File size: 17,158 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple, Union

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmdet.models.backbones.csp_darknet import CSPLayer, Focus
from mmdet.utils import ConfigType, OptMultiConfig

from mmyolo.registry import MODELS
from ..layers import CSPLayerWithTwoConv, SPPFBottleneck
from ..utils import make_divisible, make_round
from .base_backbone import BaseBackbone


@MODELS.register_module()
class YOLOv5CSPDarknet(BaseBackbone):
    """CSP-Darknet backbone used in YOLOv5.
    Args:
        arch (str): Architecture of CSP-Darknet, from {P5, P6}.
            Defaults to P5.
        plugins (list[dict]): List of plugins for stages, each dict contains:
            - cfg (dict, required): Cfg dict to build plugin.
            - stages (tuple[bool], optional): Stages to apply plugin, length
              should be same as 'num_stages'.
        deepen_factor (float): Depth multiplier, multiply number of
            blocks in CSP layer by this amount. Defaults to 1.0.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        input_channels (int): Number of input image channels. Defaults to: 3.
        out_indices (Tuple[int]): Output from which stages.
            Defaults to (2, 3, 4).
        frozen_stages (int): Stages to be frozen (stop grad and set eval
            mode). -1 means not freezing any parameters. Defaults to -1.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Defaults to dict(type='BN', requires_grad=True).
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='SiLU', inplace=True).
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        init_cfg (Union[dict,list[dict]], optional): Initialization config
            dict. Defaults to None.
    Example:
        >>> from mmyolo.models import YOLOv5CSPDarknet
        >>> import torch
        >>> model = YOLOv5CSPDarknet()
        >>> model.eval()
        >>> inputs = torch.rand(1, 3, 416, 416)
        >>> level_outputs = model(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        ...
        (1, 256, 52, 52)
        (1, 512, 26, 26)
        (1, 1024, 13, 13)
    """
    # From left to right:
    # in_channels, out_channels, num_blocks, add_identity, use_spp
    arch_settings = {
        'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False],
               [256, 512, 9, True, False], [512, 1024, 3, True, True]],
        'P6': [[64, 128, 3, True, False], [128, 256, 6, True, False],
               [256, 512, 9, True, False], [512, 768, 3, True, False],
               [768, 1024, 3, True, True]]
    }

    def __init__(self,
                 arch: str = 'P5',
                 plugins: Union[dict, List[dict]] = None,
                 deepen_factor: float = 1.0,
                 widen_factor: float = 1.0,
                 input_channels: int = 3,
                 out_indices: Tuple[int] = (2, 3, 4),
                 frozen_stages: int = -1,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='SiLU', inplace=True),
                 norm_eval: bool = False,
                 init_cfg: OptMultiConfig = None):
        super().__init__(
            self.arch_settings[arch],
            deepen_factor,
            widen_factor,
            input_channels=input_channels,
            out_indices=out_indices,
            plugins=plugins,
            frozen_stages=frozen_stages,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            norm_eval=norm_eval,
            init_cfg=init_cfg)

    def build_stem_layer(self) -> nn.Module:
        """Build a stem layer."""
        return ConvModule(
            self.input_channels,
            make_divisible(self.arch_setting[0][0], self.widen_factor),
            kernel_size=6,
            stride=2,
            padding=2,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

    def build_stage_layer(self, stage_idx: int, setting: list) -> list:
        """Build a stage layer.

        Args:
            stage_idx (int): The index of a stage layer.
            setting (list): The architecture setting of a stage layer.
        """
        in_channels, out_channels, num_blocks, add_identity, use_spp = setting

        in_channels = make_divisible(in_channels, self.widen_factor)
        out_channels = make_divisible(out_channels, self.widen_factor)
        num_blocks = make_round(num_blocks, self.deepen_factor)
        stage = []
        conv_layer = ConvModule(
            in_channels,
            out_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        stage.append(conv_layer)
        csp_layer = CSPLayer(
            out_channels,
            out_channels,
            num_blocks=num_blocks,
            add_identity=add_identity,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        stage.append(csp_layer)
        if use_spp:
            spp = SPPFBottleneck(
                out_channels,
                out_channels,
                kernel_sizes=5,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
            stage.append(spp)
        return stage

    def init_weights(self):
        """Initialize the parameters."""
        if self.init_cfg is None:
            for m in self.modules():
                if isinstance(m, torch.nn.Conv2d):
                    # In order to be consistent with the source code,
                    # reset the Conv2d initialization parameters
                    m.reset_parameters()
        else:
            super().init_weights()


@MODELS.register_module()
class YOLOv8CSPDarknet(BaseBackbone):
    """CSP-Darknet backbone used in YOLOv8.

