Spaces:
Runtime error
Runtime error
File size: 21,891 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Tuple, Union
import mmengine.dist as dist
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.utils import track_iter_progress
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample
from ..blip.blip_retrieval import BlipRetrieval, all_gather_concat
@MODELS.register_module()
class Blip2Retrieval(BlipRetrieval):
"""BLIP2 Retriever.
Args:
vision_backbone (dict): Backbone for extracting image features.
text_backbone (dict): Backbone for extracting text features.
multimodal_backbone (Optional[dict]): Backbone for extracting
multi-modal features.
vision_neck (Optional[dict]): The neck module to process image features
from vision backbone. Defaults to None.
text_neck (Optional[dict]): The neck module to process text features
from text backbone. Defaults to None.
head (Optional[Union[List[dict], dict]]): The head module to calculate
loss from processed single modality features.
See :mod:`mmmultimodal.models.heads`.
Notice that if the head is not set, `loss` method cannot be used.
Defaults to None.
multimodal_head (Optional[Union[List[dict], dict]]): The multi-modal
head module to calculate loss from processed multimodal features.
See :mod:`mmmultimodal.models.heads`.
Notice that if the head is not set, `loss` method cannot be used.
Defaults to None.
tokenizer (Optional[dict]): The config for tokenizer. Defaults to None.
temperature (float): Temperature parameter that controls the
concentration level of the distribution. Defaults to 0.07.
fast_match (bool): If False, select topk similarity as candidates and
compute the matching score. If True, return the similarity as the
matching score directly. Defaults to False.
topk (int): Select topk similarity as candidates for compute matching
scores. Notice that this is not the topk in evaluation.
Defaults to 256.
data_preprocessor (Optional[dict]): The config for preprocessing input
data. If None or no specified type, it will use
"MultiModalDataPreprocessor" as type.
See :class:`MultiModalDataPreprocessor` for more details.
Defaults to None.
init_cfg (Optional[dict]): the config to control the initialization.
Defaults to None.
"""
def __init__(self,
vision_backbone: dict,
text_backbone: Optional[dict] = None,
multimodal_backbone: Optional[dict] = None,
vision_neck: Optional[dict] = None,
text_neck: Optional[dict] = None,
head: Optional[Union[List[dict], dict]] = None,
multimodal_head: Optional[Union[List[dict], dict]] = None,
tokenizer: Optional[dict] = None,
temperature: float = 0.07,
fast_match: bool = False,
topk: int = 256,
data_preprocessor: Optional[dict] = None,
init_cfg: Optional[dict] = None) -> None:
if data_preprocessor is None:
data_preprocessor = {}
if isinstance(data_preprocessor, dict):
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
data_preprocessor = MODELS.build(data_preprocessor)
# Skip BlipRetrieval init
super(BlipRetrieval, self).__init__(
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
self.vision_backbone = MODELS.build(vision_backbone)
self.ln_vision_backbone = nn.LayerNorm(self.vision_backbone.embed_dims)
self.tokenizer = TOKENIZER.build(tokenizer)
if text_backbone is not None:
self.text_backbone = MODELS.build(text_backbone)
if multimodal_backbone is not None:
self.multimodal_backbone = MODELS.build(multimodal_backbone)
self.multimodal_backbone.resize_token_embeddings(
len(self.tokenizer))
self.query_tokens = nn.Parameter(
torch.zeros(1, self.multimodal_backbone.bert.config.query_length,
self.multimodal_backbone.bert.config.hidden_size))
self.query_tokens.data.normal_(
mean=0.0,
std=self.multimodal_backbone.bert.config.initializer_range)
if vision_neck is not None:
self.vision_neck = MODELS.build(vision_neck)
if text_neck is not None:
self.text_neck = MODELS.build(text_neck)
if head is not None:
self.head = MODELS.build(head)
if multimodal_head is not None:
self.multimodal_head = MODELS.build(multimodal_head)
self.temp = nn.Parameter(temperature * torch.ones([]))
# Notice that this topk is used for select k candidate to compute
# image-text score, but not the final metric topk in evaluation.
self.fast_match = fast_match
self.topk = topk
def _extract_feat(self, inputs: Union[torch.Tensor, dict],
modality: str) -> Tuple[torch.Tensor]:
"""Extract features from the single modality.
