dict(type='Dropout', drop_prob=0.)``.
        qkv_bias (bool): If True, add a learnable bias to q, k, v.
            Defaults to True.
        qk_scale (float, optional): Override default qk scale of
            ``head_dim ** -0.5`` if set. Defaults to None.
        proj_bias (bool) If True, add a learnable bias to output projection.
            Defaults to True.
        v_shortcut (bool): Add a shortcut from value to output. It's usually
            used if ``input_dims`` is different from ``embed_dims``.
            Defaults to False.
        use_layer_scale (bool): Whether to use layer scale. Defaults to False.
        layer_scale_init_value (float or torch.Tensor): Init value of layer
            scale. Defaults to 0.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 input_dims=None,
                 attn_drop=0.,
                 proj_drop=0.,
                 dropout_layer=dict(type='Dropout', drop_prob=0.),
                 qkv_bias=True,
                 qk_scale=None,
                 proj_bias=True,
                 v_shortcut=False,
                 use_layer_scale=False,
                 layer_scale_init_value=0.,
                 init_cfg=None):
        super(MultiheadAttention, self).__init__(init_cfg=init_cfg)

        self.input_dims = input_dims or embed_dims
        self.embed_dims = embed_dims
        self.num_heads = num_heads
        self.v_shortcut = v_shortcut

        self.head_dims = embed_dims // num_heads
        if qk_scale is not None:
            self.scaled_dot_product_attention = partial(
                scaled_dot_product_attention_pyimpl,
                scale=self.head_dims**-0.5)
        else:
            self.scaled_dot_product_attention = scaled_dot_product_attention

        self.qkv = nn.Linear(self.input_dims, embed_dims * 3, bias=qkv_bias)
        self.attn_drop = attn_drop
        self.proj = nn.Linear(embed_dims, embed_dims, bias=proj_bias)
        self.proj_drop = nn.Dropout(proj_drop)

        self.out_drop = build_dropout(dropout_layer)

        if use_layer_scale:
            warnings.warn('The `use_layer_scale` in `MultiheadAttention` will '
                          'be deprecated. Please use `layer_scale_init_value` '
                          'to control whether using layer scale or not.')

        if use_layer_scale or (layer_scale_init_value > 0):
            layer_scale_init_value = layer_scale_init_value or 1e-5
            self.gamma1 = LayerScale(
                embed_dims, layer_scale_init_value=layer_scale_init_value)
        else:
            self.gamma1 = nn.Identity()

    def forward(self, x):
        B, N, _ = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
                                  self.head_dims).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        attn_drop = self.attn_drop if self.training else 0.
        x = self.scaled_dot_product_attention(q, k, v, dropout_p=attn_drop)
        x = x.transpose(1, 2).reshape(B, N, self.embed_dims)

        x = self.proj(x)
        x = self.out_drop(self.gamma1(self.proj_drop(x)))

        if self.v_shortcut:
            x = v.squeeze(1) + x
        return x


class BEiTAttention(BaseModule):
    """Window based multi-head self-attention (W-MSA) module with relative
    position bias.

    The initial implementation is in MMSegmentation.

    Args:
        embed_dims (int): Number of input channels.
        num_heads (int): Number of attention heads.
        window_size (tuple[int, int]): The height and width of the window.
        use_rel_pos_bias (bool): Whether to use unique relative position bias,
            if False, use shared relative position bias defined in backbone.
        bias (str): The option to add leanable bias for q, k, v. If bias is
            True, it will add leanable bias. If bias is 'qv_bias', it will only
            add leanable bias for q, v. If bias is False, it will not add bias
            for q, k, v. Default to 'qv_bias'.
        qk_scale (float | None, optional): Override default qk scale of
            head_dim ** -0.5 if set. Default: None.
        attn_drop_rate (float): Dropout ratio of attention weight.
            Default: 0.0
        proj_drop_rate (float): Dropout ratio of output. Default: 0.
        init_cfg (dict | None, optional): The Config for initialization.
            Default: None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads,
                 window_size,
                 use_rel_pos_bias,
                 bias='qv_bias',
                 qk_scale=None,
                 attn_drop_rate=0.,
                 proj_drop_rate=0.,
                 init_cfg=None,
                 **kwargs):
        super().__init__(init_cfg=init_cfg)
        self.embed_dims = embed_dims
        self.num_heads = num_heads
        head_embed_dims = embed_dims // num_heads
        self.bias = bias
        self.scale = qk_scale or head_embed_dims**-0.5

