File size: 11,355 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# Copyright (c) OpenMMLab. All rights reserved.

from typing import List, Tuple, Union

import torch
import torch.nn as nn
from mmdet.utils import ConfigType, OptMultiConfig

from mmyolo.models.layers.yolo_bricks import SPPFBottleneck
from mmyolo.registry import MODELS
from ..layers import BepC3StageBlock, RepStageBlock
from ..utils import make_round
from .base_backbone import BaseBackbone


@MODELS.register_module()
class YOLOv6EfficientRep(BaseBackbone):
    """EfficientRep backbone used in YOLOv6.
    Args:
        arch (str): Architecture of BaseDarknet, from {P5, P6}.
            Defaults to P5.
        plugins (list[dict]): List of plugins for stages, each dict contains:
            - cfg (dict, required): Cfg dict to build plugin.
            - stages (tuple[bool], optional): Stages to apply plugin, length
              should be same as 'num_stages'.
        deepen_factor (float): Depth multiplier, multiply number of
            blocks in CSP layer by this amount. Defaults to 1.0.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        input_channels (int): Number of input image channels. Defaults to 3.
        out_indices (Tuple[int]): Output from which stages.
            Defaults to (2, 3, 4).
        frozen_stages (int): Stages to be frozen (stop grad and set eval
            mode). -1 means not freezing any parameters. Defaults to -1.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Defaults to dict(type='BN', requires_grad=True).
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='LeakyReLU', negative_slope=0.1).
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        block_cfg (dict): Config dict for the block used to build each
            layer. Defaults to dict(type='RepVGGBlock').
        init_cfg (Union[dict, list[dict]], optional): Initialization config
            dict. Defaults to None.
    Example:
        >>> from mmyolo.models import YOLOv6EfficientRep
        >>> import torch
        >>> model = YOLOv6EfficientRep()
        >>> model.eval()
        >>> inputs = torch.rand(1, 3, 416, 416)
        >>> level_outputs = model(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        ...
        (1, 256, 52, 52)
        (1, 512, 26, 26)
        (1, 1024, 13, 13)
    """
    # From left to right:
    # in_channels, out_channels, num_blocks, use_spp
    arch_settings = {
        'P5': [[64, 128, 6, False], [128, 256, 12, False],
               [256, 512, 18, False], [512, 1024, 6, True]]
    }

    def __init__(self,
                 arch: str = 'P5',
                 plugins: Union[dict, List[dict]] = None,
                 deepen_factor: float = 1.0,
                 widen_factor: float = 1.0,
                 input_channels: int = 3,
                 out_indices: Tuple[int] = (2, 3, 4),
                 frozen_stages: int = -1,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='ReLU', inplace=True),
                 norm_eval: bool = False,
                 block_cfg: ConfigType = dict(type='RepVGGBlock'),
                 init_cfg: OptMultiConfig = None):
        self.block_cfg = block_cfg
        super().__init__(
            self.arch_settings[arch],
            deepen_factor,
            widen_factor,
            input_channels=input_channels,
            out_indices=out_indices,
            plugins=plugins,
            frozen_stages=frozen_stages,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            norm_eval=norm_eval,
            init_cfg=init_cfg)

    def build_stem_layer(self) -> nn.Module:
        """Build a stem layer."""

        block_cfg = self.block_cfg.copy()
        block_cfg.update(
            dict(
                in_channels=self.input_channels,
                out_channels=int(self.arch_setting[0][0] * self.widen_factor),
                kernel_size=3,
                stride=2,
            ))
        return MODELS.build(block_cfg)

    def build_stage_layer(self, stage_idx: int, setting: list) -> list:
        """Build a stage layer.

        Args:
            stage_idx (int): The index of a stage layer.
            setting (list): The architecture setting of a stage layer.
        """
        in_channels, out_channels, num_blocks, use_spp = setting

        in_channels = int(in_channels * self.widen_factor)
        out_channels = int(out_channels * self.widen_factor)
        num_blocks = make_round(num_blocks, self.deepen_factor)

        rep_stage_block = RepStageBlock(
            in_channels=out_channels,
            out_channels=out_channels,
            num_blocks=num_blocks,
            block_cfg=self.block_cfg,
        )

        block_cfg = self.block_cfg.copy()
        block_cfg.update(
            dict(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=3,
                stride=2))
        stage = []

        ef_block = nn.Sequential(MODELS.build(block_cfg), rep_stage_block)

        stage.append(ef_block)

        if use_spp:
            spp = SPPFBottleneck(
                in_channels=out_channels,
                out_channels=out_channels,
                kernel_sizes=5,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
            stage.append(spp)
        return stage

    def init_weights(self):
        if self.init_cfg is None:
            """Initialize the parameters."""
            for m in self.modules():
                if isinstance(m, torch.nn.Conv2d):
                    # In order to be consistent with the source code,
                    # reset the Conv2d initialization parameters
                    m.reset_parameters()
        else:
            super().init_weights()


