Spaces:
Runtime error
Runtime error
File size: 13,411 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# Copyright (c) OpenMMLab. All rights reserved.
# Modified from https://github.com/zejiangh/MILAN
from collections import OrderedDict
from typing import Optional, Tuple, Union
import numpy as np
import torch
from mmengine.logging import MMLogger
from torch import nn
from mmpretrain.registry import MODELS
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward function."""
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
@MODELS.register_module()
class QuickGELU(nn.Module):
"""A faster version of GELU."""
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward function."""
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
"""Residual Attention Block (RAB).
This module implements the same function as the MultiheadAttention,
but with a different interface, which is mainly used
in CLIP.
Args:
d_model (int): The feature dimension.
n_head (int): The number of attention heads.
attn_mask (torch.Tensor, optional): The attention mask.
Defaults to None.
"""
def __init__(self,
d_model: int,
n_head: int,
attn_mask: Optional[torch.Tensor] = None,
return_attention: bool = False) -> None:
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict([('c_fc', nn.Linear(d_model, d_model * 4)),
('gelu', QuickGELU()),
('c_proj', nn.Linear(d_model * 4, d_model))]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
self.return_attention = return_attention
def attention(self, x: torch.Tensor) -> torch.Tensor:
"""Attention function."""
self.attn_mask = self.attn_mask.to(
dtype=x.dtype,
device=x.device) if self.attn_mask is not None else None
if self.return_attention:
return self.attn(
x,
x,
x,
need_weights=self.return_attention,
attn_mask=self.attn_mask)
else:
return self.attn(
x,
x,
x,
need_weights=self.return_attention,
attn_mask=self.attn_mask)[0]
def forward(
self, x: torch.Tensor
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""Forward function."""
if self.return_attention:
x_, attention = self.attention(self.ln_1(x))
x = x + x_
x = x + self.mlp(self.ln_2(x))
return x, attention
else:
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class Transformer(nn.Module):
"""Transformer.
Both visual and text branches use this transformer.
Args:
width (int): The feature dimension.
layers (int): The number of layers.
heads (int): The number of attention heads.
attn_mask (torch.Tensor, optional): The attention mask.
"""
def __init__(self,
width: int,
layers: int,
heads: int,
attn_mask: Optional[torch.Tensor] = None) -> None:
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.ModuleList()
for _ in range(layers - 1):
self.resblocks.append(
ResidualAttentionBlock(width, heads, attn_mask))
self.resblocks.append(
ResidualAttentionBlock(
width, heads, attn_mask, return_attention=True))
def forward(
self, x: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Forward function."""
z = []
for idx, blk in enumerate(self.resblocks):
if idx < self.layers - 1:
x = blk(x)
z.append(x.permute(1, 0, 2))
else:
x, attention = blk(x)
z.append(x.permute(1, 0, 2))
return x, attention, z
class VisionTransformer(nn.Module):
"""Vision Transformer for CLIP.
Args:
input_resolution (int): The image size.
patch_size (int): The patch size.
width (int): The feature dimension.
layers (int): The number of layers.
heads (int): The number of attention heads.
out_dim (int): The output dimension.
fineturn (bool): Whether to fineturn the model.
average_target (bool): Whether to average the target.
"""
def __init__(self,
input_resolution: int,
patch_size: int,
width: int,
layers: int,
heads: int,
output_dim: int,
finetune=False,
average_targets: int = 1) -> None:
super().__init__()
self.input_resolution = input_resolution
self.output_dim = output_dim
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=width,
kernel_size=patch_size,
stride=patch_size,
bias=False)
scale = width**-0.5
self.class_embedding = nn.Parameter(scale * torch.randn(width))
self.positional_embedding = nn.Parameter(scale * torch.randn(
(input_resolution // patch_size)**2 + 1, width))
self.ln_pre = LayerNorm(width)
self.transformer = Transformer(width, layers, heads)
self.finetune = finetune
if finetune is False:
self.ln_post = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
self.average_targets = average_targets
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward function."""
x = self.conv1(x) # shape = [*, width, grid, grid]
x = x.reshape(x.shape[0], x.shape[1],
-1) # shape = [*, width, grid ** 2]
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
x = torch.cat([
self.class_embedding.to(x.dtype) + torch.zeros(
x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x
],
dim=1) # shape = [*, grid ** 2 + 1, width]
x = x + self.positional_embedding.to(x.dtype)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x, attention, z = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x)
if self.proj is not None:
x = x @ self.proj
return x, attention
class CLIP(nn.Module):
"""CLIP.
