File size: 30,151 Bytes
3e06e1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple, Union

import mmcv
import numpy as np
import pycocotools.mask as maskUtils
import torch
from mmcv.transforms import BaseTransform
from mmcv.transforms import LoadAnnotations as MMCV_LoadAnnotations
from mmcv.transforms import LoadImageFromFile
from mmengine.fileio import get
from mmengine.structures import BaseDataElement

from mmdet.registry import TRANSFORMS
from mmdet.structures.bbox import get_box_type
from mmdet.structures.bbox.box_type import autocast_box_type
from mmdet.structures.mask import BitmapMasks, PolygonMasks


@TRANSFORMS.register_module()
class LoadImageFromNDArray(LoadImageFromFile):
    """Load an image from ``results['img']``.

    Similar with :obj:`LoadImageFromFile`, but the image has been loaded as
    :obj:`np.ndarray` in ``results['img']``. Can be used when loading image
    from webcam.

    Required Keys:

    - img

    Modified Keys:

    - img
    - img_path
    - img_shape
    - ori_shape

    Args:
        to_float32 (bool): Whether to convert the loaded image to a float32
            numpy array. If set to False, the loaded image is an uint8 array.
            Defaults to False.
    """

    def transform(self, results: dict) -> dict:
        """Transform function to add image meta information.

        Args:
            results (dict): Result dict with Webcam read image in
                ``results['img']``.

        Returns:
            dict: The dict contains loaded image and meta information.
        """

        img = results['img']
        if self.to_float32:
            img = img.astype(np.float32)

        results['img_path'] = None
        results['img'] = img
        results['img_shape'] = img.shape[:2]
        results['ori_shape'] = img.shape[:2]
        return results


@TRANSFORMS.register_module()
class LoadMultiChannelImageFromFiles(BaseTransform):
    """Load multi-channel images from a list of separate channel files.

    Required Keys:

    - img_path

    Modified Keys:

    - img
    - img_shape
    - ori_shape

    Args:
        to_float32 (bool): Whether to convert the loaded image to a float32
            numpy array. If set to False, the loaded image is an uint8 array.
            Defaults to False.
        color_type (str): The flag argument for :func:``mmcv.imfrombytes``.
            Defaults to 'unchanged'.
        imdecode_backend (str): The image decoding backend type. The backend
            argument for :func:``mmcv.imfrombytes``.
            See :func:``mmcv.imfrombytes`` for details.
            Defaults to 'cv2'.
        file_client_args (dict): Arguments to instantiate the
            corresponding backend in mmdet <= 3.0.0rc6. Defaults to None.
        backend_args (dict, optional): Arguments to instantiate the
            corresponding backend in mmdet >= 3.0.0rc7. Defaults to None.
    """

    def __init__(
        self,
        to_float32: bool = False,
        color_type: str = 'unchanged',
        imdecode_backend: str = 'cv2',
        file_client_args: dict = None,
        backend_args: dict = None,
    ) -> None:
        self.to_float32 = to_float32
        self.color_type = color_type
        self.imdecode_backend = imdecode_backend
        self.backend_args = backend_args
        if file_client_args is not None:
            raise RuntimeError(
                'The `file_client_args` is deprecated, '
                'please use `backend_args` instead, please refer to'
                'https://github.com/open-mmlab/mmdetection/blob/main/configs/_base_/datasets/coco_detection.py'  # noqa: E501
            )

    def transform(self, results: dict) -> dict:
        """Transform functions to load multiple images and get images meta
        information.

        Args:
            results (dict): Result dict from :obj:`mmdet.CustomDataset`.