    Args:
        arch (str): Architecture of CSP-Darknet, from {P5}.
            Defaults to P5.
        last_stage_out_channels (int): Final layer output channel.
            Defaults to 1024.
        plugins (list[dict]): List of plugins for stages, each dict contains:
            - cfg (dict, required): Cfg dict to build plugin.
            - stages (tuple[bool], optional): Stages to apply plugin, length
              should be same as 'num_stages'.
        deepen_factor (float): Depth multiplier, multiply number of
            blocks in CSP layer by this amount. Defaults to 1.0.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        input_channels (int): Number of input image channels. Defaults to: 3.
        out_indices (Tuple[int]): Output from which stages.
            Defaults to (2, 3, 4).
        frozen_stages (int): Stages to be frozen (stop grad and set eval
            mode). -1 means not freezing any parameters. Defaults to -1.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Defaults to dict(type='BN', requires_grad=True).
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='SiLU', inplace=True).
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        init_cfg (Union[dict,list[dict]], optional): Initialization config
            dict. Defaults to None.

    Example:
        >>> from mmyolo.models import YOLOv8CSPDarknet
        >>> import torch
        >>> model = YOLOv8CSPDarknet()
        >>> model.eval()
        >>> inputs = torch.rand(1, 3, 416, 416)
        >>> level_outputs = model(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        ...
        (1, 256, 52, 52)
        (1, 512, 26, 26)
        (1, 1024, 13, 13)
    """
    # From left to right:
    # in_channels, out_channels, num_blocks, add_identity, use_spp
    # the final out_channels will be set according to the param.
    arch_settings = {
        'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False],
               [256, 512, 6, True, False], [512, None, 3, True, True]],
    }

    def __init__(self,
                 arch: str = 'P5',
                 last_stage_out_channels: int = 1024,
                 plugins: Union[dict, List[dict]] = None,
                 deepen_factor: float = 1.0,
                 widen_factor: float = 1.0,
                 input_channels: int = 3,
                 out_indices: Tuple[int] = (2, 3, 4),
                 frozen_stages: int = -1,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='SiLU', inplace=True),
                 norm_eval: bool = False,
                 init_cfg: OptMultiConfig = None):
        self.arch_settings[arch][-1][1] = last_stage_out_channels
        super().__init__(
            self.arch_settings[arch],
            deepen_factor,
            widen_factor,
            input_channels=input_channels,
            out_indices=out_indices,
            plugins=plugins,
            frozen_stages=frozen_stages,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            norm_eval=norm_eval,
            init_cfg=init_cfg)

    def build_stem_layer(self) -> nn.Module:
        """Build a stem layer."""
        return ConvModule(
            self.input_channels,
            make_divisible(self.arch_setting[0][0], self.widen_factor),
            kernel_size=3,
            stride=2,
            padding=1,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

    def build_stage_layer(self, stage_idx: int, setting: list) -> list:
        """Build a stage layer.

        Args:
            stage_idx (int): The index of a stage layer.
            setting (list): The architecture setting of a stage layer.
        """
        in_channels, out_channels, num_blocks, add_identity, use_spp = setting

        in_channels = make_divisible(in_channels, self.widen_factor)
        out_channels = make_divisible(out_channels, self.widen_factor)
        num_blocks = make_round(num_blocks, self.deepen_factor)
        stage = []
        conv_layer = ConvModule(
            in_channels,
            out_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        stage.append(conv_layer)
        csp_layer = CSPLayerWithTwoConv(
            out_channels,
            out_channels,
            num_blocks=num_blocks,
            add_identity=add_identity,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        stage.append(csp_layer)
        if use_spp:
            spp = SPPFBottleneck(
                out_channels,
                out_channels,
                kernel_sizes=5,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
            stage.append(spp)
        return stage

    def init_weights(self):
        """Initialize the parameters."""
        if self.init_cfg is None:
            for m in self.modules():
                if isinstance(m, torch.nn.Conv2d):
                    # In order to be consistent with the source code,
                    # reset the Conv2d initialization parameters
                    m.reset_parameters()
        else:
            super().init_weights()


@MODELS.register_module()
class YOLOXCSPDarknet(BaseBackbone):
    """CSP-Darknet backbone used in YOLOX.

