Spaces:
Runtime error
Runtime error
File size: 59,261 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from copy import deepcopy
from typing import List, Sequence, Tuple, Union
import cv2
import mmcv
import numpy as np
import torch
from mmcv.transforms import BaseTransform, Compose
from mmcv.transforms.utils import cache_randomness
from mmdet.datasets.transforms import LoadAnnotations as MMDET_LoadAnnotations
from mmdet.datasets.transforms import Resize as MMDET_Resize
from mmdet.structures.bbox import (HorizontalBoxes, autocast_box_type,
get_box_type)
from mmdet.structures.mask import PolygonMasks
from numpy import random
from mmyolo.registry import TRANSFORMS
# TODO: Waiting for MMCV support
TRANSFORMS.register_module(module=Compose, force=True)
@TRANSFORMS.register_module()
class YOLOv5KeepRatioResize(MMDET_Resize):
"""Resize images & bbox(if existed).
This transform resizes the input image according to ``scale``.
Bboxes (if existed) are then resized with the same scale factor.
Required Keys:
- img (np.uint8)
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
Modified Keys:
- img (np.uint8)
- img_shape (tuple)
- gt_bboxes (optional)
- scale (float)
Added Keys:
- scale_factor (np.float32)
Args:
scale (Union[int, Tuple[int, int]]): Images scales for resizing.
"""
def __init__(self,
scale: Union[int, Tuple[int, int]],
keep_ratio: bool = True,
**kwargs):
assert keep_ratio is True
super().__init__(scale=scale, keep_ratio=True, **kwargs)
@staticmethod
def _get_rescale_ratio(old_size: Tuple[int, int],
scale: Union[float, Tuple[int]]) -> float:
"""Calculate the ratio for rescaling.
Args:
old_size (tuple[int]): The old size (w, h) of image.
scale (float | tuple[int]): The scaling factor or maximum size.
If it is a float number, then the image will be rescaled by
this factor, else if it is a tuple of 2 integers, then
the image will be rescaled as large as possible within
the scale.
Returns:
float: The resize ratio.
"""
w, h = old_size
if isinstance(scale, (float, int)):
if scale <= 0:
raise ValueError(f'Invalid scale {scale}, must be positive.')
scale_factor = scale
elif isinstance(scale, tuple):
max_long_edge = max(scale)
max_short_edge = min(scale)
scale_factor = min(max_long_edge / max(h, w),
max_short_edge / min(h, w))
else:
raise TypeError('Scale must be a number or tuple of int, '
f'but got {type(scale)}')
return scale_factor
def _resize_img(self, results: dict):
"""Resize images with ``results['scale']``."""
assert self.keep_ratio is True
if results.get('img', None) is not None:
image = results['img']
original_h, original_w = image.shape[:2]
ratio = self._get_rescale_ratio((original_h, original_w),
self.scale)
if ratio != 1:
# resize image according to the ratio
image = mmcv.imrescale(
img=image,
scale=ratio,
interpolation='area' if ratio < 1 else 'bilinear',
backend=self.backend)
resized_h, resized_w = image.shape[:2]
scale_ratio = resized_h / original_h
scale_factor = (scale_ratio, scale_ratio)
results['img'] = image
results['img_shape'] = image.shape[:2]
results['scale_factor'] = scale_factor
@TRANSFORMS.register_module()
class LetterResize(MMDET_Resize):
"""Resize and pad image while meeting stride-multiple constraints.
Required Keys:
- img (np.uint8)
- batch_shape (np.int64) (optional)
Modified Keys:
- img (np.uint8)
- img_shape (tuple)
- gt_bboxes (optional)
Added Keys:
- pad_param (np.float32)
Args:
scale (Union[int, Tuple[int, int]]): Images scales for resizing.
pad_val (dict): Padding value. Defaults to dict(img=0, seg=255).
use_mini_pad (bool): Whether using minimum rectangle padding.
Defaults to True
stretch_only (bool): Whether stretch to the specified size directly.
Defaults to False
allow_scale_up (bool): Allow scale up when ratio > 1. Defaults to True
"""
def __init__(self,
scale: Union[int, Tuple[int, int]],
pad_val: dict = dict(img=0, mask=0, seg=255),
use_mini_pad: bool = False,
stretch_only: bool = False,
allow_scale_up: bool = True,
**kwargs):
super().__init__(scale=scale, keep_ratio=True, **kwargs)
self.pad_val = pad_val
if isinstance(pad_val, (int, float)):
pad_val = dict(img=pad_val, seg=255)
assert isinstance(
pad_val, dict), f'pad_val must be dict, but got {type(pad_val)}'
self.use_mini_pad = use_mini_pad
self.stretch_only = stretch_only
self.allow_scale_up = allow_scale_up
def _resize_img(self, results: dict):
"""Resize images with ``results['scale']``."""
