Spaces:
Runtime error
Runtime error
File size: 45,478 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 |
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import warnings
from functools import partial
from typing import List, Optional, Union
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn.bricks.drop import build_dropout
from mmengine.model import BaseModule
from mmengine.model.weight_init import trunc_normal_
from mmengine.utils import digit_version
from mmpretrain.registry import MODELS
from .helpers import to_2tuple
from .layer_scale import LayerScale
# After pytorch v1.10.0, use torch.meshgrid without indexing
# will raise extra warning. For more details,
# refers to https://github.com/pytorch/pytorch/issues/50276
if digit_version(torch.__version__) >= digit_version('1.10.0'):
torch_meshgrid = partial(torch.meshgrid, indexing='ij')
else:
torch_meshgrid = torch.meshgrid
def scaled_dot_product_attention_pyimpl(query,
key,
value,
attn_mask=None,
dropout_p=0.,
scale=None,
is_causal=False):
scale = scale or query.size(-1)**0.5
if is_causal and attn_mask is not None:
attn_mask = torch.ones(
query.size(-2), key.size(-2), dtype=torch.bool).tril(diagonal=0)
if attn_mask is not None and attn_mask.dtype == torch.bool:
attn_mask = attn_mask.masked_fill(not attn_mask, -float('inf'))
attn_weight = query @ key.transpose(-2, -1) / scale
if attn_mask is not None:
attn_weight += attn_mask
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, True)
return attn_weight @ value
if digit_version(torch.__version__) >= digit_version('2.0.0'):
scaled_dot_product_attention = F.scaled_dot_product_attention
else:
scaled_dot_product_attention = scaled_dot_product_attention_pyimpl
class WindowMSA(BaseModule):
"""Window based multi-head self-attention (W-MSA) module with relative
position bias.
Args:
embed_dims (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to q, k, v.
Defaults to True.
qk_scale (float, optional): Override default qk scale of
``head_dim ** -0.5`` if set. Defaults to None.
attn_drop (float, optional): Dropout ratio of attention weight.
Defaults to 0.
proj_drop (float, optional): Dropout ratio of output. Defaults to 0.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.,
proj_drop=0.,
init_cfg=None):
super().__init__(init_cfg)
self.embed_dims = embed_dims
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_embed_dims = embed_dims // num_heads
self.scale = qk_scale or head_embed_dims**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# About 2x faster than original impl
Wh, Ww = self.window_size
rel_index_coords = self.double_step_seq(2 * Ww - 1, Wh, 1, Ww)
rel_position_index = rel_index_coords + rel_index_coords.T
rel_position_index = rel_position_index.flip(1).contiguous()
self.register_buffer('relative_position_index', rel_position_index)
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def init_weights(self):
super(WindowMSA, self).init_weights()
trunc_normal_(self.relative_position_bias_table, std=0.02)
def forward(self, x, mask=None):
"""
Args:
x (tensor): input features with shape of (num_windows*B, N, C)
mask (tensor, Optional): mask with shape of (num_windows, Wh*Ww,
Wh*Ww), value should be between (-inf, 0].
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
@staticmethod
def double_step_seq(step1, len1, step2, len2):
seq1 = torch.arange(0, step1 * len1, step1)
seq2 = torch.arange(0, step2 * len2, step2)
return (seq1[:, None] + seq2[None, :]).reshape(1, -1)
class WindowMSAV2(BaseModule):
"""Window based multi-head self-attention (W-MSA) module with relative
position bias.
Based on implementation on Swin Transformer V2 original repo. Refers to
https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer_v2.py
for more details.
Args:
embed_dims (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to True.
attn_drop (float): Dropout ratio of attention weight.
