File size: 42,711 Bytes
1c3eb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
import copy
import warnings
from typing import List, Optional, Tuple, Union, Dict

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.models import BaseDetector, TwoStageDetector, StandardRoIHead, SinePositionalEncoding, FCNMaskHead, \
    BaseRoIHead
from mmdet.models.task_modules import SamplingResult
from mmdet.models.utils import multi_apply, unpack_gt_instances, empty_instances
from mmdet.structures import SampleList, DetDataSample
from mmdet.structures.bbox import bbox2roi
from mmdet.structures.mask import mask_target
from mmdet.utils import InstanceList, reduce_mean, OptMultiConfig
from mmpl.registry import MODELS, TASK_UTILS
from mmengine.model import BaseModel, BaseModule
from einops import rearrange, repeat
from mmpl.utils import ConfigType, OptConfigType
from mmdet.models.dense_heads import Mask2FormerHead
from mmdet.models.dense_heads.anchor_free_head import AnchorFreeHead

@MODELS.register_module()
class SAMInstanceHead(Mask2FormerHead):
    def __init__(
            self,
            num_things_classes: int = 1,
            num_stuff_classes: int = 0,
            prompt_neck: ConfigType = ...,
            with_iou: bool = False,
            with_multiscale: bool = False,
            with_sincos: bool = False,
            with_res_imgfeat: bool = False,
            loss_cls: ConfigType = dict(
                type='CrossEntropyLoss',
                use_sigmoid=False,
                loss_weight=2.0,
                reduction='mean',
                class_weight=[1.0] * 133 + [0.1]),
            loss_mask: ConfigType = dict(
                type='CrossEntropyLoss',
                use_sigmoid=True,
                reduction='mean',
                loss_weight=5.0),
            loss_dice: ConfigType = dict(
                type='DiceLoss',
                use_sigmoid=True,
                activate=True,
                reduction='mean',
                naive_dice=True,
                eps=1.0,
                loss_weight=5.0),
            train_cfg: OptConfigType = None,
            test_cfg: OptConfigType = None,
            init_cfg: OptMultiConfig = None,
            norm_cfg=dict(type='BN', requires_grad=True),
            act_cfg=dict(type='ReLU', inplace=True),
            **kwargs
    ):
        super(AnchorFreeHead, self).__init__(init_cfg=init_cfg)

        self.num_things_classes = num_things_classes
        self.num_stuff_classes = num_stuff_classes
        self.num_classes = self.num_things_classes + self.num_stuff_classes
        self.with_iou = with_iou
        self.with_multiscale = with_multiscale
        self.with_sincos = with_sincos
        self.with_res_imgfeat = with_res_imgfeat

        # self.num_transformer_feat_level = num_transformer_feat_level
        # self.num_heads = transformer_decoder.layer_cfg.cross_attn_cfg.num_heads
        # self.num_transformer_decoder_layers = transformer_decoder.num_layers
        # assert pixel_decoder.encoder.layer_cfg. \
        #            self_attn_cfg.num_levels == num_transformer_feat_level
        # pixel_decoder_ = copy.deepcopy(pixel_decoder)
        # pixel_decoder_.update(
        #     in_channels=in_channels,
        #     feat_channels=feat_channels,
        #     out_channels=out_channels)
        # self.pixel_decoder = MODELS.build(pixel_decoder_)
        # self.transformer_decoder = Mask2FormerTransformerDecoder(
        #     **transformer_decoder)
        # self.decoder_embed_dims = self.transformer_decoder.embed_dims
        #
        # self.decoder_input_projs = ModuleList()
        # # from low resolution to high resolution
        # for _ in range(num_transformer_feat_level):
        #     if (self.decoder_embed_dims != feat_channels
        #             or enforce_decoder_input_project):
        #         self.decoder_input_projs.append(
        #             Conv2d(
        #                 feat_channels, self.decoder_embed_dims, kernel_size=1))
        #     else:
        #         self.decoder_input_projs.append(nn.Identity())
        # self.decoder_positional_encoding = SinePositionalEncoding(
        #     **positional_encoding)
        # self.query_embed = nn.Embedding(self.num_queries, feat_channels)
        # self.query_feat = nn.Embedding(self.num_queries, feat_channels)
        # # from low resolution to high resolution
        # self.level_embed = nn.Embedding(self.num_transformer_feat_level,
        #                                 feat_channels)
        #
        # self.cls_embed = nn.Linear(feat_channels, self.num_classes + 1)
        # self.mask_embed = nn.Sequential(
        #     nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
        #     nn.Linear(feat_channels, feat_channels), nn.ReLU(inplace=True),
        #     nn.Linear(feat_channels, out_channels))