image = results.get('img', None)
if image is None:
return
# Use batch_shape if a batch_shape policy is configured
if 'batch_shape' in results:
scale = tuple(results['batch_shape']) # hw
else:
scale = self.scale[::-1] # wh -> hw
image_shape = image.shape[:2] # height, width
# Scale ratio (new / old)
ratio = min(scale[0] / image_shape[0], scale[1] / image_shape[1])
# only scale down, do not scale up (for better test mAP)
if not self.allow_scale_up:
ratio = min(ratio, 1.0)
ratio = [ratio, ratio] # float -> (float, float) for (height, width)
# compute the best size of the image
no_pad_shape = (int(round(image_shape[0] * ratio[0])),
int(round(image_shape[1] * ratio[1])))
# padding height & width
padding_h, padding_w = [
scale[0] - no_pad_shape[0], scale[1] - no_pad_shape[1]
]
if self.use_mini_pad:
# minimum rectangle padding
padding_w, padding_h = np.mod(padding_w, 32), np.mod(padding_h, 32)
elif self.stretch_only:
# stretch to the specified size directly
padding_h, padding_w = 0.0, 0.0
no_pad_shape = (scale[0], scale[1])
ratio = [scale[0] / image_shape[0],
scale[1] / image_shape[1]] # height, width ratios
if image_shape != no_pad_shape:
# compare with no resize and padding size
image = mmcv.imresize(
image, (no_pad_shape[1], no_pad_shape[0]),
interpolation=self.interpolation,
backend=self.backend)
scale_factor = (ratio[1], ratio[0]) # mmcv scale factor is (w, h)
if 'scale_factor' in results:
results['scale_factor_origin'] = results['scale_factor']
results['scale_factor'] = scale_factor
# padding
top_padding, left_padding = int(round(padding_h // 2 - 0.1)), int(
round(padding_w // 2 - 0.1))
bottom_padding = padding_h - top_padding
right_padding = padding_w - left_padding
padding_list = [
top_padding, bottom_padding, left_padding, right_padding
]
if top_padding != 0 or bottom_padding != 0 or \
left_padding != 0 or right_padding != 0:
pad_val = self.pad_val.get('img', 0)
if isinstance(pad_val, int) and image.ndim == 3:
pad_val = tuple(pad_val for _ in range(image.shape[2]))
image = mmcv.impad(
img=image,
padding=(padding_list[2], padding_list[0], padding_list[3],
padding_list[1]),
pad_val=pad_val,
padding_mode='constant')
results['img'] = image
results['img_shape'] = image.shape
if 'pad_param' in results:
results['pad_param_origin'] = results['pad_param'] * \
np.repeat(ratio, 2)
results['pad_param'] = np.array(padding_list, dtype=np.float32)
def _resize_masks(self, results: dict):
"""Resize masks with ``results['scale']``"""
if results.get('gt_masks', None) is None:
return
gt_masks = results['gt_masks']
assert isinstance(
gt_masks, PolygonMasks
), f'Only supports PolygonMasks, but got {type(gt_masks)}'
# resize the gt_masks
gt_mask_h = results['gt_masks'].height * results['scale_factor'][1]
gt_mask_w = results['gt_masks'].width * results['scale_factor'][0]
gt_masks = results['gt_masks'].resize(
(int(round(gt_mask_h)), int(round(gt_mask_w))))
top_padding, _, left_padding, _ = results['pad_param']
if int(left_padding) != 0:
gt_masks = gt_masks.translate(
out_shape=results['img_shape'][:2],
offset=int(left_padding),
direction='horizontal')
if int(top_padding) != 0:
gt_masks = gt_masks.translate(
out_shape=results['img_shape'][:2],
offset=int(top_padding),
direction='vertical')
results['gt_masks'] = gt_masks
def _resize_bboxes(self, results: dict):
"""Resize bounding boxes with ``results['scale_factor']``."""
if results.get('gt_bboxes', None) is None:
return
results['gt_bboxes'].rescale_(results['scale_factor'])
if len(results['pad_param']) != 4:
return
results['gt_bboxes'].translate_(
(results['pad_param'][2], results['pad_param'][0]))
if self.clip_object_border:
results['gt_bboxes'].clip_(results['img_shape'])
def transform(self, results: dict) -> dict:
results = super().transform(results)
if 'scale_factor_origin' in results:
scale_factor_origin = results.pop('scale_factor_origin')
results['scale_factor'] = (results['scale_factor'][0] *
scale_factor_origin[0],
results['scale_factor'][1] *
scale_factor_origin[1])
if 'pad_param_origin' in results:
pad_param_origin = results.pop('pad_param_origin')
results['pad_param'] += pad_param_origin
return results
# TODO: Check if it can be merged with mmdet.YOLOXHSVRandomAug
@TRANSFORMS.register_module()
class YOLOv5HSVRandomAug(BaseTransform):
"""Apply HSV augmentation to image sequentially.
Required Keys:
- img
Modified Keys:
- img
Args:
hue_delta ([int, float]): delta of hue. Defaults to 0.015.
saturation_delta ([int, float]): delta of saturation. Defaults to 0.7.
value_delta ([int, float]): delta of value. Defaults to 0.4.
"""
def __init__(self,
hue_delta: Union[int, float] = 0.015,
saturation_delta: Union[int, float] = 0.7,
value_delta: Union[int, float] = 0.4):
self.hue_delta = hue_delta
self.saturation_delta = saturation_delta
self.value_delta = value_delta
def transform(self, results: dict) -> dict:
"""The HSV augmentation transform function.
Args:
results (dict): The result dict.
Returns:
dict: The result dict.
"""
hsv_gains = \
random.uniform(-1, 1, 3) * \
[self.hue_delta, self.saturation_delta, self.value_delta] + 1
hue, sat, val = cv2.split(
cv2.cvtColor(results['img'], cv2.COLOR_BGR2HSV))
table_list = np.arange(0, 256, dtype=hsv_gains.dtype)
lut_hue = ((table_list * hsv_gains[0]) % 180).astype(np.uint8)
lut_sat = np.clip(table_list * hsv_gains[1], 0, 255).astype(np.uint8)
lut_val = np.clip(table_list * hsv_gains[2], 0, 255).astype(np.uint8)
im_hsv = cv2.merge(
(cv2.LUT(hue, lut_hue), cv2.LUT(sat,
lut_sat), cv2.LUT(val, lut_val)))
results['img'] = cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(hue_delta={self.hue_delta}, '
repr_str += f'saturation_delta={self.saturation_delta}, '
repr_str += f'value_delta={self.value_delta})'
return repr_str
@TRANSFORMS.register_module()
class LoadAnnotations(MMDET_LoadAnnotations):
"""Because the yolo series does not need to consider ignore bboxes for the
time being, in order to speed up the pipeline, it can be excluded in
advance."""
def __init__(self,
mask2bbox: bool = False,
poly2mask: bool = False,
**kwargs) -> None:
self.mask2bbox = mask2bbox
assert not poly2mask, 'Does not support BitmapMasks considering ' \
'that bitmap consumes more memory.'
super().__init__(poly2mask=poly2mask, **kwargs)
if self.mask2bbox:
assert self.with_mask, 'Using mask2bbox requires ' \
'with_mask is True.'
self._mask_ignore_flag = None
def transform(self, results: dict) -> dict:
"""Function to load multiple types annotations.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
dict: The dict contains loaded bounding box, label and
semantic segmentation.