Defaults to 0.
proj_drop (float): Dropout ratio of output. Defaults to 0.
cpb_mlp_hidden_dims (int): The hidden dimensions of the continuous
relative position bias network. Defaults to 512.
pretrained_window_size (tuple(int)): The height and width of the window
in pre-training. Defaults to (0, 0), which means not load
pretrained model.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
window_size,
num_heads,
qkv_bias=True,
attn_drop=0.,
proj_drop=0.,
cpb_mlp_hidden_dims=512,
pretrained_window_size=(0, 0),
init_cfg=None):
super().__init__(init_cfg)
self.embed_dims = embed_dims
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
# Use small network for continuous relative position bias
self.cpb_mlp = nn.Sequential(
nn.Linear(
in_features=2, out_features=cpb_mlp_hidden_dims, bias=True),
nn.ReLU(inplace=True),
nn.Linear(
in_features=cpb_mlp_hidden_dims,
out_features=num_heads,
bias=False))
# Add learnable scalar for cosine attention
self.logit_scale = nn.Parameter(
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)
# get relative_coords_table
relative_coords_h = torch.arange(
-(self.window_size[0] - 1),
self.window_size[0],
dtype=torch.float32)
relative_coords_w = torch.arange(
-(self.window_size[1] - 1),
self.window_size[1],
dtype=torch.float32)
relative_coords_table = torch.stack(
torch_meshgrid([relative_coords_h, relative_coords_w])).permute(
1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
if pretrained_window_size[0] > 0:
relative_coords_table[:, :, :, 0] /= (
pretrained_window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (
pretrained_window_size[1] - 1)
else:
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
relative_coords_table *= 8 # normalize to -8, 8
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
self.register_buffer('relative_coords_table', relative_coords_table)
# get pair-wise relative position index
# for each token inside the window
indexes_h = torch.arange(self.window_size[0])
indexes_w = torch.arange(self.window_size[1])
coordinates = torch.stack(
torch_meshgrid([indexes_h, indexes_w]), dim=0) # 2, Wh, Ww
coordinates = torch.flatten(coordinates, start_dim=1) # 2, Wh*Ww
# 2, Wh*Ww, Wh*Ww
relative_coordinates = coordinates[:, :, None] - coordinates[:,
None, :]
relative_coordinates = relative_coordinates.permute(
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coordinates[:, :, 0] += self.window_size[
0] - 1 # shift to start from 0
relative_coordinates[:, :, 1] += self.window_size[1] - 1
relative_coordinates[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coordinates.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer('relative_position_index',
relative_position_index)
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(embed_dims))
self.v_bias = nn.Parameter(torch.zeros(embed_dims))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x (tensor): input features with shape of (num_windows*B, N, C)
mask (tensor, Optional): mask with shape of (num_windows, Wh*Ww,
Wh*Ww), value should be between (-inf, 0].
"""
B_, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat(
(self.q_bias,
torch.zeros_like(self.v_bias,
requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B_, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
# cosine attention
attn = (
F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
logit_scale = torch.clamp(
self.logit_scale, max=np.log(1. / 0.01)).exp()
attn = attn * logit_scale
relative_position_bias_table = self.cpb_mlp(
self.relative_coords_table).view(-1, self.num_heads)
relative_position_bias = relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
@MODELS.register_module()
class ShiftWindowMSA(BaseModule):
"""Shift Window Multihead Self-Attention Module.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): The height and width of the window.
shift_size (int, optional): The shift step of each window towards
right-bottom. If zero, act as regular window-msa. Defaults to 0.
dropout_layer (dict, optional): The dropout_layer used before output.
Defaults to dict(type='DropPath', drop_prob=0.).
pad_small_map (bool): If True, pad the small feature map to the window
size, which is common used in detection and segmentation. If False,
avoid shifting window and shrink the window size to the size of
feature map, which is common used in classification.
Defaults to False.
window_msa (Callable): To build a window multi-head attention module.
Defaults to :class:`WindowMSA`.
init_cfg (dict, optional): The extra config for initialization.
Defaults to None.
**kwargs: Other keyword arguments to build the window multi-head
attention module.
"""
def __init__(self,
embed_dims,
num_heads,
window_size,
shift_size=0,
dropout_layer=dict(type='DropPath', drop_prob=0.),
pad_small_map=False,
window_msa=WindowMSA,
init_cfg=None,
**kwargs):
super().__init__(init_cfg)
self.shift_size = shift_size
self.window_size = window_size
assert 0 <= self.shift_size < self.window_size
self.w_msa = window_msa(
embed_dims=embed_dims,
num_heads=num_heads,
window_size=to_2tuple(self.window_size),
**kwargs,
)
self.drop = build_dropout(dropout_layer)
self.pad_small_map = pad_small_map
def forward(self, query, hw_shape):
B, L, C = query.shape
H, W = hw_shape
assert L == H * W, f"The query length {L} doesn't match the input "\
f'shape ({H}, {W}).'
