Spaces:
Runtime error
Runtime error
File size: 15,054 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Sequence, Tuple
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, is_norm
from mmdet.models.task_modules.samplers import PseudoSampler
from mmdet.structures.bbox import distance2bbox
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
OptInstanceList, OptMultiConfig, reduce_mean)
from mmengine.model import (BaseModule, bias_init_with_prob, constant_init,
normal_init)
from torch import Tensor
from mmyolo.registry import MODELS, TASK_UTILS
from ..utils import gt_instances_preprocess
from .yolov5_head import YOLOv5Head
@MODELS.register_module()
class RTMDetSepBNHeadModule(BaseModule):
"""Detection Head of RTMDet.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
num_base_priors (int): The number of priors (points) at a point
on the feature grid. Defaults to 1.
feat_channels (int): Number of hidden channels. Used in child classes.
Defaults to 256
stacked_convs (int): Number of stacking convs of the head.
Defaults to 2.
featmap_strides (Sequence[int]): Downsample factor of each feature map.
Defaults to (8, 16, 32).
share_conv (bool): Whether to share conv layers between stages.
Defaults to True.
pred_kernel_size (int): Kernel size of ``nn.Conv2d``. Defaults to 1.
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
layer. Defaults to ``dict(type='BN')``.
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
Default: dict(type='SiLU', inplace=True).
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(
self,
num_classes: int,
in_channels: int,
widen_factor: float = 1.0,
num_base_priors: int = 1,
feat_channels: int = 256,
stacked_convs: int = 2,
featmap_strides: Sequence[int] = [8, 16, 32],
share_conv: bool = True,
pred_kernel_size: int = 1,
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN'),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: OptMultiConfig = None,
):
super().__init__(init_cfg=init_cfg)
self.share_conv = share_conv
self.num_classes = num_classes
self.pred_kernel_size = pred_kernel_size
self.feat_channels = int(feat_channels * widen_factor)
self.stacked_convs = stacked_convs
self.num_base_priors = num_base_priors
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.featmap_strides = featmap_strides
self.in_channels = int(in_channels * widen_factor)
self._init_layers()
def _init_layers(self):
"""Initialize layers of the head."""
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
self.rtm_cls = nn.ModuleList()
self.rtm_reg = nn.ModuleList()
for n in range(len(self.featmap_strides)):
cls_convs = nn.ModuleList()
reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
self.cls_convs.append(cls_convs)
self.reg_convs.append(reg_convs)
self.rtm_cls.append(
nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.num_classes,
self.pred_kernel_size,
padding=self.pred_kernel_size // 2))
self.rtm_reg.append(
nn.Conv2d(
self.feat_channels,
self.num_base_priors * 4,
self.pred_kernel_size,
padding=self.pred_kernel_size // 2))
if self.share_conv:
for n in range(len(self.featmap_strides)):
for i in range(self.stacked_convs):
self.cls_convs[n][i].conv = self.cls_convs[0][i].conv
self.reg_convs[n][i].conv = self.reg_convs[0][i].conv
def init_weights(self) -> None:
"""Initialize weights of the head."""
# Use prior in model initialization to improve stability
super().init_weights()
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, mean=0, std=0.01)
if is_norm(m):
constant_init(m, 1)
bias_cls = bias_init_with_prob(0.01)
for rtm_cls, rtm_reg in zip(self.rtm_cls, self.rtm_reg):
normal_init(rtm_cls, std=0.01, bias=bias_cls)
normal_init(rtm_reg, std=0.01)
def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
- cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
"""
cls_scores = []
bbox_preds = []
for idx, x in enumerate(feats):
cls_feat = x
reg_feat = x
for cls_layer in self.cls_convs[idx]:
cls_feat = cls_layer(cls_feat)
cls_score = self.rtm_cls[idx](cls_feat)
for reg_layer in self.reg_convs[idx]:
reg_feat = reg_layer(reg_feat)
reg_dist = self.rtm_reg[idx](reg_feat)
cls_scores.append(cls_score)
bbox_preds.append(reg_dist)
return tuple(cls_scores), tuple(bbox_preds)
@MODELS.register_module()
class RTMDetHead(YOLOv5Head):
"""RTMDet head.
Args:
head_module(ConfigType): Base module used for RTMDetHead
prior_generator: Points generator feature maps in
2D points-based detectors.
bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder.