Args:
embed_dim (int): The embedding dimension.
image_resolution (int): The image size.
vision_layers (int): The number of layers in the vision transformer.
vision_width (int): The feature dimension in the vision transformer.
vision_patch_size (int): The patch size in the vision transformer.
context_length (int): The context length.
vocab_size (int): The vocabulary size.
transformer_width (int): The feature dimension in the text transformer.
transformer_heads (int): The number of attention heads in the
text transformer.
transformer_layers (int): The number of layers in the text transformer.
fineturn (bool): Whether to fineturn the model.
average_target (bool): Whether to average the target.
"""
def __init__(
self,
embed_dim: int,
image_resolution: int,
vision_layers: Union[Tuple[int, int, int, int], int],
vision_width: int,
vision_patch_size: int,
context_length: int,
vocab_size: int,
transformer_width: int,
transformer_heads: int,
transformer_layers: int,
finetune: bool = False,
average_targets: int = 1,
) -> None:
super().__init__()
self.context_length = context_length
vision_heads = vision_width // 64
self.visual = VisionTransformer(
input_resolution=image_resolution,
patch_size=vision_patch_size,
width=vision_width,
layers=vision_layers,
heads=vision_heads,
output_dim=embed_dim,
finetune=finetune,
average_targets=average_targets,
)
self.transformer = Transformer(
width=transformer_width,
layers=transformer_layers,
heads=transformer_heads,
attn_mask=self.build_attention_mask())
self.vocab_size = vocab_size
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
self.positional_embedding = nn.Parameter(
torch.empty(self.context_length, transformer_width))
self.ln_final = LayerNorm(transformer_width)
self.text_projection = nn.Parameter(
torch.empty(transformer_width, embed_dim))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.initialize_parameters()
def initialize_parameters(self) -> None:
"""Initialize the parameters.
The pretrained weight will override the initialized parameters by this
function.
"""
nn.init.normal_(self.token_embedding.weight, std=0.02)
nn.init.normal_(self.positional_embedding, std=0.01)
proj_std = (self.transformer.width**-0.5) * (
(2 * self.transformer.layers)**-0.5)
attn_std = self.transformer.width**-0.5
fc_std = (2 * self.transformer.width)**-0.5
for block in self.transformer.resblocks:
nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
if self.text_projection is not None:
nn.init.normal_(
self.text_projection, std=self.transformer.width**-0.5)
def build_attention_mask(self) -> torch.Tensor:
"""Build the attention mask."""
# lazily create causal attention mask, with full attention between the
# vision tokens pytorch uses additive attention mask; fill with -inf
mask = torch.empty(self.context_length, self.context_length)
mask.fill_(float('-inf'))
mask.triu_(1) # zero out the lower diagonal
return mask
@property
def dtype(self) -> torch.dtype:
"""Get the dtype."""
return self.visual.conv1.weight.dtype
def encode_image(self,
image: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Encode the image.
Get the feature and attention mask from the last layer of the visual
branch of CLIP.
Args:
image (torch.Tensor): The image tensor with shape NCHW.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The feature and attention mask.
"""
return self.visual(image.type(self.dtype))
def build_clip_model(state_dict: dict,
finetune: bool = False,
average_targets: int = 1) -> nn.Module:
"""Build the CLIP model.
Args:
state_dict (dict): The pretrained state dict.
finetune (bool): Whether to fineturn the model.
average_targets (bool): Whether to average the target.
Returns:
nn.Module: The CLIP model.
"""
vit = 'visual.proj' in state_dict
if vit:
vision_width = state_dict['visual.conv1.weight'].shape[0]
vision_layers = len([
k for k in state_dict.keys()
if k.startswith('visual.') and k.endswith('.attn.in_proj_weight')
])
vision_patch_size = state_dict['visual.conv1.weight'].shape[-1]
grid_size = round(
(state_dict['visual.positional_embedding'].shape[0] - 1)**0.5)
image_resolution = vision_patch_size * grid_size
embed_dim = state_dict['text_projection'].shape[1]
context_length = state_dict['positional_embedding'].shape[0]
vocab_size = state_dict['token_embedding.weight'].shape[0]
transformer_width = state_dict['ln_final.weight'].shape[0]
transformer_heads = transformer_width // 64
transformer_layers = len(
set(
k.split('.')[2] for k in state_dict
if k.startswith('transformer.resblocks')))
model = CLIP(
embed_dim,
image_resolution,
vision_layers,
vision_width,
vision_patch_size,
context_length,
vocab_size,
transformer_width,
transformer_heads,
transformer_layers,
finetune,
average_targets,
)
for key in ['input_resolution', 'context_length', 'vocab_size']:
if key in state_dict:
del state_dict[key]
msg = model.load_state_dict(state_dict, strict=False)
MMLogger.get_current_instance().info(f'Load CLIP model: {msg}')
return model.eval()
|