@MODELS.register_module()
class YOLOv6CSPBep(YOLOv6EfficientRep):
    """CSPBep backbone used in YOLOv6.
    Args:
        arch (str): Architecture of BaseDarknet, from {P5, P6}.
            Defaults to P5.
        plugins (list[dict]): List of plugins for stages, each dict contains:
            - cfg (dict, required): Cfg dict to build plugin.
            - stages (tuple[bool], optional): Stages to apply plugin, length
              should be same as 'num_stages'.
        deepen_factor (float): Depth multiplier, multiply number of
            blocks in CSP layer by this amount. Defaults to 1.0.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        input_channels (int): Number of input image channels. Defaults to 3.
        out_indices (Tuple[int]): Output from which stages.
            Defaults to (2, 3, 4).
        frozen_stages (int): Stages to be frozen (stop grad and set eval
            mode). -1 means not freezing any parameters. Defaults to -1.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Defaults to dict(type='BN', requires_grad=True).
        act_cfg (dict): Config dict for activation layer.
            Defaults to dict(type='LeakyReLU', negative_slope=0.1).
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Defaults to False.
        block_cfg (dict): Config dict for the block used to build each
            layer. Defaults to dict(type='RepVGGBlock').
        block_act_cfg (dict): Config dict for activation layer used in each
            stage. Defaults to dict(type='SiLU', inplace=True).
        init_cfg (Union[dict, list[dict]], optional): Initialization config
            dict. Defaults to None.
    Example:
        >>> from mmyolo.models import YOLOv6CSPBep
        >>> import torch
        >>> model = YOLOv6CSPBep()
        >>> model.eval()
        >>> inputs = torch.rand(1, 3, 416, 416)
        >>> level_outputs = model(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        ...
        (1, 256, 52, 52)
        (1, 512, 26, 26)
        (1, 1024, 13, 13)
    """
    # From left to right:
    # in_channels, out_channels, num_blocks, use_spp
    arch_settings = {
        'P5': [[64, 128, 6, False], [128, 256, 12, False],
               [256, 512, 18, False], [512, 1024, 6, True]]
    }

    def __init__(self,
                 arch: str = 'P5',
                 plugins: Union[dict, List[dict]] = None,
                 deepen_factor: float = 1.0,
                 widen_factor: float = 1.0,
                 input_channels: int = 3,
                 hidden_ratio: float = 0.5,
                 out_indices: Tuple[int] = (2, 3, 4),
                 frozen_stages: int = -1,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='SiLU', inplace=True),
                 norm_eval: bool = False,
                 block_cfg: ConfigType = dict(type='ConvWrapper'),
                 init_cfg: OptMultiConfig = None):
        self.hidden_ratio = hidden_ratio
        super().__init__(
            arch=arch,
            deepen_factor=deepen_factor,
            widen_factor=widen_factor,
            input_channels=input_channels,
            out_indices=out_indices,
            plugins=plugins,
            frozen_stages=frozen_stages,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            norm_eval=norm_eval,
            block_cfg=block_cfg,
            init_cfg=init_cfg)

    def build_stage_layer(self, stage_idx: int, setting: list) -> list:
        """Build a stage layer.

        Args:
            stage_idx (int): The index of a stage layer.
            setting (list): The architecture setting of a stage layer.
        """
        in_channels, out_channels, num_blocks, use_spp = setting
        in_channels = int(in_channels * self.widen_factor)
        out_channels = int(out_channels * self.widen_factor)
        num_blocks = make_round(num_blocks, self.deepen_factor)

        rep_stage_block = BepC3StageBlock(
            in_channels=out_channels,
            out_channels=out_channels,
            num_blocks=num_blocks,
            hidden_ratio=self.hidden_ratio,
            block_cfg=self.block_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)
        block_cfg = self.block_cfg.copy()
        block_cfg.update(
            dict(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=3,
                stride=2))
        stage = []

        ef_block = nn.Sequential(MODELS.build(block_cfg), rep_stage_block)

        stage.append(ef_block)

        if use_spp:
            spp = SPPFBottleneck(
                in_channels=out_channels,
                out_channels=out_channels,
                kernel_sizes=5,
                norm_cfg=self.norm_cfg,
                act_cfg=self.act_cfg)
            stage.append(spp)
        return stage