query = query.view(B, H, W, C)
window_size = self.window_size
shift_size = self.shift_size
if min(H, W) == window_size:
# If not pad small feature map, avoid shifting when the window size
# is equal to the size of feature map. It's to align with the
# behavior of the original implementation.
shift_size = shift_size if self.pad_small_map else 0
elif min(H, W) < window_size:
# In the original implementation, the window size will be shrunk
# to the size of feature map. The behavior is different with
# swin-transformer for downstream tasks. To support dynamic input
# shape, we don't allow this feature.
assert self.pad_small_map, \
f'The input shape ({H}, {W}) is smaller than the window ' \
f'size ({window_size}). Please set `pad_small_map=True`, or ' \
'decrease the `window_size`.'
pad_r = (window_size - W % window_size) % window_size
pad_b = (window_size - H % window_size) % window_size
query = F.pad(query, (0, 0, 0, pad_r, 0, pad_b))
H_pad, W_pad = query.shape[1], query.shape[2]
# cyclic shift
if shift_size > 0:
query = torch.roll(
query, shifts=(-shift_size, -shift_size), dims=(1, 2))
attn_mask = self.get_attn_mask((H_pad, W_pad),
window_size=window_size,
shift_size=shift_size,
device=query.device)
# nW*B, window_size, window_size, C
query_windows = self.window_partition(query, window_size)
# nW*B, window_size*window_size, C
query_windows = query_windows.view(-1, window_size**2, C)
# W-MSA/SW-MSA (nW*B, window_size*window_size, C)
attn_windows = self.w_msa(query_windows, mask=attn_mask)
# merge windows
attn_windows = attn_windows.view(-1, window_size, window_size, C)
# B H' W' C
shifted_x = self.window_reverse(attn_windows, H_pad, W_pad,
window_size)
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(
shifted_x, shifts=(shift_size, shift_size), dims=(1, 2))
else:
x = shifted_x
if H != H_pad or W != W_pad:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
x = self.drop(x)
return x
@staticmethod
def window_reverse(windows, H, W, window_size):
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size,
window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
@staticmethod
def window_partition(x, window_size):
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size,
window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous()
windows = windows.view(-1, window_size, window_size, C)
return windows
@staticmethod
def get_attn_mask(hw_shape, window_size, shift_size, device=None):
if shift_size > 0:
img_mask = torch.zeros(1, *hw_shape, 1, device=device)
h_slices = (slice(0, -window_size), slice(-window_size,
-shift_size),
slice(-shift_size, None))
w_slices = (slice(0, -window_size), slice(-window_size,
-shift_size),
slice(-shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
# nW, window_size, window_size, 1
mask_windows = ShiftWindowMSA.window_partition(
img_mask, window_size)
mask_windows = mask_windows.view(-1, window_size * window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, -100.0)
attn_mask = attn_mask.masked_fill(attn_mask == 0, 0.0)
else:
attn_mask = None
return attn_mask
class MultiheadAttention(BaseModule):
"""Multi-head Attention Module.
This module implements multi-head attention that supports different input
dims and embed dims. And it also supports a shortcut from ``value``, which
is useful if input dims is not the same with embed dims.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads.
input_dims (int, optional): The input dimension, and if None,
use ``embed_dims``. Defaults to None.
attn_drop (float): Dropout rate of the dropout layer after the
attention calculation of query and key. Defaults to 0.
proj_drop (float): Dropout rate of the dropout layer after the
output projection. Defaults to 0.
dropout_layer (dict): The dropout config before adding the shortcut.
Defaults to ``dict(type='Dropout', drop_prob=0.)``.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to True.
qk_scale (float, optional): Override default qk scale of
``head_dim ** -0.5`` if set. Defaults to None.
proj_bias (bool) If True, add a learnable bias to output projection.
Defaults to True.
v_shortcut (bool): Add a shortcut from value to output. It's usually
used if ``input_dims`` is different from ``embed_dims``.