        self.prompt_neck = MODELS.build(prompt_neck)
        self.num_queries = self.prompt_neck.num_queries
        self.per_query_point = self.prompt_neck.per_query_point
        out_channels = self.prompt_neck.out_channels

        self.cls_embed = nn.Sequential(
            nn.Linear(out_channels, out_channels // 2),
            nn.ReLU(inplace=True),
            nn.Linear(out_channels // 2, self.num_classes + 1)
        )

        if self.with_sincos:
            self.point_emb = nn.Sequential(
                nn.Linear(out_channels, out_channels),
                nn.ReLU(inplace=True),
                nn.Linear(out_channels, out_channels),
                nn.ReLU(inplace=True),
                nn.Linear(out_channels, self.per_query_point * out_channels*2)
            )
        else:
            self.point_emb = nn.Sequential(
                nn.Linear(out_channels, out_channels),
                nn.ReLU(inplace=True),
                nn.Linear(out_channels, out_channels),
                nn.ReLU(inplace=True),
                nn.Linear(out_channels, self.per_query_point * out_channels)
            )

        if self.with_res_imgfeat:
            self.res_imgfeat = nn.Sequential(
                nn.UpsamplingBilinear2d(scale_factor=2),
                ConvModule(
                    out_channels,
                    out_channels,
                    kernel_size=3,
                    padding=1,
                    norm_cfg=norm_cfg,
                    act_cfg=act_cfg
                )
            )

        self.test_cfg = test_cfg
        self.train_cfg = train_cfg
        if train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
            self.sampler = TASK_UTILS.build(
                self.train_cfg['sampler'], default_args=dict(context=self))
            self.num_points = self.train_cfg.get('num_points', 12544)
            self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0)
            self.importance_sample_ratio = self.train_cfg.get(
                'importance_sample_ratio', 0.75)

        self.class_weight = loss_cls.class_weight
        self.loss_cls = MODELS.build(loss_cls)
        self.loss_mask = MODELS.build(loss_mask)
        self.loss_dice = MODELS.build(loss_dice)

    def forward(self, x: List[Tensor],
                batch_data_samples: SampleList,
                sam
                ) -> Tuple[List[Tensor]]:
        """Forward function.

        Args:
            x (list[Tensor]): Multi scale Features from the
                upstream network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            tuple[list[Tensor]]: A tuple contains two elements.

                - cls_pred_list (list[Tensor)]: Classification logits \
                    for each decoder layer. Each is a 3D-tensor with shape \
                    (batch_size, num_queries, cls_out_channels). \
                    Note `cls_out_channels` should includes background.
                - mask_pred_list (list[Tensor]): Mask logits for each \
                    decoder layer. Each with shape (batch_size, num_queries, \
                    h, w).
        """
        batch_img_metas = [
            data_sample.metainfo for data_sample in batch_data_samples
        ]
        batch_size = len(batch_img_metas)
        decoder_out, query_feat_list, res_img_feat = self.prompt_neck(x)

        if self.with_multiscale:
            cls_pred_list = [self.cls_embed(query_feat) for query_feat in query_feat_list]
        else:
            # shape (batch_size, num_queries, c)
            cls_pred_list = [self.cls_embed(decoder_out)]
        # shape (batch_size, num_queries, c)
        point_emb = self.point_emb(decoder_out)
        # shape (batch_size, num_queries, per_query_point, c)
        point_emb = point_emb.view(batch_size, self.num_queries, self.per_query_point, -1)

        img_seg_feat = x[0]
        point_emb = rearrange(point_emb, 'b n p c -> (b n) p c')
        if self.with_sincos:
            point_emb = torch.sin(point_emb[..., ::2]) + point_emb[..., 1::2]

        nomask_dense_embeddings = sam.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
            point_emb.shape[0], -1, *img_seg_feat.shape[-2:]
        )

        img_embeddings = torch.repeat_interleave(img_seg_feat, self.num_queries, dim=0)
        img_pe = sam.prompt_encoder.get_dense_pe()
        img_pe = repeat(img_pe, 'b c h w -> (b n) c h w', n=img_embeddings.shape[0])

        if self.with_res_imgfeat:
            res_img_feat = self.res_imgfeat(res_img_feat)
            res_img_feat = torch.repeat_interleave(res_img_feat, self.num_queries, dim=0)
        else:
            res_img_feat = None

        low_res_masks, iou_predictions = sam.mask_decoder.forward_batch(
            image_embeddings=img_embeddings,
            image_pe=img_pe,
            sparse_prompt_embeddings=point_emb,
            dense_prompt_embeddings=nomask_dense_embeddings,
            multimask_output=False,
            res_img_feat=res_img_feat,
        )
        mask_pred = rearrange(low_res_masks.squeeze(1), '(b n) h w -> b n h w', b=batch_size)

