File size: 4,611 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Optional

import numpy as np
from mmengine.hooks import ParamSchedulerHook
from mmengine.runner import Runner

from mmyolo.registry import HOOKS


def linear_fn(lr_factor: float, max_epochs: int):
    """Generate linear function."""
    return lambda x: (1 - x / max_epochs) * (1.0 - lr_factor) + lr_factor


def cosine_fn(lr_factor: float, max_epochs: int):
    """Generate cosine function."""
    return lambda x: (
        (1 - math.cos(x * math.pi / max_epochs)) / 2) * (lr_factor - 1) + 1


@HOOKS.register_module()
class YOLOv5ParamSchedulerHook(ParamSchedulerHook):
    """A hook to update learning rate and momentum in optimizer of YOLOv5."""
    priority = 9

    scheduler_maps = {'linear': linear_fn, 'cosine': cosine_fn}

    def __init__(self,
                 scheduler_type: str = 'linear',
                 lr_factor: float = 0.01,
                 max_epochs: int = 300,
                 warmup_epochs: int = 3,
                 warmup_bias_lr: float = 0.1,
                 warmup_momentum: float = 0.8,
                 warmup_mim_iter: int = 1000,
                 **kwargs):

        assert scheduler_type in self.scheduler_maps

        self.warmup_epochs = warmup_epochs
        self.warmup_bias_lr = warmup_bias_lr
        self.warmup_momentum = warmup_momentum
        self.warmup_mim_iter = warmup_mim_iter

        kwargs.update({'lr_factor': lr_factor, 'max_epochs': max_epochs})
        self.scheduler_fn = self.scheduler_maps[scheduler_type](**kwargs)

        self._warmup_end = False
        self._base_lr = None
        self._base_momentum = None

    def before_train(self, runner: Runner):
        """Operations before train.

        Args:
            runner (Runner): The runner of the training process.
        """
        optimizer = runner.optim_wrapper.optimizer
        for group in optimizer.param_groups:
            # If the param is never be scheduled, record the current value
            # as the initial value.
            group.setdefault('initial_lr', group['lr'])
            group.setdefault('initial_momentum', group.get('momentum', -1))

        self._base_lr = [
            group['initial_lr'] for group in optimizer.param_groups
        ]
        self._base_momentum = [
            group['initial_momentum'] for group in optimizer.param_groups
        ]

    def before_train_iter(self,
                          runner: Runner,
                          batch_idx: int,
                          data_batch: Optional[dict] = None):
        """Operations before each training iteration.

        Args:
            runner (Runner): The runner of the training process.
            batch_idx (int): The index of the current batch in the train loop.
            data_batch (dict or tuple or list, optional): Data from dataloader.
        """
        cur_iters = runner.iter
        cur_epoch = runner.epoch
        optimizer = runner.optim_wrapper.optimizer

        # The minimum warmup is self.warmup_mim_iter
        warmup_total_iters = max(
            round(self.warmup_epochs * len(runner.train_dataloader)),
            self.warmup_mim_iter)

        if cur_iters <= warmup_total_iters:
            xp = [0, warmup_total_iters]
            for group_idx, param in enumerate(optimizer.param_groups):
                if group_idx == 2:
                    # bias learning rate will be handled specially
                    yp = [
                        self.warmup_bias_lr,
                        self._base_lr[group_idx] * self.scheduler_fn(cur_epoch)
                    ]
                else:
                    yp = [
                        0.0,
                        self._base_lr[group_idx] * self.scheduler_fn(cur_epoch)
                    ]
                param['lr'] = np.interp(cur_iters, xp, yp)

                if 'momentum' in param:
                    param['momentum'] = np.interp(
                        cur_iters, xp,
                        [self.warmup_momentum, self._base_momentum[group_idx]])
        else:
            self._warmup_end = True

    def after_train_epoch(self, runner: Runner):
        """Operations after each training epoch.

        Args:
            runner (Runner): The runner of the training process.
        """
        if not self._warmup_end:
            return

        cur_epoch = runner.epoch
        optimizer = runner.optim_wrapper.optimizer
        for group_idx, param in enumerate(optimizer.param_groups):
            param['lr'] = self._base_lr[group_idx] * self.scheduler_fn(
                cur_epoch)