Spaces:
Runtime error
Runtime error
File size: 64,644 Bytes
4d0eb62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from dataclasses import dataclass
from functools import partial
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn.bricks import DropPath
from mmengine.model import BaseModule
from mmengine.utils import digit_version
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions, ModelOutput, Seq2SeqLMOutput)
from transformers.modeling_utils import (GenerationConfig, GenerationMixin,
PretrainedConfig)
from mmpretrain.registry import MODELS
from ...backbones.resnet import Bottleneck, ResNet
if digit_version(torch.__version__) >= digit_version('1.10.0'):
torch_meshgrid = partial(torch.meshgrid, indexing='ij')
else:
torch_meshgrid = torch.meshgrid
def make_token_bucket_position(bucket_size, max_position=1024):
context_pos = torch.arange(max_position, dtype=torch.long)[:, None]
memory_pos = torch.arange(max_position, dtype=torch.long)[None, :]
relative_pos = context_pos - memory_pos
sign = torch.sign(relative_pos)
mid = bucket_size // 2
abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid),
mid - 1, torch.abs(relative_pos))
log_pos = torch.ceil(
torch.log(abs_pos / mid) / math.log(
(max_position - 1) / mid) * (mid - 1)) + mid
log_pos = log_pos.int()
bucket_pos = torch.where(abs_pos.le(mid), relative_pos,
log_pos * sign).long()
return bucket_pos + bucket_size - 1
def make_image_bucket_position(bucket_size, num_relative_distance):
coords_h = torch.arange(bucket_size)
coords_w = torch.arange(bucket_size)
# (2, h, w)
coords = torch.stack(torch_meshgrid([coords_h, coords_w]))
# (2, h*w)
coords_flatten = torch.flatten(coords, 1)
# (2, h*w, h*w)
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
# (h*w, h*w, 2)
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
relative_coords[:, :, 0] += bucket_size - 1 # shift to start from 0
relative_coords[:, :, 1] += bucket_size - 1
relative_coords[:, :, 0] *= 2 * bucket_size - 1
relative_position_index = torch.zeros(
size=(bucket_size * bucket_size + 1, ) * 2,
dtype=relative_coords.dtype)
# (h*w, h*w)
relative_position_index[1:, 1:] = relative_coords.sum(-1)
relative_position_index[0, 0:] = num_relative_distance - 3
relative_position_index[0:, 0] = num_relative_distance - 2
relative_position_index[0, 0] = num_relative_distance - 1
return relative_position_index
def _make_causal_mask(input_ids_shape: torch.Size,
dtype: torch.dtype,
past_key_values_length: int = 0):
"""Make causal mask used for uni-directional self-attention."""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), float('-inf'))
mask_cond = torch.arange(mask.size(-1))
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat(
[torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask],
dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len,
tgt_len + past_key_values_length)
def _expand_mask(mask: torch.Tensor,
dtype: torch.dtype,
tgt_len: Optional[int] = None):
"""Expands attention_mask from ``[B, L_s]`` to ``[B, 1, L_t, L_s]``.
Where ``B`` is batch_size, `L_s`` is the source sequence length, and
``L_t`` is the target sequence length.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len,
src_len).to(dtype)
return expanded_mask.masked_fill(expanded_mask.bool(),
torch.finfo(dtype).min)
class MultiheadAttention(BaseModule):
"""Multi-head Attention Module for OFA.
Args:
embedding_dim (int): The embedding dimension of query.
num_heads (int): Parallel attention heads.
kdim (int, optional): The embedding dimension of key.
Defaults to None, which means the same as the `embedding_dim`.
vdim (int, optional): The embedding dimension of value.
Defaults to None, which means the same as the `embedding_dim`.
attn_drop (float): Dropout rate of the dropout layer after the
attention calculation of query and key. Defaults to 0.
qkv_bias (bool): If True, add a learnable bias to q, k, v.
Defaults to True.
scale_factor (float): The scale of qk will be
``(head_dim * scale_factor) ** -0.5``. Defaults to 1.
proj_bias (bool) If True, add a learnable bias to output projection.
Defaults to True.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
"""
def __init__(self,
embedding_dim,
num_heads,
kdim=None,
vdim=None,
attn_drop=0.,
scale_factor=1.,
qkv_bias=True,
proj_bias=True,
scale_heads=False,
init_cfg=None):
super(MultiheadAttention, self).__init__(init_cfg=init_cfg)
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.kdim = kdim or embedding_dim
self.vdim = vdim or embedding_dim
self.head_dim = embedding_dim // num_heads
self.scale = (self.head_dim * scale_factor)**-0.5
self.q_proj = nn.Linear(embedding_dim, embedding_dim, bias=qkv_bias)
self.k_proj = nn.Linear(self.kdim, embedding_dim, bias=qkv_bias)
self.v_proj = nn.Linear(self.vdim, embedding_dim, bias=qkv_bias)
self.out_proj = nn.Linear(embedding_dim, embedding_dim, bias=proj_bias)
self.attn_drop = nn.Dropout(p=attn_drop)
if scale_heads:
self.c_attn = nn.Parameter(torch.ones(num_heads))
else:
self.c_attn = None
def forward(
self,
query,
key_value=None,
attn_mask=None,
attn_bias=None,
past_key_value=None,
output_attentions=False,
):
B, _, C = query.shape
assert C == self.head_dim * self.num_heads
is_cross_attention = key_value is not None
if key_value is None:
key_value = query
# (B, L, C) -> (B, num_heads, L, head_dims)
q = self.q_proj(query).reshape(B, -1, self.num_heads,
self.head_dim).transpose(1, 2)
if is_cross_attention and past_key_value is not None:
# Reuse key and value in cross_attentions
k, v = past_key_value
else:
k = self.k_proj(key_value).reshape(B, -1, self.num_heads,
self.head_dim).transpose(1, 2)
v = self.v_proj(key_value).reshape(B, -1, self.num_heads,
self.head_dim).transpose(1, 2)
if past_key_value is not None:
past_key, past_value = past_key_value
k = torch.cat([past_key, k], dim=2)
v = torch.cat([past_value, v], dim=2)
past_key_value = (k, v)
attn_weights = q @ k.transpose(-2, -1) * self.scale
if attn_bias is not None:
src_len = k.size(2)
attn_weights[:, :, -src_len:] += attn_bias[:, :, -src_len:]
if attn_mask is not None:
attn_weights += attn_mask
attn_weights = torch.softmax(attn_weights, dim=-1)
attn = self.attn_drop(attn_weights) @ v
if self.c_attn is not None:
attn = torch.einsum('bhlc,h->bhlc', attn, self.c_attn)
# (B, num_heads, L, head_dims) -> (B, L, C)
attn = attn.transpose(1, 2).reshape(B, -1, self.embedding_dim)
attn = self.out_proj(attn)
if output_attentions:
return attn, attn_weights, past_key_value
else:
return attn, None, past_key_value
@MODELS.register_module(force=True)
class OFAResNet(ResNet):
"""ResNet module for OFA.
