File size: 30,486 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import List, Optional, Tuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, is_norm
from mmcv.ops import batched_nms
from mmdet.models.utils import filter_scores_and_topk
from mmdet.structures.bbox import get_box_tensor, get_box_wh, scale_boxes
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
                         OptInstanceList, OptMultiConfig)
from mmengine import ConfigDict
from mmengine.model import (BaseModule, bias_init_with_prob, constant_init,
                            normal_init)
from mmengine.structures import InstanceData
from torch import Tensor

from mmyolo.registry import MODELS
from .rtmdet_head import RTMDetHead, RTMDetSepBNHeadModule


class MaskFeatModule(BaseModule):
    """Mask feature head used in RTMDet-Ins. Copy from mmdet.

    Args:
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of hidden channels of the mask feature
             map branch.
        stacked_convs (int): Number of convs in mask feature branch.
        num_levels (int): The starting feature map level from RPN that
             will be used to predict the mask feature map.
        num_prototypes (int): Number of output channel of the mask feature
             map branch. This is the channel count of the mask
             feature map that to be dynamically convolved with the predicted
             kernel.
        act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
            Default: dict(type='ReLU', inplace=True)
        norm_cfg (dict): Config dict for normalization layer. Default: None.
    """

    def __init__(
        self,
        in_channels: int,
        feat_channels: int = 256,
        stacked_convs: int = 4,
        num_levels: int = 3,
        num_prototypes: int = 8,
        act_cfg: ConfigType = dict(type='ReLU', inplace=True),
        norm_cfg: ConfigType = dict(type='BN')
    ) -> None:
        super().__init__(init_cfg=None)
        self.num_levels = num_levels
        self.fusion_conv = nn.Conv2d(num_levels * in_channels, in_channels, 1)
        convs = []
        for i in range(stacked_convs):
            in_c = in_channels if i == 0 else feat_channels
            convs.append(
                ConvModule(
                    in_c,
                    feat_channels,
                    3,
                    padding=1,
                    act_cfg=act_cfg,
                    norm_cfg=norm_cfg))
        self.stacked_convs = nn.Sequential(*convs)
        self.projection = nn.Conv2d(
            feat_channels, num_prototypes, kernel_size=1)

    def forward(self, features: Tuple[Tensor, ...]) -> Tensor:
        # multi-level feature fusion
        fusion_feats = [features[0]]
        size = features[0].shape[-2:]
        for i in range(1, self.num_levels):
            f = F.interpolate(features[i], size=size, mode='bilinear')
            fusion_feats.append(f)
        fusion_feats = torch.cat(fusion_feats, dim=1)
        fusion_feats = self.fusion_conv(fusion_feats)
        # pred mask feats
        mask_features = self.stacked_convs(fusion_feats)
        mask_features = self.projection(mask_features)
        return mask_features


@MODELS.register_module()
class RTMDetInsSepBNHeadModule(RTMDetSepBNHeadModule):
    """Detection and Instance Segmentation Head of RTMDet.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        num_prototypes (int): Number of mask prototype features extracted
            from the mask head. Defaults to 8.
        dyconv_channels (int): Channel of the dynamic conv layers.
            Defaults to 8.
        num_dyconvs (int): Number of the dynamic convolution layers.
            Defaults to 3.
        use_sigmoid_cls (bool): Use sigmoid for class prediction.
            Defaults to True.
    """

    def __init__(self,
                 num_classes: int,
                 *args,
                 num_prototypes: int = 8,
                 dyconv_channels: int = 8,
                 num_dyconvs: int = 3,
                 use_sigmoid_cls: bool = True,
                 **kwargs):
        self.num_prototypes = num_prototypes
        self.num_dyconvs = num_dyconvs
        self.dyconv_channels = dyconv_channels
        self.use_sigmoid_cls = use_sigmoid_cls
        if self.use_sigmoid_cls:
            self.cls_out_channels = num_classes
        else:
            self.cls_out_channels = num_classes + 1
        super().__init__(num_classes=num_classes, *args, **kwargs)

    def _init_layers(self):
        """Initialize layers of the head."""
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        self.kernel_convs = nn.ModuleList()

        self.rtm_cls = nn.ModuleList()
        self.rtm_reg = nn.ModuleList()
        self.rtm_kernel = nn.ModuleList()
        self.rtm_obj = nn.ModuleList()