Args:
inputs (Union[torch.Tensor, dict]): A batch of inputs.
For image, a tensor of shape (N, C, ...) in general.
For text, a dict of tokenized text inputs.
modality (str): Modality feature to be extracted. Only two
options are supported.
- ``images``: Only extract image features, mostly used for
inference.
- ``texts``: Only extract text features, mostly used for
inference.
Returns:
Tuple[torch.Tensor]: The output features.
"""
if modality == 'images':
# extract image features
# TODO:
# Add layernorm inside backbone and handle the concat outside
image_embeds = self.ln_vision_backbone(
self.vision_backbone(inputs)[0])
image_atts = torch.ones(
image_embeds.size()[:-1], dtype=torch.long).to(self.device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1,
-1)
query_output = self.multimodal_backbone.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
use_cache=True,
return_dict=True,
)
image_feat = F.normalize(
self.vision_neck([query_output.last_hidden_state]), dim=-1)
return {
'image_embeds': image_embeds,
'image_feat': image_feat,
'query_output': query_output
}
elif modality == 'texts':
# extract text features
text_output = self.multimodal_backbone.bert(
inputs.input_ids,
attention_mask=inputs.attention_mask,
return_dict=True,
)
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(
self.text_neck([text_embeds[:, 0, :]]), dim=-1)
return {'text_embeds': text_embeds, 'text_feat': text_feat}
else:
raise RuntimeError(f'Invalid modality "{modality}".')
def loss(
self,
images: torch.Tensor,
data_samples: Optional[List[DataSample]] = None,
) -> Dict[str, torch.tensor]:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (dict): A batch of inputs. The input tensor with of
at least one modality. For image, the value is a tensor
of shape (N, C, ...) in general.
For text, the value is a dict of tokenized text inputs.
data_samples (Optional[List[DataSample]]):
The annotation data of every samples. Defaults to None.
Returns:
Dict[str, torch.tensor]: a dictionary of loss components of
both head and multimodal head.
"""
output = self.extract_feat(images, data_samples)
text_ids = output['text_ids']
text_attn_mask = output['text_attn_mask']
image_embeds = output['image_embeds']
image_feat = output['image_feat']
text_feat = output['text_feat']
query_output = output['query_output']
# ITC Loss
# B*world_size, num_query, D
image_feat_all = torch.cat(dist.all_gather(image_feat))
# B*world_size, D
text_feat_all = torch.cat(dist.all_gather(text_feat))
# B, B*world_size, num_query
sim_q2t = torch.matmul(
image_feat.unsqueeze(1), text_feat_all.unsqueeze(-1)).squeeze()
# image to text similarity
sim_i2t, _ = sim_q2t.max(-1)
sim_i2t = sim_i2t / self.temp
# B, B*world_size, num_query
sim_t2q = torch.matmul(
text_feat.unsqueeze(1).unsqueeze(1),
image_feat_all.permute(0, 2, 1)).squeeze()
# text-image similarity
sim_t2i, _ = sim_t2q.max(-1)
sim_t2i = sim_t2i / self.temp
rank = dist.get_rank()
bs = images.size(0)
targets = torch.linspace(
rank * bs, rank * bs + bs - 1, bs, dtype=int).to(self.device)
itc_loss = (F.cross_entropy(sim_i2t, targets, label_smoothing=0.1) +
F.cross_entropy(sim_t2i, targets, label_smoothing=0.1)) / 2
# prepare for itm
text_input_ids_world = torch.cat(dist.all_gather(text_ids))
text_attention_mask_world = torch.cat(dist.all_gather(text_attn_mask))
image_embeds_world = torch.cat(dist.all_gather(image_embeds))
with torch.no_grad():
weights_t2i = F.softmax(sim_t2i, dim=1) + 1e-4
weights_t2i[:, rank * bs:rank * bs + bs].fill_diagonal_(0)
weights_i2t = F.softmax(sim_i2t, dim=1) + 1e-4
weights_i2t[:, rank * bs:rank * bs + bs].fill_diagonal_(0)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds_world[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text for each image
text_ids_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_ids_neg.append(text_input_ids_world[neg_idx])
text_atts_neg.append(text_attention_mask_world[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat([text_ids, text_ids, text_ids_neg],
dim=0) # pos, pos, neg
text_atts_all = torch.cat(
[text_attn_mask, text_attn_mask, text_atts_neg],
dim=0,
)
query_tokens_itm = self.query_tokens.expand(text_ids_all.shape[0], -1,
-1)
query_atts_itm = torch.ones(
query_tokens_itm.size()[:-1], dtype=torch.long).to(self.device)
attention_mask_all = torch.cat([query_atts_itm, text_atts_all], dim=1)
image_embeds_all = torch.cat(
[image_embeds, image_embeds_neg, image_embeds],
dim=0) # pos, neg, pos
image_atts_all = torch.ones(
image_embeds_all.size()[:-1], dtype=torch.long).to(self.device)
output_itm = self.multimodal_backbone.bert(
text_ids_all,
query_embeds=query_tokens_itm,
attention_mask=attention_mask_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
)
vl_embeddings = output_itm.last_hidden_state[:, :query_tokens_itm.
