File size: 73,913 Bytes
2ae34e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import warnings
from typing import Dict, List, Optional, Sequence, Tuple, Union

import cv2
import mmcv
import numpy as np
from mmcv.transforms.base import BaseTransform
from mmcv.transforms.utils import cache_randomness
from mmengine.utils import is_tuple_of
from numpy import random
from scipy.ndimage import gaussian_filter

from mmseg.datasets.dataset_wrappers import MultiImageMixDataset
from mmseg.registry import TRANSFORMS


@TRANSFORMS.register_module()
class ResizeToMultiple(BaseTransform):
    """Resize images & seg to multiple of divisor.

    Required Keys:

    - img
    - gt_seg_map

    Modified Keys:

    - img
    - img_shape
    - pad_shape

    Args:
        size_divisor (int): images and gt seg maps need to resize to multiple
            of size_divisor. Default: 32.
        interpolation (str, optional): The interpolation mode of image resize.
            Default: None
    """

    def __init__(self, size_divisor=32, interpolation=None):
        self.size_divisor = size_divisor
        self.interpolation = interpolation

    def transform(self, results: dict) -> dict:
        """Call function to resize images, semantic segmentation map to
        multiple of size divisor.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Resized results, 'img_shape', 'pad_shape' keys are updated.
        """
        # Align image to multiple of size divisor.
        img = results['img']
        img = mmcv.imresize_to_multiple(
            img,
            self.size_divisor,
            scale_factor=1,
            interpolation=self.interpolation
            if self.interpolation else 'bilinear')

        results['img'] = img
        results['img_shape'] = img.shape[:2]
        results['pad_shape'] = img.shape[:2]

        # Align segmentation map to multiple of size divisor.
        for key in results.get('seg_fields', []):
            gt_seg = results[key]
            gt_seg = mmcv.imresize_to_multiple(
                gt_seg,
                self.size_divisor,
                scale_factor=1,
                interpolation='nearest')
            results[key] = gt_seg

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += (f'(size_divisor={self.size_divisor}, '
                     f'interpolation={self.interpolation})')
        return repr_str


@TRANSFORMS.register_module()
class Rerange(BaseTransform):
    """Rerange the image pixel value.

    Required Keys:

    - img

    Modified Keys:

    - img

    Args:
        min_value (float or int): Minimum value of the reranged image.
            Default: 0.
        max_value (float or int): Maximum value of the reranged image.
            Default: 255.
    """

    def __init__(self, min_value=0, max_value=255):
        assert isinstance(min_value, float) or isinstance(min_value, int)
        assert isinstance(max_value, float) or isinstance(max_value, int)
        assert min_value < max_value
        self.min_value = min_value
        self.max_value = max_value

    def transform(self, results: dict) -> dict:
        """Call function to rerange images.

        Args:
            results (dict): Result dict from loading pipeline.
        Returns:
            dict: Reranged results.
        """

        img = results['img']
        img_min_value = np.min(img)
        img_max_value = np.max(img)

        assert img_min_value < img_max_value
        # rerange to [0, 1]
        img = (img - img_min_value) / (img_max_value - img_min_value)
        # rerange to [min_value, max_value]
        img = img * (self.max_value - self.min_value) + self.min_value
        results['img'] = img

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(min_value={self.min_value}, max_value={self.max_value})'
        return repr_str


@TRANSFORMS.register_module()
class CLAHE(BaseTransform):
    """Use CLAHE method to process the image.

    See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J].
    Graphics Gems, 1994:474-485.` for more information.

    Required Keys:

    - img

    Modified Keys:

    - img

    Args:
        clip_limit (float): Threshold for contrast limiting. Default: 40.0.
        tile_grid_size (tuple[int]): Size of grid for histogram equalization.
            Input image will be divided into equally sized rectangular tiles.
            It defines the number of tiles in row and column. Default: (8, 8).
    """

    def __init__(self, clip_limit=40.0, tile_grid_size=(8, 8)):
        assert isinstance(clip_limit, (float, int))
        self.clip_limit = clip_limit
        assert is_tuple_of(tile_grid_size, int)
        assert len(tile_grid_size) == 2
        self.tile_grid_size = tile_grid_size

    def transform(self, results: dict) -> dict:
        """Call function to Use CLAHE method process images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Processed results.
        """

        for i in range(results['img'].shape[2]):
            results['img'][:, :, i] = mmcv.clahe(
                np.array(results['img'][:, :, i], dtype=np.uint8),
                self.clip_limit, self.tile_grid_size)

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(clip_limit={self.clip_limit}, '\
                    f'tile_grid_size={self.tile_grid_size})'
        return repr_str


@TRANSFORMS.register_module()
class RandomCrop(BaseTransform):
    """Random crop the image & seg.

    Required Keys:

    - img
    - gt_seg_map

    Modified Keys:

    - img
    - img_shape
    - gt_seg_map


    Args:
        crop_size (Union[int, Tuple[int, int]]):  Expected size after cropping
            with the format of (h, w). If set to an integer, then cropping
            width and height are equal to this integer.
        cat_max_ratio (float): The maximum ratio that single category could
            occupy.
        ignore_index (int): The label index to be ignored. Default: 255
    """

    def __init__(self,
                 crop_size: Union[int, Tuple[int, int]],
                 cat_max_ratio: float = 1.,
                 ignore_index: int = 255):
        super().__init__()
        assert isinstance(crop_size, int) or (
            isinstance(crop_size, tuple) and len(crop_size) == 2
        ), 'The expected crop_size is an integer, or a tuple containing two '
        'intergers'

        if isinstance(crop_size, int):
            crop_size = (crop_size, crop_size)
        assert crop_size[0] > 0 and crop_size[1] > 0
        self.crop_size = crop_size
        self.cat_max_ratio = cat_max_ratio
        self.ignore_index = ignore_index

    @cache_randomness
    def crop_bbox(self, results: dict) -> tuple:
        """get a crop bounding box.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            tuple: Coordinates of the cropped image.
        """

        def generate_crop_bbox(img: np.ndarray) -> tuple:
            """Randomly get a crop bounding box.

            Args:
                img (np.ndarray): Original input image.

            Returns:
                tuple: Coordinates of the cropped image.
            """

            margin_h = max(img.shape[0] - self.crop_size[0], 0)
            margin_w = max(img.shape[1] - self.crop_size[1], 0)
            offset_h = np.random.randint(0, margin_h + 1)
            offset_w = np.random.randint(0, margin_w + 1)
            crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0]
            crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1]

            return crop_y1, crop_y2, crop_x1, crop_x2

        img = results['img']
        crop_bbox = generate_crop_bbox(img)
        if self.cat_max_ratio < 1.:
            # Repeat 10 times
            for _ in range(10):
                seg_temp = self.crop(results['gt_seg_map'], crop_bbox)
                labels, cnt = np.unique(seg_temp, return_counts=True)
                cnt = cnt[labels != self.ignore_index]
                if len(cnt) > 1 and np.max(cnt) / np.sum(
                        cnt) < self.cat_max_ratio:
                    break
                crop_bbox = generate_crop_bbox(img)

        return crop_bbox

    def crop(self, img: np.ndarray, crop_bbox: tuple) -> np.ndarray:
        """Crop from ``img``

        Args:
            img (np.ndarray): Original input image.
            crop_bbox (tuple): Coordinates of the cropped image.

        Returns:
            np.ndarray: The cropped image.
        """

        crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox
        img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
        return img

    def transform(self, results: dict) -> dict:
        """Transform function to randomly crop images, semantic segmentation
        maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
                updated according to crop size.
        """

        img = results['img']
        crop_bbox = self.crop_bbox(results)

        # crop the image
        img = self.crop(img, crop_bbox)

        # crop semantic seg
        for key in results.get('seg_fields', []):
            results[key] = self.crop(results[key], crop_bbox)

        results['img'] = img
        results['img_shape'] = img.shape[:2]
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(crop_size={self.crop_size})'


@TRANSFORMS.register_module()
class RandomRotate(BaseTransform):
    """Rotate the image & seg.