        # optional
        # if self.with_iou:
        #     iou_predictions = iou_predictions.view(batch_size, self.num_queries, -1)
        #     cls_pred = cls_pred * iou_predictions

        if self.with_multiscale:
            mask_pred_list = [mask_pred] * len(cls_pred_list)
        else:
            mask_pred_list = [mask_pred]

        return cls_pred_list, mask_pred_list

    def predict(self, x: Tuple[Tensor],
                batch_data_samples: SampleList,
                sam
                ) -> Tuple[Tensor]:
        """Test without augmentaton.

        Args:
            x (tuple[Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            tuple[Tensor]: A tuple contains two tensors.

                - mask_cls_results (Tensor): Mask classification logits,\
                    shape (batch_size, num_queries, cls_out_channels).
                    Note `cls_out_channels` should includes background.
                - mask_pred_results (Tensor): Mask logits, shape \
                    (batch_size, num_queries, h, w).
        """
        batch_img_metas = [
            data_sample.metainfo for data_sample in batch_data_samples
        ]
        all_cls_scores, all_mask_preds = self(x, batch_data_samples, sam)
        mask_cls_results = all_cls_scores[-1]
        mask_pred_results = all_mask_preds[-1]

        # upsample masks
        img_shape = batch_img_metas[0]['batch_input_shape']
        mask_pred_results = F.interpolate(
            mask_pred_results,
            size=(img_shape[0], img_shape[1]),
            mode='bilinear',
            align_corners=False)

        return mask_cls_results, mask_pred_results

    def loss(
        self,
        x: Tuple[Tensor],
        batch_data_samples: SampleList,
        sam,
    ) -> Dict[str, Tensor]:
        """Perform forward propagation and loss calculation of the panoptic
        head on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Multi-level features from the upstream
                network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        batch_img_metas = []
        batch_gt_instances = []
        batch_gt_semantic_segs = []
        for data_sample in batch_data_samples:
            batch_img_metas.append(data_sample.metainfo)
            batch_gt_instances.append(data_sample.gt_instances)
            if 'gt_sem_seg' in data_sample:
                batch_gt_semantic_segs.append(data_sample.gt_sem_seg)
            else:
                batch_gt_semantic_segs.append(None)

        # forward
        all_cls_scores, all_mask_preds = self(x, batch_data_samples, sam)

        # preprocess ground truth
        batch_gt_instances = self.preprocess_gt(batch_gt_instances,
                                                batch_gt_semantic_segs)

        # loss
        losses = self.loss_by_feat(all_cls_scores, all_mask_preds,
                                   batch_gt_instances, batch_img_metas)

        return losses


@MODELS.register_module()
class SAMAnchorInstanceHead(TwoStageDetector):
    def __init__(
            self,
            sam_head=True,
            neck: OptConfigType = None,
            rpn_head: OptConfigType = None,
            roi_head: OptConfigType = None,
            train_cfg: OptConfigType = None,
            test_cfg: OptConfigType = None,
            **kwargs
    ):
        super(TwoStageDetector, self).__init__()
        self.neck = MODELS.build(neck)
        self.sam_head = sam_head

        if rpn_head is not None:
            rpn_train_cfg = train_cfg.rpn if train_cfg is not None else None
            rpn_head_ = rpn_head.copy()
            rpn_head_.update(train_cfg=rpn_train_cfg, test_cfg=test_cfg.rpn)
            rpn_head_num_classes = rpn_head_.get('num_classes', None)
            if rpn_head_num_classes is None:
                rpn_head_.update(num_classes=1)
            else:
                if rpn_head_num_classes != 1:
                    warnings.warn(
                        'The `num_classes` should be 1 in RPN, but get '
                        f'{rpn_head_num_classes}, please set '
                        'rpn_head.num_classes = 1 in your config file.')
                    rpn_head_.update(num_classes=1)
            self.rpn_head = MODELS.build(rpn_head_)