The ResNet in OFA has only three stages.
"""
arch_settings = {
50: (Bottleneck, (3, 4, 6)),
101: (Bottleneck, (3, 4, 23)),
152: (Bottleneck, (3, 8, 36)),
}
def __init__(self, depth, *args, **kwargs):
super().__init__(
depth=depth,
*args,
num_stages=3,
out_indices=(2, ),
dilations=(1, 1, 1),
strides=(1, 2, 2),
**kwargs)
@dataclass
class OFAEncoderOutput(ModelOutput):
"""OFA encoder outputs.
Args:
last_hidden_state (torch.tensor): The hidden-states of the output at
the last layer of the model. The shape is (B, L, C).
hidden_states (Tuple[torch.tensor]): The initial embedding and the
output of each layer. The shape of every item is (B, L, C).
attentions (Tuple[torch.tensor]): The attention weights after the
attention softmax, used to compute the weighted average in the
self-attention heads. The shape of every item is
(B, num_heads, L, L).
position_embedding (torch.tensor): The positional embeddings of the
inputs. The shape is (B, L, C).
"""
last_hidden_state: torch.FloatTensor = None
padding_mask: torch.Tensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
position_embedding: Optional[torch.FloatTensor] = None
class OFAEncoderLayer(nn.Module):
"""OFAEncoder layer block."""
def __init__(self,
embedding_dim,
num_heads,
dropout_rate=0.,
drop_path_rate=0.,
attn_drop=0.,
act_drop=0.,
scale_factor=2.,
mlp_ratio=4.,
scale_heads=True,
normformer=True,
pre_norm=True,
act_cfg=dict(type='GELU')):
super().__init__()
self.embedding_dim = embedding_dim
self.pre_norm = pre_norm
self.attn = MultiheadAttention(
embedding_dim=embedding_dim,
num_heads=num_heads,
attn_drop=attn_drop,
scale_factor=scale_factor,
scale_heads=scale_heads,
)
mid_channels = int(embedding_dim * mlp_ratio)
self.fc1 = nn.Linear(embedding_dim, mid_channels)
self.fc2 = nn.Linear(mid_channels, embedding_dim)
self.act = MODELS.build(act_cfg)
self.act_drop = nn.Dropout(
act_drop) if act_drop > 0. else nn.Identity()
# LayerNorm between attention block and ffn block.
self.attn_ln = nn.LayerNorm(embedding_dim)
self.ffn_ln = nn.LayerNorm(embedding_dim)
# Extra LayerNorm
self.normformer = normformer
if self.normformer:
self.attn_mid_ln = nn.LayerNorm(embedding_dim)
self.ffn_mid_ln = nn.LayerNorm(mid_channels)
self.dropout = nn.Dropout(dropout_rate)
self.drop_path = DropPath(
drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
def forward(self,
x,
attention_mask=None,
attn_bias=None,
output_attentions=False):
"""Forward the encoder layer.
Args:
x (torch.tensor): The input to the layer of shape ``(B, L, C)``.
attention_mask (torch.Tensor, optional): The attention mask of size
``(B, 1, L, L)``, where padding elements are indicated by very
large negative values. Defaults to None.
attn_bias (torch.tensor, optional): The bias for positional
information. Defaults to None.
output_attentions (bool): Whether to return the attentions tensors
of the attention layer.
Returns:
List[torch.tensor]: The first element is the encoded output of
shape ``(B, L, C)``. And the second element is the output
attentions if ``output_attentions=True``.
"""
residual = x
# Attention block
if self.pre_norm:
x = self.attn_ln(x)
x, attn_weights, _ = self.attn(
query=x,
attn_mask=attention_mask,
attn_bias=attn_bias,
output_attentions=output_attentions)
if self.normformer:
x = self.attn_mid_ln(x)
x = self.dropout(x)
x = residual + self.drop_path(x)
if not self.pre_norm:
x = self.attn_ln(x)
residual = x
# FFN block
if self.pre_norm:
x = self.ffn_ln(x)
x = self.act(self.fc1(x))
x = self.act_drop(x)
if self.normformer:
x = self.ffn_mid_ln(x)
x = self.fc2(x)
x = self.dropout(x)
x = residual + self.drop_path(x)
if not self.pre_norm:
x = self.ffn_ln(x)
if output_attentions:
return [x, attn_weights]
else:
return [x]
class OFADecoderLayer(nn.Module):
"""OFADecoder layer block."""
def __init__(self,
embedding_dim,
num_heads,
dropout_rate=0.,
drop_path_rate=0.,
attn_drop=0.,
act_drop=0.,
scale_factor=2.,
mlp_ratio=4.,
encoder_embed_dim=None,
scale_heads=True,
normformer=True,
pre_norm=True,
act_cfg=dict(type='GELU')):
super().__init__()
self.embedding_dim = embedding_dim
self.pre_norm = pre_norm
self.self_attn = MultiheadAttention(
embedding_dim=embedding_dim,
num_heads=num_heads,
attn_drop=attn_drop,
scale_factor=scale_factor,
scale_heads=scale_heads,
)
self.cross_attn = MultiheadAttention(
embedding_dim=embedding_dim,
kdim=encoder_embed_dim,
vdim=encoder_embed_dim,
num_heads=num_heads,
attn_drop=attn_drop,
scale_factor=scale_factor,
scale_heads=scale_heads,
)
mid_channels = int(embedding_dim * mlp_ratio)
self.fc1 = nn.Linear(embedding_dim, mid_channels)
self.fc2 = nn.Linear(mid_channels, embedding_dim)
self.act = MODELS.build(act_cfg)
self.act_drop = nn.Dropout(
act_drop) if act_drop > 0. else nn.Identity()
# LayerNorm between attention block and ffn block.
self.self_attn_ln = nn.LayerNorm(embedding_dim)
self.cross_attn_ln = nn.LayerNorm(embedding_dim)
self.ffn_ln = nn.LayerNorm(embedding_dim)
# Extra LayerNorm
self.normformer = normformer
if self.normformer:
self.self_attn_mid_ln = nn.LayerNorm(embedding_dim)
self.cross_attn_mid_ln = nn.LayerNorm(embedding_dim)
self.ffn_mid_ln = nn.LayerNorm(mid_channels)
self.dropout = nn.Dropout(dropout_rate)
self.drop_path = DropPath(
drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
def forward(
self,
x,
attention_mask=None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[List[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
self_attn_bias: Optional[torch.Tensor] = None,
cross_attn_bias: Optional[torch.Tensor] = None,
):
"""Forward the decoder layer.