        Returns:
            dict: The dict contains loaded images and meta information.
        """

        assert isinstance(results['img_path'], list)
        img = []
        for name in results['img_path']:
            img_bytes = get(name, backend_args=self.backend_args)
            img.append(
                mmcv.imfrombytes(
                    img_bytes,
                    flag=self.color_type,
                    backend=self.imdecode_backend))
        img = np.stack(img, axis=-1)
        if self.to_float32:
            img = img.astype(np.float32)

        results['img'] = img
        results['img_shape'] = img.shape[:2]
        results['ori_shape'] = img.shape[:2]
        return results

    def __repr__(self):
        repr_str = (f'{self.__class__.__name__}('
                    f'to_float32={self.to_float32}, '
                    f"color_type='{self.color_type}', "
                    f"imdecode_backend='{self.imdecode_backend}', "
                    f'backend_args={self.backend_args})')
        return repr_str


@TRANSFORMS.register_module()
class LoadAnnotations(MMCV_LoadAnnotations):
    """Load and process the ``instances`` and ``seg_map`` annotation provided
    by dataset.

    The annotation format is as the following:

    .. code-block:: python

        {
            'instances':
            [
                {
                # List of 4 numbers representing the bounding box of the
                # instance, in (x1, y1, x2, y2) order.
                'bbox': [x1, y1, x2, y2],

                # Label of image classification.
                'bbox_label': 1,

                # Used in instance/panoptic segmentation. The segmentation mask
                # of the instance or the information of segments.
                # 1. If list[list[float]], it represents a list of polygons,
                # one for each connected component of the object. Each
                # list[float] is one simple polygon in the format of
                # [x1, y1, ..., xn, yn] (n≥3). The Xs and Ys are absolute
                # coordinates in unit of pixels.
                # 2. If dict, it represents the per-pixel segmentation mask in
                # COCO’s compressed RLE format. The dict should have keys
                # “size” and “counts”.  Can be loaded by pycocotools
                'mask': list[list[float]] or dict,

                }
            ]
            # Filename of semantic or panoptic segmentation ground truth file.
            'seg_map_path': 'a/b/c'
        }

    After this module, the annotation has been changed to the format below:

    .. code-block:: python

        {
            # In (x1, y1, x2, y2) order, float type. N is the number of bboxes
            # in an image
            'gt_bboxes': BaseBoxes(N, 4)
             # In int type.
            'gt_bboxes_labels': np.ndarray(N, )
             # In built-in class
            'gt_masks': PolygonMasks (H, W) or BitmapMasks (H, W)
             # In uint8 type.
            'gt_seg_map': np.ndarray (H, W)
             # in (x, y, v) order, float type.
        }

    Required Keys:

    - height
    - width
    - instances

      - bbox (optional)
      - bbox_label
      - mask (optional)
      - ignore_flag

    - seg_map_path (optional)

    Added Keys:

    - gt_bboxes (BaseBoxes[torch.float32])
    - gt_bboxes_labels (np.int64)
    - gt_masks (BitmapMasks | PolygonMasks)
    - gt_seg_map (np.uint8)
    - gt_ignore_flags (bool)

    Args:
        with_bbox (bool): Whether to parse and load the bbox annotation.
            Defaults to True.
        with_label (bool): Whether to parse and load the label annotation.
            Defaults to True.
        with_mask (bool): Whether to parse and load the mask annotation.
             Default: False.
        with_seg (bool): Whether to parse and load the semantic segmentation
            annotation. Defaults to False.
        poly2mask (bool): Whether to convert mask to bitmap. Default: True.
        box_type (str): The box type used to wrap the bboxes. If ``box_type``
            is None, gt_bboxes will keep being np.ndarray. Defaults to 'hbox'.
        imdecode_backend (str): The image decoding backend type. The backend
            argument for :func:``mmcv.imfrombytes``.
            See :fun:``mmcv.imfrombytes`` for details.
            Defaults to 'cv2'.
        backend_args (dict, optional): Arguments to instantiate the
            corresponding backend. Defaults to None.
    """

    def __init__(self,
                 with_mask: bool = False,
                 poly2mask: bool = True,
                 box_type: str = 'hbox',
                 **kwargs) -> None:
        super(LoadAnnotations, self).__init__(**kwargs)
        self.with_mask = with_mask
        self.poly2mask = poly2mask
        self.box_type = box_type

    def _load_bboxes(self, results: dict) -> None:
        """Private function to load bounding box annotations.