        if roi_head is not None:
            # update train and test cfg here for now
            # TODO: refactor assigner & sampler
            rcnn_train_cfg = train_cfg.rcnn if train_cfg is not None else None
            roi_head.update(train_cfg=rcnn_train_cfg)
            roi_head.update(test_cfg=test_cfg.rcnn)
            self.roi_head = MODELS.build(roi_head)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

    def extract_feat(self, x):
        x = self.neck(x)
        return x

    def loss(self,
             batch_inputs,
             batch_data_samples: SampleList,
             sam
             ) -> dict:
        """Calculate losses from a batch of inputs and data samples.

        Args:
            batch_inputs (Tensor): Input images of shape (N, C, H, W).
                These should usually be mean centered and std scaled.
            batch_data_samples (List[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.

        Returns:
            dict: A dictionary of loss components
        """
        x = self.extract_feat(batch_inputs)
        img_seg_feat = batch_inputs[0]
        losses = dict()

        # RPN forward and loss
        if self.with_rpn:
            proposal_cfg = self.train_cfg.get('rpn_proposal',
                                              self.test_cfg.rpn)
            rpn_data_samples = copy.deepcopy(batch_data_samples)
            # set cat_id of gt_labels to 0 in RPN
            for data_sample in rpn_data_samples:
                data_sample.gt_instances.labels = \
                    torch.zeros_like(data_sample.gt_instances.labels)

            rpn_losses, rpn_results_list = self.rpn_head.loss_and_predict(
                x, rpn_data_samples, proposal_cfg=proposal_cfg)
            # avoid get same name with roi_head loss
            keys = rpn_losses.keys()
            for key in list(keys):
                if 'loss' in key and 'rpn' not in key:
                    rpn_losses[f'rpn_{key}'] = rpn_losses.pop(key)
            losses.update(rpn_losses)
        else:
            assert batch_data_samples[0].get('proposals', None) is not None
            # use pre-defined proposals in InstanceData for the second stage
            # to extract ROI features.
            rpn_results_list = [
                data_sample.proposals for data_sample in batch_data_samples
            ]
        if self.sam_head:
            roi_losses = self.roi_head.loss(x, rpn_results_list,
                                            batch_data_samples,
                                            sam, img_seg_feat
                                            )
        else:
            roi_losses = self.roi_head.loss(x, rpn_results_list,
                                            batch_data_samples
                                            )
        losses.update(roi_losses)

        return losses

    def predict(self,
                batch_inputs: Tensor,
                batch_data_samples: SampleList,
                sam,
                rescale: bool = True
                ) -> SampleList:
        """Predict results from a batch of inputs and data samples with post-
        processing.

        Args:
            batch_inputs (Tensor): Inputs with shape (N, C, H, W).
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            rescale (bool): Whether to rescale the results.
                Defaults to True.

        Returns:
            list[:obj:`DetDataSample`]: Return the detection results of the
            input images. The returns value is DetDataSample,
            which usually contain 'pred_instances'. And the
            ``pred_instances`` usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                    (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                    (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                    the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, H, W).
        """

        assert self.with_bbox, 'Bbox head must be implemented.'
        x = self.extract_feat(batch_inputs)
        img_seg_feat = batch_inputs[0]

        # If there are no pre-defined proposals, use RPN to get proposals
        if batch_data_samples[0].get('proposals', None) is None:
            rpn_results_list = self.rpn_head.predict(
                x, batch_data_samples, rescale=False)
        else:
            rpn_results_list = [
                data_sample.proposals for data_sample in batch_data_samples
            ]
        if self.sam_head:
            results_list = self.roi_head.predict(
                x, rpn_results_list, batch_data_samples, sam, img_seg_feat, rescale=rescale)
        else:
            results_list = self.roi_head.predict(
                x, rpn_results_list, batch_data_samples, rescale=rescale)

        batch_data_samples = self.add_pred_to_datasample(
            batch_data_samples, results_list)
        return batch_data_samples


@MODELS.register_module()
class SAMAnchorPromptRoIHead(StandardRoIHead):
    def __init__(
            self,
            positional_encoding=dict(num_feats=128, normalize=True),
            *args,
            **kwargs
    ):
        super(StandardRoIHead, self).__init__(*args, **kwargs)
        self.generator_pe = SinePositionalEncoding(**positional_encoding)

    def _mask_forward(self,
                      x: Tuple[Tensor],
                      rois: Tensor = None,
                      pos_inds: Optional[Tensor] = None,
                      bbox_feats: Optional[Tensor] = None,
                      sam=None, img_seg_feat=None
                      ) -> dict:
        """Mask head forward function used in both training and testing.

