Spaces:
Runtime error
Runtime error
File size: 46,505 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 |
# Copyright (c) OpenMMLab. All rights reserved.
import collections
import copy
from abc import ABCMeta, abstractmethod
from typing import Optional, Sequence, Tuple, Union
import mmcv
import numpy as np
from mmcv.transforms import BaseTransform
from mmdet.structures.bbox import autocast_box_type
from mmengine.dataset import BaseDataset
from mmengine.dataset.base_dataset import Compose
from numpy import random
from mmyolo.registry import TRANSFORMS
class BaseMixImageTransform(BaseTransform, metaclass=ABCMeta):
"""A Base Transform of multiple images mixed.
Suitable for training on multiple images mixed data augmentation like
mosaic and mixup.
Cached mosaic transform will random select images from the cache
and combine them into one output image if use_cached is True.
Args:
pre_transform(Sequence[str]): Sequence of transform object or
config dict to be composed. Defaults to None.
prob(float): The transformation probability. Defaults to 1.0.
use_cached (bool): Whether to use cache. Defaults to False.
max_cached_images (int): The maximum length of the cache. The larger
the cache, the stronger the randomness of this transform. As a
rule of thumb, providing 10 caches for each image suffices for
randomness. Defaults to 40.
random_pop (bool): Whether to randomly pop a result from the cache
when the cache is full. If set to False, use FIFO popping method.
Defaults to True.
max_refetch (int): The maximum number of retry iterations for getting
valid results from the pipeline. If the number of iterations is
greater than `max_refetch`, but results is still None, then the
iteration is terminated and raise the error. Defaults to 15.
"""
def __init__(self,
pre_transform: Optional[Sequence[str]] = None,
prob: float = 1.0,
use_cached: bool = False,
max_cached_images: int = 40,
random_pop: bool = True,
max_refetch: int = 15):
self.max_refetch = max_refetch
self.prob = prob
self.use_cached = use_cached
self.max_cached_images = max_cached_images
self.random_pop = random_pop
self.results_cache = []
if pre_transform is None:
self.pre_transform = None
else:
self.pre_transform = Compose(pre_transform)
@abstractmethod
def get_indexes(self, dataset: Union[BaseDataset,
list]) -> Union[list, int]:
"""Call function to collect indexes.
Args:
dataset (:obj:`Dataset` or list): The dataset or cached list.
Returns:
list or int: indexes.
"""
pass
@abstractmethod
def mix_img_transform(self, results: dict) -> dict:
"""Mixed image data transformation.
Args:
results (dict): Result dict.
Returns:
results (dict): Updated result dict.
"""
pass
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""Data augmentation function.
The transform steps are as follows:
1. Randomly generate index list of other images.
2. Before Mosaic or MixUp need to go through the necessary
pre_transform, such as MixUp' pre_transform pipeline
include: 'LoadImageFromFile','LoadAnnotations',
'Mosaic' and 'RandomAffine'.
3. Use mix_img_transform function to implement specific
mix operations.
Args:
results (dict): Result dict.
Returns:
results (dict): Updated result dict.
"""
if random.uniform(0, 1) > self.prob:
return results
if self.use_cached:
# Be careful: deep copying can be very time-consuming
# if results includes dataset.
dataset = results.pop('dataset', None)
self.results_cache.append(copy.deepcopy(results))
if len(self.results_cache) > self.max_cached_images:
if self.random_pop:
index = random.randint(0, len(self.results_cache) - 1)
else:
index = 0
self.results_cache.pop(index)
if len(self.results_cache) <= 4:
return results
else:
assert 'dataset' in results
# Be careful: deep copying can be very time-consuming
# if results includes dataset.
dataset = results.pop('dataset', None)
for _ in range(self.max_refetch):
# get index of one or three other images
if self.use_cached:
indexes = self.get_indexes(self.results_cache)
else:
indexes = self.get_indexes(dataset)
if not isinstance(indexes, collections.abc.Sequence):
indexes = [indexes]
if self.use_cached:
mix_results = [
copy.deepcopy(self.results_cache[i]) for i in indexes
]
else:
# get images information will be used for Mosaic or MixUp
mix_results = [
copy.deepcopy(dataset.get_data_info(index))
for index in indexes
]
if self.pre_transform is not None:
for i, data in enumerate(mix_results):
# pre_transform may also require dataset
data.update({'dataset': dataset})
# before Mosaic or MixUp need to go through
# the necessary pre_transform
_results = self.pre_transform(data)
_results.pop('dataset')
mix_results[i] = _results
if None not in mix_results:
results['mix_results'] = mix_results
break
print('Repeated calculation')
else:
raise RuntimeError(
'The loading pipeline of the original dataset'
' always return None. Please check the correctness '
'of the dataset and its pipeline.')
