Spaces:
Runtime error
Runtime error
File size: 20,934 Bytes
3e06e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod, abstractproperty, abstractstaticmethod
from typing import List, Optional, Sequence, Tuple, Type, TypeVar, Union
import numpy as np
import torch
from torch import BoolTensor, Tensor
from mmdet.structures.mask.structures import BitmapMasks, PolygonMasks
T = TypeVar('T')
DeviceType = Union[str, torch.device]
IndexType = Union[slice, int, list, torch.LongTensor, torch.cuda.LongTensor,
torch.BoolTensor, torch.cuda.BoolTensor, np.ndarray]
MaskType = Union[BitmapMasks, PolygonMasks]
class BaseBoxes(metaclass=ABCMeta):
"""The base class for 2D box types.
The functions of ``BaseBoxes`` lie in three fields:
- Verify the boxes shape.
- Support tensor-like operations.
- Define abstract functions for 2D boxes.
In ``__init__`` , ``BaseBoxes`` verifies the validity of the data shape
w.r.t ``box_dim``. The tensor with the dimension >= 2 and the length
of the last dimension being ``box_dim`` will be regarded as valid.
``BaseBoxes`` will restore them at the field ``tensor``. It's necessary
to override ``box_dim`` in subclass to guarantee the data shape is
correct.
There are many basic tensor-like functions implemented in ``BaseBoxes``.
In most cases, users can operate ``BaseBoxes`` instance like a normal
tensor. To protect the validity of data shape, All tensor-like functions
cannot modify the last dimension of ``self.tensor``.
When creating a new box type, users need to inherit from ``BaseBoxes``
and override abstract methods and specify the ``box_dim``. Then, register
the new box type by using the decorator ``register_box_type``.
Args:
data (Tensor or np.ndarray or Sequence): The box data with shape
(..., box_dim).
dtype (torch.dtype, Optional): data type of boxes. Defaults to None.
device (str or torch.device, Optional): device of boxes.
Default to None.
clone (bool): Whether clone ``boxes`` or not. Defaults to True.
"""
# Used to verify the last dimension length
# Should override it in subclass.
box_dim: int = 0
def __init__(self,
data: Union[Tensor, np.ndarray, Sequence],
dtype: Optional[torch.dtype] = None,
device: Optional[DeviceType] = None,
clone: bool = True) -> None:
if isinstance(data, (np.ndarray, Tensor, Sequence)):
data = torch.as_tensor(data)
else:
raise TypeError('boxes should be Tensor, ndarray, or Sequence, ',
f'but got {type(data)}')
if device is not None or dtype is not None:
data = data.to(dtype=dtype, device=device)
# Clone the data to avoid potential bugs
if clone:
data = data.clone()
# handle the empty input like []
if data.numel() == 0:
data = data.reshape((-1, self.box_dim))
assert data.dim() >= 2 and data.size(-1) == self.box_dim, \
('The boxes dimension must >= 2 and the length of the last '
f'dimension must be {self.box_dim}, but got boxes with '
f'shape {data.shape}.')
self.tensor = data
def convert_to(self, dst_type: Union[str, type]) -> 'BaseBoxes':
"""Convert self to another box type.
Args:
dst_type (str or type): destination box type.
Returns:
:obj:`BaseBoxes`: destination box type object .
"""
from .box_type import convert_box_type
return convert_box_type(self, dst_type=dst_type)
def empty_boxes(self: T,
dtype: Optional[torch.dtype] = None,
device: Optional[DeviceType] = None) -> T:
"""Create empty box.
Args:
dtype (torch.dtype, Optional): data type of boxes.
device (str or torch.device, Optional): device of boxes.
Returns:
T: empty boxes with shape of (0, box_dim).
"""
empty_box = self.tensor.new_zeros(
0, self.box_dim, dtype=dtype, device=device)
return type(self)(empty_box, clone=False)
def fake_boxes(self: T,
sizes: Tuple[int],
fill: float = 0,
dtype: Optional[torch.dtype] = None,
device: Optional[DeviceType] = None) -> T:
"""Create fake boxes with specific sizes and fill values.
Args:
sizes (Tuple[int]): The size of fake boxes. The last value must
be equal with ``self.box_dim``.
fill (float): filling value. Defaults to 0.
dtype (torch.dtype, Optional): data type of boxes.
device (str or torch.device, Optional): device of boxes.
Returns:
T: Fake boxes with shape of ``sizes``.