        Args:
            x (tuple[Tensor]): Tuple of multi-level img features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.
            pos_inds (Tensor, optional): Indices of positive samples.
                Defaults to None.
            bbox_feats (Tensor): Extract bbox RoI features. Defaults to None.

        Returns:
            dict[str, Tensor]: Usually returns a dictionary with keys:

                - `mask_preds` (Tensor): Mask prediction.
                - `mask_feats` (Tensor): Extract mask RoI features.
        """
        assert ((rois is not None) ^
                (pos_inds is not None and bbox_feats is not None))
        if rois is not None:
            mask_feats = self.mask_roi_extractor(
                x[:self.mask_roi_extractor.num_inputs], rois)
            if self.with_shared_head:
                mask_feats = self.shared_head(mask_feats)
        else:
            assert bbox_feats is not None
            mask_feats = bbox_feats[pos_inds]

        mask_preds = self.mask_head(mask_feats, sam, img_seg_feat, img_flag_ids=rois[:, 0])
        mask_results = dict(mask_preds=mask_preds[0], mask_iou=mask_preds[1], mask_feats=mask_feats)
        return mask_results

    def mask_loss(self, x: Tuple[Tensor],
                  sampling_results: List[SamplingResult], bbox_feats: Tensor,
                  batch_gt_instances: InstanceList,
                  sam, img_seg_feat
                  ) -> dict:
        """Perform forward propagation and loss calculation of the mask head on
        the features of the upstream network.

        Args:
            x (tuple[Tensor]): Tuple of multi-level img features.
            sampling_results (list["obj:`SamplingResult`]): Sampling results.
            bbox_feats (Tensor): Extract bbox RoI features.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes``, ``labels``, and
                ``masks`` attributes.

        Returns:
            dict: Usually returns a dictionary with keys:

                - `mask_preds` (Tensor): Mask prediction.
                - `mask_feats` (Tensor): Extract mask RoI features.
                - `mask_targets` (Tensor): Mask target of each positive\
                    proposals in the image.
                - `loss_mask` (dict): A dictionary of mask loss components.
        """
        if not self.share_roi_extractor:
            pos_rois = bbox2roi([res.pos_priors for res in sampling_results])
            mask_results = self._mask_forward(
                x, pos_rois, sam=sam, img_seg_feat=img_seg_feat)
        else:
            pos_inds = []
            device = bbox_feats.device
            for res in sampling_results:
                pos_inds.append(
                    torch.ones(
                        res.pos_priors.shape[0],
                        device=device,
                        dtype=torch.uint8))
                pos_inds.append(
                    torch.zeros(
                        res.neg_priors.shape[0],
                        device=device,
                        dtype=torch.uint8))
            pos_inds = torch.cat(pos_inds)

            mask_results = self._mask_forward(
                x, pos_inds=pos_inds, bbox_feats=bbox_feats)

        mask_loss_and_target = self.mask_head.loss_and_target(
            mask_preds=mask_results['mask_preds'],
            sampling_results=sampling_results,
            batch_gt_instances=batch_gt_instances,
            rcnn_train_cfg=self.train_cfg)

        mask_results.update(loss_mask=mask_loss_and_target['loss_mask'])
        return mask_results

    def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
             batch_data_samples: List[DetDataSample],
             sam, img_seg_feat
             ) -> dict:
        """Perform forward propagation and loss calculation of the detection
        roi on the features of the upstream network.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.

        Returns:
            dict[str, Tensor]: A dictionary of loss components
        """
        x = list(x)
        bs, _, h, w = x[-1].shape
        mask_pe = torch.zeros((bs, h, w), device=x[0].device, dtype=torch.bool)
        img_feats_pe = self.generator_pe(mask_pe)
        for i in range(len(x)):
            x[i] = x[i] + torch.nn.functional.interpolate(img_feats_pe, size=x[i].shape[-2:], mode='bilinear')

        assert len(rpn_results_list) == len(batch_data_samples)
        outputs = unpack_gt_instances(batch_data_samples)
        batch_gt_instances, batch_gt_instances_ignore, _ = outputs

