File size: 6,720 Bytes
4d0eb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional

import torch
from mmengine.model import BaseModule

from mmpretrain.registry import MODELS


@MODELS.register_module()
class SeqGenerationHead(BaseModule):
    """Generation head for multi-modal pre-trained task, adopted by BLIP.
    Normally used for generation task.

    Args:
        decoder (dict): Decoder for blip generation head.
        init_cfg (dict, optional): the config to control the initialization.
            Defaults to None.
    """

    def __init__(
        self,
        decoder: dict,
        ignore_index=-100,
        loss: dict = dict(type='LabelSmoothLoss', label_smooth_val=0.1),
        init_cfg: Optional[dict] = None,
    ) -> None:
        super(SeqGenerationHead, self).__init__(init_cfg=init_cfg)
        self.decoder = MODELS.build(decoder)
        self.loss_fn = MODELS.build(loss)
        self.ignore_index = ignore_index

    def forward(self, input_ids: torch.Tensor,
                encoder_hidden_states: torch.Tensor,
                encoder_attention_mask: torch.Tensor, labels: torch.Tensor):
        """Forward to get decoder output.

        Args:
            input_ids (torch.Tensor): The tokenized input text tensor.
            encoder_hidden_states (torch.Tensor): Hidden states from image
                embeddings.
            encoder_attention_mask (torch.Tensor): Image embeddings hidden
                states attention mask.
            labels (torch.Tensor): Decoder target for calculate loss.

        Returns:
            dict[str, Tensor]: a dictionary of decoder outputs.
        """

        decoder_out = self.decoder(
            input_ids=input_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            labels=labels,
            return_dict=True,
        )
        return decoder_out

    def loss(self, input_ids, encoder_hidden_states, encoder_attention_mask,
             labels):
        """Calculate losses from the extracted features.

        Args:
            input_ids (torch.Tensor): The tokenized input text tensor.
            encoder_hidden_states (torch.Tensor): Hidden states from image
                embeddings.
            encoder_attention_mask (torch.Tensor): Image embeddings hidden
                states attention mask.
            labels (torch.Tensor): Decoder target for calculate loss.

        Returns:
            dict[str, Tensor]: a dictionary of loss components.
        """

        decoder_out = self(
            input_ids=input_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            labels=labels,
        )
        prediction_scores = decoder_out['logits']
        # we are doing next-token prediction;
        # shift prediction scores and input ids by one
        shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
        labels = labels[:, 1:].contiguous()

        vocab_size = prediction_scores.shape[-1]

        # mask ignored index
        if (labels == self.ignore_index).any():
            labels = labels.view(-1).clone()
            ignore_mask = (labels == self.ignore_index)
            labels.masked_fill_(ignore_mask, 0)
            weight = torch.logical_not(ignore_mask)
            avg_factor = max(weight.sum(), 1)
        else:
            weight = None
            avg_factor = labels.size(0)

        lm_loss = self.loss_fn(
            shifted_prediction_scores.view(-1, vocab_size),
            labels,
            weight=weight,
            avg_factor=avg_factor,
        )
        losses = {
            'seq_gen_lm_loss': lm_loss,
        }

        return losses

    def predict(self,
                input_ids,
                encoder_hidden_states,
                sep_token_id,
                pad_token_id,
                use_nucleus_sampling=False,
                num_beams=3,
                max_length=20,
                min_length=2,
                top_p=0.9,
                repetition_penalty=1.0,
                **kwargs):
        """Decoder prediction method.

        Args:
            input_ids (torch.Tensor): The tokenized input text tensor.
            encoder_hidden_states (torch.Tensor): Hidden states from image
                embeddings.
            sep_token_id (int): Tokenid of separation token.
            pad_token_id (int): Tokenid of pad token.
            use_nucleus_sampling (bool): Whether to use nucleus sampling in
                prediction. Defaults to False.
            num_beams (int): Number of beams used in predition.
                Defaults to 3.
            max_length (int): Max length of generated text in predition.
                Defaults to 20.
            min_length (int): Min length of generated text in predition.
                Defaults to 20.
            top_p (float):
                If < 1.0, only keep the top tokens with cumulative probability
                 >= top_p (nucleus filtering). Defaults to 0.9.
            repetition_penalty (float): The parameter for repetition penalty.
                Defaults to 1.0.
            **kwarg: Other arguments that might used in generation.

        Returns:
            dict[str, Tensor]: a dictionary of generation outputs.
        """
        device = encoder_hidden_states.device

        # TODO: In old version of transformers
        # Additional repeat interleave of hidden states should be add here.
        image_atts = torch.ones(
            encoder_hidden_states.size()[:-1], dtype=torch.long).to(device)

        model_kwargs = {
            'encoder_hidden_states': encoder_hidden_states,
            'encoder_attention_mask': image_atts,
        }
        model_kwargs.update(kwargs)

        if use_nucleus_sampling:
            # nucleus sampling
            outputs = self.decoder.generate(
                input_ids=input_ids,
                max_length=max_length,
                min_length=min_length,
                do_sample=True,
                top_p=top_p,
                num_return_sequences=1,
                eos_token_id=sep_token_id,
                pad_token_id=pad_token_id,
                repetition_penalty=1.1,
                **model_kwargs)
        else:
            # beam search
            outputs = self.decoder.generate(
                input_ids=input_ids,
                max_length=max_length,
                min_length=min_length,
                num_beams=num_beams,
                eos_token_id=sep_token_id,
                pad_token_id=pad_token_id,
                repetition_penalty=repetition_penalty,
                **model_kwargs)

        return outputs