Spaces:
Runtime error
Runtime error
File size: 11,355 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple, Union
import torch
import torch.nn as nn
from mmdet.utils import ConfigType, OptMultiConfig
from mmyolo.models.layers.yolo_bricks import SPPFBottleneck
from mmyolo.registry import MODELS
from ..layers import BepC3StageBlock, RepStageBlock
from ..utils import make_round
from .base_backbone import BaseBackbone
@MODELS.register_module()
class YOLOv6EfficientRep(BaseBackbone):
"""EfficientRep backbone used in YOLOv6.
Args:
arch (str): Architecture of BaseDarknet, from {P5, P6}.
Defaults to P5.
plugins (list[dict]): List of plugins for stages, each dict contains:
- cfg (dict, required): Cfg dict to build plugin.
- stages (tuple[bool], optional): Stages to apply plugin, length
should be same as 'num_stages'.
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Defaults to 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
input_channels (int): Number of input image channels. Defaults to 3.
out_indices (Tuple[int]): Output from which stages.
Defaults to (2, 3, 4).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Defaults to -1.
norm_cfg (dict): Dictionary to construct and config norm layer.
Defaults to dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Defaults to dict(type='LeakyReLU', negative_slope=0.1).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
block_cfg (dict): Config dict for the block used to build each
layer. Defaults to dict(type='RepVGGBlock').
init_cfg (Union[dict, list[dict]], optional): Initialization config
dict. Defaults to None.
Example:
>>> from mmyolo.models import YOLOv6EfficientRep
>>> import torch
>>> model = YOLOv6EfficientRep()
>>> model.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)
"""
# From left to right:
# in_channels, out_channels, num_blocks, use_spp
arch_settings = {
'P5': [[64, 128, 6, False], [128, 256, 12, False],
[256, 512, 18, False], [512, 1024, 6, True]]
}
def __init__(self,
arch: str = 'P5',
plugins: Union[dict, List[dict]] = None,
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
input_channels: int = 3,
out_indices: Tuple[int] = (2, 3, 4),
frozen_stages: int = -1,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='ReLU', inplace=True),
norm_eval: bool = False,
block_cfg: ConfigType = dict(type='RepVGGBlock'),
init_cfg: OptMultiConfig = None):
self.block_cfg = block_cfg
super().__init__(
self.arch_settings[arch],
deepen_factor,
widen_factor,
input_channels=input_channels,
out_indices=out_indices,
plugins=plugins,
frozen_stages=frozen_stages,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
norm_eval=norm_eval,
init_cfg=init_cfg)
def build_stem_layer(self) -> nn.Module:
"""Build a stem layer."""
block_cfg = self.block_cfg.copy()
block_cfg.update(
dict(
in_channels=self.input_channels,
out_channels=int(self.arch_setting[0][0] * self.widen_factor),
kernel_size=3,
stride=2,
))
return MODELS.build(block_cfg)
def build_stage_layer(self, stage_idx: int, setting: list) -> list:
"""Build a stage layer.
Args:
stage_idx (int): The index of a stage layer.
setting (list): The architecture setting of a stage layer.
"""
in_channels, out_channels, num_blocks, use_spp = setting
in_channels = int(in_channels * self.widen_factor)
out_channels = int(out_channels * self.widen_factor)
num_blocks = make_round(num_blocks, self.deepen_factor)
rep_stage_block = RepStageBlock(
in_channels=out_channels,
out_channels=out_channels,
num_blocks=num_blocks,
block_cfg=self.block_cfg,
)
block_cfg = self.block_cfg.copy()
block_cfg.update(
dict(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=2))
stage = []
ef_block = nn.Sequential(MODELS.build(block_cfg), rep_stage_block)
stage.append(ef_block)
if use_spp:
spp = SPPFBottleneck(
in_channels=out_channels,
out_channels=out_channels,
kernel_sizes=5,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(spp)
return stage
def init_weights(self):
if self.init_cfg is None:
"""Initialize the parameters."""
for m in self.modules():
if isinstance(m, torch.nn.Conv2d):
# In order to be consistent with the source code,
# reset the Conv2d initialization parameters
m.reset_parameters()
else:
super().init_weights()
@MODELS.register_module()
class YOLOv6CSPBep(YOLOv6EfficientRep):
"""CSPBep backbone used in YOLOv6.
Args:
arch (str): Architecture of BaseDarknet, from {P5, P6}.
Defaults to P5.
plugins (list[dict]): List of plugins for stages, each dict contains:
- cfg (dict, required): Cfg dict to build plugin.
- stages (tuple[bool], optional): Stages to apply plugin, length
should be same as 'num_stages'.
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Defaults to 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
input_channels (int): Number of input image channels. Defaults to 3.
out_indices (Tuple[int]): Output from which stages.
Defaults to (2, 3, 4).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Defaults to -1.
norm_cfg (dict): Dictionary to construct and config norm layer.
Defaults to dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Defaults to dict(type='LeakyReLU', negative_slope=0.1).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
block_cfg (dict): Config dict for the block used to build each
layer. Defaults to dict(type='RepVGGBlock').
block_act_cfg (dict): Config dict for activation layer used in each
stage. Defaults to dict(type='SiLU', inplace=True).
init_cfg (Union[dict, list[dict]], optional): Initialization config
dict. Defaults to None.
Example:
>>> from mmyolo.models import YOLOv6CSPBep
>>> import torch
>>> model = YOLOv6CSPBep()
>>> model.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)
"""
# From left to right:
# in_channels, out_channels, num_blocks, use_spp
arch_settings = {
'P5': [[64, 128, 6, False], [128, 256, 12, False],
[256, 512, 18, False], [512, 1024, 6, True]]
}
def __init__(self,
arch: str = 'P5',
plugins: Union[dict, List[dict]] = None,
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
input_channels: int = 3,
hidden_ratio: float = 0.5,
out_indices: Tuple[int] = (2, 3, 4),
frozen_stages: int = -1,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
norm_eval: bool = False,
block_cfg: ConfigType = dict(type='ConvWrapper'),
init_cfg: OptMultiConfig = None):
self.hidden_ratio = hidden_ratio
super().__init__(
arch=arch,
deepen_factor=deepen_factor,
widen_factor=widen_factor,
input_channels=input_channels,
out_indices=out_indices,
plugins=plugins,
frozen_stages=frozen_stages,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
norm_eval=norm_eval,
block_cfg=block_cfg,
init_cfg=init_cfg)
def build_stage_layer(self, stage_idx: int, setting: list) -> list:
"""Build a stage layer.
Args:
stage_idx (int): The index of a stage layer.
setting (list): The architecture setting of a stage layer.
"""
in_channels, out_channels, num_blocks, use_spp = setting
in_channels = int(in_channels * self.widen_factor)
out_channels = int(out_channels * self.widen_factor)
num_blocks = make_round(num_blocks, self.deepen_factor)
rep_stage_block = BepC3StageBlock(
in_channels=out_channels,
out_channels=out_channels,
num_blocks=num_blocks,
hidden_ratio=self.hidden_ratio,
block_cfg=self.block_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
block_cfg = self.block_cfg.copy()
block_cfg.update(
dict(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=2))
stage = []
ef_block = nn.Sequential(MODELS.build(block_cfg), rep_stage_block)
stage.append(ef_block)
if use_spp:
spp = SPPFBottleneck(
in_channels=out_channels,
out_channels=out_channels,
kernel_sizes=5,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(spp)
return stage
|