        # assign gts and sample proposals
        num_imgs = len(batch_data_samples)
        sampling_results = []
        for i in range(num_imgs):
            # rename rpn_results.bboxes to rpn_results.priors
            rpn_results = rpn_results_list[i]
            rpn_results.priors = rpn_results.pop('bboxes')

            assign_result = self.bbox_assigner.assign(
                rpn_results, batch_gt_instances[i],
                batch_gt_instances_ignore[i])
            sampling_result = self.bbox_sampler.sample(
                assign_result,
                rpn_results,
                batch_gt_instances[i],
                feats=[lvl_feat[i][None] for lvl_feat in x])
            sampling_results.append(sampling_result)

        losses = dict()
        # bbox head loss
        if self.with_bbox:
            bbox_results = self.bbox_loss(x, sampling_results)
            losses.update(bbox_results['loss_bbox'])

        # mask head forward and loss
        if self.with_mask:
            mask_results = self.mask_loss(x, sampling_results,
                                          bbox_results['bbox_feats'],
                                          batch_gt_instances,
                                          sam, img_seg_feat
                                          )
            losses.update(mask_results['loss_mask'])

        return losses


    def predict_mask(self,
                     x: Tuple[Tensor],
                     batch_img_metas: List[dict],
                     results_list: InstanceList,
                     rescale: bool = False,
                     sam=None, img_seg_feat=None
                     ) -> InstanceList:
        """Perform forward propagation of the mask head and predict detection
        results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            batch_img_metas (list[dict]): List of image information.
            results_list (list[:obj:`InstanceData`]): Detection results of
                each image.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, H, W).
        """
        # don't need to consider aug_test.
        bboxes = [res.bboxes for res in results_list]
        mask_rois = bbox2roi(bboxes)
        if mask_rois.shape[0] == 0:
            results_list = empty_instances(
                batch_img_metas,
                mask_rois.device,
                task_type='mask',
                instance_results=results_list,
                mask_thr_binary=self.test_cfg.mask_thr_binary)
            return results_list

        mask_results = self._mask_forward(x, mask_rois, sam=sam, img_seg_feat=img_seg_feat)
        mask_preds = mask_results['mask_preds']
        # split batch mask prediction back to each image
        num_mask_rois_per_img = [len(res) for res in results_list]
        mask_preds = mask_preds.split(num_mask_rois_per_img, 0)

        # TODO: Handle the case where rescale is false
        results_list = self.mask_head.predict_by_feat(
            mask_preds=mask_preds,
            results_list=results_list,
            batch_img_metas=batch_img_metas,
            rcnn_test_cfg=self.test_cfg,
            rescale=rescale)
        return results_list

    def predict(self,
                x: Tuple[Tensor],
                rpn_results_list: InstanceList,
                batch_data_samples: SampleList,
                sam, img_seg_feat,
                rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the roi head and predict detection
        results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Features from upstream network. Each
                has shape (N, C, H, W).
            rpn_results_list (list[:obj:`InstanceData`]): list of region
                proposals.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            rescale (bool): Whether to rescale the results to
                the original image. Defaults to True.

        Returns:
            list[obj:`InstanceData`]: Detection results of each image.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, H, W).
        """
        x = list(x)
        bs, _, h, w = x[-1].shape
        mask_pe = torch.zeros((bs, h, w), device=x[0].device, dtype=torch.bool)
        img_feats_pe = self.generator_pe(mask_pe)
        for i in range(len(x)):
            x[i] = x[i] + torch.nn.functional.interpolate(img_feats_pe, size=x[i].shape[-2:], mode='bilinear')

        assert self.with_bbox, 'Bbox head must be implemented.'
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]

        # TODO: nms_op in mmcv need be enhanced, the bbox result may get
        #  difference when not rescale in bbox_head

        # If it has the mask branch, the bbox branch does not need
        # to be scaled to the original image scale, because the mask
        # branch will scale both bbox and mask at the same time.
        bbox_rescale = rescale if not self.with_mask else False
        results_list = self.predict_bbox(
            x,
            batch_img_metas,
            rpn_results_list,
            rcnn_test_cfg=self.test_cfg,
            rescale=bbox_rescale)

        if self.with_mask:
            results_list = self.predict_mask(
                x, batch_img_metas, results_list, rescale=rescale, sam=sam, img_seg_feat=img_seg_feat)

        return results_list


@MODELS.register_module()
class SAMPromptMaskHead(FCNMaskHead):