# Mosaic or MixUp
results = self.mix_img_transform(results)
if 'mix_results' in results:
results.pop('mix_results')
results['dataset'] = dataset
return results
@TRANSFORMS.register_module()
class Mosaic(BaseMixImageTransform):
"""Mosaic augmentation.
Given 4 images, mosaic transform combines them into
one output image. The output image is composed of the parts from each sub-
image.
.. code:: text
mosaic transform
center_x
+------------------------------+
| pad | |
| +-----------+ pad |
| | | |
| | image1 +-----------+
| | | |
| | | image2 |
center_y |----+-+-----------+-----------+
| | cropped | |
|pad | image3 | image4 |
| | | |
+----|-------------+-----------+
| |
+-------------+
The mosaic transform steps are as follows:
1. Choose the mosaic center as the intersections of 4 images
2. Get the left top image according to the index, and randomly
sample another 3 images from the custom dataset.
3. Sub image will be cropped if image is larger than mosaic patch
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- mix_results (List[dict])
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
img_scale (Sequence[int]): Image size after mosaic pipeline of single
image. The shape order should be (width, height).
Defaults to (640, 640).
center_ratio_range (Sequence[float]): Center ratio range of mosaic
output. Defaults to (0.5, 1.5).
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
pad_val (int): Pad value. Defaults to 114.
pre_transform(Sequence[dict]): Sequence of transform object or
config dict to be composed.
prob (float): Probability of applying this transformation.
Defaults to 1.0.
use_cached (bool): Whether to use cache. Defaults to False.
max_cached_images (int): The maximum length of the cache. The larger
the cache, the stronger the randomness of this transform. As a
rule of thumb, providing 10 caches for each image suffices for
randomness. Defaults to 40.
random_pop (bool): Whether to randomly pop a result from the cache
when the cache is full. If set to False, use FIFO popping method.
Defaults to True.
max_refetch (int): The maximum number of retry iterations for getting
valid results from the pipeline. If the number of iterations is
greater than `max_refetch`, but results is still None, then the
iteration is terminated and raise the error. Defaults to 15.
"""
def __init__(self,
img_scale: Tuple[int, int] = (640, 640),
center_ratio_range: Tuple[float, float] = (0.5, 1.5),
bbox_clip_border: bool = True,
pad_val: float = 114.0,
pre_transform: Sequence[dict] = None,
prob: float = 1.0,
use_cached: bool = False,
max_cached_images: int = 40,
random_pop: bool = True,
max_refetch: int = 15):
assert isinstance(img_scale, tuple)
assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. ' \
f'got {prob}.'
if use_cached:
assert max_cached_images >= 4, 'The length of cache must >= 4, ' \
f'but got {max_cached_images}.'
super().__init__(
pre_transform=pre_transform,
prob=prob,
use_cached=use_cached,
max_cached_images=max_cached_images,
random_pop=random_pop,
max_refetch=max_refetch)
self.img_scale = img_scale
self.center_ratio_range = center_ratio_range
self.bbox_clip_border = bbox_clip_border
self.pad_val = pad_val
def get_indexes(self, dataset: Union[BaseDataset, list]) -> list:
"""Call function to collect indexes.
Args:
dataset (:obj:`Dataset` or list): The dataset or cached list.
Returns:
list: indexes.
"""
indexes = [random.randint(0, len(dataset)) for _ in range(3)]
return indexes
def mix_img_transform(self, results: dict) -> dict:
"""Mixed image data transformation.
Args:
results (dict): Result dict.
Returns:
results (dict): Updated result dict.