        qkv_bias = bias
        if bias == 'qv_bias':
            self._init_qv_bias()
            qkv_bias = False

        if window_size is None:
            assert not use_rel_pos_bias
        else:
            assert isinstance(window_size, tuple)
        self.window_size = window_size
        self.use_rel_pos_bias = use_rel_pos_bias
        self._init_rel_pos_embedding()

        self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_rate)
        self.proj = nn.Linear(embed_dims, embed_dims)
        self.proj_drop = nn.Dropout(proj_drop_rate)

    def _init_qv_bias(self):
        self.q_bias = nn.Parameter(torch.zeros(self.embed_dims))
        self.v_bias = nn.Parameter(torch.zeros(self.embed_dims))

    def _init_rel_pos_embedding(self):
        if self.use_rel_pos_bias:
            Wh, Ww = self.window_size
            # cls to token & token 2 cls & cls to cls
            self.num_relative_distance = (2 * Wh - 1) * (2 * Ww - 1) + 3
            # relative_position_bias_table shape is (2*Wh-1 * 2*Ww-1 + 3, nH)
            self.relative_position_bias_table = nn.Parameter(
                torch.zeros(self.num_relative_distance, self.num_heads))

            # get pair-wise relative position index for
            # each token inside the window
            coords_h = torch.arange(Wh)
            coords_w = torch.arange(Ww)
            # coords shape is (2, Wh, Ww)
            coords = torch.stack(torch_meshgrid([coords_h, coords_w]))
            # coords_flatten shape is (2, Wh*Ww)
            coords_flatten = torch.flatten(coords, 1)
            relative_coords = (
                coords_flatten[:, :, None] - coords_flatten[:, None, :])
            # relative_coords shape is (Wh*Ww, Wh*Ww, 2)
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()
            # shift to start from 0
            relative_coords[:, :, 0] += Wh - 1
            relative_coords[:, :, 1] += Ww - 1
            relative_coords[:, :, 0] *= 2 * Ww - 1
            relative_position_index = torch.zeros(
                size=(Wh * Ww + 1, ) * 2, dtype=relative_coords.dtype)
            # relative_position_index shape is (Wh*Ww, Wh*Ww)
            relative_position_index[1:, 1:] = relative_coords.sum(-1)
            relative_position_index[0, 0:] = self.num_relative_distance - 3
            relative_position_index[0:, 0] = self.num_relative_distance - 2
            relative_position_index[0, 0] = self.num_relative_distance - 1

            self.register_buffer('relative_position_index',
                                 relative_position_index)
        else:
            self.window_size = None
            self.relative_position_bias_table = None
            self.relative_position_index = None

    def init_weights(self):
        super().init_weights()
        if self.use_rel_pos_bias:
            trunc_normal_(self.relative_position_bias_table, std=0.02)

    def forward(self, x, rel_pos_bias=None):
        """
        Args:
            x (tensor): input features with shape of (num_windows*B, N, C).
            rel_pos_bias (tensor): input relative position bias with shape of
                (num_heads, N, N).
        """
        B, N, C = x.shape

        if self.bias == 'qv_bias':
            k_bias = torch.zeros_like(self.v_bias, requires_grad=False)
            qkv_bias = torch.cat((self.q_bias, k_bias, self.v_bias))
            qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        else:
            qkv = self.qkv(x)

        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]
        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        if self.relative_position_bias_table is not None:
            Wh = self.window_size[0]
            Ww = self.window_size[1]
            relative_position_bias = self.relative_position_bias_table[
                self.relative_position_index.view(-1)].view(
                    Wh * Ww + 1, Wh * Ww + 1, -1)
            relative_position_bias = relative_position_bias.permute(
                2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
            attn = attn + relative_position_bias.unsqueeze(0)

        if rel_pos_bias is not None:
            # use shared relative position bias
            attn = attn + rel_pos_bias

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class ChannelMultiheadAttention(BaseModule):
    """Channel Multihead Self-attention Module.

