File size: 7,920 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
from typing import List, Sequence, Union

import torch
import torch.nn as nn
from mmcv.cnn import build_plugin_layer
from mmdet.utils import ConfigType, OptMultiConfig
from mmengine.model import BaseModule
from torch.nn.modules.batchnorm import _BatchNorm

from mmyolo.registry import MODELS


@MODELS.register_module()
class BaseBackbone(BaseModule, metaclass=ABCMeta):
    """BaseBackbone backbone used in YOLO series.

    .. code:: text

     Backbone model structure diagram
     +-----------+
     |   input   |
     +-----------+
           v
     +-----------+
     |   stem    |
     |   layer   |
     +-----------+
           v
     +-----------+
     |   stage   |
     |  layer 1  |
     +-----------+
           v
     +-----------+
     |   stage   |
     |  layer 2  |
     +-----------+
           v
         ......
           v
     +-----------+
     |   stage   |
     |  layer n  |
     +-----------+
     In P5 model, n=4
     In P6 model, n=5

    Args:
        arch_setting (list): Architecture of BaseBackbone.
        plugins (list[dict]): List of plugins for stages, each dict contains:

            - cfg (dict, required): Cfg dict to build plugin.
            - stages (tuple[bool], optional): Stages to apply plugin, length
              should be same as 'num_stages'.
        deepen_factor (float): Depth multiplier, multiply number of
            blocks in CSP layer by this amount. Defaults to 1.0.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        input_channels: Number of input image channels. Defaults to 3.
        out_indices (Sequence[int]): Output from which stages.
            Defaults to (2, 3, 4).
        frozen_stages (int): Stages to be frozen (stop grad and set eval
            mode). -1 means not freezing any parameters. Defaults to -1.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Defaults to None.
        act_cfg (dict): Config dict for activation layer.
            Defaults to None.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 arch_setting: list,
                 deepen_factor: float = 1.0,
                 widen_factor: float = 1.0,
                 input_channels: int = 3,
                 out_indices: Sequence[int] = (2, 3, 4),
                 frozen_stages: int = -1,
                 plugins: Union[dict, List[dict]] = None,
                 norm_cfg: ConfigType = None,
                 act_cfg: ConfigType = None,
                 norm_eval: bool = False,
                 init_cfg: OptMultiConfig = None):
        super().__init__(init_cfg)
        self.num_stages = len(arch_setting)
        self.arch_setting = arch_setting

        assert set(out_indices).issubset(
            i for i in range(len(arch_setting) + 1))

        if frozen_stages not in range(-1, len(arch_setting) + 1):
            raise ValueError('"frozen_stages" must be in range(-1, '
                             'len(arch_setting) + 1). But received '
                             f'{frozen_stages}')

        self.input_channels = input_channels
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.widen_factor = widen_factor
        self.deepen_factor = deepen_factor
        self.norm_eval = norm_eval
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.plugins = plugins

        self.stem = self.build_stem_layer()
        self.layers = ['stem']

        for idx, setting in enumerate(arch_setting):
            stage = []
            stage += self.build_stage_layer(idx, setting)
            if plugins is not None:
                stage += self.make_stage_plugins(plugins, idx, setting)
            self.add_module(f'stage{idx + 1}', nn.Sequential(*stage))
            self.layers.append(f'stage{idx + 1}')

    @abstractmethod
    def build_stem_layer(self):
        """Build a stem layer."""
        pass

    @abstractmethod
    def build_stage_layer(self, stage_idx: int, setting: list):
        """Build a stage layer.

        Args:
            stage_idx (int): The index of a stage layer.
            setting (list): The architecture setting of a stage layer.
        """
        pass

    def make_stage_plugins(self, plugins, stage_idx, setting):
        """Make plugins for backbone ``stage_idx`` th stage.

        Currently we support to insert ``context_block``,
        ``empirical_attention_block``, ``nonlocal_block``, ``dropout_block``
        into the backbone.


        An example of plugins format could be:

        Examples:
            >>> plugins=[
            ...     dict(cfg=dict(type='xxx', arg1='xxx'),
            ...          stages=(False, True, True, True)),
            ...     dict(cfg=dict(type='yyy'),
            ...          stages=(True, True, True, True)),
            ... ]
            >>> model = YOLOv5CSPDarknet()
            >>> stage_plugins = model.make_stage_plugins(plugins, 0, setting)
            >>> assert len(stage_plugins) == 1

        Suppose ``stage_idx=0``, the structure of blocks in the stage would be:

        .. code-block:: none

            conv1 -> conv2 -> conv3 -> yyy

        Suppose ``stage_idx=1``, the structure of blocks in the stage would be:

        .. code-block:: none

            conv1 -> conv2 -> conv3 -> xxx -> yyy


        Args:
            plugins (list[dict]): List of plugins cfg to build. The postfix is
                required if multiple same type plugins are inserted.
            stage_idx (int): Index of stage to build
                If stages is missing, the plugin would be applied to all
                stages.
            setting (list): The architecture setting of a stage layer.

        Returns:
            list[nn.Module]: Plugins for current stage
        """
        # TODO: It is not general enough to support any channel and needs
        # to be refactored
        in_channels = int(setting[1] * self.widen_factor)
        plugin_layers = []
        for plugin in plugins:
            plugin = plugin.copy()
            stages = plugin.pop('stages', None)
            assert stages is None or len(stages) == self.num_stages
            if stages is None or stages[stage_idx]:
                name, layer = build_plugin_layer(
                    plugin['cfg'], in_channels=in_channels)
                plugin_layers.append(layer)
        return plugin_layers

    def _freeze_stages(self):
        """Freeze the parameters of the specified stage so that they are no
        longer updated."""
        if self.frozen_stages >= 0:
            for i in range(self.frozen_stages + 1):
                m = getattr(self, self.layers[i])
                m.eval()
                for param in m.parameters():
                    param.requires_grad = False

    def train(self, mode: bool = True):
        """Convert the model into training mode while keep normalization layer
        frozen."""
        super().train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, _BatchNorm):
                    m.eval()

    def forward(self, x: torch.Tensor) -> tuple:
        """Forward batch_inputs from the data_preprocessor."""
        outs = []
        for i, layer_name in enumerate(self.layers):
            layer = getattr(self, layer_name)
            x = layer(x)
            if i in self.out_indices:
                outs.append(x)

        return tuple(outs)