"""
assert 'mix_results' in results
mosaic_bboxes = []
mosaic_bboxes_labels = []
mosaic_ignore_flags = []
mosaic_masks = []
with_mask = True if 'gt_masks' in results else False
# self.img_scale is wh format
img_scale_w, img_scale_h = self.img_scale
if len(results['img'].shape) == 3:
mosaic_img = np.full(
(int(img_scale_h * 2), int(img_scale_w * 2), 3),
self.pad_val,
dtype=results['img'].dtype)
else:
mosaic_img = np.full((int(img_scale_h * 2), int(img_scale_w * 2)),
self.pad_val,
dtype=results['img'].dtype)
# mosaic center x, y
center_x = int(random.uniform(*self.center_ratio_range) * img_scale_w)
center_y = int(random.uniform(*self.center_ratio_range) * img_scale_h)
center_position = (center_x, center_y)
loc_strs = ('top_left', 'top_right', 'bottom_left', 'bottom_right')
for i, loc in enumerate(loc_strs):
if loc == 'top_left':
results_patch = results
else:
results_patch = results['mix_results'][i - 1]
img_i = results_patch['img']
h_i, w_i = img_i.shape[:2]
# keep_ratio resize
scale_ratio_i = min(img_scale_h / h_i, img_scale_w / w_i)
img_i = mmcv.imresize(
img_i, (int(w_i * scale_ratio_i), int(h_i * scale_ratio_i)))
# compute the combine parameters
paste_coord, crop_coord = self._mosaic_combine(
loc, center_position, img_i.shape[:2][::-1])
x1_p, y1_p, x2_p, y2_p = paste_coord
x1_c, y1_c, x2_c, y2_c = crop_coord
# crop and paste image
mosaic_img[y1_p:y2_p, x1_p:x2_p] = img_i[y1_c:y2_c, x1_c:x2_c]
# adjust coordinate
gt_bboxes_i = results_patch['gt_bboxes']
gt_bboxes_labels_i = results_patch['gt_bboxes_labels']
gt_ignore_flags_i = results_patch['gt_ignore_flags']
padw = x1_p - x1_c
padh = y1_p - y1_c
gt_bboxes_i.rescale_([scale_ratio_i, scale_ratio_i])
gt_bboxes_i.translate_([padw, padh])
mosaic_bboxes.append(gt_bboxes_i)
mosaic_bboxes_labels.append(gt_bboxes_labels_i)
mosaic_ignore_flags.append(gt_ignore_flags_i)
if with_mask and results_patch.get('gt_masks', None) is not None:
gt_masks_i = results_patch['gt_masks']
gt_masks_i = gt_masks_i.rescale(float(scale_ratio_i))
gt_masks_i = gt_masks_i.translate(
out_shape=(int(self.img_scale[0] * 2),
int(self.img_scale[1] * 2)),
offset=padw,
direction='horizontal')
gt_masks_i = gt_masks_i.translate(
out_shape=(int(self.img_scale[0] * 2),
int(self.img_scale[1] * 2)),
offset=padh,
direction='vertical')
mosaic_masks.append(gt_masks_i)
mosaic_bboxes = mosaic_bboxes[0].cat(mosaic_bboxes, 0)
mosaic_bboxes_labels = np.concatenate(mosaic_bboxes_labels, 0)
mosaic_ignore_flags = np.concatenate(mosaic_ignore_flags, 0)
if self.bbox_clip_border:
mosaic_bboxes.clip_([2 * img_scale_h, 2 * img_scale_w])
if with_mask:
mosaic_masks = mosaic_masks[0].cat(mosaic_masks)
results['gt_masks'] = mosaic_masks
else:
# remove outside bboxes
inside_inds = mosaic_bboxes.is_inside(
[2 * img_scale_h, 2 * img_scale_w]).numpy()
mosaic_bboxes = mosaic_bboxes[inside_inds]
mosaic_bboxes_labels = mosaic_bboxes_labels[inside_inds]
mosaic_ignore_flags = mosaic_ignore_flags[inside_inds]
if with_mask:
mosaic_masks = mosaic_masks[0].cat(mosaic_masks)[inside_inds]
results['gt_masks'] = mosaic_masks
results['img'] = mosaic_img
results['img_shape'] = mosaic_img.shape
results['gt_bboxes'] = mosaic_bboxes
results['gt_bboxes_labels'] = mosaic_bboxes_labels
results['gt_ignore_flags'] = mosaic_ignore_flags
return results
def _mosaic_combine(
self, loc: str, center_position_xy: Sequence[float],
img_shape_wh: Sequence[int]) -> Tuple[Tuple[int], Tuple[int]]:
"""Calculate global coordinate of mosaic image and local coordinate of
cropped sub-image.
Args:
loc (str): Index for the sub-image, loc in ('top_left',
'top_right', 'bottom_left', 'bottom_right').
center_position_xy (Sequence[float]): Mixing center for 4 images,
(x, y).
img_shape_wh (Sequence[int]): Width and height of sub-image
Returns:
tuple[tuple[float]]: Corresponding coordinate of pasting and
cropping
- paste_coord (tuple): paste corner coordinate in mosaic image.
- crop_coord (tuple): crop corner coordinate in mosaic image.