"""
if self.mask2bbox:
self._load_masks(results)
if self.with_label:
self._load_labels(results)
self._update_mask_ignore_data(results)
gt_bboxes = results['gt_masks'].get_bboxes(dst_type='hbox')
results['gt_bboxes'] = gt_bboxes
else:
results = super().transform(results)
self._update_mask_ignore_data(results)
return results
def _update_mask_ignore_data(self, results: dict) -> None:
if 'gt_masks' not in results:
return
if 'gt_bboxes_labels' in results and len(
results['gt_bboxes_labels']) != len(results['gt_masks']):
assert len(results['gt_bboxes_labels']) == len(
self._mask_ignore_flag)
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
self._mask_ignore_flag]
if 'gt_bboxes' in results and len(results['gt_bboxes']) != len(
results['gt_masks']):
assert len(results['gt_bboxes']) == len(self._mask_ignore_flag)
results['gt_bboxes'] = results['gt_bboxes'][self._mask_ignore_flag]
def _load_bboxes(self, results: dict):
"""Private function to load bounding box annotations.
Note: BBoxes with ignore_flag of 1 is not considered.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
dict: The dict contains loaded bounding box annotations.
"""
gt_bboxes = []
gt_ignore_flags = []
for instance in results.get('instances', []):
if instance['ignore_flag'] == 0:
gt_bboxes.append(instance['bbox'])
gt_ignore_flags.append(instance['ignore_flag'])
results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool)
if self.box_type is None:
results['gt_bboxes'] = np.array(
gt_bboxes, dtype=np.float32).reshape((-1, 4))
else:
_, box_type_cls = get_box_type(self.box_type)
results['gt_bboxes'] = box_type_cls(gt_bboxes, dtype=torch.float32)
def _load_labels(self, results: dict):
"""Private function to load label annotations.
Note: BBoxes with ignore_flag of 1 is not considered.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
dict: The dict contains loaded label annotations.
"""
gt_bboxes_labels = []
for instance in results.get('instances', []):
if instance['ignore_flag'] == 0:
gt_bboxes_labels.append(instance['bbox_label'])
results['gt_bboxes_labels'] = np.array(
gt_bboxes_labels, dtype=np.int64)
def _load_masks(self, results: dict) -> None:
"""Private function to load mask annotations.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
"""
gt_masks = []
gt_ignore_flags = []
self._mask_ignore_flag = []
for instance in results.get('instances', []):
if instance['ignore_flag'] == 0:
if 'mask' in instance:
gt_mask = instance['mask']
if isinstance(gt_mask, list):
gt_mask = [
np.array(polygon) for polygon in gt_mask
if len(polygon) % 2 == 0 and len(polygon) >= 6
]
if len(gt_mask) == 0:
# ignore
self._mask_ignore_flag.append(0)
else:
gt_masks.append(gt_mask)
gt_ignore_flags.append(instance['ignore_flag'])
self._mask_ignore_flag.append(1)
else:
raise NotImplementedError(
'Only supports mask annotations in polygon '
'format currently')
else:
# TODO: Actually, gt with bbox and without mask needs
# to be retained
self._mask_ignore_flag.append(0)
self._mask_ignore_flag = np.array(self._mask_ignore_flag, dtype=bool)
results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool)
h, w = results['ori_shape']
gt_masks = PolygonMasks([mask for mask in gt_masks], h, w)
results['gt_masks'] = gt_masks
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(with_bbox={self.with_bbox}, '
repr_str += f'with_label={self.with_label}, '
repr_str += f'with_mask={self.with_mask}, '
repr_str += f'with_seg={self.with_seg}, '
repr_str += f'mask2bbox={self.mask2bbox}, '
repr_str += f'poly2mask={self.poly2mask}, '
repr_str += f"imdecode_backend='{self.imdecode_backend}', "
repr_str += f'file_client_args={self.file_client_args})'
return repr_str
@TRANSFORMS.register_module()
class YOLOv5RandomAffine(BaseTransform):
"""Random affine transform data augmentation in YOLOv5 and YOLOv8. It is
different from the implementation in YOLOX.
This operation randomly generates affine transform matrix which including
rotation, translation, shear and scaling transforms.
If you set use_mask_refine == True, the code will use the masks
annotation to refine the bbox.
Our implementation is slightly different from the official. In COCO
dataset, a gt may have multiple mask tags. The official YOLOv5
annotation file already combines the masks that an object has,
but our code takes into account the fact that an object has multiple masks.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- gt_masks (PolygonMasks) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
- gt_masks (PolygonMasks) (optional)
Args:
max_rotate_degree (float): Maximum degrees of rotation transform.
Defaults to 10.
max_translate_ratio (float): Maximum ratio of translation.
Defaults to 0.1.
scaling_ratio_range (tuple[float]): Min and max ratio of
scaling transform. Defaults to (0.5, 1.5).
max_shear_degree (float): Maximum degrees of shear
transform. Defaults to 2.
border (tuple[int]): Distance from width and height sides of input
image to adjust output shape. Only used in mosaic dataset.
Defaults to (0, 0).
border_val (tuple[int]): Border padding values of 3 channels.
Defaults to (114, 114, 114).
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
min_bbox_size (float): Width and height threshold to filter bboxes.
If the height or width of a box is smaller than this value, it
will be removed. Defaults to 2.
min_area_ratio (float): Threshold of area ratio between
original bboxes and wrapped bboxes. If smaller than this value,
the box will be removed. Defaults to 0.1.
use_mask_refine (bool): Whether to refine bbox by mask.
max_aspect_ratio (float): Aspect ratio of width and height
threshold to filter bboxes. If max(h/w, w/h) larger than this
value, the box will be removed. Defaults to 20.
resample_num (int): Number of poly to resample to.
"""
def __init__(self,
max_rotate_degree: float = 10.0,
max_translate_ratio: float = 0.1,
scaling_ratio_range: Tuple[float, float] = (0.5, 1.5),
max_shear_degree: float = 2.0,
border: Tuple[int, int] = (0, 0),
border_val: Tuple[int, int, int] = (114, 114, 114),
bbox_clip_border: bool = True,
min_bbox_size: int = 2,
min_area_ratio: float = 0.1,
use_mask_refine: bool = False,
max_aspect_ratio: float = 20.,
resample_num: int = 1000):
assert 0 <= max_translate_ratio <= 1
assert scaling_ratio_range[0] <= scaling_ratio_range[1]
assert scaling_ratio_range[0] > 0
self.max_rotate_degree = max_rotate_degree
self.max_translate_ratio = max_translate_ratio
self.scaling_ratio_range = scaling_ratio_range
self.max_shear_degree = max_shear_degree
self.border = border
self.border_val = border_val
self.bbox_clip_border = bbox_clip_border
self.min_bbox_size = min_bbox_size
self.min_area_ratio = min_area_ratio
self.use_mask_refine = use_mask_refine
self.max_aspect_ratio = max_aspect_ratio
self.resample_num = resample_num
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""The YOLOv5 random affine transform function.
