File size: 10,497 Bytes
4d0eb62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.

# flake8: noqa
import math

import torch
from torch import nn
from torch.utils.checkpoint import checkpoint

try:
    from transformers.models.bert.configuration_bert import BertConfig
except:
    BertConfig = None

from mmpretrain.registry import MODELS
from ..blip.language_model import BertAttention, BertIntermediate, BertOutput


def gelu(x):
    """Original Implementation of the gelu activation function in Google Bert
    repo when initially created.

    For information: OpenAI GPT's gelu is slightly different (and gives
    slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    Also see https://arxiv.org/abs/1606.08415
    """ # noqa
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def gelu_new(x):
    """Implementation of the gelu activation function currently in Google Bert
    repo (identical to OpenAI GPT) https://arxiv.org/abs/1606.08415."""
    return 0.5 * x * (1 + torch.tanh(
        math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {
    'gelu': gelu,
    'relu': torch.nn.functional.relu,
    'swish': swish,
    'gelu_new': gelu_new
}


class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type
    embeddings."""

    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(
            config.vocab_size, config.hidden_size, padding_idx=0)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings,
                                                config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size,
                                                  config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model
        # variable name and be able to load any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(
            config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None, position_ids=None):
        seq_length = input_ids.size(1)
        if position_ids is None:
            position_ids = torch.arange(
                seq_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings \
            + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertLayer(nn.Module):

    def __init__(self, config):
        super(BertLayer, self).__init__()
        self.attention = BertAttention(config)
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        attention_outputs = self.attention(hidden_states, attention_mask,
                                           head_mask)
        attention_output = attention_outputs[0]
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        outputs = (layer_output, ) + attention_outputs[
            1:]  # add attentions if we output them
        if len(outputs) == 1:
            return outputs[0]
        return outputs


class BertEncoder(nn.Module):

    def __init__(self, config):
        super(BertEncoder, self).__init__()
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.grad_checkpointing = False
        self.layer = nn.ModuleList(
            [BertLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        all_hidden_states = ()
        all_attentions = ()
        for i, layer_module in enumerate(self.layer):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states, )

            if self.grad_checkpointing and not torch.jit.is_scripting():
                layer_outputs = checkpoint(layer_module, hidden_states,
                                           attention_mask, head_mask[i])
            else:
                layer_outputs = layer_module(hidden_states, attention_mask,
                                             head_mask[i])
            if not isinstance(layer_outputs, tuple):
                layer_outputs = (layer_outputs, )
            hidden_states = layer_outputs[0]

            if self.output_attentions:
                all_attentions = all_attentions + (layer_outputs[1], )

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states, )

        outputs = (hidden_states, )
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states, )
        if self.output_attentions:
            outputs = outputs + (all_attentions, )
        # last-layer hidden state, (all hidden states), (all attentions)
        return outputs


class BertPreTrainedModel(nn.Module):
    base_model_prefix = 'bert'

    def __init__(self, config):
        super(BertPreTrainedModel, self).__init__()
        self.config = config

    def _init_weights(self, module):
        """Initialize the weights."""
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version
            # which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(
                mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


@MODELS.register_module()
class BertModelCN(BertPreTrainedModel):
    """The BERT model implementation for Chinese CLIP."""

    def __init__(self, config):
        config = BertConfig.from_dict(config)
        super(BertModelCN, self).__init__(config)

        self.embeddings = BertEmbeddings(config)
        self.encoder = BertEncoder(config)

        self.apply(self._init_weights)

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        if enable:
            assert not self.config.output_attentions, \
                'Grad checkpointing is currently conflict with ' \
                'output_attentions for BertEncoder, ' \
                'please set it to False in BertConfig'

        self.encoder.grad_checkpointing = enable

    def forward(self,
                input_ids,
                attention_mask=None,
                token_type_ids=None,
                position_ids=None,
                head_mask=None):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(
            dtype=next(self.parameters()).dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(
                    -1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1,
                                             -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(
                    -1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters(
            )).dtype)  # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.num_hidden_layers

        embedding_output = self.embeddings(
            input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids)
        encoder_outputs = self.encoder(
            embedding_output, extended_attention_mask, head_mask=head_mask)
        sequence_output = encoder_outputs[0]
        # pooled_output = self.pooler(sequence_output)
        pooled_output = None

        # add hidden_states and attentions if they are here
        outputs = (
            sequence_output,
            pooled_output,
        ) + encoder_outputs[1:]

        # sequence_output, pooled_output, (hidden_states), (attentions)
        return outputs