        # calculate num dynamic parameters
        weight_nums, bias_nums = [], []
        for i in range(self.num_dyconvs):
            if i == 0:
                weight_nums.append(
                    (self.num_prototypes + 2) * self.dyconv_channels)
                bias_nums.append(self.dyconv_channels)
            elif i == self.num_dyconvs - 1:
                weight_nums.append(self.dyconv_channels)
                bias_nums.append(1)
            else:
                weight_nums.append(self.dyconv_channels * self.dyconv_channels)
                bias_nums.append(self.dyconv_channels)
        self.weight_nums = weight_nums
        self.bias_nums = bias_nums
        self.num_gen_params = sum(weight_nums) + sum(bias_nums)
        pred_pad_size = self.pred_kernel_size // 2

        for n in range(len(self.featmap_strides)):
            cls_convs = nn.ModuleList()
            reg_convs = nn.ModuleList()
            kernel_convs = nn.ModuleList()
            for i in range(self.stacked_convs):
                chn = self.in_channels if i == 0 else self.feat_channels
                cls_convs.append(
                    ConvModule(
                        chn,
                        self.feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg))
                reg_convs.append(
                    ConvModule(
                        chn,
                        self.feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg))
                kernel_convs.append(
                    ConvModule(
                        chn,
                        self.feat_channels,
                        3,
                        stride=1,
                        padding=1,
                        conv_cfg=self.conv_cfg,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg))
            self.cls_convs.append(cls_convs)
            self.reg_convs.append(cls_convs)
            self.kernel_convs.append(kernel_convs)

            self.rtm_cls.append(
                nn.Conv2d(
                    self.feat_channels,
                    self.num_base_priors * self.cls_out_channels,
                    self.pred_kernel_size,
                    padding=pred_pad_size))
            self.rtm_reg.append(
                nn.Conv2d(
                    self.feat_channels,
                    self.num_base_priors * 4,
                    self.pred_kernel_size,
                    padding=pred_pad_size))
            self.rtm_kernel.append(
                nn.Conv2d(
                    self.feat_channels,
                    self.num_gen_params,
                    self.pred_kernel_size,
                    padding=pred_pad_size))

        if self.share_conv:
            for n in range(len(self.featmap_strides)):
                for i in range(self.stacked_convs):
                    self.cls_convs[n][i].conv = self.cls_convs[0][i].conv
                    self.reg_convs[n][i].conv = self.reg_convs[0][i].conv

        self.mask_head = MaskFeatModule(
            in_channels=self.in_channels,
            feat_channels=self.feat_channels,
            stacked_convs=4,
            num_levels=len(self.featmap_strides),
            num_prototypes=self.num_prototypes,
            act_cfg=self.act_cfg,
            norm_cfg=self.norm_cfg)

    def init_weights(self) -> None:
        """Initialize weights of the head."""
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                normal_init(m, mean=0, std=0.01)
            if is_norm(m):
                constant_init(m, 1)
        bias_cls = bias_init_with_prob(0.01)
        for rtm_cls, rtm_reg, rtm_kernel in zip(self.rtm_cls, self.rtm_reg,
                                                self.rtm_kernel):
            normal_init(rtm_cls, std=0.01, bias=bias_cls)
            normal_init(rtm_reg, std=0.01, bias=1)