Args:
results (dict): The result dict.
Returns:
dict: The result dict.
"""
img = results['img']
# self.border is wh format
height = img.shape[0] + self.border[1] * 2
width = img.shape[1] + self.border[0] * 2
# Note: Different from YOLOX
center_matrix = np.eye(3, dtype=np.float32)
center_matrix[0, 2] = -img.shape[1] / 2
center_matrix[1, 2] = -img.shape[0] / 2
warp_matrix, scaling_ratio = self._get_random_homography_matrix(
height, width)
warp_matrix = warp_matrix @ center_matrix
img = cv2.warpPerspective(
img,
warp_matrix,
dsize=(width, height),
borderValue=self.border_val)
results['img'] = img
results['img_shape'] = img.shape
img_h, img_w = img.shape[:2]
bboxes = results['gt_bboxes']
num_bboxes = len(bboxes)
if num_bboxes:
orig_bboxes = bboxes.clone()
if self.use_mask_refine and 'gt_masks' in results:
# If the dataset has annotations of mask,
# the mask will be used to refine bbox.
gt_masks = results['gt_masks']
gt_masks_resample = self.resample_masks(gt_masks)
gt_masks = self.warp_mask(gt_masks_resample, warp_matrix,
img_h, img_w)
# refine bboxes by masks
bboxes = gt_masks.get_bboxes(dst_type='hbox')
# filter bboxes outside image
valid_index = self.filter_gt_bboxes(orig_bboxes,
bboxes).numpy()
results['gt_masks'] = gt_masks[valid_index]
else:
bboxes.project_(warp_matrix)
if self.bbox_clip_border:
bboxes.clip_([height, width])
# filter bboxes
orig_bboxes.rescale_([scaling_ratio, scaling_ratio])
# Be careful: valid_index must convert to numpy,
# otherwise it will raise out of bounds when len(valid_index)=1
valid_index = self.filter_gt_bboxes(orig_bboxes,
bboxes).numpy()
if 'gt_masks' in results:
results['gt_masks'] = PolygonMasks(
results['gt_masks'].masks, img_h, img_w)
results['gt_bboxes'] = bboxes[valid_index]
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
valid_index]
results['gt_ignore_flags'] = results['gt_ignore_flags'][
valid_index]
return results
@staticmethod
def warp_poly(poly: np.ndarray, warp_matrix: np.ndarray, img_w: int,
img_h: int) -> np.ndarray:
"""Function to warp one mask and filter points outside image.
Args:
poly (np.ndarray): Segmentation annotation with shape (n, ) and
with format (x1, y1, x2, y2, ...).
warp_matrix (np.ndarray): Affine transformation matrix.
Shape: (3, 3).
img_w (int): Width of output image.
img_h (int): Height of output image.
"""
# TODO: Current logic may cause retained masks unusable for
# semantic segmentation training, which is same as official
# implementation.
poly = poly.reshape((-1, 2))
poly = np.concatenate((poly, np.ones(
(len(poly), 1), dtype=poly.dtype)),
axis=-1)
# transform poly
poly = poly @ warp_matrix.T
poly = poly[:, :2] / poly[:, 2:3]
# filter point outside image
x, y = poly.T
valid_ind_point = (x >= 0) & (y >= 0) & (x <= img_w) & (y <= img_h)
return poly[valid_ind_point].reshape(-1)
def warp_mask(self, gt_masks: PolygonMasks, warp_matrix: np.ndarray,
img_w: int, img_h: int) -> PolygonMasks:
"""Warp masks by warp_matrix and retain masks inside image after
warping.
Args:
gt_masks (PolygonMasks): Annotations of semantic segmentation.
warp_matrix (np.ndarray): Affine transformation matrix.
Shape: (3, 3).
img_w (int): Width of output image.
img_h (int): Height of output image.
Returns:
PolygonMasks: Masks after warping.
"""
masks = gt_masks.masks
new_masks = []
for poly_per_obj in masks:
warpped_poly_per_obj = []
# One gt may have multiple masks.
for poly in poly_per_obj:
valid_poly = self.warp_poly(poly, warp_matrix, img_w, img_h)
if len(valid_poly):
warpped_poly_per_obj.append(valid_poly.reshape(-1))
# If all the masks are invalid,
# add [0, 0, 0, 0, 0, 0,] here.
if not warpped_poly_per_obj:
# This will be filtered in function `filter_gt_bboxes`.
warpped_poly_per_obj = [
np.zeros(6, dtype=poly_per_obj[0].dtype)
]
new_masks.append(warpped_poly_per_obj)
gt_masks = PolygonMasks(new_masks, img_h, img_w)
return gt_masks
def resample_masks(self, gt_masks: PolygonMasks) -> PolygonMasks:
"""Function to resample each mask annotation with shape (2 * n, ) to
shape (resample_num * 2, ).
Args:
gt_masks (PolygonMasks): Annotations of semantic segmentation.
"""
masks = gt_masks.masks
new_masks = []
for poly_per_obj in masks:
resample_poly_per_obj = []
for poly in poly_per_obj:
poly = poly.reshape((-1, 2)) # xy
poly = np.concatenate((poly, poly[0:1, :]), axis=0)
x = np.linspace(0, len(poly) - 1, self.resample_num)
xp = np.arange(len(poly))
poly = np.concatenate([
np.interp(x, xp, poly[:, i]) for i in range(2)
]).reshape(2, -1).T.reshape(-1)
resample_poly_per_obj.append(poly)
new_masks.append(resample_poly_per_obj)
return PolygonMasks(new_masks, gt_masks.height, gt_masks.width)
def filter_gt_bboxes(self, origin_bboxes: HorizontalBoxes,
wrapped_bboxes: HorizontalBoxes) -> torch.Tensor:
"""Filter gt bboxes.
Args:
origin_bboxes (HorizontalBoxes): Origin bboxes.
wrapped_bboxes (HorizontalBoxes): Wrapped bboxes
Returns:
dict: The result dict.
