Spaces:
Runtime error
Runtime error
File size: 26,775 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import warnings
from typing import List, Optional, Sequence, Tuple
import torch
import torch.nn as nn
from mmdet.models.utils import filter_scores_and_topk
from mmdet.structures.bbox import HorizontalBoxes, distance2bbox
from mmdet.structures.bbox.transforms import bbox_cxcywh_to_xyxy, scale_boxes
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
OptInstanceList, OptMultiConfig, reduce_mean)
from mmengine.config import ConfigDict
from mmengine.model import normal_init
from mmengine.structures import InstanceData
from torch import Tensor
from mmyolo.registry import MODELS, TASK_UTILS
from ..utils import gt_instances_preprocess
from .rtmdet_head import RTMDetHead, RTMDetSepBNHeadModule
try:
from mmrotate.structures.bbox import RotatedBoxes, distance2obb
MMROTATE_AVAILABLE = True
except ImportError:
RotatedBoxes = None
distance2obb = None
MMROTATE_AVAILABLE = False
@MODELS.register_module()
class RTMDetRotatedSepBNHeadModule(RTMDetSepBNHeadModule):
"""Detection Head Module of RTMDet-R.
Compared with RTMDet Detection Head Module, RTMDet-R adds
a conv for angle prediction.
An `angle_out_dim` arg is added, which is generated by the
angle_coder module and controls the angle pred dim.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
num_base_priors (int): The number of priors (points) at a point
on the feature grid. Defaults to 1.
feat_channels (int): Number of hidden channels. Used in child classes.
Defaults to 256
stacked_convs (int): Number of stacking convs of the head.
Defaults to 2.
featmap_strides (Sequence[int]): Downsample factor of each feature map.
Defaults to (8, 16, 32).
share_conv (bool): Whether to share conv layers between stages.
Defaults to True.
pred_kernel_size (int): Kernel size of ``nn.Conv2d``. Defaults to 1.
angle_out_dim (int): Encoded length of angle, will passed by head.
Defaults to 1.
conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
convolution layer. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
layer. Defaults to ``dict(type='BN')``.
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
Default: dict(type='SiLU', inplace=True).
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(
self,
num_classes: int,
in_channels: int,
widen_factor: float = 1.0,
num_base_priors: int = 1,
feat_channels: int = 256,
stacked_convs: int = 2,
featmap_strides: Sequence[int] = [8, 16, 32],
share_conv: bool = True,
pred_kernel_size: int = 1,
angle_out_dim: int = 1,
conv_cfg: OptConfigType = None,
norm_cfg: ConfigType = dict(type='BN'),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: OptMultiConfig = None,
):
self.angle_out_dim = angle_out_dim
super().__init__(
num_classes=num_classes,
in_channels=in_channels,
widen_factor=widen_factor,
num_base_priors=num_base_priors,
feat_channels=feat_channels,
stacked_convs=stacked_convs,
featmap_strides=featmap_strides,
share_conv=share_conv,
pred_kernel_size=pred_kernel_size,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
init_cfg=init_cfg)
def _init_layers(self):
"""Initialize layers of the head."""
super()._init_layers()
self.rtm_ang = nn.ModuleList()
for _ in range(len(self.featmap_strides)):
self.rtm_ang.append(
nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.angle_out_dim,
self.pred_kernel_size,
padding=self.pred_kernel_size // 2))
def init_weights(self) -> None:
"""Initialize weights of the head."""
# Use prior in model initialization to improve stability
super().init_weights()
for rtm_ang in self.rtm_ang:
normal_init(rtm_ang, std=0.01)
def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
- cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
- angle_preds (list[Tensor]): Angle prediction for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * angle_out_dim.
"""
cls_scores = []
bbox_preds = []
angle_preds = []
for idx, x in enumerate(feats):
cls_feat = x
reg_feat = x
for cls_layer in self.cls_convs[idx]:
cls_feat = cls_layer(cls_feat)
cls_score = self.rtm_cls[idx](cls_feat)
for reg_layer in self.reg_convs[idx]:
reg_feat = reg_layer(reg_feat)
reg_dist = self.rtm_reg[idx](reg_feat)
angle_pred = self.rtm_ang[idx](reg_feat)
cls_scores.append(cls_score)
bbox_preds.append(reg_dist)
angle_preds.append(angle_pred)
return tuple(cls_scores), tuple(bbox_preds), tuple(angle_preds)
@MODELS.register_module()
class RTMDetRotatedHead(RTMDetHead):
"""RTMDet-R head.
Compared with RTMDetHead, RTMDetRotatedHead add some args to support
rotated object detection.
- `angle_version` used to limit angle_range during training.
- `angle_coder` used to encode and decode angle, which is similar
to bbox_coder.
- `use_hbbox_loss` and `loss_angle` allow custom regression loss
calculation for rotated box.
