Spaces:
Runtime error
Runtime error
File size: 15,834 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Sequence, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmdet.models.utils import multi_apply
from mmdet.utils import (ConfigType, OptConfigType, OptInstanceList,
OptMultiConfig, reduce_mean)
from mmengine import MessageHub
from mmengine.model import BaseModule, bias_init_with_prob
from mmengine.structures import InstanceData
from torch import Tensor
from mmyolo.registry import MODELS
from ..layers.yolo_bricks import PPYOLOESELayer
from ..utils import gt_instances_preprocess
from .yolov6_head import YOLOv6Head
@MODELS.register_module()
class PPYOLOEHeadModule(BaseModule):
"""PPYOLOEHead head module used in `PPYOLOE.
<https://arxiv.org/abs/2203.16250>`_.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
num_base_priors (int): The number of priors (points) at a point
on the feature grid.
featmap_strides (Sequence[int]): Downsample factor of each feature map.
Defaults to (8, 16, 32).
reg_max (int): Max value of integral set :math: ``{0, ..., reg_max}``
in QFL setting. Defaults to 16.
norm_cfg (dict): Config dict for normalization layer.
Defaults to dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (dict): Config dict for activation layer.
Defaults to dict(type='SiLU', inplace=True).
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
num_classes: int,
in_channels: Union[int, Sequence],
widen_factor: float = 1.0,
num_base_priors: int = 1,
featmap_strides: Sequence[int] = (8, 16, 32),
reg_max: int = 16,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.1, eps=1e-5),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: OptMultiConfig = None):
super().__init__(init_cfg=init_cfg)
self.num_classes = num_classes
self.featmap_strides = featmap_strides
self.num_levels = len(self.featmap_strides)
self.num_base_priors = num_base_priors
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.reg_max = reg_max
if isinstance(in_channels, int):
self.in_channels = [int(in_channels * widen_factor)
] * self.num_levels
else:
self.in_channels = [int(i * widen_factor) for i in in_channels]
self._init_layers()
def init_weights(self, prior_prob=0.01):
"""Initialize the weight and bias of PPYOLOE head."""
super().init_weights()
for conv in self.cls_preds:
conv.bias.data.fill_(bias_init_with_prob(prior_prob))
conv.weight.data.fill_(0.)
for conv in self.reg_preds:
conv.bias.data.fill_(1.0)
conv.weight.data.fill_(0.)
def _init_layers(self):
"""initialize conv layers in PPYOLOE head."""
self.cls_preds = nn.ModuleList()
self.reg_preds = nn.ModuleList()
self.cls_stems = nn.ModuleList()
self.reg_stems = nn.ModuleList()
for in_channel in self.in_channels:
self.cls_stems.append(
PPYOLOESELayer(
in_channel, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg))
self.reg_stems.append(
PPYOLOESELayer(
in_channel, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg))
for in_channel in self.in_channels:
self.cls_preds.append(
nn.Conv2d(in_channel, self.num_classes, 3, padding=1))
self.reg_preds.append(
nn.Conv2d(in_channel, 4 * (self.reg_max + 1), 3, padding=1))
# init proj
proj = torch.linspace(0, self.reg_max, self.reg_max + 1).view(
[1, self.reg_max + 1, 1, 1])
self.register_buffer('proj', proj, persistent=False)
def forward(self, x: Tuple[Tensor]) -> Tensor:
"""Forward features from the upstream network.
Args:
x (Tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
Tuple[List]: A tuple of multi-level classification scores, bbox
predictions.