"""
assert loc in ('top_left', 'top_right', 'bottom_left', 'bottom_right')
if loc == 'top_left':
# index0 to top left part of image
x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \
max(center_position_xy[1] - img_shape_wh[1], 0), \
center_position_xy[0], \
center_position_xy[1]
crop_coord = img_shape_wh[0] - (x2 - x1), img_shape_wh[1] - (
y2 - y1), img_shape_wh[0], img_shape_wh[1]
elif loc == 'top_right':
# index1 to top right part of image
x1, y1, x2, y2 = center_position_xy[0], \
max(center_position_xy[1] - img_shape_wh[1], 0), \
min(center_position_xy[0] + img_shape_wh[0],
self.img_scale[0] * 2), \
center_position_xy[1]
crop_coord = 0, img_shape_wh[1] - (y2 - y1), min(
img_shape_wh[0], x2 - x1), img_shape_wh[1]
elif loc == 'bottom_left':
# index2 to bottom left part of image
x1, y1, x2, y2 = max(center_position_xy[0] - img_shape_wh[0], 0), \
center_position_xy[1], \
center_position_xy[0], \
min(self.img_scale[1] * 2, center_position_xy[1] +
img_shape_wh[1])
crop_coord = img_shape_wh[0] - (x2 - x1), 0, img_shape_wh[0], min(
y2 - y1, img_shape_wh[1])
else:
# index3 to bottom right part of image
x1, y1, x2, y2 = center_position_xy[0], \
center_position_xy[1], \
min(center_position_xy[0] + img_shape_wh[0],
self.img_scale[0] * 2), \
min(self.img_scale[1] * 2, center_position_xy[1] +
img_shape_wh[1])
crop_coord = 0, 0, min(img_shape_wh[0],
x2 - x1), min(y2 - y1, img_shape_wh[1])
paste_coord = x1, y1, x2, y2
return paste_coord, crop_coord
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(img_scale={self.img_scale}, '
repr_str += f'center_ratio_range={self.center_ratio_range}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'prob={self.prob})'
return repr_str
@TRANSFORMS.register_module()
class Mosaic9(BaseMixImageTransform):
"""Mosaic9 augmentation.
Given 9 images, mosaic transform combines them into
one output image. The output image is composed of the parts from each sub-
image.
.. code:: text
+-------------------------------+------------+
| pad | pad | |
| +----------+ | |
| | +---------------+ top_right |
| | | top | image2 |
| | top_left | image1 | |
| | image8 o--------+------+--------+---+
| | | | | |
+----+----------+ | right |pad|
| | center | image3 | |
| left | image0 +---------------+---|
| image7 | | | |
+---+-----------+---+--------+ | |
| | cropped | | bottom_right |pad|
| |bottom_left| | image4 | |
| | image6 | bottom | | |
+---|-----------+ image5 +---------------+---|
| pad | | pad |
+-----------+------------+-------------------+
The mosaic transform steps are as follows:
1. Get the center image according to the index, and randomly
sample another 8 images from the custom dataset.
2. Randomly offset the image after Mosaic
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- mix_results (List[dict])
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
img_scale (Sequence[int]): Image size after mosaic pipeline of single
image. The shape order should be (width, height).
Defaults to (640, 640).
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
pad_val (int): Pad value. Defaults to 114.
pre_transform(Sequence[dict]): Sequence of transform object or
config dict to be composed.
prob (float): Probability of applying this transformation.
Defaults to 1.0.
use_cached (bool): Whether to use cache. Defaults to False.
max_cached_images (int): The maximum length of the cache. The larger
the cache, the stronger the randomness of this transform. As a
rule of thumb, providing 5 caches for each image suffices for
randomness. Defaults to 50.
random_pop (bool): Whether to randomly pop a result from the cache
when the cache is full. If set to False, use FIFO popping method.
Defaults to True.
max_refetch (int): The maximum number of retry iterations for getting
valid results from the pipeline. If the number of iterations is
greater than `max_refetch`, but results is still None, then the
iteration is terminated and raise the error. Defaults to 15.
"""
def __init__(self,
img_scale: Tuple[int, int] = (640, 640),
bbox_clip_border: bool = True,
pad_val: Union[float, int] = 114.0,
pre_transform: Sequence[dict] = None,
prob: float = 1.0,
use_cached: bool = False,
max_cached_images: int = 50,
random_pop: bool = True,
max_refetch: int = 15):
assert isinstance(img_scale, tuple)
assert 0 <= prob <= 1.0, 'The probability should be in range [0,1]. ' \
f'got {prob}.'
if use_cached:
assert max_cached_images >= 9, 'The length of cache must >= 9, ' \
f'but got {max_cached_images}.'
super().__init__(
pre_transform=pre_transform,
prob=prob,
use_cached=use_cached,
max_cached_images=max_cached_images,
random_pop=random_pop,
max_refetch=max_refetch)
self.img_scale = img_scale
self.bbox_clip_border = bbox_clip_border
self.pad_val = pad_val
# intermediate variables
self._current_img_shape = [0, 0]
self._center_img_shape = [0, 0]
self._previous_img_shape = [0, 0]
def get_indexes(self, dataset: Union[BaseDataset, list]) -> list:
"""Call function to collect indexes.