"""
origin_w = origin_bboxes.widths
origin_h = origin_bboxes.heights
wrapped_w = wrapped_bboxes.widths
wrapped_h = wrapped_bboxes.heights
aspect_ratio = np.maximum(wrapped_w / (wrapped_h + 1e-16),
wrapped_h / (wrapped_w + 1e-16))
wh_valid_idx = (wrapped_w > self.min_bbox_size) & \
(wrapped_h > self.min_bbox_size)
area_valid_idx = wrapped_w * wrapped_h / (origin_w * origin_h +
1e-16) > self.min_area_ratio
aspect_ratio_valid_idx = aspect_ratio < self.max_aspect_ratio
return wh_valid_idx & area_valid_idx & aspect_ratio_valid_idx
@cache_randomness
def _get_random_homography_matrix(self, height: int,
width: int) -> Tuple[np.ndarray, float]:
"""Get random homography matrix.
Args:
height (int): Image height.
width (int): Image width.
Returns:
Tuple[np.ndarray, float]: The result of warp_matrix and
scaling_ratio.
"""
# Rotation
rotation_degree = random.uniform(-self.max_rotate_degree,
self.max_rotate_degree)
rotation_matrix = self._get_rotation_matrix(rotation_degree)
# Scaling
scaling_ratio = random.uniform(self.scaling_ratio_range[0],
self.scaling_ratio_range[1])
scaling_matrix = self._get_scaling_matrix(scaling_ratio)
# Shear
x_degree = random.uniform(-self.max_shear_degree,
self.max_shear_degree)
y_degree = random.uniform(-self.max_shear_degree,
self.max_shear_degree)
shear_matrix = self._get_shear_matrix(x_degree, y_degree)
# Translation
trans_x = random.uniform(0.5 - self.max_translate_ratio,
0.5 + self.max_translate_ratio) * width
trans_y = random.uniform(0.5 - self.max_translate_ratio,
0.5 + self.max_translate_ratio) * height
translate_matrix = self._get_translation_matrix(trans_x, trans_y)
warp_matrix = (
translate_matrix @ shear_matrix @ rotation_matrix @ scaling_matrix)
return warp_matrix, scaling_ratio
@staticmethod
def _get_rotation_matrix(rotate_degrees: float) -> np.ndarray:
"""Get rotation matrix.
Args:
rotate_degrees (float): Rotate degrees.
Returns:
np.ndarray: The rotation matrix.
"""
radian = math.radians(rotate_degrees)
rotation_matrix = np.array(
[[np.cos(radian), -np.sin(radian), 0.],
[np.sin(radian), np.cos(radian), 0.], [0., 0., 1.]],
dtype=np.float32)
return rotation_matrix
@staticmethod
def _get_scaling_matrix(scale_ratio: float) -> np.ndarray:
"""Get scaling matrix.
Args:
scale_ratio (float): Scale ratio.
Returns:
np.ndarray: The scaling matrix.
"""
scaling_matrix = np.array(
[[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]],
dtype=np.float32)
return scaling_matrix
@staticmethod
def _get_shear_matrix(x_shear_degrees: float,
y_shear_degrees: float) -> np.ndarray:
"""Get shear matrix.
Args:
x_shear_degrees (float): X shear degrees.
y_shear_degrees (float): Y shear degrees.
Returns:
np.ndarray: The shear matrix.
"""
x_radian = math.radians(x_shear_degrees)
y_radian = math.radians(y_shear_degrees)
shear_matrix = np.array([[1, np.tan(x_radian), 0.],
[np.tan(y_radian), 1, 0.], [0., 0., 1.]],
dtype=np.float32)
return shear_matrix
@staticmethod
def _get_translation_matrix(x: float, y: float) -> np.ndarray:
"""Get translation matrix.
Args:
x (float): X translation.
y (float): Y translation.
Returns:
np.ndarray: The translation matrix.
"""
translation_matrix = np.array([[1, 0., x], [0., 1, y], [0., 0., 1.]],
dtype=np.float32)
return translation_matrix
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(max_rotate_degree={self.max_rotate_degree}, '
repr_str += f'max_translate_ratio={self.max_translate_ratio}, '
repr_str += f'scaling_ratio_range={self.scaling_ratio_range}, '
repr_str += f'max_shear_degree={self.max_shear_degree}, '
repr_str += f'border={self.border}, '
repr_str += f'border_val={self.border_val}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@TRANSFORMS.register_module()
class PPYOLOERandomDistort(BaseTransform):
"""Random hue, saturation, contrast and brightness distortion.
Required Keys:
- img
Modified Keys:
- img (np.float32)
Args:
hue_cfg (dict): Hue settings. Defaults to dict(min=-18,
max=18, prob=0.5).
saturation_cfg (dict): Saturation settings. Defaults to dict(
min=0.5, max=1.5, prob=0.5).
contrast_cfg (dict): Contrast settings. Defaults to dict(
min=0.5, max=1.5, prob=0.5).
brightness_cfg (dict): Brightness settings. Defaults to dict(
min=0.5, max=1.5, prob=0.5).
num_distort_func (int): The number of distort function. Defaults
to 4.
"""
def __init__(self,
hue_cfg: dict = dict(min=-18, max=18, prob=0.5),
saturation_cfg: dict = dict(min=0.5, max=1.5, prob=0.5),
contrast_cfg: dict = dict(min=0.5, max=1.5, prob=0.5),
brightness_cfg: dict = dict(min=0.5, max=1.5, prob=0.5),
num_distort_func: int = 4):
self.hue_cfg = hue_cfg
self.saturation_cfg = saturation_cfg
self.contrast_cfg = contrast_cfg
self.brightness_cfg = brightness_cfg
self.num_distort_func = num_distort_func
assert 0 < self.num_distort_func <= 4, \
'num_distort_func must > 0 and <= 4'
for cfg in [
self.hue_cfg, self.saturation_cfg, self.contrast_cfg,
self.brightness_cfg
]:
assert 0. <= cfg['prob'] <= 1., 'prob must >=0 and <=1'
def transform_hue(self, results):
"""Transform hue randomly."""
if random.uniform(0., 1.) >= self.hue_cfg['prob']:
return results
img = results['img']
delta = random.uniform(self.hue_cfg['min'], self.hue_cfg['max'])
u = np.cos(delta * np.pi)
w = np.sin(delta * np.pi)
delta_iq = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
rgb2yiq_matrix = np.array([[0.114, 0.587, 0.299],
[-0.321, -0.274, 0.596],
[0.311, -0.523, 0.211]])
yiq2rgb_matric = np.array([[1.0, -1.107, 1.705], [1.0, -0.272, -0.647],
[1.0, 0.956, 0.621]])
t = np.dot(np.dot(yiq2rgb_matric, delta_iq), rgb2yiq_matrix).T
img = np.dot(img, t)
results['img'] = img
return results
def transform_saturation(self, results):
"""Transform saturation randomly."""