"""
assert len(x) == self.num_levels
return multi_apply(self.forward_single, x, self.cls_stems,
self.cls_preds, self.reg_stems, self.reg_preds)
def forward_single(self, x: Tensor, cls_stem: nn.ModuleList,
cls_pred: nn.ModuleList, reg_stem: nn.ModuleList,
reg_pred: nn.ModuleList) -> Tensor:
"""Forward feature of a single scale level."""
b, _, h, w = x.shape
hw = h * w
avg_feat = F.adaptive_avg_pool2d(x, (1, 1))
cls_logit = cls_pred(cls_stem(x, avg_feat) + x)
bbox_dist_preds = reg_pred(reg_stem(x, avg_feat))
# TODO: Test whether use matmul instead of conv can speed up training.
bbox_dist_preds = bbox_dist_preds.reshape(
[-1, 4, self.reg_max + 1, hw]).permute(0, 2, 3, 1)
bbox_preds = F.conv2d(F.softmax(bbox_dist_preds, dim=1), self.proj)
if self.training:
return cls_logit, bbox_preds, bbox_dist_preds
else:
return cls_logit, bbox_preds
@MODELS.register_module()
class PPYOLOEHead(YOLOv6Head):
"""PPYOLOEHead head used in `PPYOLOE <https://arxiv.org/abs/2203.16250>`_.
The YOLOv6 head and the PPYOLOE head are only slightly different.
Distribution focal loss is extra used in PPYOLOE, but not in YOLOv6.
Args:
head_module(ConfigType): Base module used for YOLOv5Head
prior_generator(dict): Points generator feature maps in
2D points-based detectors.
bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder.
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
loss_dfl (:obj:`ConfigDict` or dict): Config of distribution focal
loss.
train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
anchor head. Defaults to None.
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
anchor head. Defaults to None.
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
head_module: ConfigType,
prior_generator: ConfigType = dict(
type='mmdet.MlvlPointGenerator',
offset=0.5,
strides=[8, 16, 32]),
bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'),
loss_cls: ConfigType = dict(
type='mmdet.VarifocalLoss',
use_sigmoid=True,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
reduction='sum',
loss_weight=1.0),
loss_bbox: ConfigType = dict(
type='IoULoss',
iou_mode='giou',
bbox_format='xyxy',
reduction='mean',
loss_weight=2.5,
return_iou=False),
loss_dfl: ConfigType = dict(
type='mmdet.DistributionFocalLoss',
reduction='mean',
loss_weight=0.5 / 4),
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = None):
super().__init__(
head_module=head_module,
prior_generator=prior_generator,
bbox_coder=bbox_coder,
loss_cls=loss_cls,
loss_bbox=loss_bbox,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)
self.loss_dfl = MODELS.build(loss_dfl)
# ppyoloe doesn't need loss_obj
self.loss_obj = None
def loss_by_feat(
self,
cls_scores: Sequence[Tensor],
bbox_preds: Sequence[Tensor],
bbox_dist_preds: Sequence[Tensor],
batch_gt_instances: Sequence[InstanceData],
batch_img_metas: Sequence[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (Sequence[Tensor]): Box scores for each scale level,
each is a 4D-tensor, the channel number is
num_priors * num_classes.
bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale
level, each is a 4D-tensor, the channel number is
num_priors * 4.
bbox_dist_preds (Sequence[Tensor]): Box distribution logits for
each scale level with shape (bs, reg_max + 1, H*W, 4).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of losses.
"""
# get epoch information from message hub
message_hub = MessageHub.get_current_instance()
current_epoch = message_hub.get_info('epoch')
num_imgs = len(batch_img_metas)
current_featmap_sizes = [
cls_score.shape[2:] for cls_score in cls_scores
]
# If the shape does not equal, generate new one
if current_featmap_sizes != self.featmap_sizes_train:
self.featmap_sizes_train = current_featmap_sizes
mlvl_priors_with_stride = self.prior_generator.grid_priors(