"""
fake_boxes = self.tensor.new_full(
sizes, fill, dtype=dtype, device=device)
return type(self)(fake_boxes, clone=False)
def __getitem__(self: T, index: IndexType) -> T:
"""Rewrite getitem to protect the last dimension shape."""
boxes = self.tensor
if isinstance(index, np.ndarray):
index = torch.as_tensor(index, device=self.device)
if isinstance(index, Tensor) and index.dtype == torch.bool:
assert index.dim() < boxes.dim()
elif isinstance(index, tuple):
assert len(index) < boxes.dim()
# `Ellipsis`(...) is commonly used in index like [None, ...].
# When `Ellipsis` is in index, it must be the last item.
if Ellipsis in index:
assert index[-1] is Ellipsis
boxes = boxes[index]
if boxes.dim() == 1:
boxes = boxes.reshape(1, -1)
return type(self)(boxes, clone=False)
def __setitem__(self: T, index: IndexType, values: Union[Tensor, T]) -> T:
"""Rewrite setitem to protect the last dimension shape."""
assert type(values) is type(self), \
'The value to be set must be the same box type as self'
values = values.tensor
if isinstance(index, np.ndarray):
index = torch.as_tensor(index, device=self.device)
if isinstance(index, Tensor) and index.dtype == torch.bool:
assert index.dim() < self.tensor.dim()
elif isinstance(index, tuple):
assert len(index) < self.tensor.dim()
# `Ellipsis`(...) is commonly used in index like [None, ...].
# When `Ellipsis` is in index, it must be the last item.
if Ellipsis in index:
assert index[-1] is Ellipsis
self.tensor[index] = values
def __len__(self) -> int:
"""Return the length of self.tensor first dimension."""
return self.tensor.size(0)
def __deepcopy__(self, memo):
"""Only clone the ``self.tensor`` when applying deepcopy."""
cls = self.__class__
other = cls.__new__(cls)
memo[id(self)] = other
other.tensor = self.tensor.clone()
return other
def __repr__(self) -> str:
"""Return a strings that describes the object."""
return self.__class__.__name__ + '(\n' + str(self.tensor) + ')'
def new_tensor(self, *args, **kwargs) -> Tensor:
"""Reload ``new_tensor`` from self.tensor."""
return self.tensor.new_tensor(*args, **kwargs)
def new_full(self, *args, **kwargs) -> Tensor:
"""Reload ``new_full`` from self.tensor."""
return self.tensor.new_full(*args, **kwargs)
def new_empty(self, *args, **kwargs) -> Tensor:
"""Reload ``new_empty`` from self.tensor."""
return self.tensor.new_empty(*args, **kwargs)
def new_ones(self, *args, **kwargs) -> Tensor:
"""Reload ``new_ones`` from self.tensor."""
return self.tensor.new_ones(*args, **kwargs)
def new_zeros(self, *args, **kwargs) -> Tensor:
"""Reload ``new_zeros`` from self.tensor."""
return self.tensor.new_zeros(*args, **kwargs)
def size(self, dim: Optional[int] = None) -> Union[int, torch.Size]:
"""Reload new_zeros from self.tensor."""
# self.tensor.size(dim) cannot work when dim=None.
return self.tensor.size() if dim is None else self.tensor.size(dim)
def dim(self) -> int:
"""Reload ``dim`` from self.tensor."""
return self.tensor.dim()
@property
def device(self) -> torch.device:
"""Reload ``device`` from self.tensor."""
return self.tensor.device
@property
def dtype(self) -> torch.dtype:
"""Reload ``dtype`` from self.tensor."""
return self.tensor.dtype
@property
def shape(self) -> torch.Size:
return self.tensor.shape
def numel(self) -> int:
"""Reload ``numel`` from self.tensor."""
return self.tensor.numel()
def numpy(self) -> np.ndarray:
"""Reload ``numpy`` from self.tensor."""
return self.tensor.numpy()
def to(self: T, *args, **kwargs) -> T:
"""Reload ``to`` from self.tensor."""
return type(self)(self.tensor.to(*args, **kwargs), clone=False)
def cpu(self: T) -> T:
"""Reload ``cpu`` from self.tensor."""
return type(self)(self.tensor.cpu(), clone=False)
def cuda(self: T, *args, **kwargs) -> T:
"""Reload ``cuda`` from self.tensor."""
return type(self)(self.tensor.cuda(*args, **kwargs), clone=False)
def clone(self: T) -> T:
"""Reload ``clone`` from self.tensor."""
return type(self)(self.tensor)
def detach(self: T) -> T:
"""Reload ``detach`` from self.tensor."""
return type(self)(self.tensor.detach(), clone=False)
def view(self: T, *shape: Tuple[int]) -> T:
"""Reload ``view`` from self.tensor."""
return type(self)(self.tensor.view(shape), clone=False)
def reshape(self: T, *shape: Tuple[int]) -> T:
"""Reload ``reshape`` from self.tensor."""
return type(self)(self.tensor.reshape(shape), clone=False)
def expand(self: T, *sizes: Tuple[int]) -> T:
"""Reload ``expand`` from self.tensor."""