    Required Keys:

    - img
    - gt_seg_map

    Modified Keys:

    - img
    - gt_seg_map

    Args:
        prob (float): The rotation probability.
        degree (float, tuple[float]): Range of degrees to select from. If
            degree is a number instead of tuple like (min, max),
            the range of degree will be (``-degree``, ``+degree``)
        pad_val (float, optional): Padding value of image. Default: 0.
        seg_pad_val (float, optional): Padding value of segmentation map.
            Default: 255.
        center (tuple[float], optional): Center point (w, h) of the rotation in
            the source image. If not specified, the center of the image will be
            used. Default: None.
        auto_bound (bool): Whether to adjust the image size to cover the whole
            rotated image. Default: False
    """

    def __init__(self,
                 prob,
                 degree,
                 pad_val=0,
                 seg_pad_val=255,
                 center=None,
                 auto_bound=False):
        self.prob = prob
        assert prob >= 0 and prob <= 1
        if isinstance(degree, (float, int)):
            assert degree > 0, f'degree {degree} should be positive'
            self.degree = (-degree, degree)
        else:
            self.degree = degree
        assert len(self.degree) == 2, f'degree {self.degree} should be a ' \
                                      f'tuple of (min, max)'
        self.pal_val = pad_val
        self.seg_pad_val = seg_pad_val
        self.center = center
        self.auto_bound = auto_bound

    @cache_randomness
    def generate_degree(self):
        return np.random.rand() < self.prob, np.random.uniform(
            min(*self.degree), max(*self.degree))

    def transform(self, results: dict) -> dict:
        """Call function to rotate image, semantic segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Rotated results.
        """

        rotate, degree = self.generate_degree()
        if rotate:
            # rotate image
            results['img'] = mmcv.imrotate(
                results['img'],
                angle=degree,
                border_value=self.pal_val,
                center=self.center,
                auto_bound=self.auto_bound)

            # rotate segs
            for key in results.get('seg_fields', []):
                results[key] = mmcv.imrotate(
                    results[key],
                    angle=degree,
                    border_value=self.seg_pad_val,
                    center=self.center,
                    auto_bound=self.auto_bound,
                    interpolation='nearest')
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(prob={self.prob}, ' \
                    f'degree={self.degree}, ' \
                    f'pad_val={self.pal_val}, ' \
                    f'seg_pad_val={self.seg_pad_val}, ' \
                    f'center={self.center}, ' \
                    f'auto_bound={self.auto_bound})'
        return repr_str


@TRANSFORMS.register_module()
class RGB2Gray(BaseTransform):
    """Convert RGB image to grayscale image.

    Required Keys:

    - img

    Modified Keys:

    - img
    - img_shape

    This transform calculate the weighted mean of input image channels with
    ``weights`` and then expand the channels to ``out_channels``. When
    ``out_channels`` is None, the number of output channels is the same as
    input channels.

    Args:
        out_channels (int): Expected number of output channels after
            transforming. Default: None.
        weights (tuple[float]): The weights to calculate the weighted mean.
            Default: (0.299, 0.587, 0.114).
    """

    def __init__(self, out_channels=None, weights=(0.299, 0.587, 0.114)):
        assert out_channels is None or out_channels > 0
        self.out_channels = out_channels
        assert isinstance(weights, tuple)
        for item in weights:
            assert isinstance(item, (float, int))
        self.weights = weights

    def transform(self, results: dict) -> dict:
        """Call function to convert RGB image to grayscale image.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with grayscale image.
        """
        img = results['img']
        assert len(img.shape) == 3
        assert img.shape[2] == len(self.weights)
        weights = np.array(self.weights).reshape((1, 1, -1))
        img = (img * weights).sum(2, keepdims=True)
        if self.out_channels is None:
            img = img.repeat(weights.shape[2], axis=2)
        else:
            img = img.repeat(self.out_channels, axis=2)

        results['img'] = img
        results['img_shape'] = img.shape

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(out_channels={self.out_channels}, ' \
                    f'weights={self.weights})'
        return repr_str


@TRANSFORMS.register_module()
class AdjustGamma(BaseTransform):
    """Using gamma correction to process the image.

    Required Keys:

    - img

    Modified Keys:

    - img

    Args:
        gamma (float or int): Gamma value used in gamma correction.
            Default: 1.0.
    """

    def __init__(self, gamma=1.0):
        assert isinstance(gamma, float) or isinstance(gamma, int)
        assert gamma > 0
        self.gamma = gamma
        inv_gamma = 1.0 / gamma
        self.table = np.array([(i / 255.0)**inv_gamma * 255
                               for i in np.arange(256)]).astype('uint8')

    def transform(self, results: dict) -> dict:
        """Call function to process the image with gamma correction.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Processed results.
        """

        results['img'] = mmcv.lut_transform(
            np.array(results['img'], dtype=np.uint8), self.table)

        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(gamma={self.gamma})'


@TRANSFORMS.register_module()
class SegRescale(BaseTransform):
    """Rescale semantic segmentation maps.

    Required Keys:

    - gt_seg_map

    Modified Keys:

    - gt_seg_map

    Args:
        scale_factor (float): The scale factor of the final output.
    """

    def __init__(self, scale_factor=1):
        self.scale_factor = scale_factor

    def transform(self, results: dict) -> dict:
        """Call function to scale the semantic segmentation map.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with semantic segmentation map scaled.
        """
        for key in results.get('seg_fields', []):
            if self.scale_factor != 1:
                results[key] = mmcv.imrescale(
                    results[key], self.scale_factor, interpolation='nearest')
        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(scale_factor={self.scale_factor})'


@TRANSFORMS.register_module()
class PhotoMetricDistortion(BaseTransform):
    """Apply photometric distortion to image sequentially, every transformation
    is applied with a probability of 0.5. The position of random contrast is in
    second or second to last.

    1. random brightness
    2. random contrast (mode 0)
    3. convert color from BGR to HSV
    4. random saturation
    5. random hue
    6. convert color from HSV to BGR
    7. random contrast (mode 1)

    Required Keys:

    - img

    Modified Keys:

    - img

    Args:
        brightness_delta (int): delta of brightness.
        contrast_range (tuple): range of contrast.
        saturation_range (tuple): range of saturation.
        hue_delta (int): delta of hue.
    """

    def __init__(self,
                 brightness_delta: int = 32,
                 contrast_range: Sequence[float] = (0.5, 1.5),
                 saturation_range: Sequence[float] = (0.5, 1.5),
                 hue_delta: int = 18):
        self.brightness_delta = brightness_delta
        self.contrast_lower, self.contrast_upper = contrast_range
        self.saturation_lower, self.saturation_upper = saturation_range
        self.hue_delta = hue_delta

    def convert(self,
                img: np.ndarray,
                alpha: int = 1,
                beta: int = 0) -> np.ndarray:
        """Multiple with alpha and add beat with clip.

        Args:
            img (np.ndarray): The input image.
            alpha (int): Image weights, change the contrast/saturation
                of the image. Default: 1
            beta (int): Image bias, change the brightness of the
                image. Default: 0

        Returns:
            np.ndarray: The transformed image.
        """

        img = img.astype(np.float32) * alpha + beta
        img = np.clip(img, 0, 255)
        return img.astype(np.uint8)

    def brightness(self, img: np.ndarray) -> np.ndarray:
        """Brightness distortion.

        Args:
            img (np.ndarray): The input image.
        Returns:
            np.ndarray: Image after brightness change.
        """

        if random.randint(2):
            return self.convert(
                img,
                beta=random.uniform(-self.brightness_delta,
                                    self.brightness_delta))
        return img

    def contrast(self, img: np.ndarray) -> np.ndarray:
        """Contrast distortion.

        Args:
            img (np.ndarray): The input image.
        Returns:
            np.ndarray: Image after contrast change.
        """

        if random.randint(2):
            return self.convert(
                img,
                alpha=random.uniform(self.contrast_lower, self.contrast_upper))
        return img

    def saturation(self, img: np.ndarray) -> np.ndarray:
        """Saturation distortion.