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
anchor head. Defaults to None.
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
anchor head. Defaults to None.
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
head_module: ConfigType,
prior_generator: ConfigType = dict(
type='mmdet.MlvlPointGenerator',
offset=0,
strides=[8, 16, 32]),
bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'),
loss_cls: ConfigType = dict(
type='mmdet.QualityFocalLoss',
use_sigmoid=True,
beta=2.0,
loss_weight=1.0),
loss_bbox: ConfigType = dict(
type='mmdet.GIoULoss', loss_weight=2.0),
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = None):
super().__init__(
head_module=head_module,
prior_generator=prior_generator,
bbox_coder=bbox_coder,
loss_cls=loss_cls,
loss_bbox=loss_bbox,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
if self.use_sigmoid_cls:
self.cls_out_channels = self.num_classes
else:
self.cls_out_channels = self.num_classes + 1
# rtmdet doesn't need loss_obj
self.loss_obj = None
def special_init(self):
"""Since YOLO series algorithms will inherit from YOLOv5Head, but
different algorithms have special initialization process.
The special_init function is designed to deal with this situation.
"""
if self.train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg.assigner)
if self.train_cfg.get('sampler', None) is not None:
self.sampler = TASK_UTILS.build(
self.train_cfg.sampler, default_args=dict(context=self))
else:
self.sampler = PseudoSampler(context=self)
self.featmap_sizes_train = None
self.flatten_priors_train = None
def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
"""Forward features from the upstream network.
Args:
x (Tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
Tuple[List]: A tuple of multi-level classification scores, bbox
predictions, and objectnesses.
"""
return self.head_module(x)
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Decoded box for each scale
level with shape (N, num_anchors * 4, H, W) in
[tl_x, tl_y, br_x, br_y] format.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
num_imgs = len(batch_img_metas)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
gt_info = gt_instances_preprocess(batch_gt_instances, num_imgs)
gt_labels = gt_info[:, :, :1]
gt_bboxes = gt_info[:, :, 1:] # xyxy
pad_bbox_flag = (gt_bboxes.sum(-1, keepdim=True) > 0).float()
device = cls_scores[0].device
# If the shape does not equal, generate new one
if featmap_sizes != self.featmap_sizes_train:
self.featmap_sizes_train = featmap_sizes
mlvl_priors_with_stride = self.prior_generator.grid_priors(
featmap_sizes, device=device, with_stride=True)
self.flatten_priors_train = torch.cat(
mlvl_priors_with_stride, dim=0)
flatten_cls_scores = torch.cat([
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.cls_out_channels)
for cls_score in cls_scores
], 1).contiguous()
flatten_bboxes = torch.cat([
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
for bbox_pred in bbox_preds
], 1)
flatten_bboxes = flatten_bboxes * self.flatten_priors_train[..., -1,
None]
flatten_bboxes = distance2bbox(self.flatten_priors_train[..., :2],
flatten_bboxes)
assigned_result = self.assigner(flatten_bboxes.detach(),
flatten_cls_scores.detach(),
self.flatten_priors_train, gt_labels,
gt_bboxes, pad_bbox_flag)
labels = assigned_result['assigned_labels'].reshape(-1)
label_weights = assigned_result['assigned_labels_weights'].reshape(-1)
bbox_targets = assigned_result['assigned_bboxes'].reshape(-1, 4)
assign_metrics = assigned_result['assign_metrics'].reshape(-1)
cls_preds = flatten_cls_scores.reshape(-1, self.num_classes)
bbox_preds = flatten_bboxes.reshape(-1, 4)
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
& (labels < bg_class_ind)).nonzero().squeeze(1)
avg_factor = reduce_mean(assign_metrics.sum()).clamp_(min=1).item()
loss_cls = self.loss_cls(
cls_preds, (labels, assign_metrics),
label_weights,
avg_factor=avg_factor)
if len(pos_inds) > 0:
loss_bbox = self.loss_bbox(
bbox_preds[pos_inds],
bbox_targets[pos_inds],
weight=assign_metrics[pos_inds],
avg_factor=avg_factor)
else:
loss_bbox = bbox_preds.sum() * 0
return dict(loss_cls=loss_cls, loss_bbox=loss_bbox)
|