    Args:
        arch (str): Architecture of CSP-Darknet, from {P5, P6}.
            Defaults to P5.
        plugins (list[dict]): List of plugins for stages, each dict contains:

            - cfg (dict, required): Cfg dict to build plugin.
            - stages (tuple[bool], optional): Stages to apply plugin, length
              should be same as 'num_stages'.
        deepen_factor (float): Depth multiplier, multiply number of
            blocks in CSP layer by this amount. Defaults to 1.0.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        input_channels (int): Number of input image channels. Defaults to 3.
        out_indices (Tuple[int]): Output from which stages.
            Defaults to (2, 3, 4).
        frozen_stages (int): Stages to be frozen (stop grad and set eval
            mode). -1 means not freezing any parameters. Defaults to -1.
        use_depthwise (bool): Whether to use depthwise separable convolution.
            Defaults to False.
        spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP
            layers. Defaults to (5, 9, 13).
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Defaults to dict(type='BN', momentum=0.03, eps=0.001).
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='SiLU', inplace=True).
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only.
        init_cfg (Union[dict,list[dict]], optional): Initialization config
            dict. Defaults to None.
    Example:
        >>> from mmyolo.models import YOLOXCSPDarknet
        >>> import torch
        >>> model = YOLOXCSPDarknet()
        >>> model.eval()
        >>> inputs = torch.rand(1, 3, 416, 416)
        >>> level_outputs = model(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        ...
        (1, 256, 52, 52)
        (1, 512, 26, 26)
        (1, 1024, 13, 13)
    """
    # From left to right:
    # in_channels, out_channels, num_blocks, add_identity, use_spp
    arch_settings = {
        'P5': [[64, 128, 3, True, False], [128, 256, 9, True, False],
               [256, 512, 9, True, False], [512, 1024, 3, False, True]],
    }

    def __init__(self,
                 arch: str = 'P5',
                 plugins: Union[dict, List[dict]] = None,
                 deepen_factor: float = 1.0,
                 widen_factor: float = 1.0,
                 input_channels: int = 3,
                 out_indices: Tuple[int] = (2, 3, 4),
                 frozen_stages: int = -1,
                 use_depthwise: bool = False,
                 spp_kernal_sizes: Tuple[int] = (5, 9, 13),
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='SiLU', inplace=True),
                 norm_eval: bool = False,
                 init_cfg: OptMultiConfig = None):
        self.use_depthwise = use_depthwise
        self.spp_kernal_sizes = spp_kernal_sizes
        super().__init__(self.arch_settings[arch], deepen_factor, widen_factor,
                         input_channels, out_indices, frozen_stages, plugins,
                         norm_cfg, act_cfg, norm_eval, init_cfg)

    def build_stem_layer(self) -> nn.Module:
        """Build a stem layer."""
        return Focus(
            3,
            make_divisible(64, self.widen_factor),
            kernel_size=3,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

    def build_stage_layer(self, stage_idx: int, setting: list) -> list:
        """Build a stage layer.

        Args:
            stage_idx (int): The index of a stage layer.
            setting (list): The architecture setting of a stage layer.
        """
        in_channels, out_channels, num_blocks, add_identity, use_spp = setting

        in_channels = make_divisible(in_channels, self.widen_factor)
        out_channels = make_divisible(out_channels, self.widen_factor)
        num_blocks = make_round(num_blocks, self.deepen_factor)
        stage = []
        conv = DepthwiseSeparableConvModule \
            if self.use_depthwise else ConvModule
        conv_layer = conv(
            in_channels,
            out_channels,
            kernel_size=3,
            stride=2,
            padding=1,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        stage.append(conv_layer)
        if use_spp:
            spp = SPPFBottleneck(
                out_channels,
                out_channels,
                kernel_sizes=self.spp_kernal_sizes,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
            stage.append(spp)
        csp_layer = CSPLayer(
            out_channels,
            out_channels,
            num_blocks=num_blocks,
            add_identity=add_identity,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        stage.append(csp_layer)
        return stage