    This module implements channel multi-head attention that supports different
    input dims and embed dims.
    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        input_dims (int, optional): The input dimension, and if None,
            use ``embed_dims``. Defaults to None.
        attn_drop (float): Dropout rate of the dropout layer after the
            attention calculation of query and key. Defaults to 0.
        proj_drop (float): Dropout rate of the dropout layer after the
            output projection. Defaults to 0.
        dropout_layer (dict): The dropout config before adding the shoutcut.
            Defaults to ``dict(type='Dropout', drop_prob=0.)``.
        qkv_bias (bool): If True, add a learnable bias to q, k, v.
            Defaults to False.
        proj_bias (bool) If True, add a learnable bias to output projection.
            Defaults to True.
        qk_scale_type (str): The scale type of qk scale.
            Defaults to 'learnable'. It can be 'learnable', 'fixed' or 'none'.
        qk_scale (float, optional): If set qk_scale_type to 'none', this
            should be specified with valid float number. Defaults to None.
        v_shortcut (bool): Add a shortcut from value to output. It's usually
            used if ``input_dims`` is different from ``embed_dims``.
            Defaults to False.
        init_cfg (dict, optional): The Config for initialization.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims,
                 num_heads=8,
                 input_dims=None,
                 attn_drop=0.,
                 proj_drop=0.,
                 dropout_layer=dict(type='Dropout', drop_prob=0.),
                 qkv_bias=False,
                 proj_bias=True,
                 qk_scale_type='learnable',
                 qk_scale=None,
                 v_shortcut=False,
                 init_cfg=None):
        super().__init__(init_cfg)

        self.input_dims = input_dims or embed_dims
        self.embed_dims = embed_dims
        self.num_heads = num_heads
        self.v_shortcut = v_shortcut

        self.head_dims = embed_dims // num_heads
        if qk_scale_type == 'learnable':
            self.scale = nn.Parameter(torch.ones(num_heads, 1, 1))
        elif qk_scale_type == 'fixed':
            self.scale = self.head_dims**-0.5
        elif qk_scale_type == 'none':
            assert qk_scale is not None
            self.scale = qk_scale

        self.qkv = nn.Linear(self.input_dims, embed_dims * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(embed_dims, embed_dims, bias=proj_bias)
        self.proj_drop = nn.Dropout(proj_drop)

        self.out_drop = build_dropout(dropout_layer)

    def forward(self, x):
        B, N, _ = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
                                  self.head_dims).permute(2, 0, 3, 1, 4)

        q, k, v = [item.transpose(-2, -1) for item in [qkv[0], qkv[1], qkv[2]]]

        q, k = F.normalize(q, dim=-1), F.normalize(k, dim=-1)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)

        x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, self.embed_dims)
        x = self.proj(x)
        x = self.out_drop(self.proj_drop(x))

        if self.v_shortcut:
            x = qkv[2].squeeze(1) + x
        return x


class LeAttention(BaseModule):
    """LeViT Attention. Multi-head attention with attention bias,  which is
    proposed in `LeViT: a Vision Transformer in ConvNet’s Clothing for Faster
    Inference<https://arxiv.org/abs/2104.01136>`_

    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads. Default: 8.
        key_dim (int): Dimension of key. Default: None.
        attn_ratio (int): Ratio of attention heads. Default: 8.
        resolution (tuple[int]): Input resolution. Default: (16, 16).
        init_cfg (dict, optional): The Config for initialization.
    """

    def __init__(self,
                 dim,
                 key_dim,
                 num_heads=8,
                 attn_ratio=4,
                 resolution=(14, 14),
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        # (h, w)
        assert isinstance(resolution, tuple) and len(resolution) == 2
        self.num_heads = num_heads
        self.scale = key_dim**-0.5
        self.key_dim = key_dim
        self.nh_kd = nh_kd = key_dim * num_heads
        self.d = int(attn_ratio * key_dim)
        self.dh = int(attn_ratio * key_dim) * num_heads
        self.attn_ratio = attn_ratio
        h = self.dh + nh_kd * 2

        self.norm = nn.LayerNorm(dim)
        self.qkv = nn.Linear(dim, h)
        self.proj = nn.Linear(self.dh, dim)

        points = list(
            itertools.product(range(resolution[0]), range(resolution[1])))
        N = len(points)
        attention_offsets = {}
        idxs = []
        for p1 in points:
            for p2 in points:
                offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
                if offset not in attention_offsets:
                    attention_offsets[offset] = len(attention_offsets)
                idxs.append(attention_offsets[offset])
        self.attention_biases = torch.nn.Parameter(
            torch.zeros(num_heads, len(attention_offsets)))
        self.register_buffer(
            'attention_bias_idxs',
            torch.LongTensor(idxs).view(N, N),
            persistent=False)