if random.uniform(0., 1.) >= self.saturation_cfg['prob']:
return results
img = results['img']
delta = random.uniform(self.saturation_cfg['min'],
self.saturation_cfg['max'])
# convert bgr img to gray img
gray = img * np.array([[[0.114, 0.587, 0.299]]], dtype=np.float32)
gray = gray.sum(axis=2, keepdims=True)
gray *= (1.0 - delta)
img *= delta
img += gray
results['img'] = img
return results
def transform_contrast(self, results):
"""Transform contrast randomly."""
if random.uniform(0., 1.) >= self.contrast_cfg['prob']:
return results
img = results['img']
delta = random.uniform(self.contrast_cfg['min'],
self.contrast_cfg['max'])
img *= delta
results['img'] = img
return results
def transform_brightness(self, results):
"""Transform brightness randomly."""
if random.uniform(0., 1.) >= self.brightness_cfg['prob']:
return results
img = results['img']
delta = random.uniform(self.brightness_cfg['min'],
self.brightness_cfg['max'])
img += delta
results['img'] = img
return results
def transform(self, results: dict) -> dict:
"""The hue, saturation, contrast and brightness distortion function.
Args:
results (dict): The result dict.
Returns:
dict: The result dict.
"""
results['img'] = results['img'].astype(np.float32)
functions = [
self.transform_brightness, self.transform_contrast,
self.transform_saturation, self.transform_hue
]
distortions = random.permutation(functions)[:self.num_distort_func]
for func in distortions:
results = func(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(hue_cfg={self.hue_cfg}, '
repr_str += f'saturation_cfg={self.saturation_cfg}, '
repr_str += f'contrast_cfg={self.contrast_cfg}, '
repr_str += f'brightness_cfg={self.brightness_cfg}, '
repr_str += f'num_distort_func={self.num_distort_func})'
return repr_str
@TRANSFORMS.register_module()
class PPYOLOERandomCrop(BaseTransform):
"""Random crop the img and bboxes. Different thresholds are used in PPYOLOE
to judge whether the clipped image meets the requirements. This
implementation is different from the implementation of RandomCrop in mmdet.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Added Keys:
- pad_param (np.float32)
Args:
aspect_ratio (List[float]): Aspect ratio of cropped region. Default to
[.5, 2].
thresholds (List[float]): Iou thresholds for deciding a valid bbox crop
in [min, max] format. Defaults to [.0, .1, .3, .5, .7, .9].
scaling (List[float]): Ratio between a cropped region and the original
image in [min, max] format. Default to [.3, 1.].
num_attempts (int): Number of tries for each threshold before
giving up. Default to 50.
allow_no_crop (bool): Allow return without actually cropping them.
Default to True.
cover_all_box (bool): Ensure all bboxes are covered in the final crop.
Default to False.
"""
def __init__(self,
aspect_ratio: List[float] = [.5, 2.],
thresholds: List[float] = [.0, .1, .3, .5, .7, .9],
scaling: List[float] = [.3, 1.],
num_attempts: int = 50,
allow_no_crop: bool = True,
cover_all_box: bool = False):
self.aspect_ratio = aspect_ratio
self.thresholds = thresholds
self.scaling = scaling
self.num_attempts = num_attempts
self.allow_no_crop = allow_no_crop
self.cover_all_box = cover_all_box
def _crop_data(self, results: dict, crop_box: Tuple[int, int, int, int],
valid_inds: np.ndarray) -> Union[dict, None]:
"""Function to randomly crop images, bounding boxes, masks, semantic
segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
crop_box (Tuple[int, int, int, int]): Expected absolute coordinates
for cropping, (x1, y1, x2, y2).
valid_inds (np.ndarray): The indexes of gt that needs to be
retained.
Returns:
results (Union[dict, None]): Randomly cropped results, 'img_shape'
key in result dict is updated according to crop size. None will
be returned when there is no valid bbox after cropping.
"""
# crop the image
img = results['img']
crop_x1, crop_y1, crop_x2, crop_y2 = crop_box
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
results['img'] = img
img_shape = img.shape
results['img_shape'] = img.shape
# crop bboxes accordingly and clip to the image boundary
if results.get('gt_bboxes', None) is not None:
bboxes = results['gt_bboxes']
bboxes.translate_([-crop_x1, -crop_y1])
bboxes.clip_(img_shape[:2])
results['gt_bboxes'] = bboxes[valid_inds]
if results.get('gt_ignore_flags', None) is not None:
results['gt_ignore_flags'] = \
results['gt_ignore_flags'][valid_inds]
if results.get('gt_bboxes_labels', None) is not None:
results['gt_bboxes_labels'] = \
results['gt_bboxes_labels'][valid_inds]
if results.get('gt_masks', None) is not None:
results['gt_masks'] = results['gt_masks'][
valid_inds.nonzero()[0]].crop(
np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
# crop semantic seg
if results.get('gt_seg_map', None) is not None:
results['gt_seg_map'] = results['gt_seg_map'][crop_y1:crop_y2,
crop_x1:crop_x2]
return results
@autocast_box_type()
def transform(self, results: dict) -> Union[dict, None]:
"""The random crop transform function.
Args:
results (dict): The result dict.
Returns:
dict: The result dict.