Defaults to False.
use_layer_scale (bool): Whether to use layer scale. Defaults to False.
layer_scale_init_value (float or torch.Tensor): Init value of layer
scale. Defaults to 0.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads,
input_dims=None,
attn_drop=0.,
proj_drop=0.,
dropout_layer=dict(type='Dropout', drop_prob=0.),
qkv_bias=True,
qk_scale=None,
proj_bias=True,
v_shortcut=False,
use_layer_scale=False,
layer_scale_init_value=0.,
init_cfg=None):
super(MultiheadAttention, self).__init__(init_cfg=init_cfg)
self.input_dims = input_dims or embed_dims
self.embed_dims = embed_dims
self.num_heads = num_heads
self.v_shortcut = v_shortcut
self.head_dims = embed_dims // num_heads
if qk_scale is not None:
self.scaled_dot_product_attention = partial(
scaled_dot_product_attention_pyimpl,
scale=self.head_dims**-0.5)
else:
self.scaled_dot_product_attention = scaled_dot_product_attention
self.qkv = nn.Linear(self.input_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = attn_drop
self.proj = nn.Linear(embed_dims, embed_dims, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
self.out_drop = build_dropout(dropout_layer)
if use_layer_scale:
warnings.warn('The `use_layer_scale` in `MultiheadAttention` will '
'be deprecated. Please use `layer_scale_init_value` '
'to control whether using layer scale or not.')
if use_layer_scale or (layer_scale_init_value > 0):
layer_scale_init_value = layer_scale_init_value or 1e-5
self.gamma1 = LayerScale(
embed_dims, layer_scale_init_value=layer_scale_init_value)
else:
self.gamma1 = nn.Identity()
def forward(self, x):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dims).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn_drop = self.attn_drop if self.training else 0.
x = self.scaled_dot_product_attention(q, k, v, dropout_p=attn_drop)
x = x.transpose(1, 2).reshape(B, N, self.embed_dims)
x = self.proj(x)
x = self.out_drop(self.gamma1(self.proj_drop(x)))
if self.v_shortcut:
x = v.squeeze(1) + x
return x
class BEiTAttention(BaseModule):
"""Window based multi-head self-attention (W-MSA) module with relative
position bias.
The initial implementation is in MMSegmentation.
Args:
embed_dims (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (tuple[int, int]): The height and width of the window.
use_rel_pos_bias (bool): Whether to use unique relative position bias,
if False, use shared relative position bias defined in backbone.
bias (str): The option to add leanable bias for q, k, v. If bias is
True, it will add leanable bias. If bias is 'qv_bias', it will only
add leanable bias for q, v. If bias is False, it will not add bias
for q, k, v. Default to 'qv_bias'.
qk_scale (float | None, optional): Override default qk scale of
head_dim ** -0.5 if set. Default: None.
attn_drop_rate (float): Dropout ratio of attention weight.
Default: 0.0
proj_drop_rate (float): Dropout ratio of output. Default: 0.
init_cfg (dict | None, optional): The Config for initialization.
Default: None.
"""
def __init__(self,
embed_dims,
num_heads,
window_size,
use_rel_pos_bias,
bias='qv_bias',
qk_scale=None,
attn_drop_rate=0.,
proj_drop_rate=0.,
init_cfg=None,
**kwargs):
super().__init__(init_cfg=init_cfg)
self.embed_dims = embed_dims
self.num_heads = num_heads
head_embed_dims = embed_dims // num_heads
self.bias = bias
self.scale = qk_scale or head_embed_dims**-0.5
qkv_bias = bias
if bias == 'qv_bias':
self._init_qv_bias()
qkv_bias = False
if window_size is None:
assert not use_rel_pos_bias
else:
assert isinstance(window_size, tuple)
self.window_size = window_size
self.use_rel_pos_bias = use_rel_pos_bias
self._init_rel_pos_embedding()
self.qkv = nn.Linear(embed_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_rate)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop_rate)
def _init_qv_bias(self):
self.q_bias = nn.Parameter(torch.zeros(self.embed_dims))
self.v_bias = nn.Parameter(torch.zeros(self.embed_dims))
def _init_rel_pos_embedding(self):
if self.use_rel_pos_bias:
Wh, Ww = self.window_size
# cls to token & token 2 cls & cls to cls
self.num_relative_distance = (2 * Wh - 1) * (2 * Ww - 1) + 3
# relative_position_bias_table shape is (2*Wh-1 * 2*Ww-1 + 3, nH)
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, self.num_heads))
# get pair-wise relative position index for
# each token inside the window
coords_h = torch.arange(Wh)
coords_w = torch.arange(Ww)
# coords shape is (2, Wh, Ww)
coords = torch.stack(torch_meshgrid([coords_h, coords_w]))
# coords_flatten shape is (2, Wh*Ww)
coords_flatten = torch.flatten(coords, 1)