self.featmap_sizes_train,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device,
with_stride=True)
self.num_level_priors = [len(n) for n in mlvl_priors_with_stride]
self.flatten_priors_train = torch.cat(
mlvl_priors_with_stride, dim=0)
self.stride_tensor = self.flatten_priors_train[..., [2]]
# gt info
gt_info = gt_instances_preprocess(batch_gt_instances, num_imgs)
gt_labels = gt_info[:, :, :1]
gt_bboxes = gt_info[:, :, 1:] # xyxy
pad_bbox_flag = (gt_bboxes.sum(-1, keepdim=True) > 0).float()
# pred info
flatten_cls_preds = [
cls_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.num_classes)
for cls_pred in cls_scores
]
flatten_pred_bboxes = [
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
for bbox_pred in bbox_preds
]
# (bs, reg_max+1, n, 4) -> (bs, n, 4, reg_max+1)
flatten_pred_dists = [
bbox_pred_org.permute(0, 2, 3, 1).reshape(
num_imgs, -1, (self.head_module.reg_max + 1) * 4)
for bbox_pred_org in bbox_dist_preds
]
flatten_dist_preds = torch.cat(flatten_pred_dists, dim=1)
flatten_cls_preds = torch.cat(flatten_cls_preds, dim=1)
flatten_pred_bboxes = torch.cat(flatten_pred_bboxes, dim=1)
flatten_pred_bboxes = self.bbox_coder.decode(
self.flatten_priors_train[..., :2], flatten_pred_bboxes,
self.stride_tensor[..., 0])
pred_scores = torch.sigmoid(flatten_cls_preds)
if current_epoch < self.initial_epoch:
assigned_result = self.initial_assigner(
flatten_pred_bboxes.detach(), self.flatten_priors_train,
self.num_level_priors, gt_labels, gt_bboxes, pad_bbox_flag)
else:
assigned_result = self.assigner(flatten_pred_bboxes.detach(),
pred_scores.detach(),
self.flatten_priors_train,
gt_labels, gt_bboxes,
pad_bbox_flag)
assigned_bboxes = assigned_result['assigned_bboxes']
assigned_scores = assigned_result['assigned_scores']
fg_mask_pre_prior = assigned_result['fg_mask_pre_prior']
# cls loss
with torch.cuda.amp.autocast(enabled=False):
loss_cls = self.loss_cls(flatten_cls_preds, assigned_scores)
# rescale bbox
assigned_bboxes /= self.stride_tensor
flatten_pred_bboxes /= self.stride_tensor
assigned_scores_sum = assigned_scores.sum()
# reduce_mean between all gpus
assigned_scores_sum = torch.clamp(
reduce_mean(assigned_scores_sum), min=1)
loss_cls /= assigned_scores_sum
# select positive samples mask
num_pos = fg_mask_pre_prior.sum()
if num_pos > 0:
# when num_pos > 0, assigned_scores_sum will >0, so the loss_bbox
# will not report an error
# iou loss
prior_bbox_mask = fg_mask_pre_prior.unsqueeze(-1).repeat([1, 1, 4])
pred_bboxes_pos = torch.masked_select(
flatten_pred_bboxes, prior_bbox_mask).reshape([-1, 4])
assigned_bboxes_pos = torch.masked_select(
assigned_bboxes, prior_bbox_mask).reshape([-1, 4])
bbox_weight = torch.masked_select(
assigned_scores.sum(-1), fg_mask_pre_prior).unsqueeze(-1)
loss_bbox = self.loss_bbox(
pred_bboxes_pos,
assigned_bboxes_pos,
weight=bbox_weight,
avg_factor=assigned_scores_sum)
# dfl loss
dist_mask = fg_mask_pre_prior.unsqueeze(-1).repeat(
[1, 1, (self.head_module.reg_max + 1) * 4])
pred_dist_pos = torch.masked_select(
flatten_dist_preds,
dist_mask).reshape([-1, 4, self.head_module.reg_max + 1])
assigned_ltrb = self.bbox_coder.encode(
self.flatten_priors_train[..., :2] / self.stride_tensor,
assigned_bboxes,
max_dis=self.head_module.reg_max,
eps=0.01)
assigned_ltrb_pos = torch.masked_select(
assigned_ltrb, prior_bbox_mask).reshape([-1, 4])
loss_dfl = self.loss_dfl(
pred_dist_pos.reshape(-1, self.head_module.reg_max + 1),
assigned_ltrb_pos.reshape(-1),
weight=bbox_weight.expand(-1, 4).reshape(-1),
avg_factor=assigned_scores_sum)
else:
loss_bbox = flatten_pred_bboxes.sum() * 0
loss_dfl = flatten_pred_bboxes.sum() * 0
return dict(loss_cls=loss_cls, loss_bbox=loss_bbox, loss_dfl=loss_dfl)
|