Spaces:
Runtime error
Runtime error
File size: 7,409 Bytes
3e06e1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional
from mmengine.structures import BaseDataElement, InstanceData, PixelData
class DetDataSample(BaseDataElement):
"""A data structure interface of MMDetection. They are used as interfaces
between different components.
The attributes in ``DetDataSample`` are divided into several parts:
- ``proposals``(InstanceData): Region proposals used in two-stage
detectors.
- ``gt_instances``(InstanceData): Ground truth of instance annotations.
- ``pred_instances``(InstanceData): Instances of model predictions.
- ``ignored_instances``(InstanceData): Instances to be ignored during
training/testing.
- ``gt_panoptic_seg``(PixelData): Ground truth of panoptic
segmentation.
- ``pred_panoptic_seg``(PixelData): Prediction of panoptic
segmentation.
- ``gt_sem_seg``(PixelData): Ground truth of semantic segmentation.
- ``pred_sem_seg``(PixelData): Prediction of semantic segmentation.
Examples:
>>> import torch
>>> import numpy as np
>>> from mmengine.structures import InstanceData
>>> from mmdet.structures import DetDataSample
>>> data_sample = DetDataSample()
>>> img_meta = dict(img_shape=(800, 1196),
... pad_shape=(800, 1216))
>>> gt_instances = InstanceData(metainfo=img_meta)
>>> gt_instances.bboxes = torch.rand((5, 4))
>>> gt_instances.labels = torch.rand((5,))
>>> data_sample.gt_instances = gt_instances
>>> assert 'img_shape' in data_sample.gt_instances.metainfo_keys()
>>> len(data_sample.gt_instances)
5
>>> print(data_sample)
<DetDataSample(
META INFORMATION
DATA FIELDS
gt_instances: <InstanceData(
META INFORMATION
pad_shape: (800, 1216)
img_shape: (800, 1196)
DATA FIELDS
labels: tensor([0.8533, 0.1550, 0.5433, 0.7294, 0.5098])
bboxes:
tensor([[9.7725e-01, 5.8417e-01, 1.7269e-01, 6.5694e-01],
[1.7894e-01, 5.1780e-01, 7.0590e-01, 4.8589e-01],
[7.0392e-01, 6.6770e-01, 1.7520e-01, 1.4267e-01],
[2.2411e-01, 5.1962e-01, 9.6953e-01, 6.6994e-01],
[4.1338e-01, 2.1165e-01, 2.7239e-04, 6.8477e-01]])
) at 0x7f21fb1b9190>
) at 0x7f21fb1b9880>
>>> pred_instances = InstanceData(metainfo=img_meta)
>>> pred_instances.bboxes = torch.rand((5, 4))
>>> pred_instances.scores = torch.rand((5,))
>>> data_sample = DetDataSample(pred_instances=pred_instances)
>>> assert 'pred_instances' in data_sample
>>> data_sample = DetDataSample()
>>> gt_instances_data = dict(
... bboxes=torch.rand(2, 4),
... labels=torch.rand(2),
... masks=np.random.rand(2, 2, 2))
>>> gt_instances = InstanceData(**gt_instances_data)
>>> data_sample.gt_instances = gt_instances
>>> assert 'gt_instances' in data_sample
>>> assert 'masks' in data_sample.gt_instances
>>> data_sample = DetDataSample()
>>> gt_panoptic_seg_data = dict(panoptic_seg=torch.rand(2, 4))
>>> gt_panoptic_seg = PixelData(**gt_panoptic_seg_data)
>>> data_sample.gt_panoptic_seg = gt_panoptic_seg
>>> print(data_sample)
<DetDataSample(
META INFORMATION
DATA FIELDS
_gt_panoptic_seg: <BaseDataElement(
META INFORMATION
DATA FIELDS
panoptic_seg: tensor([[0.7586, 0.1262, 0.2892, 0.9341],
[0.3200, 0.7448, 0.1052, 0.5371]])
) at 0x7f66c2bb7730>
gt_panoptic_seg: <BaseDataElement(
META INFORMATION
DATA FIELDS
panoptic_seg: tensor([[0.7586, 0.1262, 0.2892, 0.9341],
[0.3200, 0.7448, 0.1052, 0.5371]])
) at 0x7f66c2bb7730>
) at 0x7f66c2bb7280>
>>> data_sample = DetDataSample()
>>> gt_segm_seg_data = dict(segm_seg=torch.rand(2, 2, 2))
>>> gt_segm_seg = PixelData(**gt_segm_seg_data)
>>> data_sample.gt_segm_seg = gt_segm_seg
>>> assert 'gt_segm_seg' in data_sample
>>> assert 'segm_seg' in data_sample.gt_segm_seg
"""
@property
def proposals(self) -> InstanceData:
return self._proposals
@proposals.setter
def proposals(self, value: InstanceData):
self.set_field(value, '_proposals', dtype=InstanceData)
@proposals.deleter
def proposals(self):
del self._proposals
@property
def gt_instances(self) -> InstanceData:
return self._gt_instances
@gt_instances.setter
def gt_instances(self, value: InstanceData):
self.set_field(value, '_gt_instances', dtype=InstanceData)
@gt_instances.deleter
def gt_instances(self):
del self._gt_instances
@property
def pred_instances(self) -> InstanceData:
return self._pred_instances
@pred_instances.setter
def pred_instances(self, value: InstanceData):
self.set_field(value, '_pred_instances', dtype=InstanceData)
@pred_instances.deleter
def pred_instances(self):
del self._pred_instances
@property
def ignored_instances(self) -> InstanceData:
return self._ignored_instances
@ignored_instances.setter
def ignored_instances(self, value: InstanceData):
self.set_field(value, '_ignored_instances', dtype=InstanceData)
@ignored_instances.deleter
def ignored_instances(self):
del self._ignored_instances
@property
def gt_panoptic_seg(self) -> PixelData:
return self._gt_panoptic_seg
@gt_panoptic_seg.setter
def gt_panoptic_seg(self, value: PixelData):
self.set_field(value, '_gt_panoptic_seg', dtype=PixelData)
@gt_panoptic_seg.deleter
def gt_panoptic_seg(self):
del self._gt_panoptic_seg
@property
def pred_panoptic_seg(self) -> PixelData:
return self._pred_panoptic_seg
@pred_panoptic_seg.setter
def pred_panoptic_seg(self, value: PixelData):
self.set_field(value, '_pred_panoptic_seg', dtype=PixelData)
@pred_panoptic_seg.deleter
def pred_panoptic_seg(self):
del self._pred_panoptic_seg
@property
def gt_sem_seg(self) -> PixelData:
return self._gt_sem_seg
@gt_sem_seg.setter
def gt_sem_seg(self, value: PixelData):
self.set_field(value, '_gt_sem_seg', dtype=PixelData)
@gt_sem_seg.deleter
def gt_sem_seg(self):
del self._gt_sem_seg
@property
def pred_sem_seg(self) -> PixelData:
return self._pred_sem_seg
@pred_sem_seg.setter
def pred_sem_seg(self, value: PixelData):
self.set_field(value, '_pred_sem_seg', dtype=PixelData)
@pred_sem_seg.deleter
def pred_sem_seg(self):
del self._pred_sem_seg
SampleList = List[DetDataSample]
OptSampleList = Optional[SampleList]
|