        Args:
            results (dict): Result dict from :obj:``mmengine.BaseDataset``.
        Returns:
            dict: The dict contains loaded bounding box annotations.
        """
        gt_bboxes = []
        gt_ignore_flags = []
        for instance in results.get('instances', []):
            gt_bboxes.append(instance['bbox'])
            gt_ignore_flags.append(instance['ignore_flag'])
        if self.box_type is None:
            results['gt_bboxes'] = np.array(
                gt_bboxes, dtype=np.float32).reshape((-1, 4))
        else:
            _, box_type_cls = get_box_type(self.box_type)
            results['gt_bboxes'] = box_type_cls(gt_bboxes, dtype=torch.float32)
        results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool)

    def _load_labels(self, results: dict) -> None:
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:``mmengine.BaseDataset``.

        Returns:
            dict: The dict contains loaded label annotations.
        """
        gt_bboxes_labels = []
        for instance in results.get('instances', []):
            gt_bboxes_labels.append(instance['bbox_label'])
        # TODO: Inconsistent with mmcv, consider how to deal with it later.
        results['gt_bboxes_labels'] = np.array(
            gt_bboxes_labels, dtype=np.int64)

    def _poly2mask(self, mask_ann: Union[list, dict], img_h: int,
                   img_w: int) -> np.ndarray:
        """Private function to convert masks represented with polygon to
        bitmaps.

        Args:
            mask_ann (list | dict): Polygon mask annotation input.
            img_h (int): The height of output mask.
            img_w (int): The width of output mask.

        Returns:
            np.ndarray: The decode bitmap mask of shape (img_h, img_w).
        """

        if isinstance(mask_ann, list):
            # polygon -- a single object might consist of multiple parts
            # we merge all parts into one mask rle code
            rles = maskUtils.frPyObjects(mask_ann, img_h, img_w)
            rle = maskUtils.merge(rles)
        elif isinstance(mask_ann['counts'], list):
            # uncompressed RLE
            rle = maskUtils.frPyObjects(mask_ann, img_h, img_w)
        else:
            # rle
            rle = mask_ann
        mask = maskUtils.decode(rle)
        return mask

    def _process_masks(self, results: dict) -> list:
        """Process gt_masks and filter invalid polygons.

        Args:
            results (dict): Result dict from :obj:``mmengine.BaseDataset``.

        Returns:
            list: Processed gt_masks.
        """
        gt_masks = []
        gt_ignore_flags = []
        for instance in results.get('instances', []):
            gt_mask = instance['mask']
            # If the annotation of segmentation mask is invalid,
            # ignore the whole instance.
            if isinstance(gt_mask, list):
                gt_mask = [
                    np.array(polygon) for polygon in gt_mask
                    if len(polygon) % 2 == 0 and len(polygon) >= 6
                ]
                if len(gt_mask) == 0:
                    # ignore this instance and set gt_mask to a fake mask
                    instance['ignore_flag'] = 1
                    gt_mask = [np.zeros(6)]
            elif not self.poly2mask:
                # `PolygonMasks` requires a ploygon of format List[np.array],
                # other formats are invalid.
                instance['ignore_flag'] = 1
                gt_mask = [np.zeros(6)]
            elif isinstance(gt_mask, dict) and \
                    not (gt_mask.get('counts') is not None and
                         gt_mask.get('size') is not None and
                         isinstance(gt_mask['counts'], (list, str))):
                # if gt_mask is a dict, it should include `counts` and `size`,
                # so that `BitmapMasks` can uncompressed RLE
                instance['ignore_flag'] = 1
                gt_mask = [np.zeros(6)]
            gt_masks.append(gt_mask)
            # re-process gt_ignore_flags
            gt_ignore_flags.append(instance['ignore_flag'])
        results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool)
        return gt_masks

    def _load_masks(self, results: dict) -> None:
        """Private function to load mask annotations.