There are three combination options for regression:
1. `use_hbbox_loss=False` and loss_angle is None.
.. code:: text
bbox_predββββ(tblr)ββββ
βΌ
angle_pred decodeβββΊrbox_predββ(xywha)ββΊloss_bbox
β β²
ββββββΊdecodeββ(a)ββ
2. `use_hbbox_loss=False` and loss_angle is specified.
A angle loss is added on angle_pred.
.. code:: text
bbox_predββββ(tblr)ββββ
βΌ
angle_pred decodeβββΊrbox_predββ(xywha)ββΊloss_bbox
β β²
ββββββΊdecodeββ(a)ββ
β
βββββββββββββββββββββββββββββββββββββββββββββΊloss_angle
3. `use_hbbox_loss=True` and loss_angle is specified.
In this case the loss_angle must be set.
.. code:: text
bbox_predββ(tblr)βββΊdecodeβββΊhbox_predββ(xyxy)βββΊloss_bbox
angle_predβββββββββββββββββββββββββββββββββββββββΊloss_angle
- There's a `decoded_with_angle` flag in test_cfg, which is similar
to training process.
When `decoded_with_angle=True`:
.. code:: text
bbox_predββββ(tblr)ββββ
βΌ
angle_pred decodeββ(xywha)βββΊrbox_pred
β β²
ββββββΊdecodeββ(a)ββ
When `decoded_with_angle=False`:
.. code:: text
bbox_predββ(tblr)ββΊdecode
β (xyxy)
βΌ
formatβββ(xywh)βββΊconcatββ(xywha)βββΊrbox_pred
β²
angle_predβββββββββΊdecodeββββ(a)ββββββββ
Args:
head_module(ConfigType): Base module used for RTMDetRotatedHead.
prior_generator: Points generator feature maps in
2D points-based detectors.
bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder.
loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
angle_version (str): Angle representations. Defaults to 'le90'.
use_hbbox_loss (bool): If true, use horizontal bbox loss and
loss_angle should not be None. Default to False.
angle_coder (:obj:`ConfigDict` or dict): Config of angle coder.
loss_angle (:obj:`ConfigDict` or dict, optional): Config of angle loss.
train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
anchor head. Defaults to None.
test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
anchor head. Defaults to None.
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
list[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(
self,
head_module: ConfigType,
prior_generator: ConfigType = dict(
type='mmdet.MlvlPointGenerator', strides=[8, 16, 32],
offset=0),
bbox_coder: ConfigType = dict(type='DistanceAnglePointCoder'),
loss_cls: ConfigType = dict(
type='mmdet.QualityFocalLoss',
use_sigmoid=True,
beta=2.0,
loss_weight=1.0),
loss_bbox: ConfigType = dict(
type='mmrotate.RotatedIoULoss', mode='linear',
loss_weight=2.0),
angle_version: str = 'le90',
use_hbbox_loss: bool = False,
angle_coder: ConfigType = dict(type='mmrotate.PseudoAngleCoder'),
loss_angle: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = None):
if not MMROTATE_AVAILABLE:
raise ImportError(
'Please run "mim install -r requirements/mmrotate.txt" '
'to install mmrotate first for rotated detection.')
self.angle_version = angle_version
self.use_hbbox_loss = use_hbbox_loss
if self.use_hbbox_loss:
assert loss_angle is not None, \
('When use hbbox loss, loss_angle needs to be specified')
self.angle_coder = TASK_UTILS.build(angle_coder)
self.angle_out_dim = self.angle_coder.encode_size
if head_module.get('angle_out_dim') is not None:
warnings.warn('angle_out_dim will be overridden by angle_coder '
'and does not need to be set manually')
head_module['angle_out_dim'] = self.angle_out_dim
super().__init__(
head_module=head_module,
prior_generator=prior_generator,
bbox_coder=bbox_coder,
loss_cls=loss_cls,
loss_bbox=loss_bbox,
train_cfg=train_cfg,
test_cfg=test_cfg,
init_cfg=init_cfg)
if loss_angle is not None:
self.loss_angle = MODELS.build(loss_angle)
else:
self.loss_angle = None
def predict_by_feat(self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
angle_preds: List[Tensor],
objectnesses: Optional[List[Tensor]] = None,
batch_img_metas: Optional[List[dict]] = None,
cfg: Optional[ConfigDict] = None,
rescale: bool = True,
with_nms: bool = True) -> List[InstanceData]:
"""Transform a batch of output features extracted by the head into bbox
results.
Args:
cls_scores (list[Tensor]): Classification scores for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for all
scale levels, each is a 4D-tensor, has shape
(batch_size, num_priors * 4, H, W).
angle_preds (list[Tensor]): Box angle for each scale level
with shape (N, num_points * angle_dim, H, W)
objectnesses (list[Tensor], Optional): Score factor for
all scale level, each is a 4D-tensor, has shape
(batch_size, 1, H, W).
batch_img_metas (list[dict], Optional): Batch image meta info.