Args:
x (torch.tensor): The input to the layer of shape ``(B, L, C)``.
attention_mask (torch.Tensor, optional): The attention mask of size
``(B, 1, L, L)``, where padding elements are indicated by very
large negative values. Defaults to None.
encoder_hidden_states (torch.Tensor, optional): The cross attention
input to the layer of size ``(B, L, C)``. Defaults to None.
encoder_attention_mask (torch.Tensor, optional): The cross
attention mask where padding elements are indicated by very
large negative values. Defaults to None.
past_key_value (Tuple[torch.tensor], optional): The cached past key
and value projection states. Defaults to none.
output_attentions (bool): whether to return the attentions tensors
of all attention layers. Defaults to False.
use_cache (bool, optional): Whether to use cache.
Defaults to False.
self_attn_bias (torch.Tensor, optional): The self attention bias
for positional information. Defaults to None.
cross_attn_bias (torch.Tensor, optional): The cross attention bias
for positional information. Defaults to None.
Returns:
List[torch.tensor]: The first element is the encoded output of
shape ``(B, L, C)``. The following two elements can be the output
self-attentions and cross-attentions if ``output_attentions=True``.
The following one element can be the cached past key and value
projection states.
"""
residual = x
if past_key_value is not None:
self_past_key_value = past_key_value[:2]
cross_past_key_value = past_key_value[2:]
else:
self_past_key_value, cross_past_key_value = None, None
# Self-Attention block
if self.pre_norm:
x = self.self_attn_ln(x)
x, self_attn_weights, present_key_value = self.self_attn(
query=x,
past_key_value=self_past_key_value,
attn_mask=attention_mask,
output_attentions=output_attentions,
attn_bias=self_attn_bias,
)
if self.normformer:
x = self.self_attn_mid_ln(x)
x = self.dropout(x)
x = residual + self.drop_path(x)
if not self.pre_norm:
x = self.self_attn_ln(x)
# Cross-Attention block
if encoder_hidden_states is not None:
residual = x
if self.pre_norm:
x = self.cross_attn_ln(x)
x, cross_attn_weights, cross_key_value = self.cross_attn.forward(
query=x,
key_value=encoder_hidden_states,
attn_mask=encoder_attention_mask,
past_key_value=cross_past_key_value,
output_attentions=output_attentions,
attn_bias=cross_attn_bias)
if self.normformer:
x = self.cross_attn_mid_ln(x)
x = self.dropout(x)
x = residual + self.drop_path(x)
if not self.pre_norm:
x = self.cross_attn_ln(x)
present_key_value = present_key_value + cross_key_value
residual = x
# FFN block
if self.pre_norm:
x = self.ffn_ln(x)
x = self.act(self.fc1(x))
x = self.act_drop(x)
if self.normformer:
x = self.ffn_mid_ln(x)
x = self.fc2(x)
x = self.dropout(x)
x = residual + self.drop_path(x)
if not self.pre_norm:
x = self.ffn_ln(x)
outputs = [x]
if output_attentions:
outputs.extend([self_attn_weights, cross_attn_weights])
if use_cache:
outputs.append(present_key_value)
return outputs
class OFAEncoder(BaseModule):
"""The encoder module of OFA.
Args:
embed_tokens (nn.Embedding): The embedding module to embed the
input tokens.
embed_images (dict | nn.Module): The module to embed the input
images into features. The output number of channels should
be 1024.
num_layers (int): The number of encoder layers. Defaults to 6.
num_heads (int): The number of heads of attention. Defaults to 12.
dropout_rate (float): The prob of dropout for embedding and
transformer layers. Defaults to 0.
drop_path_rate (float): The prob of droppath for transformer layers.
Defaults to 0.
max_source_positions (int): The maximum length of the input tokens.
Defaults to 1024.
token_bucket_size (int): The token bucket size, it's used as the
maximum relative position index in relative position embedding
of input tokens. Defaults to 256.
image_bucket_size (int): The image bucket size, it's used to generate
the image relative position embedding table. It should be larger
than the shape of image feature map. Defaults to 42.
attn_scale_factor (float): The scale factor to calculate qk scale in
attentions. Defaults to 2.
scale_embedding (bool): Whether to scale the embeddings by the square
root of the dimension. Defaults to False.
add_embedding_ln (bool): Whether to add an extra layer norm for token
embeddings. Defaults to True.
add_image_embedding_ln (bool): Whether to add an extra layer norm for
image embeddings. Defaults to True.
pre_norm (bool): Whether to do layer norm before attention and ffn
blocks in transformer layers. Defaults to True.
entangle_position_embedding (bool): Whether to add the position
embedding on the embeddings directly. Defaults to False.
init_cfg (dict, optional): The initialization config. Defaults to None.