        Args:
            results (dict): Result dict from :obj:``mmengine.BaseDataset``.
        """
        h, w = results['ori_shape']
        gt_masks = self._process_masks(results)
        if self.poly2mask:
            gt_masks = BitmapMasks(
                [self._poly2mask(mask, h, w) for mask in gt_masks], h, w)
        else:
            # fake polygon masks will be ignored in `PackDetInputs`
            gt_masks = PolygonMasks([mask for mask in gt_masks], h, w)
        results['gt_masks'] = gt_masks

    def transform(self, results: dict) -> dict:
        """Function to load multiple types annotations.

        Args:
            results (dict): Result dict from :obj:``mmengine.BaseDataset``.

        Returns:
            dict: The dict contains loaded bounding box, label and
            semantic segmentation.
        """

        if self.with_bbox:
            self._load_bboxes(results)
        if self.with_label:
            self._load_labels(results)
        if self.with_mask:
            self._load_masks(results)
        if self.with_seg:
            self._load_seg_map(results)
        return results

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f'(with_bbox={self.with_bbox}, '
        repr_str += f'with_label={self.with_label}, '
        repr_str += f'with_mask={self.with_mask}, '
        repr_str += f'with_seg={self.with_seg}, '
        repr_str += f'poly2mask={self.poly2mask}, '
        repr_str += f"imdecode_backend='{self.imdecode_backend}', "
        repr_str += f'backend_args={self.backend_args})'
        return repr_str


@TRANSFORMS.register_module()
class LoadPanopticAnnotations(LoadAnnotations):
    """Load multiple types of panoptic annotations.

    The annotation format is as the following:

    .. code-block:: python

        {
            'instances':
            [
                {
                # List of 4 numbers representing the bounding box of the
                # instance, in (x1, y1, x2, y2) order.
                'bbox': [x1, y1, x2, y2],

                # Label of image classification.
                'bbox_label': 1,
                },
                ...
            ]
            'segments_info':
            [
                {
                # id = cls_id + instance_id * INSTANCE_OFFSET
                'id': int,

                # Contiguous category id defined in dataset.
                'category': int

                # Thing flag.
                'is_thing': bool
                },
                ...
            ]

            # Filename of semantic or panoptic segmentation ground truth file.
            'seg_map_path': 'a/b/c'
        }

    After this module, the annotation has been changed to the format below:

    .. code-block:: python

        {
            # In (x1, y1, x2, y2) order, float type. N is the number of bboxes
            # in an image
            'gt_bboxes': BaseBoxes(N, 4)
             # In int type.
            'gt_bboxes_labels': np.ndarray(N, )
             # In built-in class
            'gt_masks': PolygonMasks (H, W) or BitmapMasks (H, W)
             # In uint8 type.
            'gt_seg_map': np.ndarray (H, W)
             # in (x, y, v) order, float type.
        }

    Required Keys:

    - height
    - width
    - instances
      - bbox
      - bbox_label
      - ignore_flag
    - segments_info
      - id
      - category
      - is_thing
    - seg_map_path

    Added Keys:

    - gt_bboxes (BaseBoxes[torch.float32])
    - gt_bboxes_labels (np.int64)
    - gt_masks (BitmapMasks | PolygonMasks)
    - gt_seg_map (np.uint8)
    - gt_ignore_flags (bool)

    Args:
        with_bbox (bool): Whether to parse and load the bbox annotation.
            Defaults to True.
        with_label (bool): Whether to parse and load the label annotation.
            Defaults to True.
        with_mask (bool): Whether to parse and load the mask annotation.
             Defaults to True.
        with_seg (bool): Whether to parse and load the semantic segmentation
            annotation. Defaults to False.
        box_type (str): The box mode used to wrap the bboxes.
        imdecode_backend (str): The image decoding backend type. The backend
            argument for :func:``mmcv.imfrombytes``.
            See :fun:``mmcv.imfrombytes`` for details.
            Defaults to 'cv2'.
        backend_args (dict, optional): Arguments to instantiate the
            corresponding backend in mmdet >= 3.0.0rc7. Defaults to None.
    """