        Args:
            img (np.ndarray): The input image.
        Returns:
            np.ndarray: Image after saturation change.
        """

        if random.randint(2):
            img = mmcv.bgr2hsv(img)
            img[:, :, 1] = self.convert(
                img[:, :, 1],
                alpha=random.uniform(self.saturation_lower,
                                     self.saturation_upper))
            img = mmcv.hsv2bgr(img)
        return img

    def hue(self, img: np.ndarray) -> np.ndarray:
        """Hue distortion.

        Args:
            img (np.ndarray): The input image.
        Returns:
            np.ndarray: Image after hue change.
        """

        if random.randint(2):
            img = mmcv.bgr2hsv(img)
            img[:, :,
                0] = (img[:, :, 0].astype(int) +
                      random.randint(-self.hue_delta, self.hue_delta)) % 180
            img = mmcv.hsv2bgr(img)
        return img

    def transform(self, results: dict) -> dict:
        """Transform function to perform photometric distortion on images.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with images distorted.
        """

        img = results['img']
        # random brightness
        img = self.brightness(img)

        # mode == 0 --> do random contrast first
        # mode == 1 --> do random contrast last
        mode = random.randint(2)
        if mode == 1:
            img = self.contrast(img)

        # random saturation
        img = self.saturation(img)

        # random hue
        img = self.hue(img)

        # random contrast
        if mode == 0:
            img = self.contrast(img)

        results['img'] = img
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += (f'(brightness_delta={self.brightness_delta}, '
                     f'contrast_range=({self.contrast_lower}, '
                     f'{self.contrast_upper}), '
                     f'saturation_range=({self.saturation_lower}, '
                     f'{self.saturation_upper}), '
                     f'hue_delta={self.hue_delta})')
        return repr_str


@TRANSFORMS.register_module()
class RandomCutOut(BaseTransform):
    """CutOut operation.

    Randomly drop some regions of image used in
    `Cutout <https://arxiv.org/abs/1708.04552>`_.

    Required Keys:

    - img
    - gt_seg_map

    Modified Keys:

    - img
    - gt_seg_map

    Args:
        prob (float): cutout probability.
        n_holes (int | tuple[int, int]): Number of regions to be dropped.
            If it is given as a list, number of holes will be randomly
            selected from the closed interval [`n_holes[0]`, `n_holes[1]`].
        cutout_shape (tuple[int, int] | list[tuple[int, int]]): The candidate
            shape of dropped regions. It can be `tuple[int, int]` to use a
            fixed cutout shape, or `list[tuple[int, int]]` to randomly choose
            shape from the list.
        cutout_ratio (tuple[float, float] | list[tuple[float, float]]): The
            candidate ratio of dropped regions. It can be `tuple[float, float]`
            to use a fixed ratio or `list[tuple[float, float]]` to randomly
            choose ratio from the list. Please note that `cutout_shape`
            and `cutout_ratio` cannot be both given at the same time.
        fill_in (tuple[float, float, float] | tuple[int, int, int]): The value
            of pixel to fill in the dropped regions. Default: (0, 0, 0).
        seg_fill_in (int): The labels of pixel to fill in the dropped regions.
            If seg_fill_in is None, skip. Default: None.
    """

    def __init__(self,
                 prob,
                 n_holes,
                 cutout_shape=None,
                 cutout_ratio=None,
                 fill_in=(0, 0, 0),
                 seg_fill_in=None):

        assert 0 <= prob and prob <= 1
        assert (cutout_shape is None) ^ (cutout_ratio is None), \
            'Either cutout_shape or cutout_ratio should be specified.'
        assert (isinstance(cutout_shape, (list, tuple))
                or isinstance(cutout_ratio, (list, tuple)))
        if isinstance(n_holes, tuple):
            assert len(n_holes) == 2 and 0 <= n_holes[0] < n_holes[1]
        else:
            n_holes = (n_holes, n_holes)
        if seg_fill_in is not None:
            assert (isinstance(seg_fill_in, int) and 0 <= seg_fill_in
                    and seg_fill_in <= 255)
        self.prob = prob
        self.n_holes = n_holes
        self.fill_in = fill_in
        self.seg_fill_in = seg_fill_in
        self.with_ratio = cutout_ratio is not None
        self.candidates = cutout_ratio if self.with_ratio else cutout_shape
        if not isinstance(self.candidates, list):
            self.candidates = [self.candidates]

    @cache_randomness
    def do_cutout(self):
        return np.random.rand() < self.prob

    @cache_randomness
    def generate_patches(self, results):
        cutout = self.do_cutout()

        h, w, _ = results['img'].shape
        if cutout:
            n_holes = np.random.randint(self.n_holes[0], self.n_holes[1] + 1)
        else:
            n_holes = 0
        x1_lst = []
        y1_lst = []
        index_lst = []
        for _ in range(n_holes):
            x1_lst.append(np.random.randint(0, w))
            y1_lst.append(np.random.randint(0, h))
            index_lst.append(np.random.randint(0, len(self.candidates)))
        return cutout, n_holes, x1_lst, y1_lst, index_lst

    def transform(self, results: dict) -> dict:
        """Call function to drop some regions of image."""
        cutout, n_holes, x1_lst, y1_lst, index_lst = self.generate_patches(
            results)
        if cutout:
            h, w, c = results['img'].shape
            for i in range(n_holes):
                x1 = x1_lst[i]
                y1 = y1_lst[i]
                index = index_lst[i]
                if not self.with_ratio:
                    cutout_w, cutout_h = self.candidates[index]
                else:
                    cutout_w = int(self.candidates[index][0] * w)
                    cutout_h = int(self.candidates[index][1] * h)

                x2 = np.clip(x1 + cutout_w, 0, w)
                y2 = np.clip(y1 + cutout_h, 0, h)
                results['img'][y1:y2, x1:x2, :] = self.fill_in

                if self.seg_fill_in is not None:
                    for key in results.get('seg_fields', []):
                        results[key][y1:y2, x1:x2] = self.seg_fill_in

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(prob={self.prob}, '
        repr_str += f'n_holes={self.n_holes}, '
        repr_str += (f'cutout_ratio={self.candidates}, ' if self.with_ratio
                     else f'cutout_shape={self.candidates}, ')
        repr_str += f'fill_in={self.fill_in}, '
        repr_str += f'seg_fill_in={self.seg_fill_in})'
        return repr_str


@TRANSFORMS.register_module()
class RandomRotFlip(BaseTransform):
    """Rotate and flip the image & seg or just rotate the image & seg.

    Required Keys:

    - img
    - gt_seg_map

    Modified Keys:

    - img
    - gt_seg_map

    Args:
        rotate_prob (float): The probability of rotate image.
        flip_prob (float): The probability of rotate&flip image.
        degree (float, tuple[float]): Range of degrees to select from. If
            degree is a number instead of tuple like (min, max),
            the range of degree will be (``-degree``, ``+degree``)
    """

    def __init__(self, rotate_prob=0.5, flip_prob=0.5, degree=(-20, 20)):
        self.rotate_prob = rotate_prob
        self.flip_prob = flip_prob
        assert 0 <= rotate_prob <= 1 and 0 <= flip_prob <= 1
        if isinstance(degree, (float, int)):
            assert degree > 0, f'degree {degree} should be positive'
            self.degree = (-degree, degree)
        else:
            self.degree = degree
        assert len(self.degree) == 2, f'degree {self.degree} should be a ' \
                                      f'tuple of (min, max)'

    def random_rot_flip(self, results: dict) -> dict:
        k = np.random.randint(0, 4)
        results['img'] = np.rot90(results['img'], k)
        for key in results.get('seg_fields', []):
            results[key] = np.rot90(results[key], k)
        axis = np.random.randint(0, 2)
        results['img'] = np.flip(results['img'], axis=axis).copy()
        for key in results.get('seg_fields', []):
            results[key] = np.flip(results[key], axis=axis).copy()
        return results

    def random_rotate(self, results: dict) -> dict:
        angle = np.random.uniform(min(*self.degree), max(*self.degree))
        results['img'] = mmcv.imrotate(results['img'], angle=angle)
        for key in results.get('seg_fields', []):
            results[key] = mmcv.imrotate(results[key], angle=angle)
        return results

    def transform(self, results: dict) -> dict:
        """Call function to rotate or rotate & flip image, semantic
        segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Rotated or rotated & flipped results.
        """
        rotate_flag = 0
        if random.random() < self.rotate_prob:
            results = self.random_rotate(results)
            rotate_flag = 1
        if random.random() < self.flip_prob and rotate_flag == 0:
            results = self.random_rot_flip(results)
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotate_prob={self.rotate_prob}, ' \
                    f'flip_prob={self.flip_prob}, ' \
                    f'degree={self.degree})'
        return repr_str


@TRANSFORMS.register_module()
class RandomMosaic(BaseTransform):
    """Mosaic augmentation. Given 4 images, mosaic transform combines them into
    one output image. The output image is composed of the parts from each sub-
    image.