"""
def __init__(
self,
embed_tokens,
embed_images: dict,
num_layers=6,
num_heads=12,
dropout_rate=0.,
drop_path_rate=0.,
max_source_positions=1024,
token_bucket_size=256,
image_bucket_size=42,
attn_scale_factor=2.,
scale_embedding=False,
add_embedding_ln=True,
add_type_embed=True,
add_image_embedding_ln=True,
pre_norm=True,
entangle_position_embedding=False,
init_cfg=None,
):
super().__init__(init_cfg=init_cfg)
self.num_layers = num_layers
embedding_dim = embed_tokens.embedding_dim
self.embedding_dim = embedding_dim
self.padding_idx = embed_tokens.padding_idx
self.max_source_positions = max_source_positions
self.num_heads = num_heads
# Build embedding process components
self.embed_tokens = embed_tokens
self.embedding_scale = math.sqrt(
embedding_dim) if scale_embedding else 1.0
if not isinstance(embed_images, nn.Module):
self.embed_images = MODELS.build(embed_images)
else:
self.embed_images = embed_images
self.image_proj = nn.Linear(1024, embedding_dim)
if add_embedding_ln:
self.embedding_ln = nn.LayerNorm(embedding_dim)
else:
self.embedding_ln = None
if add_type_embed:
self.embed_type = nn.Embedding(2, embedding_dim)
else:
self.embed_type = None
if add_image_embedding_ln:
self.image_embedding_ln = nn.LayerNorm(embedding_dim)
else:
self.image_embedding_ln = None
self.entangle_position_embedding = entangle_position_embedding
# Build position embedding
self.embed_positions = nn.Embedding(self.max_source_positions + 2,
embedding_dim)
self.pos_ln = nn.LayerNorm(embedding_dim)
self.embed_image_positions = nn.Embedding(image_bucket_size**2 + 1,
embedding_dim)
self.image_pos_ln = nn.LayerNorm(embedding_dim)
self.pos_scaling = float(embedding_dim / num_heads *
attn_scale_factor)**-0.5
self.pos_q_linear = nn.Linear(embedding_dim, embedding_dim)
self.pos_k_linear = nn.Linear(embedding_dim, embedding_dim)
self.dropout = nn.Dropout(
dropout_rate) if dropout_rate > 0. else nn.Identity()
# Register token relative position embedding table
self.token_bucket_size = token_bucket_size
token_num_rel_dis = 2 * token_bucket_size - 1
token_rp_bucket = make_token_bucket_position(token_bucket_size,
self.max_source_positions)
self.register_buffer('token_rp_bucket', token_rp_bucket)
self.token_rel_pos_table_list = nn.ModuleList()
# Register image relative position embedding table
self.image_bucket_size = image_bucket_size
image_num_rel_dis = (2 * image_bucket_size -
1) * (2 * image_bucket_size - 1) + 3
image_rp_bucket = make_image_bucket_position(image_bucket_size,
image_num_rel_dis)
self.register_buffer('image_rp_bucket', image_rp_bucket)
self.image_rel_pos_table_list = nn.ModuleList()
# Build encoder layers
self.layers = nn.ModuleList()
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_layers)]
for index in range(self.num_layers):
layer = OFAEncoderLayer(
embedding_dim=embedding_dim,
num_heads=num_heads,
dropout_rate=dropout_rate,
drop_path_rate=dpr[index],
scale_factor=attn_scale_factor,
pre_norm=pre_norm,
)
self.layers.append(layer)
token_pos_table = nn.Embedding(token_num_rel_dis, self.num_heads)
image_pos_table = nn.Embedding(image_num_rel_dis, self.num_heads)
nn.init.constant_(token_pos_table.weight, 0.)
nn.init.constant_(image_pos_table.weight, 0.)
self.token_rel_pos_table_list.append(token_pos_table)
self.image_rel_pos_table_list.append(image_pos_table)
if pre_norm:
self.final_ln = nn.LayerNorm(embedding_dim)
else:
self.final_ln = None
main_input_name = 'input_ids'
def forward(self,
input_ids,
images,
images_mask,
output_attentions=False,
output_hidden_states=False,
sample_patch_num=None):
padding_mask = input_ids.eq(self.padding_idx)
has_pads = padding_mask.any()
token_embedding = self.embed_tokens(input_ids)
token_embedding = self.embedding_scale * token_embedding
# Embed the token position
src_pos_idx = torch.arange(input_ids.size(-1), device=input_ids.device)
src_pos_idx = src_pos_idx.expand(*input_ids.shape).contiguous()
pos_embedding = self.embed_positions(src_pos_idx)
# Embed the input tokens
x = self.process_embedding(
embedding=token_embedding,
type_tokens=input_ids.new_zeros(token_embedding.shape[:2]),
pos_embedding=pos_embedding,
embedding_ln=self.embedding_ln,
)
pos_embedding = self.pos_ln(pos_embedding)
# Embed the input images
if images is not None:
(image_tokens, image_padding_mask, image_position_ids,
image_pos_embedding) = self.get_image_tokens(
images,
sample_patch_num,
images_mask,
)
image_embedding = self.image_proj(image_tokens)
image_x = self.process_embedding(
embedding=image_embedding,
type_tokens=input_ids.new_ones(image_embedding.shape[:2]),
pos_embedding=image_pos_embedding,
embedding_ln=self.image_embedding_ln,
)
image_pos_embedding = self.image_pos_ln(image_pos_embedding)
x = torch.cat([image_x, x], dim=1)
padding_mask = torch.cat([image_padding_mask, padding_mask], dim=1)
pos_embedding = torch.cat([image_pos_embedding, pos_embedding],
dim=1)
# account for padding while computing the representation
if has_pads:
x = x * (1 - padding_mask.unsqueeze(-1).type_as(x))
# Decoupled position embedding
B, L = pos_embedding.shape[:2]
pos_q = self.pos_q_linear(pos_embedding).view(
B, L, self.num_heads, -1).transpose(1, 2) * self.pos_scaling
pos_k = self.pos_k_linear(pos_embedding).view(B, L, self.num_heads,
-1).transpose(1, 2)
abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3))
all_hidden_states = [] if output_hidden_states else None
all_attentions = [] if output_attentions else None
for idx, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states.append(x)
self_attn_bias = abs_pos_bias.clone()