    def __init__(self,
                 with_bbox: bool = True,
                 with_label: bool = True,
                 with_mask: bool = True,
                 with_seg: bool = True,
                 box_type: str = 'hbox',
                 imdecode_backend: str = 'cv2',
                 backend_args: dict = None) -> None:
        try:
            from panopticapi import utils
        except ImportError:
            raise ImportError(
                'panopticapi is not installed, please install it by: '
                'pip install git+https://github.com/cocodataset/'
                'panopticapi.git.')
        self.rgb2id = utils.rgb2id

        super(LoadPanopticAnnotations, self).__init__(
            with_bbox=with_bbox,
            with_label=with_label,
            with_mask=with_mask,
            with_seg=with_seg,
            with_keypoints=False,
            box_type=box_type,
            imdecode_backend=imdecode_backend,
            backend_args=backend_args)

    def _load_masks_and_semantic_segs(self, results: dict) -> None:
        """Private function to load mask and semantic segmentation annotations.

        In gt_semantic_seg, the foreground label is from ``0`` to
        ``num_things - 1``, the background label is from ``num_things`` to
        ``num_things + num_stuff - 1``, 255 means the ignored label (``VOID``).

        Args:
            results (dict): Result dict from :obj:``mmdet.CustomDataset``.
        """
        # seg_map_path is None, when inference on the dataset without gts.
        if results.get('seg_map_path', None) is None:
            return

        img_bytes = get(
            results['seg_map_path'], backend_args=self.backend_args)
        pan_png = mmcv.imfrombytes(
            img_bytes, flag='color', channel_order='rgb').squeeze()
        pan_png = self.rgb2id(pan_png)

        gt_masks = []
        gt_seg = np.zeros_like(pan_png) + 255  # 255 as ignore

        for segment_info in results['segments_info']:
            mask = (pan_png == segment_info['id'])
            gt_seg = np.where(mask, segment_info['category'], gt_seg)

            # The legal thing masks
            if segment_info.get('is_thing'):
                gt_masks.append(mask.astype(np.uint8))

        if self.with_mask:
            h, w = results['ori_shape']
            gt_masks = BitmapMasks(gt_masks, h, w)
            results['gt_masks'] = gt_masks

        if self.with_seg:
            results['gt_seg_map'] = gt_seg

    def transform(self, results: dict) -> dict:
        """Function to load multiple types panoptic annotations.

        Args:
            results (dict): Result dict from :obj:``mmdet.CustomDataset``.

        Returns:
            dict: The dict contains loaded bounding box, label, mask and
                semantic segmentation annotations.
        """

        if self.with_bbox:
            self._load_bboxes(results)
        if self.with_label:
            self._load_labels(results)
        if self.with_mask or self.with_seg:
            # The tasks completed by '_load_masks' and '_load_semantic_segs'
            # in LoadAnnotations are merged to one function.
            self._load_masks_and_semantic_segs(results)

        return results


@TRANSFORMS.register_module()
class LoadProposals(BaseTransform):
    """Load proposal pipeline.

    Required Keys:

    - proposals

    Modified Keys:

    - proposals

    Args:
        num_max_proposals (int, optional): Maximum number of proposals to load.
            If not specified, all proposals will be loaded.
    """

    def __init__(self, num_max_proposals: Optional[int] = None) -> None:
        self.num_max_proposals = num_max_proposals

    def transform(self, results: dict) -> dict:
        """Transform function to load proposals from file.

        Args:
            results (dict): Result dict from :obj:`mmdet.CustomDataset`.