    .. code:: text

                        mosaic transform
                           center_x
                +------------------------------+
                |       pad        |  pad      |
                |      +-----------+           |
                |      |           |           |
                |      |  image1   |--------+  |
                |      |           |        |  |
                |      |           | image2 |  |
     center_y   |----+-------------+-----------|
                |    |   cropped   |           |
                |pad |   image3    |  image4   |
                |    |             |           |
                +----|-------------+-----------+
                     |             |
                     +-------------+

     The mosaic transform steps are as follows:
         1. Choose the mosaic center as the intersections of 4 images
         2. Get the left top image according to the index, and randomly
            sample another 3 images from the custom dataset.
         3. Sub image will be cropped if image is larger than mosaic patch

    Required Keys:

    - img
    - gt_seg_map
    - mix_results

    Modified Keys:

    - img
    - img_shape
    - ori_shape
    - gt_seg_map

    Args:
        prob (float): mosaic probability.
        img_scale (Sequence[int]): Image size after mosaic pipeline of
            a single image. The size of the output image is four times
            that of a single image. The output image comprises 4 single images.
            Default: (640, 640).
        center_ratio_range (Sequence[float]): Center ratio range of mosaic
            output. Default: (0.5, 1.5).
        pad_val (int): Pad value. Default: 0.
        seg_pad_val (int): Pad value of segmentation map. Default: 255.
    """

    def __init__(self,
                 prob,
                 img_scale=(640, 640),
                 center_ratio_range=(0.5, 1.5),
                 pad_val=0,
                 seg_pad_val=255):
        assert 0 <= prob and prob <= 1
        assert isinstance(img_scale, tuple)
        self.prob = prob
        self.img_scale = img_scale
        self.center_ratio_range = center_ratio_range
        self.pad_val = pad_val
        self.seg_pad_val = seg_pad_val

    @cache_randomness
    def do_mosaic(self):
        return np.random.rand() < self.prob

    def transform(self, results: dict) -> dict:
        """Call function to make a mosaic of image.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Result dict with mosaic transformed.
        """
        mosaic = self.do_mosaic()
        if mosaic:
            results = self._mosaic_transform_img(results)
            results = self._mosaic_transform_seg(results)
        return results

    def get_indices(self, dataset: MultiImageMixDataset) -> list:
        """Call function to collect indices.

        Args:
            dataset (:obj:`MultiImageMixDataset`): The dataset.

        Returns:
            list: indices.
        """

        indices = [random.randint(0, len(dataset)) for _ in range(3)]
        return indices

    @cache_randomness
    def generate_mosaic_center(self):
        # mosaic center x, y
        center_x = int(
            random.uniform(*self.center_ratio_range) * self.img_scale[1])
        center_y = int(
            random.uniform(*self.center_ratio_range) * self.img_scale[0])
        return center_x, center_y

    def _mosaic_transform_img(self, results: dict) -> dict:
        """Mosaic transform function.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Updated result dict.
        """

        assert 'mix_results' in results
        if len(results['img'].shape) == 3:
            c = results['img'].shape[2]
            mosaic_img = np.full(
                (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2), c),
                self.pad_val,
                dtype=results['img'].dtype)
        else:
            mosaic_img = np.full(
                (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2)),
                self.pad_val,
                dtype=results['img'].dtype)

        # mosaic center x, y
        self.center_x, self.center_y = self.generate_mosaic_center()
        center_position = (self.center_x, self.center_y)

        loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right')
        for i, loc in enumerate(loc_strs):
            if loc == 'top_left':
                result_patch = copy.deepcopy(results)
            else:
                result_patch = copy.deepcopy(results['mix_results'][i - 1])

            img_i = result_patch['img']
            h_i, w_i = img_i.shape[:2]
            # keep_ratio resize
            scale_ratio_i = min(self.img_scale[0] / h_i,
                                self.img_scale[1] / w_i)
            img_i = mmcv.imresize(
                img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i)))

            # compute the combine parameters
            paste_coord, crop_coord = self._mosaic_combine(
                loc, center_position, img_i.shape[:2][::-1])
            x1_p, y1_p, x2_p, y2_p = paste_coord
            x1_c, y1_c, x2_c, y2_c = crop_coord

            # crop and paste image
            mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c]

        results['img'] = mosaic_img
        results['img_shape'] = mosaic_img.shape
        results['ori_shape'] = mosaic_img.shape

        return results

    def _mosaic_transform_seg(self, results: dict) -> dict:
        """Mosaic transform function for label annotations.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Updated result dict.
        """

        assert 'mix_results' in results
        for key in results.get('seg_fields', []):
            mosaic_seg = np.full(
                (int(self.img_scale[0] * 2), int(self.img_scale[1] * 2)),
                self.seg_pad_val,
                dtype=results[key].dtype)

            # mosaic center x, y
            center_position = (self.center_x, self.center_y)

            loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right')
            for i, loc in enumerate(loc_strs):
                if loc == 'top_left':
                    result_patch = copy.deepcopy(results)
                else:
                    result_patch = copy.deepcopy(results['mix_results'][i - 1])

                gt_seg_i = result_patch[key]
                h_i, w_i = gt_seg_i.shape[:2]
                # keep_ratio resize
                scale_ratio_i = min(self.img_scale[0] / h_i,
                                    self.img_scale[1] / w_i)
                gt_seg_i = mmcv.imresize(
                    gt_seg_i,
                    (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i)),
                    interpolation='nearest')

                # compute the combine parameters
                paste_coord, crop_coord = self._mosaic_combine(
                    loc, center_position, gt_seg_i.shape[:2][::-1])
                x1_p, y1_p, x2_p, y2_p = paste_coord
                x1_c, y1_c, x2_c, y2_c = crop_coord

                # crop and paste image
                mosaic_seg[y1_p:y2_p, x1_p:x2_p] = gt_seg_i[y1_c:y2_c,
                                                            x1_c:x2_c]

            results[key] = mosaic_seg

        return results

    def _mosaic_combine(self, loc: str, center_position_xy: Sequence[float],
                        img_shape_wh: Sequence[int]) -> tuple:
        """Calculate global coordinate of mosaic image and local coordinate of
        cropped sub-image.