    @torch.no_grad()
    def train(self, mode=True):
        super().train(mode)
        if mode and hasattr(self, 'ab'):
            del self.ab
        else:
            self.ab = self.attention_biases[:, self.attention_bias_idxs]

    def forward(self, x):  # x (B,N,C)
        B, N, _ = x.shape

        # Normalization
        x = self.norm(x)

        qkv = self.qkv(x)
        # (B, N, num_heads, d)
        q, k, v = qkv.view(B, N, self.num_heads,
                           -1).split([self.key_dim, self.key_dim, self.d],
                                     dim=3)
        # (B, num_heads, N, d)
        q = q.permute(0, 2, 1, 3)
        k = k.permute(0, 2, 1, 3)
        v = v.permute(0, 2, 1, 3)

        attn = ((q @ k.transpose(-2, -1)) * self.scale +
                (self.attention_biases[:, self.attention_bias_idxs]
                 if self.training else self.ab))
        attn = attn.softmax(dim=-1)
        x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
        x = self.proj(x)
        return x


class CrossMultiheadAttention(BaseModule):
    """Cross attention between queries and the union of keys and values.

    This module is different from ``MultiheadAttention``, for the attention
    is computed between queries and the union of keys and values.

    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        qkv_bias (bool): If True, add a learnable bias to q, k, v.
            Defaults to True.
        qk_scale (float, optional): Override default qk scale of
            ``head_dim ** -0.5`` if set. Defaults to None.
        attn_drop (float): Dropout rate of the dropout layer after the
            attention calculation of query and key. Defaults to 0.
        proj_drop (float): Dropout rate of the dropout layer after the
            output projection. Defaults to 0.
    """

    def __init__(self,
                 embed_dims: int,
                 num_heads: int = 8,
                 qkv_bias: bool = False,
                 qk_scale: float = None,
                 attn_drop: float = 0.,
                 proj_drop: float = 0.) -> None:
        super().__init__()
        self.num_heads = num_heads
        head_dim = embed_dims // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.q = nn.Linear(embed_dims, embed_dims, bias=False)
        self.k = nn.Linear(embed_dims, embed_dims, bias=False)
        self.v = nn.Linear(embed_dims, embed_dims, bias=False)

        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(embed_dims))
            self.v_bias = nn.Parameter(torch.zeros(embed_dims))
        else:
            self.q_bias = None
            self.k_bias = None
            self.v_bias = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(embed_dims, embed_dims)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self,
                x: torch.Tensor,
                k: torch.Tensor = None,
                v: torch.Tensor = None) -> None:
        """Forward function."""
        B, N, _ = x.shape

        N_k = k.shape[1]
        N_v = v.shape[1]

        q_bias, k_bias, v_bias = None, None, None
        if self.q_bias is not None:
            q_bias = self.q_bias
            k_bias = torch.zeros_like(self.v_bias, requires_grad=False)
            v_bias = self.v_bias

        q = F.linear(
            input=x, weight=self.q.weight, bias=q_bias)  # (B, N_q, dim)
        k = F.linear(
            input=k, weight=self.k.weight, bias=k_bias)  # (B, N_k, dim)
        v = F.linear(input=v, weight=self.v.weight, bias=v_bias)

        q = q.reshape(B, N, 1, self.num_heads,
                      -1).permute(2, 0, 3, 1,
                                  4).squeeze(0)  # (B, num_heads, N_q, dim)
        k = k.reshape(B, N_k, 1, self.num_heads,
                      -1).permute(2, 0, 3, 1,
                                  4).squeeze(0)  # (B, num_heads, N_k, dim)
        v = v.reshape(B, N_v, 1, self.num_heads,
                      -1).permute(2, 0, 3, 1,
                                  4).squeeze(0)  # (B, num_heads, N_v, dim)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))  # (B, N_head, N_q, N_k)

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class PromptMultiheadAttention(MultiheadAttention):
    """Prompt Multihead Attention for MILAN.