    def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple: Usually a tuple of classification scores and bbox prediction
            - cls_scores (list[Tensor]): Classification scores for all scale
              levels, each is a 4D-tensor, the channels number is
              num_base_priors * num_classes.
            - bbox_preds (list[Tensor]): Box energies / deltas for all scale
              levels, each is a 4D-tensor, the channels number is
              num_base_priors * 4.
            - kernel_preds (list[Tensor]): Dynamic conv kernels for all scale
              levels, each is a 4D-tensor, the channels number is
              num_gen_params.
            - mask_feat (Tensor): Mask prototype features.
                Has shape (batch_size, num_prototypes, H, W).
        """
        mask_feat = self.mask_head(feats)

        cls_scores = []
        bbox_preds = []
        kernel_preds = []
        for idx, (x, stride) in enumerate(zip(feats, self.featmap_strides)):
            cls_feat = x
            reg_feat = x
            kernel_feat = x

            for cls_layer in self.cls_convs[idx]:
                cls_feat = cls_layer(cls_feat)
            cls_score = self.rtm_cls[idx](cls_feat)

            for kernel_layer in self.kernel_convs[idx]:
                kernel_feat = kernel_layer(kernel_feat)
            kernel_pred = self.rtm_kernel[idx](kernel_feat)

            for reg_layer in self.reg_convs[idx]:
                reg_feat = reg_layer(reg_feat)
            reg_dist = self.rtm_reg[idx](reg_feat)

            cls_scores.append(cls_score)
            bbox_preds.append(reg_dist)
            kernel_preds.append(kernel_pred)
        return tuple(cls_scores), tuple(bbox_preds), tuple(
            kernel_preds), mask_feat


@MODELS.register_module()
class RTMDetInsSepBNHead(RTMDetHead):
    """RTMDet Instance Segmentation head.

    Args:
        head_module(ConfigType): Base module used for RTMDetInsSepBNHead
        prior_generator: Points generator feature maps in
            2D points-based detectors.
        bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder.
        loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
        loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
        loss_mask (:obj:`ConfigDict` or dict): Config of mask loss.
        train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
            anchor head. Defaults to None.
        test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
            anchor head. Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 head_module: ConfigType,
                 prior_generator: ConfigType = dict(
                     type='mmdet.MlvlPointGenerator',
                     offset=0,
                     strides=[8, 16, 32]),
                 bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'),
                 loss_cls: ConfigType = dict(
                     type='mmdet.QualityFocalLoss',
                     use_sigmoid=True,
                     beta=2.0,
                     loss_weight=1.0),
                 loss_bbox: ConfigType = dict(
                     type='mmdet.GIoULoss', loss_weight=2.0),
                 loss_mask=dict(
                     type='mmdet.DiceLoss',
                     loss_weight=2.0,
                     eps=5e-6,
                     reduction='mean'),
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 init_cfg: OptMultiConfig = None):

        super().__init__(
            head_module=head_module,
            prior_generator=prior_generator,
            bbox_coder=bbox_coder,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            init_cfg=init_cfg)

        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
        if isinstance(self.head_module, RTMDetInsSepBNHeadModule):
            assert self.use_sigmoid_cls == self.head_module.use_sigmoid_cls
        self.loss_mask = MODELS.build(loss_mask)

    def predict_by_feat(self,
                        cls_scores: List[Tensor],
                        bbox_preds: List[Tensor],
                        kernel_preds: List[Tensor],
                        mask_feats: Tensor,
                        score_factors: Optional[List[Tensor]] = None,
                        batch_img_metas: Optional[List[dict]] = None,
                        cfg: Optional[ConfigDict] = None,
                        rescale: bool = True,
                        with_nms: bool = True) -> List[InstanceData]:
        """Transform a batch of output features extracted from the head into
        bbox results.

        Note: When score_factors is not None, the cls_scores are
        usually multiplied by it then obtain the real score used in NMS.

        Args:
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            kernel_preds (list[Tensor]): Kernel predictions of dynamic
                convs for all scale levels, each is a 4D-tensor, has shape
                (batch_size, num_params, H, W).
            mask_feats (Tensor): Mask prototype features extracted from the
                mask head, has shape (batch_size, num_prototypes, H, W).
            score_factors (list[Tensor], optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, num_priors * 1, H, W). Defaults to None.
            batch_img_metas (list[dict], Optional): Batch image meta info.
                Defaults to None.
            cfg (ConfigDict, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            with_nms (bool): If True, do nms before return boxes.
                Defaults to True.