Args:
dataset (:obj:`Dataset` or list): The dataset or cached list.
Returns:
list: indexes.
"""
indexes = [random.randint(0, len(dataset)) for _ in range(8)]
return indexes
def mix_img_transform(self, results: dict) -> dict:
"""Mixed image data transformation.
Args:
results (dict): Result dict.
Returns:
results (dict): Updated result dict.
"""
assert 'mix_results' in results
mosaic_bboxes = []
mosaic_bboxes_labels = []
mosaic_ignore_flags = []
img_scale_w, img_scale_h = self.img_scale
if len(results['img'].shape) == 3:
mosaic_img = np.full(
(int(img_scale_h * 3), int(img_scale_w * 3), 3),
self.pad_val,
dtype=results['img'].dtype)
else:
mosaic_img = np.full((int(img_scale_h * 3), int(img_scale_w * 3)),
self.pad_val,
dtype=results['img'].dtype)
# index = 0 is mean original image
# len(results['mix_results']) = 8
loc_strs = ('center', 'top', 'top_right', 'right', 'bottom_right',
'bottom', 'bottom_left', 'left', 'top_left')
results_all = [results, *results['mix_results']]
for index, results_patch in enumerate(results_all):
img_i = results_patch['img']
# keep_ratio resize
img_i_h, img_i_w = img_i.shape[:2]
scale_ratio_i = min(img_scale_h / img_i_h, img_scale_w / img_i_w)
img_i = mmcv.imresize(
img_i,
(int(img_i_w * scale_ratio_i), int(img_i_h * scale_ratio_i)))
paste_coord = self._mosaic_combine(loc_strs[index],
img_i.shape[:2])
padw, padh = paste_coord[:2]
x1, y1, x2, y2 = (max(x, 0) for x in paste_coord)
mosaic_img[y1:y2, x1:x2] = img_i[y1 - padh:, x1 - padw:]
gt_bboxes_i = results_patch['gt_bboxes']
gt_bboxes_labels_i = results_patch['gt_bboxes_labels']
gt_ignore_flags_i = results_patch['gt_ignore_flags']
gt_bboxes_i.rescale_([scale_ratio_i, scale_ratio_i])
gt_bboxes_i.translate_([padw, padh])
mosaic_bboxes.append(gt_bboxes_i)
mosaic_bboxes_labels.append(gt_bboxes_labels_i)
mosaic_ignore_flags.append(gt_ignore_flags_i)
# Offset
offset_x = int(random.uniform(0, img_scale_w))
offset_y = int(random.uniform(0, img_scale_h))
mosaic_img = mosaic_img[offset_y:offset_y + 2 * img_scale_h,
offset_x:offset_x + 2 * img_scale_w]
mosaic_bboxes = mosaic_bboxes[0].cat(mosaic_bboxes, 0)
mosaic_bboxes.translate_([-offset_x, -offset_y])
mosaic_bboxes_labels = np.concatenate(mosaic_bboxes_labels, 0)
mosaic_ignore_flags = np.concatenate(mosaic_ignore_flags, 0)
if self.bbox_clip_border:
mosaic_bboxes.clip_([2 * img_scale_h, 2 * img_scale_w])
else:
# remove outside bboxes
inside_inds = mosaic_bboxes.is_inside(
[2 * img_scale_h, 2 * img_scale_w]).numpy()
mosaic_bboxes = mosaic_bboxes[inside_inds]
mosaic_bboxes_labels = mosaic_bboxes_labels[inside_inds]
mosaic_ignore_flags = mosaic_ignore_flags[inside_inds]
results['img'] = mosaic_img
results['img_shape'] = mosaic_img.shape
results['gt_bboxes'] = mosaic_bboxes
results['gt_bboxes_labels'] = mosaic_bboxes_labels
results['gt_ignore_flags'] = mosaic_ignore_flags
return results
def _mosaic_combine(self, loc: str,
img_shape_hw: Tuple[int, int]) -> Tuple[int, ...]:
"""Calculate global coordinate of mosaic image.
Args:
loc (str): Index for the sub-image.
img_shape_hw (Sequence[int]): Height and width of sub-image
Returns:
paste_coord (tuple): paste corner coordinate in mosaic image.