return type(self)(self.tensor.expand(sizes), clone=False)
def repeat(self: T, *sizes: Tuple[int]) -> T:
"""Reload ``repeat`` from self.tensor."""
return type(self)(self.tensor.repeat(sizes), clone=False)
def transpose(self: T, dim0: int, dim1: int) -> T:
"""Reload ``transpose`` from self.tensor."""
ndim = self.tensor.dim()
assert dim0 != -1 and dim0 != ndim - 1
assert dim1 != -1 and dim1 != ndim - 1
return type(self)(self.tensor.transpose(dim0, dim1), clone=False)
def permute(self: T, *dims: Tuple[int]) -> T:
"""Reload ``permute`` from self.tensor."""
assert dims[-1] == -1 or dims[-1] == self.tensor.dim() - 1
return type(self)(self.tensor.permute(dims), clone=False)
def split(self: T,
split_size_or_sections: Union[int, Sequence[int]],
dim: int = 0) -> List[T]:
"""Reload ``split`` from self.tensor."""
assert dim != -1 and dim != self.tensor.dim() - 1
boxes_list = self.tensor.split(split_size_or_sections, dim=dim)
return [type(self)(boxes, clone=False) for boxes in boxes_list]
def chunk(self: T, chunks: int, dim: int = 0) -> List[T]:
"""Reload ``chunk`` from self.tensor."""
assert dim != -1 and dim != self.tensor.dim() - 1
boxes_list = self.tensor.chunk(chunks, dim=dim)
return [type(self)(boxes, clone=False) for boxes in boxes_list]
def unbind(self: T, dim: int = 0) -> T:
"""Reload ``unbind`` from self.tensor."""
assert dim != -1 and dim != self.tensor.dim() - 1
boxes_list = self.tensor.unbind(dim=dim)
return [type(self)(boxes, clone=False) for boxes in boxes_list]
def flatten(self: T, start_dim: int = 0, end_dim: int = -2) -> T:
"""Reload ``flatten`` from self.tensor."""
assert end_dim != -1 and end_dim != self.tensor.dim() - 1
return type(self)(self.tensor.flatten(start_dim, end_dim), clone=False)
def squeeze(self: T, dim: Optional[int] = None) -> T:
"""Reload ``squeeze`` from self.tensor."""
boxes = self.tensor.squeeze() if dim is None else \
self.tensor.squeeze(dim)
return type(self)(boxes, clone=False)
def unsqueeze(self: T, dim: int) -> T:
"""Reload ``unsqueeze`` from self.tensor."""
assert dim != -1 and dim != self.tensor.dim()
return type(self)(self.tensor.unsqueeze(dim), clone=False)
@classmethod
def cat(cls: Type[T], box_list: Sequence[T], dim: int = 0) -> T:
"""Cancatenates a box instance list into one single box instance.
Similar to ``torch.cat``.
Args:
box_list (Sequence[T]): A sequence of box instances.
dim (int): The dimension over which the box are concatenated.
Defaults to 0.
Returns:
T: Concatenated box instance.
"""
assert isinstance(box_list, Sequence)
if len(box_list) == 0:
raise ValueError('box_list should not be a empty list.')
assert dim != -1 and dim != box_list[0].dim() - 1
assert all(isinstance(boxes, cls) for boxes in box_list)
th_box_list = [boxes.tensor for boxes in box_list]
return cls(torch.cat(th_box_list, dim=dim), clone=False)
@classmethod
def stack(cls: Type[T], box_list: Sequence[T], dim: int = 0) -> T:
"""Concatenates a sequence of tensors along a new dimension. Similar to
``torch.stack``.
Args:
box_list (Sequence[T]): A sequence of box instances.
dim (int): Dimension to insert. Defaults to 0.
Returns:
T: Concatenated box instance.
"""
assert isinstance(box_list, Sequence)
if len(box_list) == 0:
raise ValueError('box_list should not be a empty list.')
assert dim != -1 and dim != box_list[0].dim()
assert all(isinstance(boxes, cls) for boxes in box_list)
th_box_list = [boxes.tensor for boxes in box_list]
return cls(torch.stack(th_box_list, dim=dim), clone=False)
@abstractproperty
def centers(self) -> Tensor:
"""Return a tensor representing the centers of boxes."""
pass
@abstractproperty
def areas(self) -> Tensor:
"""Return a tensor representing the areas of boxes."""
pass
@abstractproperty
def widths(self) -> Tensor:
"""Return a tensor representing the widths of boxes."""
pass
@abstractproperty
def heights(self) -> Tensor:
"""Return a tensor representing the heights of boxes."""
pass
@abstractmethod
def flip_(self,
img_shape: Tuple[int, int],
direction: str = 'horizontal') -> None:
"""Flip boxes horizontally or vertically in-place.