Defaults to None.
cfg (ConfigDict, optional): Test / postprocessing
configuration, if None, test_cfg would be used.
Defaults to None.
rescale (bool): If True, return boxes in original image space.
Defaults to False.
with_nms (bool): If True, do nms before return boxes.
Defaults to True.
Returns:
list[:obj:`InstanceData`]: Object detection results of each image
after the post process. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 5),
the last dimension 4 arrange as (x, y, w, h, angle).
"""
assert len(cls_scores) == len(bbox_preds)
if objectnesses is None:
with_objectnesses = False
else:
with_objectnesses = True
assert len(cls_scores) == len(objectnesses)
cfg = self.test_cfg if cfg is None else cfg
cfg = copy.deepcopy(cfg)
multi_label = cfg.multi_label
multi_label &= self.num_classes > 1
cfg.multi_label = multi_label
# Whether to decode rbox with angle.
# different setting lead to different final results.
# Defaults to True.
decode_with_angle = cfg.get('decode_with_angle', True)
num_imgs = len(batch_img_metas)
featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
# If the shape does not change, use the previous mlvl_priors
if featmap_sizes != self.featmap_sizes:
self.mlvl_priors = self.prior_generator.grid_priors(
featmap_sizes,
dtype=cls_scores[0].dtype,
device=cls_scores[0].device)
self.featmap_sizes = featmap_sizes
flatten_priors = torch.cat(self.mlvl_priors)
mlvl_strides = [
flatten_priors.new_full(
(featmap_size.numel() * self.num_base_priors, ), stride) for
featmap_size, stride in zip(featmap_sizes, self.featmap_strides)
]
flatten_stride = torch.cat(mlvl_strides)
# flatten cls_scores, bbox_preds and objectness
flatten_cls_scores = [
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.num_classes)
for cls_score in cls_scores
]
flatten_bbox_preds = [
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
for bbox_pred in bbox_preds
]
flatten_angle_preds = [
angle_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.angle_out_dim)
for angle_pred in angle_preds
]
flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
flatten_angle_preds = torch.cat(flatten_angle_preds, dim=1)
flatten_angle_preds = self.angle_coder.decode(
flatten_angle_preds, keepdim=True)
if decode_with_angle:
flatten_rbbox_preds = torch.cat(
[flatten_bbox_preds, flatten_angle_preds], dim=-1)
flatten_decoded_bboxes = self.bbox_coder.decode(
flatten_priors[None], flatten_rbbox_preds, flatten_stride)
else:
flatten_decoded_hbboxes = self.bbox_coder.decode(
flatten_priors[None], flatten_bbox_preds, flatten_stride)
flatten_decoded_hbboxes = HorizontalBoxes.xyxy_to_cxcywh(
flatten_decoded_hbboxes)
flatten_decoded_bboxes = torch.cat(
[flatten_decoded_hbboxes, flatten_angle_preds], dim=-1)
if with_objectnesses:
flatten_objectness = [
objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1)
for objectness in objectnesses
]
flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid()
else:
flatten_objectness = [None for _ in range(num_imgs)]
results_list = []
for (bboxes, scores, objectness,
img_meta) in zip(flatten_decoded_bboxes, flatten_cls_scores,
flatten_objectness, batch_img_metas):
scale_factor = img_meta['scale_factor']
if 'pad_param' in img_meta:
pad_param = img_meta['pad_param']
else:
pad_param = None
score_thr = cfg.get('score_thr', -1)
# yolox_style does not require the following operations
if objectness is not None and score_thr > 0 and not cfg.get(
'yolox_style', False):
conf_inds = objectness > score_thr
bboxes = bboxes[conf_inds, :]
scores = scores[conf_inds, :]
objectness = objectness[conf_inds]
if objectness is not None:
# conf = obj_conf * cls_conf
scores *= objectness[:, None]
if scores.shape[0] == 0:
empty_results = InstanceData()
empty_results.bboxes = RotatedBoxes(bboxes)
empty_results.scores = scores[:, 0]
empty_results.labels = scores[:, 0].int()
results_list.append(empty_results)
continue
nms_pre = cfg.get('nms_pre', 100000)
if cfg.multi_label is False:
scores, labels = scores.max(1, keepdim=True)
scores, _, keep_idxs, results = filter_scores_and_topk(
scores,
score_thr,
nms_pre,
results=dict(labels=labels[:, 0]))
labels = results['labels']
else:
scores, labels, keep_idxs, _ = filter_scores_and_topk(
scores, score_thr, nms_pre)
results = InstanceData(
scores=scores,
labels=labels,
bboxes=RotatedBoxes(bboxes[keep_idxs]))
if rescale:
if pad_param is not None:
results.bboxes.translate_([-pad_param[2], -pad_param[0]])
scale_factor = [1 / s for s in img_meta['scale_factor']]
results.bboxes = scale_boxes(results.bboxes, scale_factor)
if cfg.get('yolox_style', False):
# do not need max_per_img
cfg.max_per_img = len(results)
results = self._bbox_post_process(
results=results,
cfg=cfg,
rescale=False,
with_nms=with_nms,
img_meta=img_meta)
results_list.append(results)
return results_list
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
angle_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Decoded box for each scale
level with shape (N, num_anchors * 4, H, W) in
[tl_x, tl_y, br_x, br_y] format.