        Args:
            loc (str): Index for the sub-image, loc in ('top_left',
              'top_right', 'bottom_left', 'bottom_right').
            center_position_xy (Sequence[float]): Mixing center for 4 images,
                (x, y).
            img_shape_wh (Sequence[int]): Width and height of sub-image

        Returns:
            tuple[tuple[float]]: Corresponding coordinate of pasting and
                cropping
                - paste_coord (tuple): paste corner coordinate in mosaic image.
                - crop_coord (tuple): crop corner coordinate in mosaic image.
        """

        assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right')
        if loc == 'top_left':
            # index0 to top left part of image
            x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \
                             max(center_position_xy[1] - img_shape_wh[1], 0), \
                             center_position_xy[0], \
                             center_position_xy[1]
            crop_coord = img_shape_wh[0] - (x2 - x1), img_shape_wh[1] - (
                y2 - y1), img_shape_wh[0], img_shape_wh[1]

        elif loc == 'top_right':
            # index1 to top right part of image
            x1, y1, x2, y2 = center_position_xy[0], \
                             max(center_position_xy[1] - img_shape_wh[1], 0), \
                             min(center_position_xy[0] + img_shape_wh[0],
                                 self.img_scale[1] * 2), \
                             center_position_xy[1]
            crop_coord = 0, img_shape_wh[1] - (y2 - y1), min(
                img_shape_wh[0], x2 - x1), img_shape_wh[1]

        elif loc == 'bottom_left':
            # index2 to bottom left part of image
            x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \
                             center_position_xy[1], \
                             center_position_xy[0], \
                             min(self.img_scale[0] * 2, center_position_xy[1] +
                                 img_shape_wh[1])
            crop_coord = img_shape_wh[0] - (x2 - x1), 0, img_shape_wh[0], min(
                y2 - y1, img_shape_wh[1])

        else:
            # index3 to bottom right part of image
            x1, y1, x2, y2 = center_position_xy[0], \
                             center_position_xy[1], \
                             min(center_position_xy[0] + img_shape_wh[0],
                                 self.img_scale[1] * 2), \
                             min(self.img_scale[0] * 2, center_position_xy[1] +
                                 img_shape_wh[1])
            crop_coord = 0, 0, min(img_shape_wh[0],
                                   x2 - x1), min(y2 - y1, img_shape_wh[1])

        paste_coord = x1, y1, x2, y2
        return paste_coord, crop_coord

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(prob={self.prob}, '
        repr_str += f'img_scale={self.img_scale}, '
        repr_str += f'center_ratio_range={self.center_ratio_range}, '
        repr_str += f'pad_val={self.pad_val}, '
        repr_str += f'seg_pad_val={self.pad_val})'
        return repr_str


@TRANSFORMS.register_module()
class GenerateEdge(BaseTransform):
    """Generate Edge for CE2P approach.

    Edge will be used to calculate loss of
    `CE2P <https://arxiv.org/abs/1809.05996>`_.

    Modified from https://github.com/liutinglt/CE2P/blob/master/dataset/target_generation.py # noqa:E501

    Required Keys:

        - img_shape
        - gt_seg_map

    Added Keys:
        - gt_edge_map (np.ndarray, uint8): The edge annotation generated from the
            seg map by extracting border between different semantics.

    Args:
        edge_width (int): The width of edge. Default to 3.
        ignore_index (int): Index that will be ignored. Default to 255.
    """

    def __init__(self, edge_width: int = 3, ignore_index: int = 255) -> None:
        super().__init__()
        self.edge_width = edge_width
        self.ignore_index = ignore_index

    def transform(self, results: Dict) -> Dict:
        """Call function to generate edge from segmentation map.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Result dict with edge mask.
        """
        h, w = results['img_shape']
        edge = np.zeros((h, w), dtype=np.uint8)
        seg_map = results['gt_seg_map']

        # down
        edge_down = edge[1:h, :]
        edge_down[(seg_map[1:h, :] != seg_map[:h - 1, :])
                  & (seg_map[1:h, :] != self.ignore_index) &
                  (seg_map[:h - 1, :] != self.ignore_index)] = 1
        # left
        edge_left = edge[:, :w - 1]
        edge_left[(seg_map[:, :w - 1] != seg_map[:, 1:w])
                  & (seg_map[:, :w - 1] != self.ignore_index) &
                  (seg_map[:, 1:w] != self.ignore_index)] = 1
        # up_left
        edge_upleft = edge[:h - 1, :w - 1]
        edge_upleft[(seg_map[:h - 1, :w - 1] != seg_map[1:h, 1:w])
                    & (seg_map[:h - 1, :w - 1] != self.ignore_index) &
                    (seg_map[1:h, 1:w] != self.ignore_index)] = 1
        # up_right
        edge_upright = edge[:h - 1, 1:w]
        edge_upright[(seg_map[:h - 1, 1:w] != seg_map[1:h, :w - 1])
                     & (seg_map[:h - 1, 1:w] != self.ignore_index) &
                     (seg_map[1:h, :w - 1] != self.ignore_index)] = 1

        kernel = cv2.getStructuringElement(cv2.MORPH_RECT,
                                           (self.edge_width, self.edge_width))
        edge = cv2.dilate(edge, kernel)

        results['gt_edge_map'] = edge
        results['edge_width'] = self.edge_width

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'edge_width={self.edge_width}, '
        repr_str += f'ignore_index={self.ignore_index})'
        return repr_str


@TRANSFORMS.register_module()
class ResizeShortestEdge(BaseTransform):
    """Resize the image and mask while keeping the aspect ratio unchanged.

    Modified from https://github.com/facebookresearch/detectron2/blob/main/detectron2/data/transforms/augmentation_impl.py#L130 # noqa:E501
    Copyright (c) Facebook, Inc. and its affiliates.
    Licensed under the Apache-2.0 License

    This transform attempts to scale the shorter edge to the given
    `scale`, as long as the longer edge does not exceed `max_size`.
    If `max_size` is reached, then downscale so that the longer
    edge does not exceed `max_size`.

    Required Keys:

    - img
    - gt_seg_map (optional)

    Modified Keys:

    - img
    - img_shape
    - gt_seg_map (optional))

    Added Keys:

    - scale
    - scale_factor
    - keep_ratio


    Args:
        scale (Union[int, Tuple[int, int]]): The target short edge length.
            If it's tuple, will select the min value as the short edge length.
        max_size (int): The maximum allowed longest edge length.
    """

    def __init__(self, scale: Union[int, Tuple[int, int]],
                 max_size: int) -> None:
        super().__init__()
        self.scale = scale
        self.max_size = max_size

        # Create a empty Resize object
        self.resize = TRANSFORMS.build({
            'type': 'Resize',
            'scale': 0,
            'keep_ratio': True
        })

    def _get_output_shape(self, img, short_edge_length) -> Tuple[int, int]:
        """Compute the target image shape with the given `short_edge_length`.

        Args:
            img (np.ndarray): The input image.
            short_edge_length (Union[int, Tuple[int, int]]): The target short
                edge length. If it's tuple, will select the min value as the
                short edge length.
        """
        h, w = img.shape[:2]
        if isinstance(short_edge_length, int):
            size = short_edge_length * 1.0
        elif isinstance(short_edge_length, tuple):
            size = min(short_edge_length) * 1.0
        scale = size / min(h, w)
        if h < w:
            new_h, new_w = size, scale * w
        else:
            new_h, new_w = scale * h, size

        if max(new_h, new_w) > self.max_size:
            scale = self.max_size * 1.0 / max(new_h, new_w)
            new_h *= scale
            new_w *= scale

        new_h = int(new_h + 0.5)
        new_w = int(new_w + 0.5)
        return (new_w, new_h)

    def transform(self, results: Dict) -> Dict:
        self.resize.scale = self._get_output_shape(results['img'], self.scale)
        return self.resize(results)


@TRANSFORMS.register_module()
class BioMedical3DRandomCrop(BaseTransform):
    """Crop the input patch for medical image & segmentation mask.

    Required Keys:

    - img (np.ndarray): Biomedical image with shape (N, Z, Y, X),
        N is the number of modalities, and data type is float32.
    - gt_seg_map (np.ndarray, optional): Biomedical semantic segmentation mask
        with shape (Z, Y, X).

