File size: 9,064 Bytes
1c3eb47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.models.utils import multi_apply
from mmdet.utils import InstanceList, reduce_mean
from mmpl.registry import MODELS, TASK_UTILS
from mmengine.model import BaseModel
from einops import rearrange

from mmpl.utils import ConfigType, OptConfigType


@MODELS.register_module()
class BinarySemanticSegHead(BaseModel):
    def __init__(
            self,
            num_classes=1,
            align_corners=False,
            loss_mask: ConfigType = dict(
                type='CrossEntropyLoss',
                use_sigmoid=True,
                reduction='mean',
                loss_weight=5.0),
            loss_dice=None,
            train_cfg: OptConfigType = None,
            test_cfg: OptConfigType = None,
            init_cfg: Optional[dict] = None):
        super(BinarySemanticSegHead, self).__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.align_corners = align_corners

        self.test_cfg = test_cfg
        self.train_cfg = train_cfg
        if train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
            self.sampler = TASK_UTILS.build(
                self.train_cfg['sampler'], default_args=dict(context=self))
            self.num_points = self.train_cfg.get('num_points', 12544)
            self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0)
            self.importance_sample_ratio = self.train_cfg.get(
                'importance_sample_ratio', 0.75)

        self.loss_mask = MODELS.build(loss_mask)
        if loss_dice is not None:
            self.loss_dice = MODELS.build(loss_dice)

    def forward(self, *args, **kwargs):
        pass
        return

    def loss(self,
             mask_preds: Tensor,
             seg_labels: Tensor,
             ):
        bs = mask_preds.size(0)

        # dice loss
        if hasattr(self, 'loss_dice'):
            loss_dice = self.loss_dice(mask_preds, seg_labels, avg_factor=bs)
        else:
            loss_dice = torch.zeros([]).to(mask_preds.device)

        # mask loss
        # FocalLoss support input of shape (n, num_class)
        h, w = mask_preds.shape[-2:]
        # shape (num_total_gts, h, w) -> (num_total_gts * h * w, 1)
        mask_preds = mask_preds.reshape(-1, 1)
        # shape (num_total_gts, h, w) -> (num_total_gts * h * w)
        mask_targets = seg_labels.reshape(-1, 1)
        # target is (1 - mask_targets) !!!
        loss_mask = self.loss_mask(mask_preds, mask_targets, avg_factor=h * w)

        loss_dict = dict()
        loss_dict['loss_mask'] = loss_mask
        loss_dict['loss_dice'] = loss_dice
        return loss_dict

    def get_targets(
        self,
        cls_scores_list: List[Tensor],
        mask_preds_list: List[Tensor],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        return_sampling_results: bool = False
    ) -> Tuple[List[Union[Tensor, int]]]:
        """Compute classification and mask targets for all images for a decoder
        layer.

        Args:
            cls_scores_list (list[Tensor]): Mask score logits from a single
                decoder layer for all images. Each with shape (num_queries,
                cls_out_channels).
            mask_preds_list (list[Tensor]): Mask logits from a single decoder
                layer for all images. Each with shape (num_queries, h, w).
            batch_gt_instances (list[obj:`InstanceData`]): each contains
                ``labels`` and ``masks``.
            batch_img_metas (list[dict]): List of image meta information.
            return_sampling_results (bool): Whether to return the sampling
                results. Defaults to False.

        Returns:
            tuple: a tuple containing the following targets.

                - labels_list (list[Tensor]): Labels of all images.\
                    Each with shape (num_queries, ).
                - label_weights_list (list[Tensor]): Label weights\
                    of all images. Each with shape (num_queries, ).
                - mask_targets_list (list[Tensor]): Mask targets of\
                    all images. Each with shape (num_queries, h, w).
                - mask_weights_list (list[Tensor]): Mask weights of\
                    all images. Each with shape (num_queries, ).
                - avg_factor (int): Average factor that is used to average\
                    the loss. When using sampling method, avg_factor is
                    usually the sum of positive and negative priors. When
                    using `MaskPseudoSampler`, `avg_factor` is usually equal
                    to the number of positive priors.

            additional_returns: This function enables user-defined returns from
                `self._get_targets_single`. These returns are currently refined
                to properties at each feature map (i.e. having HxW dimension).
                The results will be concatenated after the end.
        """
        results = multi_apply(self._get_targets_single, cls_scores_list,
                              mask_preds_list, batch_gt_instances,
                              batch_img_metas)
        (labels_list, label_weights_list, mask_targets_list, mask_weights_list,
         pos_inds_list, neg_inds_list, sampling_results_list) = results[:7]
        rest_results = list(results[7:])

        avg_factor = sum(
            [results.avg_factor for results in sampling_results_list])

        res = (labels_list, label_weights_list, mask_targets_list,
               mask_weights_list, avg_factor)
        if return_sampling_results:
            res = res + (sampling_results_list)

        return res + tuple(rest_results)

    def _get_targets_single(self, cls_score: Tensor, mask_pred: Tensor,
                            gt_instances: InstanceData,
                            img_meta: dict) -> Tuple[Tensor]:
        """Compute classification and mask targets for one image.

        Args:
            cls_score (Tensor): Mask score logits from a single decoder layer
                for one image. Shape (num_queries, cls_out_channels).
            mask_pred (Tensor): Mask logits for a single decoder layer for one
                image. Shape (num_queries, h, w).
            gt_instances (:obj:`InstanceData`): It contains ``labels`` and
                ``masks``.
            img_meta (dict): Image informtation.

        Returns:
            tuple: a tuple containing the following for one image.

                - labels (Tensor): Labels of each image.
                    shape (num_queries, ).
                - label_weights (Tensor): Label weights of each image.
                    shape (num_queries, ).
                - mask_targets (Tensor): Mask targets of each image.
                    shape (num_queries, h, w).
                - mask_weights (Tensor): Mask weights of each image.
                    shape (num_queries, ).
                - pos_inds (Tensor): Sampled positive indices for each image.
                - neg_inds (Tensor): Sampled negative indices for each image.
                - sampling_result (:obj:`SamplingResult`): Sampling results.
        """
        gt_masks = gt_instances.masks
        gt_labels = gt_instances.labels

        target_shape = mask_pred.shape[-2:]
        if gt_masks.shape[0] > 0:
            gt_masks_downsampled = F.interpolate(
                gt_masks.unsqueeze(1).float(), target_shape,
                mode='nearest').squeeze(1).long()
        else:
            gt_masks_downsampled = gt_masks

        pred_instances = InstanceData(scores=cls_score, masks=mask_pred)
        downsampled_gt_instances = InstanceData(
            labels=gt_labels, masks=gt_masks_downsampled)
        # assign and sample # assign_result is the 1-based
        assign_result = self.assigner.assign(
            pred_instances=pred_instances,
            gt_instances=downsampled_gt_instances,
            img_meta=img_meta)
        sampling_result = self.sampler.sample(
            assign_result=assign_result,
            pred_instances=pred_instances,
            gt_instances=gt_instances)
        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds

        # label target
        # 第0类为背景
        num_queries = pred_instances.scores.shape[0]
        labels = gt_labels.new_full((num_queries, ),
                                    0,
                                    dtype=torch.long)
        labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
        label_weights = gt_labels.new_ones(num_queries)

        # mask target
        mask_targets = gt_masks[sampling_result.pos_assigned_gt_inds]
        mask_weights = mask_pred.new_zeros((num_queries, ))
        mask_weights[pos_inds] = 1.0

        return (labels, label_weights, mask_targets, mask_weights, pos_inds,
                neg_inds, sampling_result)