Spaces:
Runtime error
Runtime error
File size: 11,897 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# Copyright (c) OpenMMLab. All rights reserved.
import string
from collections import defaultdict
from functools import partial
from typing import Optional, Union
import mmengine
import torch
from mmengine.model import BaseModel
from mmpretrain.datasets import CleanCaption
from mmpretrain.registry import MODELS, TOKENIZER
from mmpretrain.structures import DataSample
from .ofa_modules import OFAEncoderDecoder
class TreeNode():
def __init__(self):
self.child = defaultdict(TreeNode)
class Trie:
def __init__(self, eos):
self.root = TreeNode()
self.eos = eos
def insert(self, word):
cur = self.root
for c in word:
cur = cur.child[c]
def get_next_layer(self, word):
cur = self.root
for c in word:
cur = cur.child.get(c)
if cur is None:
return [self.eos]
return list(cur.child.keys())
def apply_constraint(
input_ids: torch.Tensor,
logits: torch.Tensor,
decoder_prompts: Optional[list],
num_beams: int,
constraint_trie: Trie = None,
):
if decoder_prompts is None and constraint_trie is None:
return logits
mask = logits.new_zeros(logits[:, -1, :].size(), dtype=torch.bool)
input_ids = input_ids.view(-1, num_beams, input_ids.shape[-1])
for batch_id, beam_sent in enumerate(input_ids):
for beam_id, sent in enumerate(beam_sent):
if decoder_prompts is None:
prompt_len = 0
else:
prompt_len = len(decoder_prompts[batch_id])
if sent.size(0) - 1 < prompt_len:
allowed_tokens = [decoder_prompts[batch_id][sent.size(0) - 1]]
mask[batch_id * num_beams + beam_id, allowed_tokens] = True
elif constraint_trie is not None:
answer_tokens = [0] + sent[prompt_len + 1:].tolist()
allowed_tokens = constraint_trie.get_next_layer(answer_tokens)
mask[batch_id * num_beams + beam_id, allowed_tokens] = True
else:
mask[batch_id * num_beams + beam_id, :] = True
logits[:, -1, :].masked_fill_(~mask, float('-inf'))
return logits
@MODELS.register_module()
class OFA(BaseModel):
"""The OFA model for multiple tasks.
Args:
encoder_cfg (dict): The config of the encoder, accept the keyword
arguments of :class:`OFAEncoder`.
decoder_cfg (dict): The config of the decoder, accept the keyword
arguments of :class:`OFADecoder`.
vocab_size (int): The size of the vocabulary.
embedding_dim (int): The embedding dimensions of both the encoder
and the decoder.
tokenizer (dict | PreTrainedTokenizer): The tokenizer to encode
the text.
task (str): The task name, supported tasks are "caption", "vqa" and
"refcoco".
prompt (str, optional): The prompt template for the following tasks,
If None, use default prompt:
- **caption**: ' what does the image describe?'
- **refcoco**: ' which region does the text " {} " describe?'
Defaults to None
ans2label (str | Sequence | None): The answer to label mapping for
the vqa task. If a string, it should be a pickle or json file.
The sequence constrains the output answers. Defaults to None,
which means no constraint.
generation_cfg (dict): The extra generation config, accept the keyword
arguments of :class:`~transformers.GenerationConfig`.
Defaults to an empty dict.
data_preprocessor (dict, optional): The config for preprocessing input
data. If None or no specified type, it will use
"MultiModalDataPreprocessor" as type. See :class:
`MultiModalDataPreprocessor` for more details. Defaults to None.
init_cfg (dict, optional): The initialization config. Defaults to None.
"""
support_tasks = {'caption', 'vqa', 'refcoco'}
def __init__(
self,
encoder_cfg,
decoder_cfg,
vocab_size,
embedding_dim,
tokenizer,
task,
prompt=None,
ans2label: Union[dict, str, None] = None,
generation_cfg=dict(),
data_preprocessor: Optional[dict] = None,
init_cfg=None,
):
if data_preprocessor is None:
data_preprocessor = {}
if isinstance(data_preprocessor, dict):
data_preprocessor.setdefault('type', 'MultiModalDataPreprocessor')
data_preprocessor = MODELS.build(data_preprocessor)
super().__init__(
init_cfg=init_cfg, data_preprocessor=data_preprocessor)
if isinstance(tokenizer, dict):
self.tokenizer = TOKENIZER.build(tokenizer)
else:
self.tokenizer = tokenizer
if task not in self.support_tasks:
raise ValueError(f'Unsupported task {task}, please select '
f'the task from {self.support_tasks}.')
self.prompt = prompt
self.task = task
if isinstance(ans2label, str):
self.ans2label = mmengine.load(ans2label)
else:
self.ans2label = ans2label
if self.task == 'vqa' and self.ans2label is not None:
self.constraint_trie = Trie(eos=self.tokenizer.eos_token_id)
answers = [f' {answer}' for answer in self.ans2label]
answer_tokens = self.tokenizer(answers, padding=False)
for answer_token in answer_tokens['input_ids']:
self.constraint_trie.insert(answer_token)
else:
self.constraint_trie = None
generation_cfg = {
'num_beams': 5,
'max_new_tokens': 20,
'no_repeat_ngram_size': 3,
**generation_cfg,
}
self.model = OFAEncoderDecoder(
encoder_cfg=encoder_cfg,
decoder_cfg=decoder_cfg,
padding_idx=self.tokenizer.pad_token_id,
vocab_size=vocab_size,
embedding_dim=embedding_dim,
generation_cfg=generation_cfg,
)
def forward(
self,
images: torch.Tensor,
data_samples: Optional[list] = None,
mode: str = 'predict',
**kwargs,
):
"""The unified entry for a forward process in both training and test.