    Modified Keys:

        - img
        - img_shape
        - gt_seg_map (optional)

    Args:
        crop_shape (Union[int, Tuple[int, int, int]]):  Expected size after
            cropping with the format of (z, y, x). If set to an integer,
            then cropping width and height are equal to this integer.
        keep_foreground (bool): If keep_foreground is True, it will sample a
            voxel of foreground classes randomly, and will take it as the
            center of the crop bounding-box. Default to True.
    """

    def __init__(self,
                 crop_shape: Union[int, Tuple[int, int, int]],
                 keep_foreground: bool = True):
        super().__init__()
        assert isinstance(crop_shape, int) or (
            isinstance(crop_shape, tuple) and len(crop_shape) == 3
        ), 'The expected crop_shape is an integer, or a tuple containing '
        'three integers'

        if isinstance(crop_shape, int):
            crop_shape = (crop_shape, crop_shape, crop_shape)
        assert crop_shape[0] > 0 and crop_shape[1] > 0 and crop_shape[2] > 0
        self.crop_shape = crop_shape
        self.keep_foreground = keep_foreground

    def random_sample_location(self, seg_map: np.ndarray) -> dict:
        """sample foreground voxel when keep_foreground is True.

        Args:
            seg_map (np.ndarray): gt seg map.

        Returns:
            dict: Coordinates of selected foreground voxel.
        """
        num_samples = 10000
        # at least 1% of the class voxels need to be selected,
        # otherwise it may be too sparse
        min_percent_coverage = 0.01
        class_locs = {}
        foreground_classes = []
        all_classes = np.unique(seg_map)
        for c in all_classes:
            if c == 0:
                # to avoid the segmentation mask full of background 0
                # and the class_locs is just void dictionary {} when it return
                # there add a void list for background 0.
                class_locs[c] = []
            else:
                all_locs = np.argwhere(seg_map == c)
                target_num_samples = min(num_samples, len(all_locs))
                target_num_samples = max(
                    target_num_samples,
                    int(np.ceil(len(all_locs) * min_percent_coverage)))

                selected = all_locs[np.random.choice(
                    len(all_locs), target_num_samples, replace=False)]
                class_locs[c] = selected
                foreground_classes.append(c)

        selected_voxel = None
        if len(foreground_classes) > 0:
            selected_class = np.random.choice(foreground_classes)
            voxels_of_that_class = class_locs[selected_class]
            selected_voxel = voxels_of_that_class[np.random.choice(
                len(voxels_of_that_class))]

        return selected_voxel

    def random_generate_crop_bbox(self, margin_z: int, margin_y: int,
                                  margin_x: int) -> tuple:
        """Randomly get a crop bounding box.

        Args:
            seg_map (np.ndarray): Ground truth segmentation map.

        Returns:
            tuple: Coordinates of the cropped image.
        """
        offset_z = np.random.randint(0, margin_z + 1)
        offset_y = np.random.randint(0, margin_y + 1)
        offset_x = np.random.randint(0, margin_x + 1)
        crop_z1, crop_z2 = offset_z, offset_z + self.crop_shape[0]
        crop_y1, crop_y2 = offset_y, offset_y + self.crop_shape[1]
        crop_x1, crop_x2 = offset_x, offset_x + self.crop_shape[2]

        return crop_z1, crop_z2, crop_y1, crop_y2, crop_x1, crop_x2

    def generate_margin(self, results: dict) -> tuple:
        """Generate margin of crop bounding-box.

        If keep_foreground is True, it will sample a voxel of foreground
        classes randomly, and will take it as the center of the bounding-box,
        and return the margin between of the bounding-box and image.
        If keep_foreground is False, it will return the difference from crop
        shape and image shape.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            tuple: The margin for 3 dimensions of crop bounding-box and image.
        """

        seg_map = results['gt_seg_map']
        if self.keep_foreground:
            selected_voxel = self.random_sample_location(seg_map)
            if selected_voxel is None:
                # this only happens if some image does not contain
                # foreground voxels at all
                warnings.warn(f'case does not contain any foreground classes'
                              f': {results["img_path"]}')
                margin_z = max(seg_map.shape[0] - self.crop_shape[0], 0)
                margin_y = max(seg_map.shape[1] - self.crop_shape[1], 0)
                margin_x = max(seg_map.shape[2] - self.crop_shape[2], 0)
            else:
                margin_z = max(0, selected_voxel[0] - self.crop_shape[0] // 2)
                margin_y = max(0, selected_voxel[1] - self.crop_shape[1] // 2)
                margin_x = max(0, selected_voxel[2] - self.crop_shape[2] // 2)
                margin_z = max(
                    0, min(seg_map.shape[0] - self.crop_shape[0], margin_z))
                margin_y = max(
                    0, min(seg_map.shape[1] - self.crop_shape[1], margin_y))
                margin_x = max(
                    0, min(seg_map.shape[2] - self.crop_shape[2], margin_x))
        else:
            margin_z = max(seg_map.shape[0] - self.crop_shape[0], 0)
            margin_y = max(seg_map.shape[1] - self.crop_shape[1], 0)
            margin_x = max(seg_map.shape[2] - self.crop_shape[2], 0)

        return margin_z, margin_y, margin_x

    def crop(self, img: np.ndarray, crop_bbox: tuple) -> np.ndarray:
        """Crop from ``img``

        Args:
            img (np.ndarray): Original input image.
            crop_bbox (tuple): Coordinates of the cropped image.

        Returns:
            np.ndarray: The cropped image.
        """
        crop_z1, crop_z2, crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox
        if len(img.shape) == 3:
            # crop seg map
            img = img[crop_z1:crop_z2, crop_y1:crop_y2, crop_x1:crop_x2]
        else:
            # crop image
            assert len(img.shape) == 4
            img = img[:, crop_z1:crop_z2, crop_y1:crop_y2, crop_x1:crop_x2]
        return img

    def transform(self, results: dict) -> dict:
        """Transform function to randomly crop images, semantic segmentation
        maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Randomly cropped results, 'img_shape' key in result dict is
                updated according to crop size.
        """
        margin = self.generate_margin(results)
        crop_bbox = self.random_generate_crop_bbox(*margin)

        # crop the image
        img = results['img']
        results['img'] = self.crop(img, crop_bbox)
        results['img_shape'] = results['img'].shape[1:]

        # crop semantic seg
        seg_map = results['gt_seg_map']
        results['gt_seg_map'] = self.crop(seg_map, crop_bbox)

        return results

    def __repr__(self):
        return self.__class__.__name__ + f'(crop_shape={self.crop_shape})'


@TRANSFORMS.register_module()
class BioMedicalGaussianNoise(BaseTransform):
    """Add random Gaussian noise to image.

    Modified from https://github.com/MIC-DKFZ/batchgenerators/blob/7651ece69faf55263dd582a9f5cbd149ed9c3ad0/batchgenerators/transforms/noise_transforms.py#L53  # noqa:E501

    Copyright (c) German Cancer Research Center (DKFZ)
    Licensed under the Apache License, Version 2.0

    Required Keys:

    - img (np.ndarray): Biomedical image with shape (N, Z, Y, X),
            N is the number of modalities, and data type is float32.

    Modified Keys:

    - img

    Args:
        prob (float): Probability to add Gaussian noise for
            each sample. Default to 0.1.
        mean (float): Mean or “centre” of the distribution. Default to 0.0.
        std (float): Standard deviation of distribution. Default to 0.1.
    """

    def __init__(self,
                 prob: float = 0.1,
                 mean: float = 0.0,
                 std: float = 0.1) -> None:
        super().__init__()
        assert 0.0 <= prob <= 1.0 and std >= 0.0
        self.prob = prob
        self.mean = mean
        self.std = std

    def transform(self, results: Dict) -> Dict:
        """Call function to add random Gaussian noise to image.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Result dict with random Gaussian noise.
        """
        if np.random.rand() < self.prob:
            rand_std = np.random.uniform(0, self.std)
            noise = np.random.normal(
                self.mean, rand_std, size=results['img'].shape)
            # noise is float64 array, convert to the results['img'].dtype
            noise = noise.astype(results['img'].dtype)
            results['img'] = results['img'] + noise
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(prob={self.prob}, '
        repr_str += f'mean={self.mean}, '
        repr_str += f'std={self.std})'
        return repr_str


@TRANSFORMS.register_module()
class BioMedicalGaussianBlur(BaseTransform):
    """Add Gaussian blur with random sigma to image.