relative_coords = (
coords_flatten[:, :, None] - coords_flatten[:, None, :])
# relative_coords shape is (Wh*Ww, Wh*Ww, 2)
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
# shift to start from 0
relative_coords[:, :, 0] += Wh - 1
relative_coords[:, :, 1] += Ww - 1
relative_coords[:, :, 0] *= 2 * Ww - 1
relative_position_index = torch.zeros(
size=(Wh * Ww + 1, ) * 2, dtype=relative_coords.dtype)
# relative_position_index shape is (Wh*Ww, Wh*Ww)
relative_position_index[1:, 1:] = relative_coords.sum(-1)
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer('relative_position_index',
relative_position_index)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
def init_weights(self):
super().init_weights()
if self.use_rel_pos_bias:
trunc_normal_(self.relative_position_bias_table, std=0.02)
def forward(self, x, rel_pos_bias=None):
"""
Args:
x (tensor): input features with shape of (num_windows*B, N, C).
rel_pos_bias (tensor): input relative position bias with shape of
(num_heads, N, N).
"""
B, N, C = x.shape
if self.bias == 'qv_bias':
k_bias = torch.zeros_like(self.v_bias, requires_grad=False)
qkv_bias = torch.cat((self.q_bias, k_bias, self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
else:
qkv = self.qkv(x)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.relative_position_bias_table is not None:
Wh = self.window_size[0]
Ww = self.window_size[1]
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
Wh * Ww + 1, Wh * Ww + 1, -1)
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if rel_pos_bias is not None:
# use shared relative position bias
attn = attn + rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class ChannelMultiheadAttention(BaseModule):
"""Channel Multihead Self-attention Module.
This module implements channel multi-head attention that supports different
input dims and embed dims.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads.
input_dims (int, optional): The input dimension, and if None,
use ``embed_dims``. Defaults to None.
attn_drop (float): Dropout rate of the dropout layer after the
attention calculation of query and key. Defaults to 0.
proj_drop (float): Dropout rate of the dropout layer after the
output projection. Defaults to 0.
dropout_layer (dict): The dropout config before adding the shoutcut.
Defaults to ``dict(type='Dropout', drop_prob=0.)``.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to False.
proj_bias (bool) If True, add a learnable bias to output projection.
Defaults to True.
qk_scale_type (str): The scale type of qk scale.
Defaults to 'learnable'. It can be 'learnable', 'fixed' or 'none'.
qk_scale (float, optional): If set qk_scale_type to 'none', this
should be specified with valid float number. Defaults to None.
v_shortcut (bool): Add a shortcut from value to output. It's usually
used if ``input_dims`` is different from ``embed_dims``.
Defaults to False.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(self,
embed_dims,
num_heads=8,
input_dims=None,
attn_drop=0.,
proj_drop=0.,
dropout_layer=dict(type='Dropout', drop_prob=0.),
qkv_bias=False,
proj_bias=True,
qk_scale_type='learnable',
qk_scale=None,
v_shortcut=False,
init_cfg=None):
super().__init__(init_cfg)
self.input_dims = input_dims or embed_dims
self.embed_dims = embed_dims
self.num_heads = num_heads
self.v_shortcut = v_shortcut
self.head_dims = embed_dims // num_heads
if qk_scale_type == 'learnable':
self.scale = nn.Parameter(torch.ones(num_heads, 1, 1))
elif qk_scale_type == 'fixed':
self.scale = self.head_dims**-0.5
elif qk_scale_type == 'none':
assert qk_scale is not None
self.scale = qk_scale
self.qkv = nn.Linear(self.input_dims, embed_dims * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(embed_dims, embed_dims, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
self.out_drop = build_dropout(dropout_layer)
def forward(self, x):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads,
self.head_dims).permute(2, 0, 3, 1, 4)
q, k, v = [item.transpose(-2, -1) for item in [qkv[0], qkv[1], qkv[2]]]
q, k = F.normalize(q, dim=-1), F.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, self.embed_dims)
x = self.proj(x)
x = self.out_drop(self.proj_drop(x))
if self.v_shortcut:
x = qkv[2].squeeze(1) + x
return x
class LeAttention(BaseModule):
"""LeViT Attention. Multi-head attention with attention bias, which is
proposed in `LeViT: a Vision Transformer in ConvNet’s Clothing for Faster
Inference<https://arxiv.org/abs/2104.01136>`_
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads. Default: 8.