        Returns:
            list[:obj:`InstanceData`]: Object detection and instance
            segmentation results of each image after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, h, w).
        """
        cfg = self.test_cfg if cfg is None else cfg
        cfg = copy.deepcopy(cfg)

        multi_label = cfg.multi_label
        multi_label &= self.num_classes > 1
        cfg.multi_label = multi_label

        num_imgs = len(batch_img_metas)
        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]

        # If the shape does not change, use the previous mlvl_priors
        if featmap_sizes != self.featmap_sizes:
            self.mlvl_priors = self.prior_generator.grid_priors(
                featmap_sizes,
                dtype=cls_scores[0].dtype,
                device=cls_scores[0].device,
                with_stride=True)
            self.featmap_sizes = featmap_sizes
        flatten_priors = torch.cat(self.mlvl_priors)

        mlvl_strides = [
            flatten_priors.new_full(
                (featmap_size.numel() * self.num_base_priors, ), stride) for
            featmap_size, stride in zip(featmap_sizes, self.featmap_strides)
        ]
        flatten_stride = torch.cat(mlvl_strides)

        # flatten cls_scores, bbox_preds
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                  self.num_classes)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_kernel_preds = [
            kernel_pred.permute(0, 2, 3,
                                1).reshape(num_imgs, -1,
                                           self.head_module.num_gen_params)
            for kernel_pred in kernel_preds
        ]

        flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
        flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
        flatten_decoded_bboxes = self.bbox_coder.decode(
            flatten_priors[..., :2].unsqueeze(0), flatten_bbox_preds,
            flatten_stride)

        flatten_kernel_preds = torch.cat(flatten_kernel_preds, dim=1)

        results_list = []
        for (bboxes, scores, kernel_pred, mask_feat,
             img_meta) in zip(flatten_decoded_bboxes, flatten_cls_scores,
                              flatten_kernel_preds, mask_feats,
                              batch_img_metas):
            ori_shape = img_meta['ori_shape']
            scale_factor = img_meta['scale_factor']
            if 'pad_param' in img_meta:
                pad_param = img_meta['pad_param']
            else:
                pad_param = None

            score_thr = cfg.get('score_thr', -1)
            if scores.shape[0] == 0:
                empty_results = InstanceData()
                empty_results.bboxes = bboxes
                empty_results.scores = scores[:, 0]
                empty_results.labels = scores[:, 0].int()
                h, w = ori_shape[:2] if rescale else img_meta['img_shape'][:2]
                empty_results.masks = torch.zeros(
                    size=(0, h, w), dtype=torch.bool, device=bboxes.device)
                results_list.append(empty_results)
                continue

            nms_pre = cfg.get('nms_pre', 100000)
            if cfg.multi_label is False:
                scores, labels = scores.max(1, keepdim=True)
                scores, _, keep_idxs, results = filter_scores_and_topk(
                    scores,
                    score_thr,
                    nms_pre,
                    results=dict(
                        labels=labels[:, 0],
                        kernel_pred=kernel_pred,
                        priors=flatten_priors))
                labels = results['labels']
                kernel_pred = results['kernel_pred']
                priors = results['priors']
            else:
                out = filter_scores_and_topk(
                    scores,
                    score_thr,
                    nms_pre,
                    results=dict(
                        kernel_pred=kernel_pred, priors=flatten_priors))
                scores, labels, keep_idxs, filtered_results = out
                kernel_pred = filtered_results['kernel_pred']
                priors = filtered_results['priors']

            results = InstanceData(
                scores=scores,
                labels=labels,
                bboxes=bboxes[keep_idxs],
                kernels=kernel_pred,
                priors=priors)

            if rescale:
                if pad_param is not None:
                    results.bboxes -= results.bboxes.new_tensor([
                        pad_param[2], pad_param[0], pad_param[2], pad_param[0]
                    ])
                results.bboxes /= results.bboxes.new_tensor(
                    scale_factor).repeat((1, 2))

