File size: 15,054 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Sequence, Tuple

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, is_norm
from mmdet.models.task_modules.samplers import PseudoSampler
from mmdet.structures.bbox import distance2bbox
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
                         OptInstanceList, OptMultiConfig, reduce_mean)
from mmengine.model import (BaseModule, bias_init_with_prob, constant_init,
                            normal_init)
from torch import Tensor

from mmyolo.registry import MODELS, TASK_UTILS
from ..utils import gt_instances_preprocess
from .yolov5_head import YOLOv5Head


@MODELS.register_module()
class RTMDetSepBNHeadModule(BaseModule):
    """Detection Head of RTMDet.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        num_base_priors (int): The number of priors (points) at a point
            on the feature grid.  Defaults to 1.
        feat_channels (int): Number of hidden channels. Used in child classes.
            Defaults to 256
        stacked_convs (int): Number of stacking convs of the head.
            Defaults to 2.
        featmap_strides (Sequence[int]): Downsample factor of each feature map.
             Defaults to (8, 16, 32).
        share_conv (bool): Whether to share conv layers between stages.
            Defaults to True.
        pred_kernel_size (int): Kernel size of ``nn.Conv2d``. Defaults to 1.
        conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
            convolution layer. Defaults to None.
        norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
            layer. Defaults to ``dict(type='BN')``.
        act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
            Default: dict(type='SiLU', inplace=True).
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(
        self,
        num_classes: int,
        in_channels: int,
        widen_factor: float = 1.0,
        num_base_priors: int = 1,
        feat_channels: int = 256,
        stacked_convs: int = 2,
        featmap_strides: Sequence[int] = [8, 16, 32],
        share_conv: bool = True,
        pred_kernel_size: int = 1,
        conv_cfg: OptConfigType = None,
        norm_cfg: ConfigType = dict(type='BN'),
        act_cfg: ConfigType = dict(type='SiLU', inplace=True),
        init_cfg: OptMultiConfig = None,
    ):
        super().__init__(init_cfg=init_cfg)
        self.share_conv = share_conv
        self.num_classes = num_classes
        self.pred_kernel_size = pred_kernel_size
        self.feat_channels = int(feat_channels * widen_factor)
        self.stacked_convs = stacked_convs
        self.num_base_priors = num_base_priors

        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.featmap_strides = featmap_strides

        self.in_channels = int(in_channels * widen_factor)

        self._init_layers()

    def _init_layers(self):
        """Initialize layers of the head."""
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()

        self.rtm_cls = nn.ModuleList()
        self.rtm_reg = nn.ModuleList()
        for n in range(len(self.featmap_strides)):
            cls_convs = nn.ModuleList()
            reg_convs = nn.ModuleList()
            for i in range(self.stacked_convs):
                chn = self.in_channels if i == 0 else self.feat_channels
                cls_convs.append(
                    ConvModule(
                        chn,
                        self.feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg))
                reg_convs.append(
                    ConvModule(
                        chn,
                        self.feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg))
            self.cls_convs.append(cls_convs)
            self.reg_convs.append(reg_convs)

            self.rtm_cls.append(
                nn.Conv2d(
                    self.feat_channels,
                    self.num_base_priors * self.num_classes,
                    self.pred_kernel_size,
                    padding=self.pred_kernel_size // 2))
            self.rtm_reg.append(
                nn.Conv2d(
                    self.feat_channels,
                    self.num_base_priors * 4,
                    self.pred_kernel_size,
                    padding=self.pred_kernel_size // 2))

        if self.share_conv:
            for n in range(len(self.featmap_strides)):
                for i in range(self.stacked_convs):
                    self.cls_convs[n][i].conv = self.cls_convs[0][i].conv
                    self.reg_convs[n][i].conv = self.reg_convs[0][i].conv

    def init_weights(self) -> None:
        """Initialize weights of the head."""
        # Use prior in model initialization to improve stability
        super().init_weights()
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                normal_init(m, mean=0, std=0.01)
            if is_norm(m):
                constant_init(m, 1)
        bias_cls = bias_init_with_prob(0.01)
        for rtm_cls, rtm_reg in zip(self.rtm_cls, self.rtm_reg):
            normal_init(rtm_cls, std=0.01, bias=bias_cls)
            normal_init(rtm_reg, std=0.01)

    def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple: Usually a tuple of classification scores and bbox prediction
            - cls_scores (list[Tensor]): Classification scores for all scale
              levels, each is a 4D-tensor, the channels number is
              num_base_priors * num_classes.
            - bbox_preds (list[Tensor]): Box energies / deltas for all scale
              levels, each is a 4D-tensor, the channels number is
              num_base_priors * 4.
        """

        cls_scores = []
        bbox_preds = []
        for idx, x in enumerate(feats):
            cls_feat = x
            reg_feat = x

            for cls_layer in self.cls_convs[idx]:
                cls_feat = cls_layer(cls_feat)
            cls_score = self.rtm_cls[idx](cls_feat)

            for reg_layer in self.reg_convs[idx]:
                reg_feat = reg_layer(reg_feat)

            reg_dist = self.rtm_reg[idx](reg_feat)
            cls_scores.append(cls_score)
            bbox_preds.append(reg_dist)
        return tuple(cls_scores), tuple(bbox_preds)


@MODELS.register_module()
class RTMDetHead(YOLOv5Head):
    """RTMDet head.