size(1), :]
# create false data samples
data_samples.extend(
[DataSample(is_matched=False) for _ in range(2 * bs)])
loss_multimodal = self.multimodal_head.loss((vl_embeddings, ),
data_samples)
# LM loss
decoder_input_ids = text_ids.clone()
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
labels = decoder_input_ids.masked_fill(
decoder_input_ids == self.tokenizer.pad_token_id, -100)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_atts = torch.ones(
query_tokens.size()[:-1], dtype=torch.long).to(self.device)
attention_mask = torch.cat([query_atts, text_attn_mask], dim=1)
lm_output = self.multimodal_backbone(
decoder_input_ids,
attention_mask=attention_mask,
past_key_values=query_output.past_key_values,
return_dict=True,
labels=labels,
)
return dict(
itc_loss=itc_loss, **loss_multimodal, lm_loss=lm_output.loss)
def predict_all(self,
feats: Dict[str, torch.Tensor],
data_samples: List[DataSample],
num_images: int = None,
num_texts: int = None,
cal_i2t: bool = True,
cal_t2i: bool = True) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute similarity matrix between images and texts across all ranks.
Args:
feats (Dict[str, torch.Tensor]): Features from the current rank.
data_samples (List[DataSample]): Data samples from the current
rank.
num_images (int, optional): Number of images to use.
Defaults to None.
num_texts (int, optional): Number of texts to use.
Defaults to None.
cal_i2t (bool, optional): Whether to compute image-to-text
similarity. Defaults to True.
cal_t2i (bool, optional): Whether to compute text-to-image
similarity. Defaults to True.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Image-to-text and text-to-image
similarity matrices.
"""
text_ids = feats['text_ids']
text_attn_mask = feats['text_attn_mask']
image_embeds = feats.get('image_embeds', None)
image_feat = feats['image_feat']
text_feat = feats['text_feat']
num_images = num_images or image_feat.size(0)
num_texts = num_texts or text_feat.size(0)
if not self.fast_match:
image_embeds_all = all_gather_concat(image_embeds)[:num_images]
else:
image_embeds_all = None
image_feat_all = all_gather_concat(image_feat)[:num_images]
text_feat_all = all_gather_concat(text_feat)[:num_texts]
text_ids_all = all_gather_concat(text_ids)[:num_texts]
text_attn_mask_all = all_gather_concat(text_attn_mask)[:num_texts]
results = []
if cal_i2t:
result_i2t = self.compute_score_matrix_i2t(
image_feat,
image_embeds,
text_feat_all,
text_ids_all,
text_attn_mask_all,
)
results.append(
self._get_predictions(result_i2t, data_samples, mode='i2t'))
if cal_t2i:
result_t2i = self.compute_score_matrix_t2i(
image_feat_all,
image_embeds_all,
text_feat,
text_ids,
text_attn_mask,
)
results.append(
self._get_predictions(result_t2i, data_samples, mode='t2i'))
return tuple(results)
def compute_score_matrix_i2t(self, img_feats: torch.Tensor,
img_embeds: List[torch.Tensor],
text_feats: torch.Tensor,
text_ids: torch.Tensor,
text_atts: torch.Tensor) -> torch.Tensor:
"""Compare the score matrix for image-to-text retrieval. Every image
should compare to all the text features.
Args:
img_feats (torch.Tensor): The input tensor with shape (M, C).