angle_preds (list[Tensor]): Angle prediction for each scale
level with shape (N, num_anchors * angle_out_dim, H, W).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
num_imgs = len(batch_img_metas)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
gt_info = gt_instances_preprocess(batch_gt_instances, num_imgs)
gt_labels = gt_info[:, :, :1]
gt_bboxes = gt_info[:, :, 1:] # xywha
pad_bbox_flag = (gt_bboxes.sum(-1, keepdim=True) > 0).float()
device = cls_scores[0].device
# If the shape does not equal, generate new one
if featmap_sizes != self.featmap_sizes_train:
self.featmap_sizes_train = featmap_sizes
mlvl_priors_with_stride = self.prior_generator.grid_priors(
featmap_sizes, device=device, with_stride=True)
self.flatten_priors_train = torch.cat(
mlvl_priors_with_stride, dim=0)
flatten_cls_scores = torch.cat([
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.cls_out_channels)
for cls_score in cls_scores
], 1).contiguous()
flatten_tblrs = torch.cat([
bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
for bbox_pred in bbox_preds
], 1)
flatten_tblrs = flatten_tblrs * self.flatten_priors_train[..., -1,
None]
flatten_angles = torch.cat([
angle_pred.permute(0, 2, 3, 1).reshape(
num_imgs, -1, self.angle_out_dim) for angle_pred in angle_preds
], 1)
flatten_decoded_angle = self.angle_coder.decode(
flatten_angles, keepdim=True)
flatten_tblra = torch.cat([flatten_tblrs, flatten_decoded_angle],
dim=-1)
flatten_rbboxes = distance2obb(
self.flatten_priors_train[..., :2],
flatten_tblra,
angle_version=self.angle_version)
if self.use_hbbox_loss:
flatten_hbboxes = distance2bbox(self.flatten_priors_train[..., :2],
flatten_tblrs)
assigned_result = self.assigner(flatten_rbboxes.detach(),
flatten_cls_scores.detach(),
self.flatten_priors_train, gt_labels,
gt_bboxes, pad_bbox_flag)
labels = assigned_result['assigned_labels'].reshape(-1)
label_weights = assigned_result['assigned_labels_weights'].reshape(-1)
bbox_targets = assigned_result['assigned_bboxes'].reshape(-1, 5)
assign_metrics = assigned_result['assign_metrics'].reshape(-1)
cls_preds = flatten_cls_scores.reshape(-1, self.num_classes)
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
& (labels < bg_class_ind)).nonzero().squeeze(1)
avg_factor = reduce_mean(assign_metrics.sum()).clamp_(min=1).item()
loss_cls = self.loss_cls(
cls_preds, (labels, assign_metrics),
label_weights,
avg_factor=avg_factor)
pos_bbox_targets = bbox_targets[pos_inds]
if self.use_hbbox_loss:
bbox_preds = flatten_hbboxes.reshape(-1, 4)
pos_bbox_targets = bbox_cxcywh_to_xyxy(pos_bbox_targets[:, :4])
else:
bbox_preds = flatten_rbboxes.reshape(-1, 5)
angle_preds = flatten_angles.reshape(-1, self.angle_out_dim)
if len(pos_inds) > 0:
loss_bbox = self.loss_bbox(
bbox_preds[pos_inds],
pos_bbox_targets,
weight=assign_metrics[pos_inds],
avg_factor=avg_factor)
loss_angle = angle_preds.sum() * 0
if self.loss_angle is not None:
pos_angle_targets = bbox_targets[pos_inds][:, 4:5]
pos_angle_targets = self.angle_coder.encode(pos_angle_targets)
loss_angle = self.loss_angle(
angle_preds[pos_inds],
pos_angle_targets,
weight=assign_metrics[pos_inds],
avg_factor=avg_factor)
else:
loss_bbox = bbox_preds.sum() * 0
loss_angle = angle_preds.sum() * 0
losses = dict()
losses['loss_cls'] = loss_cls
losses['loss_bbox'] = loss_bbox
if self.loss_angle is not None:
losses['loss_angle'] = loss_angle
return losses
|