"""
if results.get('gt_bboxes', None) is None or len(
results['gt_bboxes']) == 0:
return results
orig_img_h, orig_img_w = results['img'].shape[:2]
gt_bboxes = results['gt_bboxes']
thresholds = list(self.thresholds)
if self.allow_no_crop:
thresholds.append('no_crop')
random.shuffle(thresholds)
for thresh in thresholds:
# Determine the coordinates for cropping
if thresh == 'no_crop':
return results
found = False
for i in range(self.num_attempts):
crop_h, crop_w = self._get_crop_size((orig_img_h, orig_img_w))
if self.aspect_ratio is None:
if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
continue
# get image crop_box
margin_h = max(orig_img_h - crop_h, 0)
margin_w = max(orig_img_w - crop_w, 0)
offset_h, offset_w = self._rand_offset((margin_h, margin_w))
crop_y1, crop_y2 = offset_h, offset_h + crop_h
crop_x1, crop_x2 = offset_w, offset_w + crop_w
crop_box = [crop_x1, crop_y1, crop_x2, crop_y2]
# Calculate the iou between gt_bboxes and crop_boxes
iou = self._iou_matrix(gt_bboxes,
np.array([crop_box], dtype=np.float32))
# If the maximum value of the iou is less than thresh,
# the current crop_box is considered invalid.
if iou.max() < thresh:
continue
# If cover_all_box == True and the minimum value of
# the iou is less than thresh, the current crop_box
# is considered invalid.
if self.cover_all_box and iou.min() < thresh:
continue
# Get which gt_bboxes to keep after cropping.
valid_inds = self._get_valid_inds(
gt_bboxes, np.array(crop_box, dtype=np.float32))
if valid_inds.size > 0:
found = True
break
if found:
results = self._crop_data(results, crop_box, valid_inds)
return results
return results
@cache_randomness
def _rand_offset(self, margin: Tuple[int, int]) -> Tuple[int, int]:
"""Randomly generate crop offset.
Args:
margin (Tuple[int, int]): The upper bound for the offset generated
randomly.
Returns:
Tuple[int, int]: The random offset for the crop.
"""
margin_h, margin_w = margin
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
return (offset_h, offset_w)
@cache_randomness
def _get_crop_size(self, image_size: Tuple[int, int]) -> Tuple[int, int]:
"""Randomly generates the crop size based on `image_size`.
Args:
image_size (Tuple[int, int]): (h, w).
Returns:
crop_size (Tuple[int, int]): (crop_h, crop_w) in absolute pixels.
"""
h, w = image_size
scale = random.uniform(*self.scaling)
if self.aspect_ratio is not None:
min_ar, max_ar = self.aspect_ratio
aspect_ratio = random.uniform(
max(min_ar, scale**2), min(max_ar, scale**-2))
h_scale = scale / np.sqrt(aspect_ratio)
w_scale = scale * np.sqrt(aspect_ratio)
else:
h_scale = random.uniform(*self.scaling)
w_scale = random.uniform(*self.scaling)
crop_h = h * h_scale
crop_w = w * w_scale
return int(crop_h), int(crop_w)
def _iou_matrix(self,
gt_bbox: HorizontalBoxes,
crop_bbox: np.ndarray,
eps: float = 1e-10) -> np.ndarray:
"""Calculate iou between gt and image crop box.
Args:
gt_bbox (HorizontalBoxes): Ground truth bounding boxes.
crop_bbox (np.ndarray): Image crop coordinates in
[x1, y1, x2, y2] format.
eps (float): Default to 1e-10.
Return:
(np.ndarray): IoU.
"""
gt_bbox = gt_bbox.tensor.numpy()
lefttop = np.maximum(gt_bbox[:, np.newaxis, :2], crop_bbox[:, :2])
rightbottom = np.minimum(gt_bbox[:, np.newaxis, 2:], crop_bbox[:, 2:])
overlap = np.prod(
rightbottom - lefttop,
axis=2) * (lefttop < rightbottom).all(axis=2)
area_gt_bbox = np.prod(gt_bbox[:, 2:] - crop_bbox[:, :2], axis=1)
area_crop_bbox = np.prod(gt_bbox[:, 2:] - crop_bbox[:, :2], axis=1)
area_o = (area_gt_bbox[:, np.newaxis] + area_crop_bbox - overlap)
return overlap / (area_o + eps)
def _get_valid_inds(self, gt_bbox: HorizontalBoxes,
img_crop_bbox: np.ndarray) -> np.ndarray:
"""Get which Bboxes to keep at the current cropping coordinates.
Args:
gt_bbox (HorizontalBoxes): Ground truth bounding boxes.
img_crop_bbox (np.ndarray): Image crop coordinates in
[x1, y1, x2, y2] format.
Returns:
(np.ndarray): Valid indexes.
"""
cropped_box = gt_bbox.tensor.numpy().copy()
gt_bbox = gt_bbox.tensor.numpy().copy()
cropped_box[:, :2] = np.maximum(gt_bbox[:, :2], img_crop_bbox[:2])
cropped_box[:, 2:] = np.minimum(gt_bbox[:, 2:], img_crop_bbox[2:])
cropped_box[:, :2] -= img_crop_bbox[:2]
cropped_box[:, 2:] -= img_crop_bbox[:2]
centers = (gt_bbox[:, :2] + gt_bbox[:, 2:]) / 2
valid = np.logical_and(img_crop_bbox[:2] <= centers,
centers < img_crop_bbox[2:]).all(axis=1)
valid = np.logical_and(
valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
return np.where(valid)[0]
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(aspect_ratio={self.aspect_ratio}, '
repr_str += f'thresholds={self.thresholds}, '
repr_str += f'scaling={self.scaling}, '
repr_str += f'num_attempts={self.num_attempts}, '
repr_str += f'allow_no_crop={self.allow_no_crop}, '
repr_str += f'cover_all_box={self.cover_all_box})'
return repr_str
@TRANSFORMS.register_module()
class YOLOv5CopyPaste(BaseTransform):
"""Copy-Paste used in YOLOv5 and YOLOv8.
This transform randomly copy some objects in the image to the mirror
position of the image.It is different from the `CopyPaste` in mmdet.
Required Keys:
- img (np.uint8)
- gt_bboxes (BaseBoxes[torch.float32])
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- gt_masks (PolygonMasks) (optional)
Modified Keys:
- img
- gt_bboxes
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (optional)
- gt_masks (optional)
Args:
ioa_thresh (float): Ioa thresholds for deciding valid bbox.
prob (float): Probability of choosing objects.
Defaults to 0.5.
"""
def __init__(self, ioa_thresh: float = 0.3, prob: float = 0.5):
self.ioa_thresh = ioa_thresh
self.prob = prob
@autocast_box_type()
def transform(self, results: dict) -> Union[dict, None]:
"""The YOLOv5 and YOLOv8 Copy-Paste transform function.
Args:
results (dict): The result dict.
Returns:
dict: The result dict.