The method accepts the following modes:
- "predict": Forward and return a list of data samples contain the
predict results.
Args:
images (torch.Tensor): the preprocessed image tensor of shape
``(N, C, H, W)``.
data_samples (List[DataSample], optional): The annotation data
of every samples. Defaults to None.
mode (str): Return what kind of value. Defaults to 'predict'.
"""
if mode == 'predict':
return self.predict(images, data_samples, **kwargs)
else:
raise RuntimeError(f'Invalid mode "{mode}".')
def predict(
self,
images,
data_samples=None,
post_process=True,
**generation_config,
):
text_tokens = self.preprocess_text(data_samples, images.size(0),
images.device)
if 'images_mask' in data_samples[0]:
images_mask = torch.tensor([
sample.get('images_mask') for sample in data_samples
]).bool().to(images.device)
else:
images_mask = None
num_beams = generation_config.get(
'num_beams', getattr(self.model.generation_config, 'num_beams'))
decoder_prompts = self.get_decoder_prompts(data_samples)
constrain_fn = partial(
apply_constraint,
constraint_trie=self.constraint_trie,
decoder_prompts=decoder_prompts,
num_beams=num_beams,
)
outputs = self.model.generate(
input_ids=text_tokens,
images=images,
images_mask=images_mask,
constrain_fn=constrain_fn,
**generation_config,
)
if decoder_prompts is not None:
# Remove the prefix decoder prompt.
for prompt_ids, token in zip(decoder_prompts, outputs):
token[1:len(prompt_ids) + 1] = self.tokenizer.pad_token_id
if post_process:
return self.post_process(outputs, data_samples)
else:
return outputs
def get_decoder_prompts(self, data_samples):
decoder_prompts = []
if 'decoder_prompt' not in data_samples[0]:
return None
for sample in data_samples:
prompt = ' ' + sample.get('decoder_prompt')
prompt_ids = self.tokenizer(prompt, add_special_tokens=False)
prompt_ids = prompt_ids['input_ids']
decoder_prompts.append(prompt_ids)
return decoder_prompts
def preprocess_text(self, data_samples, batch_size, device):
if self.task == 'caption':
prompt = self.prompt or ' what does the image describe?'
prompts = [prompt] * batch_size
prompts = self.tokenizer(prompts, return_tensors='pt')
return prompts.input_ids.to(device)
elif self.task == 'vqa':
prompts = []
for sample in data_samples:
assert 'question' in sample
prompt = ' ' + sample.get('question')
prompts.append(prompt)
prompts = self.tokenizer(
prompts, return_tensors='pt', padding=True)
return prompts.input_ids.to(device)
elif self.task == 'refcoco':
prompt_template = self.prompt or \
' which region does the text " {} " describe?'
prompts = []
for sample in data_samples:
assert 'text' in sample
prompt = prompt_template.format(sample.get('text'))
prompts.append(prompt)
prompts = self.tokenizer(
prompts, return_tensors='pt', padding=True)
return prompts.input_ids.to(device)
def post_process(self, outputs, data_samples):
out_data_samples = []
if data_samples is None:
data_samples = [None] * outputs.size(0)
for data_sample, token in zip(data_samples, outputs):
if data_sample is None:
data_sample = DataSample()
if self.task == 'caption':
text = self.tokenizer.decode(token, skip_special_tokens=True)
text = CleanCaption(
lowercase=False,
remove_chars=string.punctuation).clean(text)
data_sample.pred_caption = text
elif self.task == 'vqa':
text = self.tokenizer.decode(token, skip_special_tokens=True)
data_sample.pred_answer = text.strip()
elif self.task == 'refcoco':
bbox = token[1:5] - self.tokenizer.bin_offset
# During training, the bbox is normalized by 512. It's related
# to the `max_image_size` config in the official repo.
bbox = bbox / self.tokenizer.num_bins * 512
scale_factor = data_sample.get('scale_factor', (1, 1))
bbox[0::2] /= scale_factor[0]
bbox[1::2] /= scale_factor[1]
data_sample.pred_bboxes = bbox.unsqueeze(0)
if 'gt_bboxes' in data_sample:
gt_bboxes = bbox.new_tensor(data_sample.gt_bboxes)
gt_bboxes[:, 0::2] /= scale_factor[0]
gt_bboxes[:, 1::2] /= scale_factor[1]
data_sample.gt_bboxes = gt_bboxes
out_data_samples.append(data_sample)
return out_data_samples
|