    Modified from https://github.com/MIC-DKFZ/batchgenerators/blob/7651ece69faf55263dd582a9f5cbd149ed9c3ad0/batchgenerators/transforms/noise_transforms.py#L81 # noqa:E501

    Copyright (c) German Cancer Research Center (DKFZ)
    Licensed under the Apache License, Version 2.0

    Required Keys:

    - img (np.ndarray): Biomedical image with shape (N, Z, Y, X),
            N is the number of modalities, and data type is float32.

    Modified Keys:

    - img

    Args:
        sigma_range (Tuple[float, float]|float): range to randomly
            select sigma value. Default to (0.5, 1.0).
        prob (float): Probability to apply Gaussian blur
            for each sample. Default to 0.2.
        prob_per_channel  (float): Probability to apply Gaussian blur
            for each channel (axis N of the image). Default to 0.5.
        different_sigma_per_channel (bool): whether to use different
            sigma for each channel (axis N of the image). Default to True.
        different_sigma_per_axis (bool): whether to use different
            sigma for axis Z, X and Y of the image. Default to True.
    """

    def __init__(self,
                 sigma_range: Tuple[float, float] = (0.5, 1.0),
                 prob: float = 0.2,
                 prob_per_channel: float = 0.5,
                 different_sigma_per_channel: bool = True,
                 different_sigma_per_axis: bool = True) -> None:
        super().__init__()
        assert 0.0 <= prob <= 1.0
        assert 0.0 <= prob_per_channel <= 1.0
        assert isinstance(sigma_range, Sequence) and len(sigma_range) == 2
        self.sigma_range = sigma_range
        self.prob = prob
        self.prob_per_channel = prob_per_channel
        self.different_sigma_per_channel = different_sigma_per_channel
        self.different_sigma_per_axis = different_sigma_per_axis

    def _get_valid_sigma(self, value_range) -> Tuple[float, ...]:
        """Ensure the `value_range` to be either a single value or a sequence
        of two values. If the `value_range` is a sequence, generate a random
        value with `[value_range[0], value_range[1]]` based on uniform
        sampling.

        Modified from https://github.com/MIC-DKFZ/batchgenerators/blob/7651ece69faf55263dd582a9f5cbd149ed9c3ad0/batchgenerators/augmentations/utils.py#L625 # noqa:E501

        Args:
            value_range (tuple|list|float|int): the input value range
        """
        if (isinstance(value_range, (list, tuple))):
            if (value_range[0] == value_range[1]):
                value = value_range[0]
            else:
                orig_type = type(value_range[0])
                value = np.random.uniform(value_range[0], value_range[1])
                value = orig_type(value)
        return value

    def _gaussian_blur(self, data_sample: np.ndarray) -> np.ndarray:
        """Random generate sigma and apply Gaussian Blur to the data
        Args:
            data_sample (np.ndarray): data sample with multiple modalities,
                the data shape is (N, Z, Y, X)
        """
        sigma = None
        for c in range(data_sample.shape[0]):
            if np.random.rand() < self.prob_per_channel:
                # if no `sigma` is generated, generate one
                # if `self.different_sigma_per_channel` is True,
                # re-generate random sigma for each channel
                if (sigma is None or self.different_sigma_per_channel):
                    if (not self.different_sigma_per_axis):
                        sigma = self._get_valid_sigma(self.sigma_range)
                    else:
                        sigma = [
                            self._get_valid_sigma(self.sigma_range)
                            for _ in data_sample.shape[1:]
                        ]
                # apply gaussian filter with `sigma`
                data_sample[c] = gaussian_filter(
                    data_sample[c], sigma, order=0)
        return data_sample

    def transform(self, results: Dict) -> Dict:
        """Call function to add random Gaussian blur to image.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Result dict with random Gaussian noise.
        """
        if np.random.rand() < self.prob:
            results['img'] = self._gaussian_blur(results['img'])
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(prob={self.prob}, '
        repr_str += f'prob_per_channel={self.prob_per_channel}, '
        repr_str += f'sigma_range={self.sigma_range}, '
        repr_str += 'different_sigma_per_channel='\
                    f'{self.different_sigma_per_channel}, '
        repr_str += 'different_sigma_per_axis='\
                    f'{self.different_sigma_per_axis})'
        return repr_str


@TRANSFORMS.register_module()
class BioMedicalRandomGamma(BaseTransform):
    """Using random gamma correction to process the biomedical image.

    Modified from
    https://github.com/MIC-DKFZ/batchgenerators/blob/master/batchgenerators/transforms/color_transforms.py#L132 # noqa:E501
    With licence: Apache 2.0

    Required Keys:

    - img (np.ndarray): Biomedical image with shape (N, Z, Y, X),
        N is the number of modalities, and data type is float32.

    Modified Keys:
    - img

    Args:
        prob (float): The probability to perform this transform. Default: 0.5.
        gamma_range (Tuple[float]): Range of gamma values. Default: (0.5, 2).
        invert_image (bool): Whether invert the image before applying gamma
            augmentation. Default: False.
        per_channel (bool): Whether perform the transform each channel
            individually. Default: False
        retain_stats (bool): Gamma transformation will alter the mean and std
            of the data in the patch. If retain_stats=True, the data will be
            transformed to match the mean and standard deviation before gamma
            augmentation. Default: False.
    """

    def __init__(self,
                 prob: float = 0.5,
                 gamma_range: Tuple[float] = (0.5, 2),
                 invert_image: bool = False,
                 per_channel: bool = False,
                 retain_stats: bool = False):
        assert 0 <= prob and prob <= 1
        assert isinstance(gamma_range, tuple) and len(gamma_range) == 2
        assert isinstance(invert_image, bool)
        assert isinstance(per_channel, bool)
        assert isinstance(retain_stats, bool)
        self.prob = prob
        self.gamma_range = gamma_range
        self.invert_image = invert_image
        self.per_channel = per_channel
        self.retain_stats = retain_stats

    @cache_randomness
    def _do_gamma(self):
        """Whether do adjust gamma for image."""
        return np.random.rand() < self.prob

    def _adjust_gamma(self, img: np.array):
        """Gamma adjustment for image.

        Args:
            img (np.array): Input image before gamma adjust.

        Returns:
            np.arrays: Image after gamma adjust.
        """

        if self.invert_image:
            img = -img

        def _do_adjust(img):
            if retain_stats_here:
                img_mean = img.mean()
                img_std = img.std()
            if np.random.random() < 0.5 and self.gamma_range[0] < 1:
                gamma = np.random.uniform(self.gamma_range[0], 1)
            else:
                gamma = np.random.uniform(
                    max(self.gamma_range[0], 1), self.gamma_range[1])
            img_min = img.min()
            img_range = img.max() - img_min  # range
            img = np.power(((img - img_min) / float(img_range + 1e-7)),
                           gamma) * img_range + img_min
            if retain_stats_here:
                img = img - img.mean()
                img = img / (img.std() + 1e-8) * img_std
                img = img + img_mean
            return img

        if not self.per_channel:
            retain_stats_here = self.retain_stats
            img = _do_adjust(img)
        else:
            for c in range(img.shape[0]):
                img[c] = _do_adjust(img[c])
        if self.invert_image:
            img = -img
        return img

    def transform(self, results: dict) -> dict:
        """Call function to perform random gamma correction
        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Result dict with random gamma correction performed.
        """
        do_gamma = self._do_gamma()

        if do_gamma:
            results['img'] = self._adjust_gamma(results['img'])
        else:
            pass
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(prob={self.prob}, '
        repr_str += f'gamma_range={self.gamma_range},'
        repr_str += f'invert_image={self.invert_image},'
        repr_str += f'per_channel={self.per_channel},'
        repr_str += f'retain_stats={self.retain_stats}'
        return repr_str


@TRANSFORMS.register_module()
class BioMedical3DPad(BaseTransform):
    """Pad the biomedical 3d image & biomedical 3d semantic segmentation maps.