"""
if len(results.get('gt_masks', [])) == 0:
return results
gt_masks = results['gt_masks']
assert isinstance(gt_masks, PolygonMasks),\
'only support type of PolygonMasks,' \
' but get type: %s' % type(gt_masks)
gt_bboxes = results['gt_bboxes']
gt_bboxes_labels = results.get('gt_bboxes_labels', None)
img = results['img']
img_h, img_w = img.shape[:2]
# calculate ioa
gt_bboxes_flip = deepcopy(gt_bboxes)
gt_bboxes_flip.flip_(img.shape)
ioa = self.bbox_ioa(gt_bboxes_flip, gt_bboxes)
indexes = torch.nonzero((ioa < self.ioa_thresh).all(1))[:, 0]
n = len(indexes)
valid_inds = random.choice(
indexes, size=round(self.prob * n), replace=False)
if len(valid_inds) == 0:
return results
if gt_bboxes_labels is not None:
# prepare labels
gt_bboxes_labels = np.concatenate(
(gt_bboxes_labels, gt_bboxes_labels[valid_inds]), axis=0)
# prepare bboxes
copypaste_bboxes = gt_bboxes_flip[valid_inds]
gt_bboxes = gt_bboxes.cat([gt_bboxes, copypaste_bboxes])
# prepare images
copypaste_gt_masks = gt_masks[valid_inds]
copypaste_gt_masks_flip = copypaste_gt_masks.flip()
# convert poly format to bitmap format
# example: poly: [[array(0.0, 0.0, 10.0, 0.0, 10.0, 10.0, 0.0, 10.0]]
# -> bitmap: a mask with shape equal to (1, img_h, img_w)
# # type1 low speed
# copypaste_gt_masks_bitmap = copypaste_gt_masks.to_ndarray()
# copypaste_mask = np.sum(copypaste_gt_masks_bitmap, axis=0) > 0
# type2
copypaste_mask = np.zeros((img_h, img_w), dtype=np.uint8)
for poly in copypaste_gt_masks.masks:
poly = [i.reshape((-1, 1, 2)).astype(np.int32) for i in poly]
cv2.drawContours(copypaste_mask, poly, -1, (1, ), cv2.FILLED)
copypaste_mask = copypaste_mask.astype(bool)
# copy objects, and paste to the mirror position of the image
copypaste_mask_flip = mmcv.imflip(
copypaste_mask, direction='horizontal')
copypaste_img = mmcv.imflip(img, direction='horizontal')
img[copypaste_mask_flip] = copypaste_img[copypaste_mask_flip]
# prepare masks
gt_masks = copypaste_gt_masks.cat([gt_masks, copypaste_gt_masks_flip])
if 'gt_ignore_flags' in results:
# prepare gt_ignore_flags
gt_ignore_flags = results['gt_ignore_flags']
gt_ignore_flags = np.concatenate(
[gt_ignore_flags, gt_ignore_flags[valid_inds]], axis=0)
results['gt_ignore_flags'] = gt_ignore_flags
results['img'] = img
results['gt_bboxes'] = gt_bboxes
if gt_bboxes_labels is not None:
results['gt_bboxes_labels'] = gt_bboxes_labels
results['gt_masks'] = gt_masks
return results
@staticmethod
def bbox_ioa(gt_bboxes_flip: HorizontalBoxes,
gt_bboxes: HorizontalBoxes,
eps: float = 1e-7) -> np.ndarray:
"""Calculate ioa between gt_bboxes_flip and gt_bboxes.
Args:
gt_bboxes_flip (HorizontalBoxes): Flipped ground truth
bounding boxes.
gt_bboxes (HorizontalBoxes): Ground truth bounding boxes.
eps (float): Default to 1e-10.
Return:
(Tensor): Ioa.
"""
gt_bboxes_flip = gt_bboxes_flip.tensor
gt_bboxes = gt_bboxes.tensor
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = gt_bboxes_flip.T
b2_x1, b2_y1, b2_x2, b2_y2 = gt_bboxes.T
# Intersection area
inter_area = (torch.minimum(b1_x2[:, None],
b2_x2) - torch.maximum(b1_x1[:, None],
b2_x1)).clip(0) * \
(torch.minimum(b1_y2[:, None],
b2_y2) - torch.maximum(b1_y1[:, None],
b2_y1)).clip(0)
# box2 area
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
# Intersection over box2 area
return inter_area / box2_area
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(ioa_thresh={self.ioa_thresh},'
repr_str += f'prob={self.prob})'
return repr_str
@TRANSFORMS.register_module()
class RemoveDataElement(BaseTransform):
"""Remove unnecessary data element in results.
Args:
keys (Union[str, Sequence[str]]): Keys need to be removed.
"""
def __init__(self, keys: Union[str, Sequence[str]]):
self.keys = [keys] if isinstance(keys, str) else keys
def transform(self, results: dict) -> dict:
for key in self.keys:
results.pop(key, None)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(keys={self.keys})'
return repr_str
@TRANSFORMS.register_module()
class RegularizeRotatedBox(BaseTransform):
"""Regularize rotated boxes.
Due to the angle periodicity, one rotated box can be represented in
many different (x, y, w, h, t). To make each rotated box unique,
``regularize_boxes`` will take the remainder of the angle divided by
180 degrees.
For convenience, three angle_version can be used here:
- 'oc': OpenCV Definition. Has the same box representation as
``cv2.minAreaRect`` the angle ranges in [-90, 0).
- 'le90': Long Edge Definition (90). the angle ranges in [-90, 90).
The width is always longer than the height.
- 'le135': Long Edge Definition (135). the angle ranges in [-45, 135).
The width is always longer than the height.
Required Keys:
- gt_bboxes (RotatedBoxes[torch.float32])
Modified Keys:
- gt_bboxes
Args:
angle_version (str): Angle version. Can only be 'oc',
'le90', or 'le135'. Defaults to 'le90.
"""
def __init__(self, angle_version='le90') -> None:
self.angle_version = angle_version
try:
from mmrotate.structures.bbox import RotatedBoxes
self.box_type = RotatedBoxes
except ImportError:
raise ImportError(
'Please run "mim install -r requirements/mmrotate.txt" '
'to install mmrotate first for rotated detection.')
def transform(self, results: dict) -> dict:
assert isinstance(results['gt_bboxes'], self.box_type)
results['gt_bboxes'] = self.box_type(
results['gt_bboxes'].regularize_boxes(self.angle_version))
return results
|