        Returns:
            dict: The dict contains loaded proposal annotations.
        """

        proposals = results['proposals']
        # the type of proposals should be `dict` or `InstanceData`
        assert isinstance(proposals, dict) \
               or isinstance(proposals, BaseDataElement)
        bboxes = proposals['bboxes'].astype(np.float32)
        assert bboxes.shape[1] == 4, \
            f'Proposals should have shapes (n, 4), but found {bboxes.shape}'

        if 'scores' in proposals:
            scores = proposals['scores'].astype(np.float32)
            assert bboxes.shape[0] == scores.shape[0]
        else:
            scores = np.zeros(bboxes.shape[0], dtype=np.float32)

        if self.num_max_proposals is not None:
            # proposals should sort by scores during dumping the proposals
            bboxes = bboxes[:self.num_max_proposals]
            scores = scores[:self.num_max_proposals]

        if len(bboxes) == 0:
            bboxes = np.zeros((0, 4), dtype=np.float32)
            scores = np.zeros(0, dtype=np.float32)

        results['proposals'] = bboxes
        results['proposals_scores'] = scores
        return results

    def __repr__(self):
        return self.__class__.__name__ + \
               f'(num_max_proposals={self.num_max_proposals})'


@TRANSFORMS.register_module()
class FilterAnnotations(BaseTransform):
    """Filter invalid annotations.

    Required Keys:

    - gt_bboxes (BaseBoxes[torch.float32]) (optional)
    - gt_bboxes_labels (np.int64) (optional)
    - gt_masks (BitmapMasks | PolygonMasks) (optional)
    - gt_ignore_flags (bool) (optional)

    Modified Keys:

    - gt_bboxes (optional)
    - gt_bboxes_labels (optional)
    - gt_masks (optional)
    - gt_ignore_flags (optional)

    Args:
        min_gt_bbox_wh (tuple[float]): Minimum width and height of ground truth
            boxes. Default: (1., 1.)
        min_gt_mask_area (int): Minimum foreground area of ground truth masks.
            Default: 1
        by_box (bool): Filter instances with bounding boxes not meeting the
            min_gt_bbox_wh threshold. Default: True
        by_mask (bool): Filter instances with masks not meeting
            min_gt_mask_area threshold. Default: False
        keep_empty (bool): Whether to return None when it
            becomes an empty bbox after filtering. Defaults to True.
    """

    def __init__(self,
                 min_gt_bbox_wh: Tuple[int, int] = (1, 1),
                 min_gt_mask_area: int = 1,
                 by_box: bool = True,
                 by_mask: bool = False,
                 keep_empty: bool = True) -> None:
        # TODO: add more filter options
        assert by_box or by_mask
        self.min_gt_bbox_wh = min_gt_bbox_wh
        self.min_gt_mask_area = min_gt_mask_area
        self.by_box = by_box
        self.by_mask = by_mask
        self.keep_empty = keep_empty

    @autocast_box_type()
    def transform(self, results: dict) -> Union[dict, None]:
        """Transform function to filter annotations.

        Args:
            results (dict): Result dict.

        Returns:
            dict: Updated result dict.
        """
        assert 'gt_bboxes' in results
        gt_bboxes = results['gt_bboxes']
        if gt_bboxes.shape[0] == 0:
            return results

        tests = []
        if self.by_box:
            tests.append(
                ((gt_bboxes.widths > self.min_gt_bbox_wh[0]) &
                 (gt_bboxes.heights > self.min_gt_bbox_wh[1])).numpy())
        if self.by_mask:
            assert 'gt_masks' in results
            gt_masks = results['gt_masks']
            tests.append(gt_masks.areas >= self.min_gt_mask_area)

        keep = tests[0]
        for t in tests[1:]:
            keep = keep & t

        if not keep.any():
            if self.keep_empty:
                return None

        keys = ('gt_bboxes', 'gt_bboxes_labels', 'gt_masks', 'gt_ignore_flags')
        for key in keys:
            if key in results:
                results[key] = results[key][keep]

        return results

    def __repr__(self):
        return self.__class__.__name__ + \
               f'(min_gt_bbox_wh={self.min_gt_bbox_wh}, ' \
               f'keep_empty={self.keep_empty})'


@TRANSFORMS.register_module()
class LoadEmptyAnnotations(BaseTransform):
    """Load Empty Annotations for unlabeled images.