    This module is specific for the prompt encoder in MILAN. It will not update
    the visible tokens from the encoder.

    Args:
        embed_dims (int): The embedding dimension.
        num_heads (int): Parallel attention heads.
        input_dims (int, optional): The input dimension, and if None,
            use ``embed_dims``. Defaults to None.
        attn_drop (float): Dropout rate of the dropout layer after the
            attention calculation of query and key. Defaults to 0.
        proj_drop (float): Dropout rate of the dropout layer after the
            output projection. Defaults to 0.
        dropout_layer (dict): The dropout config before adding the shortcut.
            Defaults to ``dict(type='Dropout', drop_prob=0.)``.
        qkv_bias (bool): If True, add a learnable bias to q, k, v.
            Defaults to True.
        qk_scale (float, optional): Override default qk scale of
            ``head_dim ** -0.5`` if set. Defaults to None.
        proj_bias (bool) If True, add a learnable bias to output projection.
            Defaults to True.
        v_shortcut (bool): Add a shortcut from value to output. It's usually
            used if ``input_dims`` is different from ``embed_dims``.
            Defaults to False.
        return_attention (bool): If True, return the attention map, computed by
            the cross attention between the class token and all other tokens.
            Defaults to False.
        init_cfg (Union[List[dict], dict], optional): The Config for
            initialization. Defaults to None.
    """

    def __init__(self,
                 embed_dims: int,
                 num_heads: int,
                 input_dims: Optional[int] = None,
                 attn_drop: float = 0,
                 proj_drop: float = 0,
                 dropout_layer: dict = dict(type='Dropout', drop_prob=0.),
                 qkv_bias: bool = True,
                 qk_scale: Optional[float] = None,
                 proj_bias: bool = True,
                 v_shortcut: bool = False,
                 use_layer_scale: bool = False,
                 init_cfg: Optional[Union[List[dict], dict]] = None) -> None:
        super().__init__(
            embed_dims=embed_dims,
            num_heads=num_heads,
            input_dims=input_dims,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            dropout_layer=dropout_layer,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            proj_bias=proj_bias,
            v_shortcut=v_shortcut,
            use_layer_scale=use_layer_scale,
            init_cfg=init_cfg)
        # no longer need qkv
        del self.qkv

        # to project the mask tokens
        self.q = nn.Linear(embed_dims, embed_dims, bias=qkv_bias)
        # to project al the tokens
        self.kv = nn.Linear(embed_dims, embed_dims * 2, bias=qkv_bias)

    def forward(self, x: torch.Tensor, visible_tokens: torch.Tensor,
                ids_restore: torch.Tensor) -> torch.Tensor:
        """Forward function for `PromptMultiheadAttention`.

        Args:
            x (torch.Tensor): Mask token features with shape N x L_m x C.
            visible_tokens (torch.Tensor): The visible tokens features from
                encoder with shape N x L_v x C.
            ids_restore (torch.Tensor): The ids of all tokens in the original
                image with shape N x L.

        Returns:
            torch Tensor: Output features with shape N x L x C.
        """
        x_ = torch.cat([visible_tokens[:, 1:, :], x], dim=1)
        assert x_.shape[1] == ids_restore.shape[1]
        x_ = torch.gather(
            x_,
            dim=1,
            index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[-1]))
        x_ = torch.cat([visible_tokens[:, :1, :], x_], dim=1)

        # full sequence shape
        B, _, _ = x_.shape
        q = self.q(x).reshape(B, x.shape[1], self.num_heads,
                              self.head_dims).permute(0, 2, 1, 3)
        kv = self.kv(x_).reshape(B, x_.shape[1], 2, self.num_heads,
                                 self.head_dims).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]

        attn_drop = self.attn_drop if self.training else 0.
        attn = self.scaled_dot_product_attention(q, k, v, dropout_p=attn_drop)
        x = attn.transpose(1, 2).reshape(B, x.shape[1], self.embed_dims)

        x = self.proj(x)
        x = self.out_drop(self.gamma1(self.proj_drop(x)))
        return x