"""
assert loc in ('center', 'top', 'top_right', 'right', 'bottom_right',
'bottom', 'bottom_left', 'left', 'top_left')
img_scale_w, img_scale_h = self.img_scale
self._current_img_shape = img_shape_hw
current_img_h, current_img_w = self._current_img_shape
previous_img_h, previous_img_w = self._previous_img_shape
center_img_h, center_img_w = self._center_img_shape
if loc == 'center':
self._center_img_shape = self._current_img_shape
# xmin, ymin, xmax, ymax
paste_coord = img_scale_w, \
img_scale_h, \
img_scale_w + current_img_w, \
img_scale_h + current_img_h
elif loc == 'top':
paste_coord = img_scale_w, \
img_scale_h - current_img_h, \
img_scale_w + current_img_w, \
img_scale_h
elif loc == 'top_right':
paste_coord = img_scale_w + previous_img_w, \
img_scale_h - current_img_h, \
img_scale_w + previous_img_w + current_img_w, \
img_scale_h
elif loc == 'right':
paste_coord = img_scale_w + center_img_w, \
img_scale_h, \
img_scale_w + center_img_w + current_img_w, \
img_scale_h + current_img_h
elif loc == 'bottom_right':
paste_coord = img_scale_w + center_img_w, \
img_scale_h + previous_img_h, \
img_scale_w + center_img_w + current_img_w, \
img_scale_h + previous_img_h + current_img_h
elif loc == 'bottom':
paste_coord = img_scale_w + center_img_w - current_img_w, \
img_scale_h + center_img_h, \
img_scale_w + center_img_w, \
img_scale_h + center_img_h + current_img_h
elif loc == 'bottom_left':
paste_coord = img_scale_w + center_img_w - \
previous_img_w - current_img_w, \
img_scale_h + center_img_h, \
img_scale_w + center_img_w - previous_img_w, \
img_scale_h + center_img_h + current_img_h
elif loc == 'left':
paste_coord = img_scale_w - current_img_w, \
img_scale_h + center_img_h - current_img_h, \
img_scale_w, \
img_scale_h + center_img_h
elif loc == 'top_left':
paste_coord = img_scale_w - current_img_w, \
img_scale_h + center_img_h - \
previous_img_h - current_img_h, \
img_scale_w, \
img_scale_h + center_img_h - previous_img_h
self._previous_img_shape = self._current_img_shape
# xmin, ymin, xmax, ymax
return paste_coord
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(img_scale={self.img_scale}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'prob={self.prob})'
return repr_str
@TRANSFORMS.register_module()
class YOLOv5MixUp(BaseMixImageTransform):
"""MixUp data augmentation for YOLOv5.
.. code:: text
The mixup transform steps are as follows:
1. Another random image is picked by dataset.
2. Randomly obtain the fusion ratio from the beta distribution,
then fuse the target
of the original image and mixup image through this ratio.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- mix_results (List[dict])
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
alpha (float): parameter of beta distribution to get mixup ratio.
Defaults to 32.
beta (float): parameter of beta distribution to get mixup ratio.
Defaults to 32.
pre_transform (Sequence[dict]): Sequence of transform object or
config dict to be composed.
prob (float): Probability of applying this transformation.
Defaults to 1.0.
use_cached (bool): Whether to use cache. Defaults to False.
max_cached_images (int): The maximum length of the cache. The larger
the cache, the stronger the randomness of this transform. As a
rule of thumb, providing 10 caches for each image suffices for
randomness. Defaults to 20.
random_pop (bool): Whether to randomly pop a result from the cache
when the cache is full. If set to False, use FIFO popping method.
Defaults to True.
max_refetch (int): The maximum number of iterations. If the number of
iterations is greater than `max_refetch`, but gt_bbox is still
empty, then the iteration is terminated. Defaults to 15.
"""
def __init__(self,
alpha: float = 32.0,
beta: float = 32.0,
pre_transform: Sequence[dict] = None,
prob: float = 1.0,
use_cached: bool = False,
max_cached_images: int = 20,
random_pop: bool = True,
max_refetch: int = 15):
if use_cached:
assert max_cached_images >= 2, 'The length of cache must >= 2, ' \
f'but got {max_cached_images}.'
super().__init__(
pre_transform=pre_transform,
prob=prob,
use_cached=use_cached,
max_cached_images=max_cached_images,
random_pop=random_pop,
max_refetch=max_refetch)
self.alpha = alpha
self.beta = beta
def get_indexes(self, dataset: Union[BaseDataset, list]) -> int:
"""Call function to collect indexes.
Args:
dataset (:obj:`Dataset` or list): The dataset or cached list.
Returns:
int: indexes.
"""
return random.randint(0, len(dataset))
def mix_img_transform(self, results: dict) -> dict:
"""YOLOv5 MixUp transform function.
Args:
results (dict): Result dict
Returns:
results (dict): Updated result dict.