key_dim (int): Dimension of key. Default: None.
attn_ratio (int): Ratio of attention heads. Default: 8.
resolution (tuple[int]): Input resolution. Default: (16, 16).
init_cfg (dict, optional): The Config for initialization.
"""
def __init__(self,
dim,
key_dim,
num_heads=8,
attn_ratio=4,
resolution=(14, 14),
init_cfg=None):
super().__init__(init_cfg=init_cfg)
# (h, w)
assert isinstance(resolution, tuple) and len(resolution) == 2
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
self.norm = nn.LayerNorm(dim)
self.qkv = nn.Linear(dim, h)
self.proj = nn.Linear(self.dh, dim)
points = list(
itertools.product(range(resolution[0]), range(resolution[1])))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(
torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer(
'attention_bias_idxs',
torch.LongTensor(idxs).view(N, N),
persistent=False)
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x): # x (B,N,C)
B, N, _ = x.shape
# Normalization
x = self.norm(x)
qkv = self.qkv(x)
# (B, N, num_heads, d)
q, k, v = qkv.view(B, N, self.num_heads,
-1).split([self.key_dim, self.key_dim, self.d],
dim=3)
# (B, num_heads, N, d)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
attn = ((q @ k.transpose(-2, -1)) * self.scale +
(self.attention_biases[:, self.attention_bias_idxs]
if self.training else self.ab))
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
x = self.proj(x)
return x
class CrossMultiheadAttention(BaseModule):
"""Cross attention between queries and the union of keys and values.
This module is different from ``MultiheadAttention``, for the attention
is computed between queries and the union of keys and values.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to True.
qk_scale (float, optional): Override default qk scale of
``head_dim ** -0.5`` if set. Defaults to None.
attn_drop (float): Dropout rate of the dropout layer after the
attention calculation of query and key. Defaults to 0.
proj_drop (float): Dropout rate of the dropout layer after the
output projection. Defaults to 0.
"""
def __init__(self,
embed_dims: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_scale: float = None,
attn_drop: float = 0.,
proj_drop: float = 0.) -> None:
super().__init__()
self.num_heads = num_heads
head_dim = embed_dims // num_heads
self.scale = qk_scale or head_dim**-0.5
self.q = nn.Linear(embed_dims, embed_dims, bias=False)
self.k = nn.Linear(embed_dims, embed_dims, bias=False)
self.v = nn.Linear(embed_dims, embed_dims, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(embed_dims))
self.v_bias = nn.Parameter(torch.zeros(embed_dims))
else:
self.q_bias = None
self.k_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(embed_dims, embed_dims)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self,
x: torch.Tensor,
k: torch.Tensor = None,
v: torch.Tensor = None) -> None:
"""Forward function."""
B, N, _ = x.shape
N_k = k.shape[1]
N_v = v.shape[1]
q_bias, k_bias, v_bias = None, None, None
if self.q_bias is not None:
q_bias = self.q_bias
k_bias = torch.zeros_like(self.v_bias, requires_grad=False)
v_bias = self.v_bias
q = F.linear(
input=x, weight=self.q.weight, bias=q_bias) # (B, N_q, dim)
k = F.linear(
input=k, weight=self.k.weight, bias=k_bias) # (B, N_k, dim)
v = F.linear(input=v, weight=self.v.weight, bias=v_bias)
q = q.reshape(B, N, 1, self.num_heads,
-1).permute(2, 0, 3, 1,
4).squeeze(0) # (B, num_heads, N_q, dim)
k = k.reshape(B, N_k, 1, self.num_heads,
-1).permute(2, 0, 3, 1,
4).squeeze(0) # (B, num_heads, N_k, dim)
v = v.reshape(B, N_v, 1, self.num_heads,
-1).permute(2, 0, 3, 1,
4).squeeze(0) # (B, num_heads, N_v, dim)
q = q * self.scale
attn = (q @ k.transpose(-2, -1)) # (B, N_head, N_q, N_k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class PromptMultiheadAttention(MultiheadAttention):
"""Prompt Multihead Attention for MILAN.