    Required Keys:

    - img (np.ndarry): Biomedical image with shape (N, Z, Y, X) by default,
        N is the number of modalities.
    - gt_seg_map (np.ndarray, optional): Biomedical seg map with shape
        (Z, Y, X) by default.

    Modified Keys:

    - img (np.ndarry): Biomedical image with shape (N, Z, Y, X) by default,
        N is the number of modalities.
    - gt_seg_map (np.ndarray, optional): Biomedical seg map with shape
        (Z, Y, X) by default.

    Added Keys:

    - pad_shape (Tuple[int, int, int]): The padded shape.

    Args:
        pad_shape (Tuple[int, int, int]): Fixed padding size.
            Expected padding shape (Z, Y, X).
        pad_val (float): Padding value for biomedical image.
            The padding mode is set to "constant". The value
            to be filled in padding area. Default: 0.
        seg_pad_val (int): Padding value for biomedical 3d semantic
            segmentation maps. The padding mode is set to "constant".
            The value to be filled in padding area. Default: 0.
    """

    def __init__(self,
                 pad_shape: Tuple[int, int, int],
                 pad_val: float = 0.,
                 seg_pad_val: int = 0) -> None:

        # check pad_shape
        assert pad_shape is not None
        if not isinstance(pad_shape, tuple):
            assert len(pad_shape) == 3

        self.pad_shape = pad_shape
        self.pad_val = pad_val
        self.seg_pad_val = seg_pad_val

    def _pad_img(self, results: dict) -> None:
        """Pad images according to ``self.pad_shape``

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: The dict contains the padded image and shape
                information.
        """
        padded_img = self._to_pad(
            results['img'], pad_shape=self.pad_shape, pad_val=self.pad_val)

        results['img'] = padded_img
        results['pad_shape'] = padded_img.shape[1:]

    def _pad_seg(self, results: dict) -> None:
        """Pad semantic segmentation map according to ``self.pad_shape`` if
        ``gt_seg_map`` is not None in results dict.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Update the padded gt seg map in dict.
        """
        if results.get('gt_seg_map', None) is not None:
            pad_gt_seg = self._to_pad(
                results['gt_seg_map'][None, ...],
                pad_shape=results['pad_shape'],
                pad_val=self.seg_pad_val)
            results['gt_seg_map'] = pad_gt_seg[1:]

    @staticmethod
    def _to_pad(img: np.ndarray,
                pad_shape: Tuple[int, int, int],
                pad_val: Union[int, float] = 0) -> np.ndarray:
        """Pad the given 3d image to a certain shape with specified padding
        value.

        Args:
            img (ndarray): Biomedical image with shape (N, Z, Y, X)
                to be padded. N is the number of modalities.
            pad_shape (Tuple[int,int,int]): Expected padding shape (Z, Y, X).
            pad_val (float, int): Values to be filled in padding areas
                and the padding_mode is set to 'constant'. Default: 0.

        Returns:
            ndarray: The padded image.
        """
        # compute pad width
        d = max(pad_shape[0] - img.shape[1], 0)
        pad_d = (d // 2, d - d // 2)
        h = max(pad_shape[1] - img.shape[2], 0)
        pad_h = (h // 2, h - h // 2)
        w = max(pad_shape[2] - img.shape[2], 0)
        pad_w = (w // 2, w - w // 2)

        pad_list = [(0, 0), pad_d, pad_h, pad_w]

        img = np.pad(img, pad_list, mode='constant', constant_values=pad_val)
        return img

    def transform(self, results: dict) -> dict:
        """Call function to pad images, semantic segmentation maps.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Updated result dict.
        """
        self._pad_img(results)
        self._pad_seg(results)

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'pad_shape={self.pad_shape}, '
        repr_str += f'pad_val={self.pad_val}), '
        repr_str += f'seg_pad_val={self.seg_pad_val})'
        return repr_str


@TRANSFORMS.register_module()
class BioMedical3DRandomFlip(BaseTransform):
    """Flip biomedical 3D images and segmentations.

    Modified from https://github.com/MIC-DKFZ/batchgenerators/blob/master/batchgenerators/transforms/spatial_transforms.py # noqa:E501

    Copyright 2021 Division of
    Medical Image Computing, German Cancer Research Center (DKFZ) and Applied
    Computer Vision Lab, Helmholtz Imaging Platform.
    Licensed under the Apache-2.0 License.

    Required Keys:

    - img (np.ndarry): Biomedical image with shape (N, Z, Y, X) by default,
        N is the number of modalities.
    - gt_seg_map (np.ndarray, optional): Biomedical seg map with shape
        (Z, Y, X) by default.

    Modified Keys:

    - img (np.ndarry): Biomedical image with shape (N, Z, Y, X) by default,
        N is the number of modalities.
    - gt_seg_map (np.ndarray, optional): Biomedical seg map with shape
        (Z, Y, X) by default.

    Added Keys:

    - do_flip
    - flip_axes

    Args:
        prob (float): Flipping probability.
        axes (Tuple[int, ...]): Flipping axes with order 'ZXY'.
        swap_label_pairs (Optional[List[Tuple[int, int]]]):
        The segmentation label pairs that are swapped when flipping.
    """

    def __init__(self,
                 prob: float,
                 axes: Tuple[int, ...],
                 swap_label_pairs: Optional[List[Tuple[int, int]]] = None):
        self.prob = prob
        self.axes = axes
        self.swap_label_pairs = swap_label_pairs
        assert prob >= 0 and prob <= 1
        if axes is not None:
            assert max(axes) <= 2

    @staticmethod
    def _flip(img, direction: Tuple[bool, bool, bool]) -> np.ndarray:
        if direction[0]:
            img[:, :] = img[:, ::-1]
        if direction[1]:
            img[:, :, :] = img[:, :, ::-1]
        if direction[2]:
            img[:, :, :, :] = img[:, :, :, ::-1]
        return img

    def _do_flip(self, img: np.ndarray) -> Tuple[bool, bool, bool]:
        """Call function to determine which axis to flip.

        Args:
            img (np.ndarry): Image or segmentation map array.
        Returns:
            tuple: Flip action, whether to flip on the z, x, and y axes.
        """
        flip_c, flip_x, flip_y = False, False, False
        if self.axes is not None:
            flip_c = 0 in self.axes and np.random.rand() < self.prob
            flip_x = 1 in self.axes and np.random.rand() < self.prob
            if len(img.shape) == 4:
                flip_y = 2 in self.axes and np.random.rand() < self.prob
        return flip_c, flip_x, flip_y

    def _swap_label(self, seg: np.ndarray) -> np.ndarray:
        out = seg.copy()
        for first, second in self.swap_label_pairs:
            first_area = (seg == first)
            second_area = (seg == second)
            out[first_area] = second
            out[second_area] = first
        return out

    def transform(self, results: Dict) -> Dict:
        """Call function to flip and swap pair labels.

        Args:
            results (dict): Result dict.
        Returns:
            dict: Flipped results, 'do_flip', 'flip_axes' keys are added into
                result dict.
        """
        # get actual flipped axis
        if 'do_flip' not in results:
            results['do_flip'] = self._do_flip(results['img'])
        if 'flip_axes' not in results:
            results['flip_axes'] = self.axes
        # flip image
        results['img'] = self._flip(
            results['img'], direction=results['do_flip'])
        # flip seg
        if results['gt_seg_map'] is not None:
            if results['gt_seg_map'].shape != results['img'].shape:
                results['gt_seg_map'] = results['gt_seg_map'][None, :]
            results['gt_seg_map'] = self._flip(
                results['gt_seg_map'], direction=results['do_flip'])
            results['gt_seg_map'] = results['gt_seg_map'].squeeze()
            # swap label pairs
            if self.swap_label_pairs is not None:
                results['gt_seg_map'] = self._swap_label(results['gt_seg_map'])
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(prob={self.prob}, axes={self.axes}, ' \
                    f'swap_label_pairs={self.swap_label_pairs})'
        return repr_str