M stands for numbers of samples on a single GPU.
img_embeds (List[torch.Tensor]): Image features from each layer of
the vision backbone.
text_feats (torch.Tensor): The input tensor with shape (N, C).
N stands for numbers of all samples on all GPUs.
text_ids (torch.Tensor): The input tensor with shape (N, C).
text_atts (torch.Tensor): The input tensor with shape (N, C).
Returns:
torch.Tensor: Score matrix of image-to-text retrieval.
"""
# compute i2t sim matrix
# TODO: check correctness
sim_matrix_i2t, _ = (img_feats @ text_feats.t()).max(1)
if self.fast_match:
return sim_matrix_i2t
score_matrix_i2t = torch.full((img_feats.size(0), text_feats.size(0)),
-100.0).to(self.device)
for i in track_iter_progress(range(img_feats.size(0))):
sims = sim_matrix_i2t[i]
topk_sim, topk_idx = sims.topk(k=self.topk, dim=0)
# get repeated image embeddings
encoder_output = img_embeds[i].repeat(self.topk, 1, 1)
encoder_att = torch.ones(
encoder_output.size()[:-1], dtype=torch.long).to(self.device)
# query embeds and attention masks
query_tokens = self.query_tokens.expand(encoder_output.shape[0],
-1, -1)
query_atts = torch.ones(
query_tokens.size()[:-1], dtype=torch.long).to(self.device)
attention_mask = torch.cat([query_atts, text_atts[topk_idx]],
dim=1)
output = self.multimodal_backbone.bert(
text_ids[topk_idx],
query_embeds=query_tokens,
attention_mask=attention_mask,
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = self.multimodal_head(
(output.last_hidden_state[:, :query_tokens.size(1), :],
))[:, :, 1].mean(dim=1)
score_matrix_i2t[i, topk_idx] = score + topk_sim
return score_matrix_i2t
def compute_score_matrix_t2i(self, img_feats: torch.Tensor,
img_embeds: List[torch.Tensor],
text_feats: torch.Tensor,
text_ids: torch.Tensor,
text_atts: torch.Tensor) -> torch.Tensor:
"""Compare the score matrix for text-to-image retrieval.
Every text should compare to all the image features.
Args:
img_feats (torch.Tensor): The input tensor with shape (N, C).
N stands for numbers of all samples on all GPUs.
img_embeds (List[torch.Tensor]): Image features from each layer of
the vision backbone.
text_feats (torch.Tensor): The input tensor with shape (M, C).
M stands for numbers of samples on a single GPU.
text_ids (torch.Tensor): The input tensor with shape (M, C).
text_atts (torch.Tensor): The input tensor with shape (M, C).
Returns:
torch.Tensor: Score matrix of text-to-image retrieval.
"""
# compute t2i sim matrix
# TODO: check correctness
sim_matrix_i2t, _ = (img_feats @ text_feats.t()).max(1)
sim_matrix_t2i = sim_matrix_i2t.t()
if self.fast_match:
return sim_matrix_i2t
score_matrix_t2i = torch.full((text_feats.size(0), img_feats.size(0)),
-100.0).to(self.device)
for i in track_iter_progress(range(text_feats.size(0))):
sims = sim_matrix_t2i[i]
topk_sim, topk_idx = sims.topk(k=self.topk, dim=0)
# get topk image embeddings
encoder_output = img_embeds[topk_idx]
encoder_att = torch.ones(
encoder_output.size()[:-1], dtype=torch.long).to(self.device)
# get query embeds and attention masks
query_tokens = self.query_tokens.expand(encoder_output.shape[0],
-1, -1)
query_atts = torch.ones(
query_tokens.size()[:-1], dtype=torch.long).to(self.device)
attention_mask = torch.cat(
[query_atts, text_atts[i].repeat(self.topk, 1)], dim=1)
output = self.multimodal_backbone.bert(
text_ids[i].repeat(self.topk, 1),
query_embeds=query_tokens,
attention_mask=attention_mask,
encoder_hidden_states=encoder_output,
encoder_attention_mask=encoder_att,
return_dict=True,
)
score = self.multimodal_head(
(output.last_hidden_state[:, :query_tokens.size(1), :],
))[:, :, 1].mean(dim=1)
score_matrix_t2i[i, topk_idx] = score + topk_sim
return score_matrix_t2i
|