    Added Keys:
    - gt_bboxes (np.float32)
    - gt_bboxes_labels (np.int64)
    - gt_masks (BitmapMasks | PolygonMasks)
    - gt_seg_map (np.uint8)
    - gt_ignore_flags (bool)

    Args:
        with_bbox (bool): Whether to load the pseudo bbox annotation.
            Defaults to True.
        with_label (bool): Whether to load the pseudo label annotation.
            Defaults to True.
        with_mask (bool): Whether to load the pseudo mask annotation.
             Default: False.
        with_seg (bool): Whether to load the pseudo semantic segmentation
            annotation. Defaults to False.
        seg_ignore_label (int): The fill value used for segmentation map.
            Note this value must equals ``ignore_label`` in ``semantic_head``
            of the corresponding config. Defaults to 255.
    """

    def __init__(self,
                 with_bbox: bool = True,
                 with_label: bool = True,
                 with_mask: bool = False,
                 with_seg: bool = False,
                 seg_ignore_label: int = 255) -> None:
        self.with_bbox = with_bbox
        self.with_label = with_label
        self.with_mask = with_mask
        self.with_seg = with_seg
        self.seg_ignore_label = seg_ignore_label

    def transform(self, results: dict) -> dict:
        """Transform function to load empty annotations.

        Args:
            results (dict): Result dict.
        Returns:
            dict: Updated result dict.
        """
        if self.with_bbox:
            results['gt_bboxes'] = np.zeros((0, 4), dtype=np.float32)
            results['gt_ignore_flags'] = np.zeros((0, ), dtype=bool)
        if self.with_label:
            results['gt_bboxes_labels'] = np.zeros((0, ), dtype=np.int64)
        if self.with_mask:
            # TODO: support PolygonMasks
            h, w = results['img_shape']
            gt_masks = np.zeros((0, h, w), dtype=np.uint8)
            results['gt_masks'] = BitmapMasks(gt_masks, h, w)
        if self.with_seg:
            h, w = results['img_shape']
            results['gt_seg_map'] = self.seg_ignore_label * np.ones(
                (h, w), dtype=np.uint8)
        return results

    def __repr__(self) -> str:
        repr_str = self.__class__.__name__
        repr_str += f'(with_bbox={self.with_bbox}, '
        repr_str += f'with_label={self.with_label}, '
        repr_str += f'with_mask={self.with_mask}, '
        repr_str += f'with_seg={self.with_seg}, '
        repr_str += f'seg_ignore_label={self.seg_ignore_label})'
        return repr_str


@TRANSFORMS.register_module()
class InferencerLoader(BaseTransform):
    """Load an image from ``results['img']``.

    Similar with :obj:`LoadImageFromFile`, but the image has been loaded as
    :obj:`np.ndarray` in ``results['img']``. Can be used when loading image
    from webcam.

    Required Keys:

    - img

    Modified Keys:

    - img
    - img_path
    - img_shape
    - ori_shape

    Args:
        to_float32 (bool): Whether to convert the loaded image to a float32
            numpy array. If set to False, the loaded image is an uint8 array.
            Defaults to False.
    """

    def __init__(self, **kwargs) -> None:
        super().__init__()
        self.from_file = TRANSFORMS.build(
            dict(type='LoadImageFromFile', **kwargs))
        self.from_ndarray = TRANSFORMS.build(
            dict(type='mmdet.LoadImageFromNDArray', **kwargs))

    def transform(self, results: Union[str, np.ndarray, dict]) -> dict:
        """Transform function to add image meta information.

        Args:
            results (str, np.ndarray or dict): The result.

        Returns:
            dict: The dict contains loaded image and meta information.
        """
        if isinstance(results, str):
            inputs = dict(img_path=results)
        elif isinstance(results, np.ndarray):
            inputs = dict(img=results)
        elif isinstance(results, dict):
            inputs = results
        else:
            raise NotImplementedError

        if 'img' in inputs:
            return self.from_ndarray(inputs)
        return self.from_file(inputs)