# Add decoupled position embedding for input tokens.
token_len = input_ids.size(1)
rel_pos_bias = self.get_rel_pos_bias(input_ids, idx)
self_attn_bias[:, :, -token_len:, -token_len:] += rel_pos_bias
# Add decoupled position embedding for images
if images is not None:
token_len = image_tokens.size(1)
rel_pos_bias = self.get_image_rel_pos_bias(
image_position_ids, idx)
self_attn_bias[:, :, :token_len, :token_len] += rel_pos_bias
if has_pads:
attention_mask = _expand_mask(padding_mask, dtype=x.dtype)
else:
attention_mask = None
out = layer(
x,
attention_mask=attention_mask,
attn_bias=self_attn_bias,
output_attentions=output_attentions)
x = out[0]
if output_attentions:
all_attentions.append(out[1])
if output_hidden_states:
all_hidden_states.append(x)
if self.final_ln is not None:
x = self.final_ln(x)
return OFAEncoderOutput(
last_hidden_state=x, # (B, L, C)
padding_mask=padding_mask, # (B, L)
position_embedding=pos_embedding, # (B, L, C)
hidden_states=all_hidden_states, # list of (B, L, C)
attentions=all_attentions, # list of (B, num_heads, L, head_dims)
)
def get_image_tokens(self, images, sample_patch_num, images_mask):
image_embedding = self.embed_images(images)[-1]
B, C, H, W = image_embedding.shape
num_patches = H * W
padding_mask = images.new_zeros((B, num_patches)).bool()
position_col = torch.arange(W).unsqueeze(0)
position_row = torch.arange(H).unsqueeze(1) * self.image_bucket_size
position_idx = (position_col + position_row + 1).view(-1)
position_idx = position_idx.to(images.device).expand(B, num_patches)
# (B, C, H, W) -> (B, C, H*W) -> (B, H*W, C)
image_embedding = image_embedding.flatten(2).transpose(1, 2)
if sample_patch_num is not None:
patch_orders = torch.stack([
torch.randperm(num_patches)[:sample_patch_num]
for _ in range(B)
])
num_patches = sample_patch_num
image_embedding = image_embedding.gather(
dim=1, index=patch_orders.unsqueeze(2).expand(-1, -1, C))
padding_mask = padding_mask.gather(1, patch_orders)
position_idx = position_idx.gather(1, patch_orders)
pos_embedding = self.embed_image_positions(position_idx)
padding_mask[~images_mask] = True
return image_embedding, padding_mask, position_idx, pos_embedding
def process_embedding(self,
embedding,
pos_embedding=None,
type_tokens=None,
embedding_ln=None):
if self.entangle_position_embedding and pos_embedding is not None:
embedding += pos_embedding
if self.embed_type is not None:
embedding += self.embed_type(type_tokens)
if embedding_ln is not None:
embedding = embedding_ln(embedding)
embedding = self.dropout(embedding)
return embedding
def get_rel_pos_bias(self, x, idx):
seq_len = x.size(1)
rp_bucket = self.token_rp_bucket[:seq_len, :seq_len]
values = F.embedding(rp_bucket,
self.token_rel_pos_table_list[idx].weight)
values = values.unsqueeze(0).expand(x.size(0), -1, -1, -1)
values = values.permute([0, 3, 1, 2])
return values.contiguous()
def get_image_rel_pos_bias(self, image_position_ids, idx):
bsz, seq_len = image_position_ids.shape
rp_bucket_size = self.image_rp_bucket.size(1)
rp_bucket = self.image_rp_bucket.unsqueeze(0).expand(
bsz, rp_bucket_size, rp_bucket_size).gather(
1, image_position_ids[:, :, None].expand(
bsz, seq_len, rp_bucket_size)).gather(
2, image_position_ids[:, None, :].expand(
bsz, seq_len, seq_len))
values = F.embedding(rp_bucket,
self.image_rel_pos_table_list[idx].weight)
values = values.permute(0, 3, 1, 2)
return values
class OFADecoder(BaseModule):
"""The decoder module of OFA.
Args:
embed_tokens (nn.Embedding): The embedding module to embed the
input tokens.
num_layers (int): The number of decoder layers. Defaults to 6.
num_heads (int): The number of heads of attention. Defaults to 12.
dropout_rate (float): The prob of dropout for embedding and
transformer layers. Defaults to 0.
drop_path_rate (float): The prob of droppath for transformer layers.
Defaults to 0.
max_target_positions (int): The maximum length of the input tokens.
Defaults to 1024.
code_image_size (int): The resolution of the generated image in the
image infilling task. Defaults to 128.
token_bucket_size (int): The token bucket size, it's used as the
maximum relative position index in relative position embedding
of input tokens. Defaults to 256.
image_bucket_size (int): The image bucket size, it's used to generate
the image relative position embedding table. It should be larger
than the shape of image feature map. Defaults to 42.
attn_scale_factor (float): The scale factor to calculate qk scale in
attentions. Defaults to 2.
scale_embedding (bool): Whether to scale the embeddings by the square
root of the dimension. Defaults to False.
add_embedding_ln (bool): Whether to add an extra layer norm for token
embeddings. Defaults to True.
add_code_embedding_ln (bool): Whether to add an extra layer norm for
code embeddings. Defaults to True.
pre_norm (bool): Whether to do layer norm before attention and ffn
blocks in transformer layers. Defaults to True.
entangle_position_embedding (bool): Whether to add the position
embedding on the embeddings directly. Defaults to False.
share_input_output_embed (bool): Share the weights of the input token
embedding module and the output projection module.
Defaults to True.
init_cfg (dict, optional): The initialization config. Defaults to None.
"""
def __init__(
self,
embed_tokens,
num_layers=6,
num_heads=12,
dropout_rate=0.,
drop_layer_rate=0.,
drop_path_rate=0.,
max_target_positions=1024,
code_image_size=128,
token_bucket_size=256,
image_bucket_size=42,
attn_scale_factor=2.,
scale_embedding=False,
add_embedding_ln=True,
add_code_embedding_ln=True,
pre_norm=True,
entangle_position_embedding=False,
share_input_output_embed=True,
init_cfg=None,
):
super().__init__(init_cfg=init_cfg)
self._future_mask = torch.empty(0)
self.num_layers = num_layers
embedding_dim = embed_tokens.embedding_dim
self.embedding_dim = embedding_dim
self.padding_idx = embed_tokens.padding_idx
self.max_target_positions = max_target_positions
self.num_heads = num_heads
# Build embedding process components
self.embed_tokens = embed_tokens
self.embedding_scale = math.sqrt(
embedding_dim) if scale_embedding else 1.0
if add_embedding_ln:
self.embedding_ln = nn.LayerNorm(embedding_dim)
else:
self.embedding_ln = None
if add_code_embedding_ln:
self.code_embedding_ln = nn.LayerNorm(embedding_dim)
else:
self.code_embedding_ln = None
# Build position embedding
self.embed_positions = nn.Embedding(self.max_target_positions + 2,
embedding_dim)
self.pos_ln = nn.LayerNorm(embedding_dim)
self.embed_image_positions = nn.Embedding(image_bucket_size**2 + 1,
embedding_dim)
self.image_pos_ln = nn.LayerNorm(embedding_dim)
self.pos_scaling = float(embedding_dim / num_heads *
attn_scale_factor)**-0.5
self.self_pos_q_linear = nn.Linear(embedding_dim, embedding_dim)
self.self_pos_k_linear = nn.Linear(embedding_dim, embedding_dim)
self.cross_pos_q_linear = nn.Linear(embedding_dim, embedding_dim)
self.cross_pos_k_linear = nn.Linear(embedding_dim, embedding_dim)