"""
assert 'mix_results' in results
retrieve_results = results['mix_results'][0]
retrieve_img = retrieve_results['img']
ori_img = results['img']
assert ori_img.shape == retrieve_img.shape
# Randomly obtain the fusion ratio from the beta distribution,
# which is around 0.5
ratio = np.random.beta(self.alpha, self.beta)
mixup_img = (ori_img * ratio + retrieve_img * (1 - ratio))
retrieve_gt_bboxes = retrieve_results['gt_bboxes']
retrieve_gt_bboxes_labels = retrieve_results['gt_bboxes_labels']
retrieve_gt_ignore_flags = retrieve_results['gt_ignore_flags']
mixup_gt_bboxes = retrieve_gt_bboxes.cat(
(results['gt_bboxes'], retrieve_gt_bboxes), dim=0)
mixup_gt_bboxes_labels = np.concatenate(
(results['gt_bboxes_labels'], retrieve_gt_bboxes_labels), axis=0)
mixup_gt_ignore_flags = np.concatenate(
(results['gt_ignore_flags'], retrieve_gt_ignore_flags), axis=0)
if 'gt_masks' in results:
assert 'gt_masks' in retrieve_results
mixup_gt_masks = results['gt_masks'].cat(
[results['gt_masks'], retrieve_results['gt_masks']])
results['gt_masks'] = mixup_gt_masks
results['img'] = mixup_img.astype(np.uint8)
results['img_shape'] = mixup_img.shape
results['gt_bboxes'] = mixup_gt_bboxes
results['gt_bboxes_labels'] = mixup_gt_bboxes_labels
results['gt_ignore_flags'] = mixup_gt_ignore_flags
return results
@TRANSFORMS.register_module()
class YOLOXMixUp(BaseMixImageTransform):
"""MixUp data augmentation for YOLOX.
.. code:: text
mixup transform
+---------------+--------------+
| mixup image | |
| +--------|--------+ |
| | | | |
+---------------+ | |
| | | |
| | image | |
| | | |
| | | |
| +-----------------+ |
| pad |
+------------------------------+
The mixup transform steps are as follows:
1. Another random image is picked by dataset and embedded in
the top left patch(after padding and resizing)
2. The target of mixup transform is the weighted average of mixup
image and origin image.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- mix_results (List[dict])
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Args:
img_scale (Sequence[int]): Image output size after mixup pipeline.
The shape order should be (width, height). Defaults to (640, 640).
ratio_range (Sequence[float]): Scale ratio of mixup image.
Defaults to (0.5, 1.5).
flip_ratio (float): Horizontal flip ratio of mixup image.
Defaults to 0.5.
pad_val (int): Pad value. Defaults to 114.
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
pre_transform(Sequence[dict]): Sequence of transform object or
config dict to be composed.
prob (float): Probability of applying this transformation.
Defaults to 1.0.
use_cached (bool): Whether to use cache. Defaults to False.
max_cached_images (int): The maximum length of the cache. The larger
the cache, the stronger the randomness of this transform. As a
rule of thumb, providing 10 caches for each image suffices for
randomness. Defaults to 20.
random_pop (bool): Whether to randomly pop a result from the cache
when the cache is full. If set to False, use FIFO popping method.
Defaults to True.
max_refetch (int): The maximum number of iterations. If the number of
iterations is greater than `max_refetch`, but gt_bbox is still
empty, then the iteration is terminated. Defaults to 15.
"""
def __init__(self,
img_scale: Tuple[int, int] = (640, 640),
ratio_range: Tuple[float, float] = (0.5, 1.5),
flip_ratio: float = 0.5,
pad_val: float = 114.0,
bbox_clip_border: bool = True,
pre_transform: Sequence[dict] = None,
prob: float = 1.0,
use_cached: bool = False,
max_cached_images: int = 20,
random_pop: bool = True,
max_refetch: int = 15):
assert isinstance(img_scale, tuple)
if use_cached:
assert max_cached_images >= 2, 'The length of cache must >= 2, ' \
f'but got {max_cached_images}.'
super().__init__(
pre_transform=pre_transform,
prob=prob,
use_cached=use_cached,
max_cached_images=max_cached_images,
random_pop=random_pop,
max_refetch=max_refetch)
self.img_scale = img_scale
self.ratio_range = ratio_range
self.flip_ratio = flip_ratio
self.pad_val = pad_val
self.bbox_clip_border = bbox_clip_border
def get_indexes(self, dataset: Union[BaseDataset, list]) -> int:
"""Call function to collect indexes.
Args:
dataset (:obj:`Dataset` or list): The dataset or cached list.
Returns:
int: indexes.
"""
return random.randint(0, len(dataset))
def mix_img_transform(self, results: dict) -> dict:
"""YOLOX MixUp transform function.
Args:
results (dict): Result dict.