    def __init__(self,
                 per_query_point: int = 5,
                 with_sincos: bool = True,
                 class_agnostic: bool = False,
                 loss_mask: ConfigType = dict(
                     type='CrossEntropyLoss', use_mask=True, loss_weight=1.0),
                 *args,
                 **kwargs
                 ) -> None:
        super(BaseModule, self).__init__()

        self.per_query_point = per_query_point
        self.with_sincos = with_sincos
        self.class_agnostic = class_agnostic

        self.loss_mask = MODELS.build(loss_mask)

        if with_sincos:
            sincos = 2
        else:
            sincos = 1
        self.point_emb = nn.Sequential(
            nn.Conv2d(256, 256, 3, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Flatten(),
            nn.Linear(7*7*256, 256),
            nn.ReLU(inplace=True),
            nn.Linear(256, 256),
            nn.ReLU(inplace=True),
            nn.Linear(256, 256*sincos*per_query_point)
        )

    def forward(self, x, sam, img_seg_feat, img_flag_ids) -> Tensor:
        batch_size = x.shape[0]
        point_emb = self.point_emb(x)
        point_emb = point_emb.view(batch_size, self.per_query_point, -1)
        if self.with_sincos:
            point_emb = torch.sin(point_emb[..., ::2]) + point_emb[..., 1::2]

        nomask_dense_embeddings = sam.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
            point_emb.shape[0], -1, *img_seg_feat.shape[-2:]
        )
        img_flag_ids = torch.bincount(img_flag_ids.long())
        padding = torch.zeros((len(img_seg_feat)-len(img_flag_ids),), device=img_flag_ids.device, dtype=img_flag_ids.dtype)
        img_flag_ids = torch.cat([img_flag_ids, padding])
        img_embeddings = torch.repeat_interleave(img_seg_feat, img_flag_ids, dim=0)
        img_pe = sam.prompt_encoder.get_dense_pe()
        img_pe = repeat(img_pe, 'b c h w -> (b n) c h w', n=img_embeddings.shape[0])

        res_img_feat = None
        low_res_masks, iou_predictions = sam.mask_decoder.forward_batch(
            image_embeddings=img_embeddings,
            image_pe=img_pe,
            sparse_prompt_embeddings=point_emb,
            dense_prompt_embeddings=nomask_dense_embeddings,
            multimask_output=False,
            res_img_feat=res_img_feat,
        )
        mask_pred = low_res_masks.squeeze(1)
        iou_predictions = iou_predictions.squeeze(1)
        return mask_pred, iou_predictions

    def get_targets(self, sampling_results: List[SamplingResult],
                    batch_gt_instances: InstanceList,
                    rcnn_train_cfg: ConfigDict) -> Tensor:
        """Calculate the ground truth for all samples in a batch according to
        the sampling_results.

        Args:
            sampling_results (List[obj:SamplingResult]): Assign results of
                all images in a batch after sampling.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes``, ``labels``, and
                ``masks`` attributes.
            rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.

        Returns:
            Tensor: Mask target of each positive proposals in the image.
        """
        pos_proposals = [res.pos_priors for res in sampling_results]
        pos_assigned_gt_inds = [
            res.pos_assigned_gt_inds for res in sampling_results
        ]
        gt_masks = [res.masks for res in batch_gt_instances]

        mask_targets_list = []
        mask_size = (rcnn_train_cfg.mask_size,) * 2
        device = pos_proposals[0].device
        for pos_gt_inds, gt_mask in zip(pos_assigned_gt_inds, gt_masks):
            if len(pos_gt_inds) == 0:
                mask_targets = torch.zeros((0,) + mask_size, device=device, dytpe=torch.float32)
            else:
                mask_targets = gt_mask[pos_gt_inds.cpu()].to_tensor(dtype=torch.float32, device=device)
            mask_targets_list.append(mask_targets)
        mask_targets = torch.cat(mask_targets_list)
        return mask_targets

    def loss_and_target(self, mask_preds: Tensor,
                        sampling_results: List[SamplingResult],
                        batch_gt_instances: InstanceList,
                        rcnn_train_cfg: ConfigDict) -> dict:
        """Calculate the loss based on the features extracted by the mask head.

        Args:
            mask_preds (Tensor): Predicted foreground masks, has shape
                (num_pos, num_classes, h, w).
            sampling_results (List[obj:SamplingResult]): Assign results of
                all images in a batch after sampling.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes``, ``labels``, and
                ``masks`` attributes.
            rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.