This module is specific for the prompt encoder in MILAN. It will not update
the visible tokens from the encoder.
Args:
embed_dims (int): The embedding dimension.
num_heads (int): Parallel attention heads.
input_dims (int, optional): The input dimension, and if None,
use ``embed_dims``. Defaults to None.
attn_drop (float): Dropout rate of the dropout layer after the
attention calculation of query and key. Defaults to 0.
proj_drop (float): Dropout rate of the dropout layer after the
output projection. Defaults to 0.
dropout_layer (dict): The dropout config before adding the shortcut.
Defaults to ``dict(type='Dropout', drop_prob=0.)``.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to True.
qk_scale (float, optional): Override default qk scale of
``head_dim ** -0.5`` if set. Defaults to None.
proj_bias (bool) If True, add a learnable bias to output projection.
Defaults to True.
v_shortcut (bool): Add a shortcut from value to output. It's usually
used if ``input_dims`` is different from ``embed_dims``.
Defaults to False.
return_attention (bool): If True, return the attention map, computed by
the cross attention between the class token and all other tokens.
Defaults to False.
init_cfg (Union[List[dict], dict], optional): The Config for
initialization. Defaults to None.
"""
def __init__(self,
embed_dims: int,
num_heads: int,
input_dims: Optional[int] = None,
attn_drop: float = 0,
proj_drop: float = 0,
dropout_layer: dict = dict(type='Dropout', drop_prob=0.),
qkv_bias: bool = True,
qk_scale: Optional[float] = None,
proj_bias: bool = True,
v_shortcut: bool = False,
use_layer_scale: bool = False,
init_cfg: Optional[Union[List[dict], dict]] = None) -> None:
super().__init__(
embed_dims=embed_dims,
num_heads=num_heads,
input_dims=input_dims,
attn_drop=attn_drop,
proj_drop=proj_drop,
dropout_layer=dropout_layer,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
proj_bias=proj_bias,
v_shortcut=v_shortcut,
use_layer_scale=use_layer_scale,
init_cfg=init_cfg)
# no longer need qkv
del self.qkv
# to project the mask tokens
self.q = nn.Linear(embed_dims, embed_dims, bias=qkv_bias)
# to project al the tokens
self.kv = nn.Linear(embed_dims, embed_dims * 2, bias=qkv_bias)
def forward(self, x: torch.Tensor, visible_tokens: torch.Tensor,
ids_restore: torch.Tensor) -> torch.Tensor:
"""Forward function for `PromptMultiheadAttention`.
Args:
x (torch.Tensor): Mask token features with shape N x L_m x C.
visible_tokens (torch.Tensor): The visible tokens features from
encoder with shape N x L_v x C.
ids_restore (torch.Tensor): The ids of all tokens in the original
image with shape N x L.
Returns:
torch Tensor: Output features with shape N x L x C.
"""
x_ = torch.cat([visible_tokens[:, 1:, :], x], dim=1)
assert x_.shape[1] == ids_restore.shape[1]
x_ = torch.gather(
x_,
dim=1,
index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[-1]))
x_ = torch.cat([visible_tokens[:, :1, :], x_], dim=1)
# full sequence shape
B, _, _ = x_.shape
q = self.q(x).reshape(B, x.shape[1], self.num_heads,
self.head_dims).permute(0, 2, 1, 3)
kv = self.kv(x_).reshape(B, x_.shape[1], 2, self.num_heads,
self.head_dims).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn_drop = self.attn_drop if self.training else 0.
attn = self.scaled_dot_product_attention(q, k, v, dropout_p=attn_drop)
x = attn.transpose(1, 2).reshape(B, x.shape[1], self.embed_dims)
x = self.proj(x)
x = self.out_drop(self.gamma1(self.proj_drop(x)))
return x
|