Returns:
results (dict): Updated result dict.
"""
assert 'mix_results' in results
assert len(
results['mix_results']) == 1, 'MixUp only support 2 images now !'
if results['mix_results'][0]['gt_bboxes'].shape[0] == 0:
# empty bbox
return results
retrieve_results = results['mix_results'][0]
retrieve_img = retrieve_results['img']
jit_factor = random.uniform(*self.ratio_range)
is_filp = random.uniform(0, 1) > self.flip_ratio
if len(retrieve_img.shape) == 3:
out_img = np.ones((self.img_scale[1], self.img_scale[0], 3),
dtype=retrieve_img.dtype) * self.pad_val
else:
out_img = np.ones(
self.img_scale[::-1], dtype=retrieve_img.dtype) * self.pad_val
# 1. keep_ratio resize
scale_ratio = min(self.img_scale[1] / retrieve_img.shape[0],
self.img_scale[0] / retrieve_img.shape[1])
retrieve_img = mmcv.imresize(
retrieve_img, (int(retrieve_img.shape[1] * scale_ratio),
int(retrieve_img.shape[0] * scale_ratio)))
# 2. paste
out_img[:retrieve_img.shape[0], :retrieve_img.shape[1]] = retrieve_img
# 3. scale jit
scale_ratio *= jit_factor
out_img = mmcv.imresize(out_img, (int(out_img.shape[1] * jit_factor),
int(out_img.shape[0] * jit_factor)))
# 4. flip
if is_filp:
out_img = out_img[:, ::-1, :]
# 5. random crop
ori_img = results['img']
origin_h, origin_w = out_img.shape[:2]
target_h, target_w = ori_img.shape[:2]
padded_img = np.ones((max(origin_h, target_h), max(
origin_w, target_w), 3)) * self.pad_val
padded_img = padded_img.astype(np.uint8)
padded_img[:origin_h, :origin_w] = out_img
x_offset, y_offset = 0, 0
if padded_img.shape[0] > target_h:
y_offset = random.randint(0, padded_img.shape[0] - target_h)
if padded_img.shape[1] > target_w:
x_offset = random.randint(0, padded_img.shape[1] - target_w)
padded_cropped_img = padded_img[y_offset:y_offset + target_h,
x_offset:x_offset + target_w]
# 6. adjust bbox
retrieve_gt_bboxes = retrieve_results['gt_bboxes']
retrieve_gt_bboxes.rescale_([scale_ratio, scale_ratio])
if self.bbox_clip_border:
retrieve_gt_bboxes.clip_([origin_h, origin_w])
if is_filp:
retrieve_gt_bboxes.flip_([origin_h, origin_w],
direction='horizontal')
# 7. filter
cp_retrieve_gt_bboxes = retrieve_gt_bboxes.clone()
cp_retrieve_gt_bboxes.translate_([-x_offset, -y_offset])
if self.bbox_clip_border:
cp_retrieve_gt_bboxes.clip_([target_h, target_w])
# 8. mix up
mixup_img = 0.5 * ori_img + 0.5 * padded_cropped_img
retrieve_gt_bboxes_labels = retrieve_results['gt_bboxes_labels']
retrieve_gt_ignore_flags = retrieve_results['gt_ignore_flags']
mixup_gt_bboxes = cp_retrieve_gt_bboxes.cat(
(results['gt_bboxes'], cp_retrieve_gt_bboxes), dim=0)
mixup_gt_bboxes_labels = np.concatenate(
(results['gt_bboxes_labels'], retrieve_gt_bboxes_labels), axis=0)
mixup_gt_ignore_flags = np.concatenate(
(results['gt_ignore_flags'], retrieve_gt_ignore_flags), axis=0)
if not self.bbox_clip_border:
# remove outside bbox
inside_inds = mixup_gt_bboxes.is_inside([target_h,
target_w]).numpy()
mixup_gt_bboxes = mixup_gt_bboxes[inside_inds]
mixup_gt_bboxes_labels = mixup_gt_bboxes_labels[inside_inds]
mixup_gt_ignore_flags = mixup_gt_ignore_flags[inside_inds]
results['img'] = mixup_img.astype(np.uint8)
results['img_shape'] = mixup_img.shape
results['gt_bboxes'] = mixup_gt_bboxes
results['gt_bboxes_labels'] = mixup_gt_bboxes_labels
results['gt_ignore_flags'] = mixup_gt_ignore_flags
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(img_scale={self.img_scale}, '
repr_str += f'ratio_range={self.ratio_range}, '
repr_str += f'flip_ratio={self.flip_ratio}, '
repr_str += f'pad_val={self.pad_val}, '
repr_str += f'max_refetch={self.max_refetch}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
|