            if cfg.get('yolox_style', False):
                # do not need max_per_img
                cfg.max_per_img = len(results)

            results = self._bbox_mask_post_process(
                results=results,
                mask_feat=mask_feat,
                cfg=cfg,
                rescale_bbox=False,
                rescale_mask=rescale,
                with_nms=with_nms,
                pad_param=pad_param,
                img_meta=img_meta)
            results.bboxes[:, 0::2].clamp_(0, ori_shape[1])
            results.bboxes[:, 1::2].clamp_(0, ori_shape[0])

            results_list.append(results)
        return results_list

    def _bbox_mask_post_process(
            self,
            results: InstanceData,
            mask_feat: Tensor,
            cfg: ConfigDict,
            rescale_bbox: bool = False,
            rescale_mask: bool = True,
            with_nms: bool = True,
            pad_param: Optional[np.ndarray] = None,
            img_meta: Optional[dict] = None) -> InstanceData:
        """bbox and mask post-processing method.

        The boxes would be rescaled to the original image scale and do
        the nms operation. Usually `with_nms` is False is used for aug test.

        Args:
            results (:obj:`InstaceData`): Detection instance results,
                each item has shape (num_bboxes, ).
            mask_feat (Tensor): Mask prototype features extracted from the
                mask head, has shape (batch_size, num_prototypes, H, W).
            cfg (ConfigDict): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale_bbox (bool): If True, return boxes in original image space.
                Default to False.
            rescale_mask (bool): If True, return masks in original image space.
                Default to True.
            with_nms (bool): If True, do nms before return boxes.
                Default to True.
            img_meta (dict, optional): Image meta info. Defaults to None.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
                - masks (Tensor): Has a shape (num_instances, h, w).
        """
        if rescale_bbox:
            assert img_meta.get('scale_factor') is not None
            scale_factor = [1 / s for s in img_meta['scale_factor']]
            results.bboxes = scale_boxes(results.bboxes, scale_factor)

        if hasattr(results, 'score_factors'):
            # TODO: Add sqrt operation in order to be consistent with
            #  the paper.
            score_factors = results.pop('score_factors')
            results.scores = results.scores * score_factors

        # filter small size bboxes
        if cfg.get('min_bbox_size', -1) >= 0:
            w, h = get_box_wh(results.bboxes)
            valid_mask = (w > cfg.min_bbox_size) & (h > cfg.min_bbox_size)
            if not valid_mask.all():
                results = results[valid_mask]

        # TODO: deal with `with_nms` and `nms_cfg=None` in test_cfg
        assert with_nms, 'with_nms must be True for RTMDet-Ins'
        if results.bboxes.numel() > 0:
            bboxes = get_box_tensor(results.bboxes)
            det_bboxes, keep_idxs = batched_nms(bboxes, results.scores,
                                                results.labels, cfg.nms)
            results = results[keep_idxs]
            # some nms would reweight the score, such as softnms
            results.scores = det_bboxes[:, -1]
            results = results[:cfg.max_per_img]

            # process masks
            mask_logits = self._mask_predict_by_feat(mask_feat,
                                                     results.kernels,
                                                     results.priors)

            stride = self.prior_generator.strides[0][0]
            mask_logits = F.interpolate(
                mask_logits.unsqueeze(0), scale_factor=stride, mode='bilinear')
            if rescale_mask:
                # TODO: When use mmdet.Resize or mmdet.Pad, will meet bug
                # Use img_meta to crop and resize
                ori_h, ori_w = img_meta['ori_shape'][:2]
                if isinstance(pad_param, np.ndarray):
                    pad_param = pad_param.astype(np.int32)
                    crop_y1, crop_y2 = pad_param[
                        0], mask_logits.shape[-2] - pad_param[1]
                    crop_x1, crop_x2 = pad_param[
                        2], mask_logits.shape[-1] - pad_param[3]
                    mask_logits = mask_logits[..., crop_y1:crop_y2,
                                              crop_x1:crop_x2]
                mask_logits = F.interpolate(
                    mask_logits,
                    size=[ori_h, ori_w],
                    mode='bilinear',
                    align_corners=False)