self.entangle_position_embedding = entangle_position_embedding
self.dropout = nn.Dropout(
dropout_rate) if dropout_rate > 0. else nn.Identity()
if drop_layer_rate > 0.:
raise NotImplementedError
# Register token relative position embedding table
self.token_bucket_size = token_bucket_size
token_num_rel_dis = 2 * token_bucket_size - 1
token_rp_bucket = make_token_bucket_position(token_bucket_size)
self.register_buffer('token_rp_bucket', token_rp_bucket)
self.token_rel_pos_table_list = nn.ModuleList()
# Register image relative position embedding table
self.image_bucket_size = image_bucket_size
image_num_rel_dis = (2 * image_bucket_size -
1) * (2 * image_bucket_size - 1) + 3
image_rp_bucket = make_image_bucket_position(image_bucket_size,
image_num_rel_dis)
self.register_buffer('image_rp_bucket', image_rp_bucket)
self.image_rel_pos_table_list = nn.ModuleList()
self.window_size = code_image_size // 8
position_col = torch.arange(self.window_size).unsqueeze(0)
position_row = torch.arange(
self.window_size).unsqueeze(1) * self.image_bucket_size
image_position_idx = (position_col + position_row + 1)
image_position_idx = torch.cat(
[torch.tensor([0]), image_position_idx.view(-1)])
image_position_idx = torch.cat(
[image_position_idx,
torch.tensor([1024] * 768)])
self.register_buffer('image_position_idx', image_position_idx)
# Build decoder layers
self.layers = nn.ModuleList()
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_layers)]
for index in range(self.num_layers):
layer = OFADecoderLayer(
embedding_dim=embedding_dim,
num_heads=num_heads,
dropout_rate=dropout_rate,
drop_path_rate=dpr[index],
scale_factor=attn_scale_factor,
pre_norm=pre_norm,
)
self.layers.append(layer)
token_pos_table = nn.Embedding(token_num_rel_dis, self.num_heads)
image_pos_table = nn.Embedding(image_num_rel_dis, self.num_heads)
nn.init.constant_(token_pos_table.weight, 0.)
nn.init.constant_(image_pos_table.weight, 0.)
self.token_rel_pos_table_list.append(token_pos_table)
self.image_rel_pos_table_list.append(image_pos_table)
if pre_norm:
self.final_ln = nn.LayerNorm(embedding_dim)
else:
self.final_ln = None
# Build output projection
if share_input_output_embed:
self.output_projection = nn.Linear(
self.embed_tokens.weight.shape[1],
self.embed_tokens.weight.shape[0],
bias=False,
)
self.output_projection.weight = self.embed_tokens.weight
else:
vocab_size = self.embed_tokens.num_embeddings
self.output_projection = nn.Linear(
embedding_dim, vocab_size, bias=False)
nn.init.normal_(
self.output_projection.weight,
mean=0,
std=embedding_dim**-0.5,
)
main_input_name = 'input_ids'
def forward(
self,
input_ids: torch.Tensor = None,
attention_mask: torch.Tensor = None,
encoder_hidden_states: torch.Tensor = None,
encoder_attention_mask: torch.Tensor = None,
code_masks: Optional[torch.Tensor] = None,
encoder_pos_embedding: Optional[torch.Tensor] = None,
past_key_values: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
):
if past_key_values is not None and len(past_key_values) > 0:
B, _, L_past, _ = past_key_values[0][0].shape
L = L_past + 1
else:
B, L = input_ids.shape
L_past = 0
# Embed the token position
target_pos_idx = torch.arange(
L, device=input_ids.device).expand([B, L]).contiguous()
pos_embedding = self.embed_positions(target_pos_idx)
# Embed the code positions
if code_masks is not None and torch.any(code_masks):
image_position_idx = self.image_position_idx[:input_ids.size(1)]
image_position_idx = image_position_idx.unsqueeze(0).expand(B, L)
pos_embedding[code_masks] = self.embed_image_positions(
image_position_idx)[code_masks]
# Self-attention position bias (B, num_heads, L_t, L_t)
self_abs_pos_bias = self.get_pos_info(self.pos_ln(pos_embedding))
if code_masks is not None and torch.any(code_masks):
self_image_abs_pos_bias = self.get_pos_info(
self.image_pos_ln(pos_embedding))
self_abs_pos_bias[code_masks] = self_image_abs_pos_bias[code_masks]
# Cross-attention position bias (B, num_heads, L_t, L_s)
cross_abs_pos_bias = self.get_pos_info(
self.pos_ln(pos_embedding), encoder_pos_embedding)
if code_masks is not None and torch.any(code_masks):
cross_image_abs_pos_bias = self.get_pos_info(
self.image_pos_ln(pos_embedding), encoder_pos_embedding)
cross_abs_pos_bias[code_masks] = cross_image_abs_pos_bias[
code_masks]
all_prev_output_tokens = input_ids.clone()
if past_key_values is not None and len(past_key_values) > 0:
input_ids = input_ids[:, -1:]
cross_abs_pos_bias = cross_abs_pos_bias[:, :, -1:, :]
pos_embedding = pos_embedding[:, -1:, :]
# Embed the input tokens
x = self.embed_tokens(input_ids) * self.embedding_scale
if self.entangle_position_embedding:
x += pos_embedding
if self.embedding_ln is not None:
if (code_masks is None or not code_masks.any()
or self.code_embedding_ln is None):
x = self.embedding_ln(x)
elif code_masks is not None and code_masks.all():
x = self.code_embedding_ln(x)
else:
x[~code_masks] = self.embedding_ln(x[~code_masks])
x[code_masks] = self.code_embedding_ln(x[code_masks])
x = self.dropout(x)
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, input_ids.shape, x.dtype, L_past)
attention_mask = attention_mask.to(x.device)
# decoder layers
all_hidden_states = [] if output_hidden_states else None
all_self_attns = [] if output_attentions else None
all_cross_attentions = [] if (
output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = [] if use_cache else None
for idx, layer in enumerate(self.layers):
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states.append(x)
if past_key_values is not None and len(past_key_values) > 0:
past_key_value = past_key_values[idx]
else:
past_key_value = None
self_attn_bias = self_abs_pos_bias.clone()
if code_masks is None or not code_masks.any():
self_attn_bias += self.get_rel_pos_bias(
all_prev_output_tokens, idx)
elif code_masks is not None and code_masks.all():
self_attn_bias += self.get_image_rel_pos_bias(
all_prev_output_tokens, idx)
else:
self_attn_bias[~code_masks] += self.get_rel_pos_bias(
all_prev_output_tokens, idx)
self_attn_bias[code_masks] += self.get_image_rel_pos_bias(
all_prev_output_tokens, idx)
if past_key_value is not None:
self_attn_bias = self_attn_bias[:, :, -1:, :]
out = layer(
x,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
self_attn_bias=self_attn_bias,
cross_attn_bias=cross_abs_pos_bias,
)
x = out.pop(0)
if output_attentions:
all_self_attns.append(out.pop(0))
if encoder_hidden_states is not None:
all_cross_attentions.append(out.pop(0))
if use_cache:
next_decoder_cache.append(out.pop(0))
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (x, )
if self.final_ln is not None:
x = self.final_ln(x)
x = self.output_projection(x)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=x,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
def _prepare_decoder_attention_mask(
self,
attention_mask,
input_shape,
dtype,
past_key_values_length,
):
r"""
Create causal mask for unidirectional decoding.
[bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
"""
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _make_causal_mask(
input_shape,
dtype,
past_key_values_length=past_key_values_length).to(
attention_mask.device)
if attention_mask is not None:
# (B, L_s) -> (B, 1, L_t, L_s)
expanded_attention_mask = _expand_mask(
attention_mask, dtype, tgt_len=input_shape[-1])
combined_attention_mask = (
expanded_attention_mask if combined_attention_mask is None else
expanded_attention_mask + combined_attention_mask)
return combined_attention_mask
def get_pos_info(self, pos_embedding, src_pos_embedding=None):
B, tgt_len = pos_embedding.shape[:2]
if src_pos_embedding is not None:
src_len = src_pos_embedding.size(1)
pos_q = self.cross_pos_q_linear(pos_embedding).view(
B, tgt_len, self.num_heads, -1).transpose(1, 2)
pos_q = pos_q * self.pos_scaling
pos_k = self.cross_pos_k_linear(src_pos_embedding).view(
B, src_len, self.num_heads, -1).transpose(1, 2)
else:
pos_q = self.self_pos_q_linear(pos_embedding).view(
B, tgt_len, self.num_heads, -1).transpose(1, 2)
pos_q = pos_q * self.pos_scaling
pos_k = self.self_pos_k_linear(pos_embedding).view(
B, tgt_len, self.num_heads, -1).transpose(1, 2)
abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3))
return abs_pos_bias
def get_rel_pos_bias(self, x, idx):
seq_len = x.size(1)
rp_bucket = self.token_rp_bucket[:seq_len, :seq_len]
values = F.embedding(rp_bucket,
self.token_rel_pos_table_list[idx].weight)
values = values.unsqueeze(0).expand(x.size(0), -1, -1, -1)
values = values.permute([0, 3, 1, 2])
return values.contiguous()
def get_image_rel_pos_bias(self, image_position_ids, idx):
bsz, seq_len = image_position_ids.shape
rp_bucket_size = self.image_rp_bucket.size(1)
rp_bucket = self.image_rp_bucket.unsqueeze(0).expand(
bsz, rp_bucket_size, rp_bucket_size).gather(
1, image_position_ids[:, :, None].expand(
bsz, seq_len, rp_bucket_size)).gather(
2, image_position_ids[:, None, :].expand(
bsz, seq_len, seq_len))
values = F.embedding(rp_bucket,
self.image_rel_pos_table_list[idx].weight)
values = values.permute(0, 3, 1, 2)
return values
class OFAEncoderDecoder(BaseModule, GenerationMixin):
"""The OFA main architecture with an encoder and a decoder.
Args:
encoder_cfg (dict): The config of the encoder, accept the keyword
arguments of :class:`OFAEncoder`.
decoder_cfg (dict): The config of the decoder, accept the keyword
arguments of :class:`OFADecoder`.
padding_idx (int): The index of the padding token.
vocab_size (int): The size of the vocabulary.
embedding_dim (int): The embedding dimensions of both the encoder
and the decoder.
generation_cfg (dict): The extra generation config, accept the keyword
arguments of :class:`~transformers.GenerationConfig`.
Defaults to an empty dict.
init_cfg (dict, optional): The initialization config. Defaults to None.
"""
def __init__(
self,
encoder_cfg,
decoder_cfg,
padding_idx,
vocab_size,
embedding_dim,
generation_cfg=dict(),
init_cfg=None,
):
super().__init__(init_cfg=init_cfg)
self.padding_idx = padding_idx
self.vocab_size = vocab_size
self.embedding_dim = embedding_dim
embed_tokens = nn.Embedding(vocab_size, embedding_dim, padding_idx)
self.encoder = OFAEncoder(embed_tokens, **encoder_cfg)
self.decoder = OFADecoder(embed_tokens, **decoder_cfg)
self.config = PretrainedConfig(
vocab_size=vocab_size,
embedding_dim=embedding_dim,
padding_idx=padding_idx,
bos_token_id=0,
decoder_start_token_id=0,
pad_token_id=1,
eos_token_id=2,
forced_eos_token_id=2,
use_cache=False,
is_encoder_decoder=True,
)
self.config.update(generation_cfg)
self.generation_config = GenerationConfig.from_model_config(
self.config)
@property
def device(self):
return next(self.parameters()).device
def can_generate(self):
return True
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def max_decoder_positions(self):
"""Maximum length supported by the decoder."""
return self.decoder.max_positions()
def get_normalized_probs(self, net_output, log_probs: bool, sample=None):
"""Get normalized probabilities (or log probs) from a net's output."""
return self.get_normalized_probs_scriptable(net_output, log_probs,
sample)
def get_normalized_probs_scriptable(
self,
net_output,
log_probs: bool,
sample=None,
):
"""Scriptable helper function for get_normalized_probs in.
~BaseFairseqModel.
"""
if hasattr(self, 'decoder'):
return self.decoder.get_normalized_probs(net_output, log_probs,
sample)
elif torch.is_tensor(net_output):
# syntactic sugar for simple models which don't have a decoder
# (e.g., the classification tutorial)
logits = net_output.float()
if log_probs:
return F.log_softmax(logits, dim=-1)
else:
return F.softmax(logits, dim=-1)
raise NotImplementedError
main_input_name = 'input_ids'
def forward(self,
input_ids=None,
images=None,
images_mask=None,
sample_patch_num=None,
decoder_input_ids=None,
code_masks=None,
attention_mask=None,
encoder_outputs=None,
past_key_values=None,
use_cache=False,
output_attentions=False,
output_hidden_states=False,
constrain_fn=None,
return_dict=False):
"""Forword the module.