        Returns:
            dict: A dictionary of loss and targets components.
        """
        mask_targets = self.get_targets(
            sampling_results=sampling_results,
            batch_gt_instances=batch_gt_instances,
            rcnn_train_cfg=rcnn_train_cfg)

        pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])

        mask_preds = torch.nn.functional.interpolate(
            mask_preds.unsqueeze(1), size=mask_targets.shape[-2:], mode='bilinear', align_corners=False)
        loss = dict()
        if mask_preds.size(0) == 0:
            loss_mask = mask_preds.sum()
        else:
            if self.class_agnostic:
                loss_mask = self.loss_mask(mask_preds, mask_targets,
                                           torch.zeros_like(pos_labels))
            else:
                loss_mask = self.loss_mask(mask_preds, mask_targets,
                                           pos_labels)
        loss['loss_mask'] = loss_mask
        # TODO: which algorithm requires mask_targets?
        return dict(loss_mask=loss, mask_targets=mask_targets)

    def _predict_by_feat_single(self,
                                mask_preds: Tensor,
                                bboxes: Tensor,
                                labels: Tensor,
                                img_meta: dict,
                                rcnn_test_cfg: ConfigDict,
                                rescale: bool = False,
                                activate_map: bool = False) -> Tensor:
        """Get segmentation masks from mask_preds and bboxes.

        Args:
            mask_preds (Tensor): Predicted foreground masks, has shape
                (n, num_classes, h, w).
            bboxes (Tensor): Predicted bboxes, has shape (n, 4)
            labels (Tensor): Labels of bboxes, has shape (n, )
            img_meta (dict): image information.
            rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of Bbox Head.
                Defaults to None.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            activate_map (book): Whether get results with augmentations test.
                If True, the `mask_preds` will not process with sigmoid.
                Defaults to False.

        Returns:
            Tensor: Encoded masks, has shape (n, img_w, img_h)

        Example:
            >>> from mmengine.config import Config
            >>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import *  # NOQA
            >>> N = 7  # N = number of extracted ROIs
            >>> C, H, W = 11, 32, 32
            >>> # Create example instance of FCN Mask Head.
            >>> self = FCNMaskHead(num_classes=C, num_convs=0)
            >>> inputs = torch.rand(N, self.in_channels, H, W)
            >>> mask_preds = self.forward(inputs)
            >>> # Each input is associated with some bounding box
            >>> bboxes = torch.Tensor([[1, 1, 42, 42 ]] * N)
            >>> labels = torch.randint(0, C, size=(N,))
            >>> rcnn_test_cfg = Config({'mask_thr_binary': 0, })
            >>> ori_shape = (H * 4, W * 4)
            >>> scale_factor = (1, 1)
            >>> rescale = False
            >>> img_meta = {'scale_factor': scale_factor,
            ...             'ori_shape': ori_shape}
            >>> # Encoded masks are a list for each category.
            >>> encoded_masks = self._get_seg_masks_single(
            ...     mask_preds, bboxes, labels,
            ...     img_meta, rcnn_test_cfg, rescale)
            >>> assert encoded_masks.size()[0] == N
            >>> assert encoded_masks.size()[1:] == ori_shape
        """
        scale_factor = bboxes.new_tensor(img_meta['scale_factor']).repeat(
            (1, 2))
        img_h, img_w = img_meta['ori_shape'][:2]
        device = bboxes.device

        if not activate_map:
            mask_preds = mask_preds.sigmoid()
        else:
            # In AugTest, has been activated before
            mask_preds = bboxes.new_tensor(mask_preds)

        if rescale:  # in-placed rescale the bboxes
            bboxes /= scale_factor
        else:
            w_scale, h_scale = scale_factor[0, 0], scale_factor[0, 1]
            img_h = np.round(img_h * h_scale.item()).astype(np.int32)
            img_w = np.round(img_w * w_scale.item()).astype(np.int32)

        threshold = rcnn_test_cfg.mask_thr_binary

        im_mask = torch.nn.functional.interpolate(
            mask_preds.unsqueeze(1), size=(img_h, img_w), mode='bilinear', align_corners=False).squeeze(1)

        if threshold >= 0:
            im_mask = im_mask >= threshold
        else:
            # for visualization and debugging
            im_mask = (im_mask * 255).to(dtype=torch.uint8)
        return im_mask