            masks = mask_logits.sigmoid().squeeze(0)
            masks = masks > cfg.mask_thr_binary
            results.masks = masks
        else:
            h, w = img_meta['ori_shape'][:2] if rescale_mask else img_meta[
                'img_shape'][:2]
            results.masks = torch.zeros(
                size=(results.bboxes.shape[0], h, w),
                dtype=torch.bool,
                device=results.bboxes.device)
        return results

    def _mask_predict_by_feat(self, mask_feat: Tensor, kernels: Tensor,
                              priors: Tensor) -> Tensor:
        """Generate mask logits from mask features with dynamic convs.

        Args:
            mask_feat (Tensor): Mask prototype features.
                Has shape (num_prototypes, H, W).
            kernels (Tensor): Kernel parameters for each instance.
                Has shape (num_instance, num_params)
            priors (Tensor): Center priors for each instance.
                Has shape (num_instance, 4).
        Returns:
            Tensor: Instance segmentation masks for each instance.
                Has shape (num_instance, H, W).
        """
        num_inst = kernels.shape[0]
        h, w = mask_feat.size()[-2:]
        if num_inst < 1:
            return torch.empty(
                size=(num_inst, h, w),
                dtype=mask_feat.dtype,
                device=mask_feat.device)
        if len(mask_feat.shape) < 4:
            mask_feat.unsqueeze(0)

        coord = self.prior_generator.single_level_grid_priors(
            (h, w), level_idx=0, device=mask_feat.device).reshape(1, -1, 2)
        num_inst = priors.shape[0]
        points = priors[:, :2].reshape(-1, 1, 2)
        strides = priors[:, 2:].reshape(-1, 1, 2)
        relative_coord = (points - coord).permute(0, 2, 1) / (
            strides[..., 0].reshape(-1, 1, 1) * 8)
        relative_coord = relative_coord.reshape(num_inst, 2, h, w)

        mask_feat = torch.cat(
            [relative_coord,
             mask_feat.repeat(num_inst, 1, 1, 1)], dim=1)
        weights, biases = self.parse_dynamic_params(kernels)

        n_layers = len(weights)
        x = mask_feat.reshape(1, -1, h, w)
        for i, (weight, bias) in enumerate(zip(weights, biases)):
            x = F.conv2d(
                x, weight, bias=bias, stride=1, padding=0, groups=num_inst)
            if i < n_layers - 1:
                x = F.relu(x)
        x = x.reshape(num_inst, h, w)
        return x

    def parse_dynamic_params(self, flatten_kernels: Tensor) -> tuple:
        """split kernel head prediction to conv weight and bias."""
        n_inst = flatten_kernels.size(0)
        n_layers = len(self.head_module.weight_nums)
        params_splits = list(
            torch.split_with_sizes(
                flatten_kernels,
                self.head_module.weight_nums + self.head_module.bias_nums,
                dim=1))
        weight_splits = params_splits[:n_layers]
        bias_splits = params_splits[n_layers:]
        for i in range(n_layers):
            if i < n_layers - 1:
                weight_splits[i] = weight_splits[i].reshape(
                    n_inst * self.head_module.dyconv_channels, -1, 1, 1)
                bias_splits[i] = bias_splits[i].reshape(
                    n_inst * self.head_module.dyconv_channels)
            else:
                weight_splits[i] = weight_splits[i].reshape(n_inst, -1, 1, 1)
                bias_splits[i] = bias_splits[i].reshape(n_inst)

        return weight_splits, bias_splits

    def loss_by_feat(
            self,
            cls_scores: List[Tensor],
            bbox_preds: List[Tensor],
            batch_gt_instances: InstanceList,
            batch_img_metas: List[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        raise NotImplementedError