Args:
img_shape (Tuple[int, int]): A tuple of image height and width.
direction (str): Flip direction, options are "horizontal",
"vertical" and "diagonal". Defaults to "horizontal"
"""
pass
@abstractmethod
def translate_(self, distances: Tuple[float, float]) -> None:
"""Translate boxes in-place.
Args:
distances (Tuple[float, float]): translate distances. The first
is horizontal distance and the second is vertical distance.
"""
pass
@abstractmethod
def clip_(self, img_shape: Tuple[int, int]) -> None:
"""Clip boxes according to the image shape in-place.
Args:
img_shape (Tuple[int, int]): A tuple of image height and width.
"""
pass
@abstractmethod
def rotate_(self, center: Tuple[float, float], angle: float) -> None:
"""Rotate all boxes in-place.
Args:
center (Tuple[float, float]): Rotation origin.
angle (float): Rotation angle represented in degrees. Positive
values mean clockwise rotation.
"""
pass
@abstractmethod
def project_(self, homography_matrix: Union[Tensor, np.ndarray]) -> None:
"""Geometric transformat boxes in-place.
Args:
homography_matrix (Tensor or np.ndarray]):
Shape (3, 3) for geometric transformation.
"""
pass
@abstractmethod
def rescale_(self, scale_factor: Tuple[float, float]) -> None:
"""Rescale boxes w.r.t. rescale_factor in-place.
Note:
Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes
w.r.t ``scale_facotr``. The difference is that ``resize_`` only
changes the width and the height of boxes, but ``rescale_`` also
rescales the box centers simultaneously.
Args:
scale_factor (Tuple[float, float]): factors for scaling boxes.
The length should be 2.
"""
pass
@abstractmethod
def resize_(self, scale_factor: Tuple[float, float]) -> None:
"""Resize the box width and height w.r.t scale_factor in-place.
Note:
Both ``rescale_`` and ``resize_`` will enlarge or shrink boxes
w.r.t ``scale_facotr``. The difference is that ``resize_`` only
changes the width and the height of boxes, but ``rescale_`` also
rescales the box centers simultaneously.
Args:
scale_factor (Tuple[float, float]): factors for scaling box
shapes. The length should be 2.
"""
pass
@abstractmethod
def is_inside(self,
img_shape: Tuple[int, int],
all_inside: bool = False,
allowed_border: int = 0) -> BoolTensor:
"""Find boxes inside the image.
Args:
img_shape (Tuple[int, int]): A tuple of image height and width.
all_inside (bool): Whether the boxes are all inside the image or
part inside the image. Defaults to False.
allowed_border (int): Boxes that extend beyond the image shape
boundary by more than ``allowed_border`` are considered
"outside" Defaults to 0.
Returns:
BoolTensor: A BoolTensor indicating whether the box is inside
the image. Assuming the original boxes have shape (m, n, box_dim),
the output has shape (m, n).
"""
pass
@abstractmethod
def find_inside_points(self,
points: Tensor,
is_aligned: bool = False) -> BoolTensor:
"""Find inside box points. Boxes dimension must be 2.
Args:
points (Tensor): Points coordinates. Has shape of (m, 2).
is_aligned (bool): Whether ``points`` has been aligned with boxes
or not. If True, the length of boxes and ``points`` should be
the same. Defaults to False.
Returns:
BoolTensor: A BoolTensor indicating whether a point is inside
boxes. Assuming the boxes has shape of (n, box_dim), if
``is_aligned`` is False. The index has shape of (m, n). If
``is_aligned`` is True, m should be equal to n and the index has
shape of (m, ).
"""
pass
@abstractstaticmethod
def overlaps(boxes1: 'BaseBoxes',
boxes2: 'BaseBoxes',
mode: str = 'iou',
is_aligned: bool = False,
eps: float = 1e-6) -> Tensor:
"""Calculate overlap between two set of boxes with their types
converted to the present box type.
Args:
boxes1 (:obj:`BaseBoxes`): BaseBoxes with shape of (m, box_dim)
or empty.
boxes2 (:obj:`BaseBoxes`): BaseBoxes with shape of (n, box_dim)
or empty.
mode (str): "iou" (intersection over union), "iof" (intersection
over foreground). Defaults to "iou".
is_aligned (bool): If True, then m and n must be equal. Defaults
to False.
eps (float): A value added to the denominator for numerical
stability. Defaults to 1e-6.
Returns:
Tensor: shape (m, n) if ``is_aligned`` is False else shape (m,)
"""
pass
@abstractstaticmethod
def from_instance_masks(masks: MaskType) -> 'BaseBoxes':
"""Create boxes from instance masks.
Args:
masks (:obj:`BitmapMasks` or :obj:`PolygonMasks`): BitmapMasks or
PolygonMasks instance with length of n.
Returns:
:obj:`BaseBoxes`: Converted boxes with shape of (n, box_dim).
"""
pass
|