    Args:
        head_module(ConfigType): Base module used for RTMDetHead
        prior_generator: Points generator feature maps in
            2D points-based detectors.
        bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder.
        loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
        loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
        train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
            anchor head. Defaults to None.
        test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
            anchor head. Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 head_module: ConfigType,
                 prior_generator: ConfigType = dict(
                     type='mmdet.MlvlPointGenerator',
                     offset=0,
                     strides=[8, 16, 32]),
                 bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'),
                 loss_cls: ConfigType = dict(
                     type='mmdet.QualityFocalLoss',
                     use_sigmoid=True,
                     beta=2.0,
                     loss_weight=1.0),
                 loss_bbox: ConfigType = dict(
                     type='mmdet.GIoULoss', loss_weight=2.0),
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 init_cfg: OptMultiConfig = None):

        super().__init__(
            head_module=head_module,
            prior_generator=prior_generator,
            bbox_coder=bbox_coder,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            init_cfg=init_cfg)

        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
        if self.use_sigmoid_cls:
            self.cls_out_channels = self.num_classes
        else:
            self.cls_out_channels = self.num_classes + 1
        # rtmdet doesn't need loss_obj
        self.loss_obj = None

    def special_init(self):
        """Since YOLO series algorithms will inherit from YOLOv5Head, but
        different algorithms have special initialization process.

        The special_init function is designed to deal with this situation.
        """
        if self.train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg.assigner)
            if self.train_cfg.get('sampler', None) is not None:
                self.sampler = TASK_UTILS.build(
                    self.train_cfg.sampler, default_args=dict(context=self))
            else:
                self.sampler = PseudoSampler(context=self)

            self.featmap_sizes_train = None
            self.flatten_priors_train = None

    def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
        """Forward features from the upstream network.

        Args:
            x (Tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
        Returns:
            Tuple[List]: A tuple of multi-level classification scores, bbox
            predictions, and objectnesses.
        """
        return self.head_module(x)

    def loss_by_feat(
            self,
            cls_scores: List[Tensor],
            bbox_preds: List[Tensor],
            batch_gt_instances: InstanceList,
            batch_img_metas: List[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Decoded box for each scale
                level with shape (N, num_anchors * 4, H, W) in
                [tl_x, tl_y, br_x, br_y] format.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        num_imgs = len(batch_img_metas)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.prior_generator.num_levels

        gt_info = gt_instances_preprocess(batch_gt_instances, num_imgs)
        gt_labels = gt_info[:, :, :1]
        gt_bboxes = gt_info[:, :, 1:]  # xyxy
        pad_bbox_flag = (gt_bboxes.sum(-1, keepdim=True) > 0).float()

        device = cls_scores[0].device

        # If the shape does not equal, generate new one
        if featmap_sizes != self.featmap_sizes_train:
            self.featmap_sizes_train = featmap_sizes
            mlvl_priors_with_stride = self.prior_generator.grid_priors(
                featmap_sizes, device=device, with_stride=True)
            self.flatten_priors_train = torch.cat(
                mlvl_priors_with_stride, dim=0)

        flatten_cls_scores = torch.cat([
            cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                  self.cls_out_channels)
            for cls_score in cls_scores
        ], 1).contiguous()

        flatten_bboxes = torch.cat([
            bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            for bbox_pred in bbox_preds
        ], 1)
        flatten_bboxes = flatten_bboxes * self.flatten_priors_train[..., -1,
                                                                    None]
        flatten_bboxes = distance2bbox(self.flatten_priors_train[..., :2],
                                       flatten_bboxes)

        assigned_result = self.assigner(flatten_bboxes.detach(),
                                        flatten_cls_scores.detach(),
                                        self.flatten_priors_train, gt_labels,
                                        gt_bboxes, pad_bbox_flag)

        labels = assigned_result['assigned_labels'].reshape(-1)
        label_weights = assigned_result['assigned_labels_weights'].reshape(-1)
        bbox_targets = assigned_result['assigned_bboxes'].reshape(-1, 4)
        assign_metrics = assigned_result['assign_metrics'].reshape(-1)
        cls_preds = flatten_cls_scores.reshape(-1, self.num_classes)
        bbox_preds = flatten_bboxes.reshape(-1, 4)

        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        bg_class_ind = self.num_classes
        pos_inds = ((labels >= 0)
                    & (labels < bg_class_ind)).nonzero().squeeze(1)
        avg_factor = reduce_mean(assign_metrics.sum()).clamp_(min=1).item()

        loss_cls = self.loss_cls(
            cls_preds, (labels, assign_metrics),
            label_weights,
            avg_factor=avg_factor)

        if len(pos_inds) > 0:
            loss_bbox = self.loss_bbox(
                bbox_preds[pos_inds],
                bbox_targets[pos_inds],
                weight=assign_metrics[pos_inds],
                avg_factor=avg_factor)
        else:
            loss_bbox = bbox_preds.sum() * 0

        return dict(loss_cls=loss_cls, loss_bbox=loss_bbox)