Args:
input_ids (torch.Tensor): The indices of the input tokens in the
vocabulary, and padding will be ignored by default. The indices
can be obtained using :class:`OFATokenizer`.
The shape is (B, L).
images (torch.Tensor): The input images. The shape is (B, 3, H, W).
images_mask (torch.Tensor): The mask of all available images. The
shape is (B, ).
sample_patch_num (int): The number of patches to sample for the
images. Defaults to None, which means to use all patches.
decoder_input_ids (torch.Tensor): The indices of the input tokens
for the decoder.
code_masks (torch.Tensor): The mask of all samples for image
generation. The shape is (B, ).
attention_mask (torch.Tensor): The attention mask for decoding.
The shape is (B, L).
encoder_outputs (OFAEncoderOutput): The encoder outputs with hidden
states, positional embeddings, and padding masks.
past_key_values (Tuple[Tuple[torch.Tensor]]): If use cache, the
parameter is a tuple of length ``num_layers``. Every item is
also a tuple with four tensors, two for the key and value of
self-attention, two for the key and value of cross-attention.
use_cache (bool): Whether to use cache for faster inference.
Defaults to False.
output_attentions (bool): Whether to output attention weights.
Defaults to False.
output_hidden_states (bool): Whether to output hidden states.
Defaults to False.
constrain_fn (Callable, optional): The function to constrain the
output logits. Defaults to None.
return_dict (bool): Not used, it's only for compat with the
interface of the ``generate`` of ``transformers``.
Returns:
Seq2SeqLMOutput:
- logits (``torch.Tensor``): The last decoder hidden states.
The shape is (B, L, C).
- past_key_values (``Tuple[Tuple[torch.Tensor]]``): The past keys
and values for faster inference.
- decoder_hidden_states (``Tuple[torch.Tensor]``): the decoder
hidden states of all layers.
- decoder_attentions (``Tuple[torch.Tensor]``): The self-attention
weights of all layers in the decoder.
- cross_attentions (``Tuple[torch.Tensor]``): The cross-attention
weights of all layers in the decoder.
- encoder_last_hidden_state (``torch.Tensor``): The last encoder
hidden states.
- encoder_hidden_states (``Tuple[torch.Tensor]``): The encoder
hidden states of all layers, including the embeddings.
- encoder_attentions (``Tuple[torch.Tensor]``): The self-attention
weights of all layers in the encoder.
"""
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
images=images,
images_mask=images_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
sample_patch_num=sample_patch_num,
)
if decoder_input_ids.eq(self.padding_idx).any():
attention_mask = decoder_input_ids.eq(self.padding_idx)
encoder_hidden_states = encoder_outputs.last_hidden_state
encoder_attention_mask = _expand_mask(encoder_outputs.padding_mask,
encoder_hidden_states.dtype,
decoder_input_ids.shape[-1])
src_pos_embed = encoder_outputs.position_embedding
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
code_masks=code_masks,
encoder_pos_embedding=src_pos_embed,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
# The constrain operation for fine-tuned model in OFA is applied
# before log_softmax, therefore we cannot use
# `prefix_allowed_tokens_fn` to implement it.
if constrain_fn is not None:
logits = constrain_fn(decoder_input_ids,
decoder_outputs.last_hidden_state)
else:
logits = decoder_outputs.last_hidden_state
return Seq2SeqLMOutput(
logits=logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def prepare_inputs_for_generation(self,
decoder_input_ids=None,
past=None,
attention_mask=None,
code_masks=None,
use_cache=False,
encoder_outputs=None,
constrain_fn=None,
**kwargs):
# if attention_mask is None:
attention_mask = decoder_input_ids.new_zeros(decoder_input_ids.shape)
# cut decoder_input_ids if past is used
if past is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
return {
'input_ids': None,
'images': None,
'images_mask': None,
'sample_patch_num': None,
'attention_mask': attention_mask,
'encoder_outputs': encoder_outputs,
'past_key_values': past,
'decoder_input_ids': decoder_input_ids,
'code_masks': code_masks,
'use_cache': use_cache,
'constrain_fn': constrain_fn,
}
def _prepare_encoder_decoder_kwargs_for_generation(
self,
inputs_tensor: torch.Tensor,
model_kwargs,
model_input_name: Optional[str] = None):
# 1. get encoder
encoder = self.get_encoder()
# 2. prepare encoder args and encoder kwargs from model kwargs
irrelevant_prefix = [
'decoder_', 'cross_attn', 'use_cache', 'attention_mask',
'constrain_fn'
]
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not any(argument.startswith(p) for p in irrelevant_prefix)
}
if encoder_kwargs.get('images_mask') is None:
encoder_kwargs['images_mask'] = torch.tensor([True] *
inputs_tensor.size(0))
# 3. make sure that encoder returns `ModelOutput`
model_input_name = model_input_name or self.main_input_name
encoder_kwargs[model_input_name] = inputs_tensor
model_kwargs['encoder_outputs']: ModelOutput = encoder(
**encoder_kwargs)
model_kwargs['attention_mask'] = None
return model_kwargs
@staticmethod
def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(
past_state.index_select(0, beam_idx)
for past_state in layer_past), )
return reordered_past
@staticmethod
def _expand_inputs_for_generation(
input_ids: torch.LongTensor,
expand_size: int = 1,
is_encoder_decoder: bool = False,
attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[ModelOutput] = None,
**model_kwargs,
):
expanded_return_idx = (
torch.arange(input_ids.shape[0]).view(-1, 1).repeat(
1, expand_size).view(-1).to(input_ids.device))
input_ids = input_ids.index_select(0, expanded_return_idx)
if attention_mask is not None:
model_kwargs['attention_mask'] = attention_mask.index_select(
0, expanded_return_idx)
if is_encoder_decoder:
if encoder_outputs is None:
raise ValueError('If `is_encoder_decoder` is True, make '
'sure that `encoder_outputs` is defined.')
encoder_outputs['last_hidden_state'] = encoder_outputs.\
last_hidden_state.index_select(0, expanded_return_idx)
encoder_outputs['position_embedding'] = encoder_outputs.\
position_embedding.index_select(0, expanded_return_idx)
encoder_outputs['padding_mask'] = encoder_outputs.\
padding_mask.index_select(0, expanded_return_idx)
model_kwargs['encoder_outputs'] = encoder_outputs
return input_ids, model_kwargs
|