File size: 38,981 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import math
from typing import List, Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn
from mmdet.models.dense_heads.base_dense_head import BaseDenseHead
from mmdet.models.utils import filter_scores_and_topk, multi_apply
from mmdet.structures.bbox import bbox_overlaps
from mmdet.utils import (ConfigType, OptConfigType, OptInstanceList,
                         OptMultiConfig)
from mmengine.config import ConfigDict
from mmengine.dist import get_dist_info
from mmengine.logging import print_log
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor

from mmyolo.registry import MODELS, TASK_UTILS
from ..utils import make_divisible


def get_prior_xy_info(index: int, num_base_priors: int,
                      featmap_sizes: int) -> Tuple[int, int, int]:
    """Get prior index and xy index in feature map by flatten index."""
    _, featmap_w = featmap_sizes
    priors = index % num_base_priors
    xy_index = index // num_base_priors
    grid_y = xy_index // featmap_w
    grid_x = xy_index % featmap_w
    return priors, grid_x, grid_y


@MODELS.register_module()
class YOLOv5HeadModule(BaseModule):
    """YOLOv5Head head module used in `YOLOv5`.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (Union[int, Sequence]): Number of channels in the input
            feature map.
        widen_factor (float): Width multiplier, multiply number of
            channels in each layer by this amount. Defaults to 1.0.
        num_base_priors (int): The number of priors (points) at a point
            on the feature grid.
        featmap_strides (Sequence[int]): Downsample factor of each feature map.
             Defaults to (8, 16, 32).
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 num_classes: int,
                 in_channels: Union[int, Sequence],
                 widen_factor: float = 1.0,
                 num_base_priors: int = 3,
                 featmap_strides: Sequence[int] = (8, 16, 32),
                 init_cfg: OptMultiConfig = None):
        super().__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.widen_factor = widen_factor

        self.featmap_strides = featmap_strides
        self.num_out_attrib = 5 + self.num_classes
        self.num_levels = len(self.featmap_strides)
        self.num_base_priors = num_base_priors

        if isinstance(in_channels, int):
            self.in_channels = [make_divisible(in_channels, widen_factor)
                                ] * self.num_levels
        else:
            self.in_channels = [
                make_divisible(i, widen_factor) for i in in_channels
            ]

        self._init_layers()

    def _init_layers(self):
        """initialize conv layers in YOLOv5 head."""
        self.convs_pred = nn.ModuleList()
        for i in range(self.num_levels):
            conv_pred = nn.Conv2d(self.in_channels[i],
                                  self.num_base_priors * self.num_out_attrib,
                                  1)

            self.convs_pred.append(conv_pred)

    def init_weights(self):
        """Initialize the bias of YOLOv5 head."""
        super().init_weights()
        for mi, s in zip(self.convs_pred, self.featmap_strides):  # from
            b = mi.bias.data.view(self.num_base_priors, -1)
            # obj (8 objects per 640 image)
            b.data[:, 4] += math.log(8 / (640 / s)**2)
            b.data[:, 5:] += math.log(0.6 / (self.num_classes - 0.999999))

            mi.bias.data = b.view(-1)

    def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
        """Forward features from the upstream network.

        Args:
            x (Tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
        Returns:
            Tuple[List]: A tuple of multi-level classification scores, bbox
            predictions, and objectnesses.
        """
        assert len(x) == self.num_levels
        return multi_apply(self.forward_single, x, self.convs_pred)

    def forward_single(self, x: Tensor,
                       convs: nn.Module) -> Tuple[Tensor, Tensor, Tensor]:
        """Forward feature of a single scale level."""

        pred_map = convs(x)
        bs, _, ny, nx = pred_map.shape
        pred_map = pred_map.view(bs, self.num_base_priors, self.num_out_attrib,
                                 ny, nx)

        cls_score = pred_map[:, :, 5:, ...].reshape(bs, -1, ny, nx)
        bbox_pred = pred_map[:, :, :4, ...].reshape(bs, -1, ny, nx)
        objectness = pred_map[:, :, 4:5, ...].reshape(bs, -1, ny, nx)

        return cls_score, bbox_pred, objectness


@MODELS.register_module()
class YOLOv5Head(BaseDenseHead):
    """YOLOv5Head head used in `YOLOv5`.

    Args:
        head_module(ConfigType): Base module used for YOLOv5Head
        prior_generator(dict): Points generator feature maps in
            2D points-based detectors.
        bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder.
        loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
        loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
        loss_obj (:obj:`ConfigDict` or dict): Config of objectness loss.
        prior_match_thr (float): Defaults to 4.0.
        ignore_iof_thr (float): Defaults to -1.0.
        obj_level_weights (List[float]): Defaults to [4.0, 1.0, 0.4].
        train_cfg (:obj:`ConfigDict` or dict, optional): Training config of
            anchor head. Defaults to None.
        test_cfg (:obj:`ConfigDict` or dict, optional): Testing config of
            anchor head. Defaults to None.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 head_module: ConfigType,
                 prior_generator: ConfigType = dict(
                     type='mmdet.YOLOAnchorGenerator',
                     base_sizes=[[(10, 13), (16, 30), (33, 23)],
                                 [(30, 61), (62, 45), (59, 119)],
                                 [(116, 90), (156, 198), (373, 326)]],
                     strides=[8, 16, 32]),
                 bbox_coder: ConfigType = dict(type='YOLOv5BBoxCoder'),
                 loss_cls: ConfigType = dict(
                     type='mmdet.CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='mean',
                     loss_weight=0.5),
                 loss_bbox: ConfigType = dict(
                     type='IoULoss',
                     iou_mode='ciou',
                     bbox_format='xywh',
                     eps=1e-7,
                     reduction='mean',
                     loss_weight=0.05,
                     return_iou=True),
                 loss_obj: ConfigType = dict(
                     type='mmdet.CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='mean',
                     loss_weight=1.0),
                 prior_match_thr: float = 4.0,
                 near_neighbor_thr: float = 0.5,
                 ignore_iof_thr: float = -1.0,
                 obj_level_weights: List[float] = [4.0, 1.0, 0.4],
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 init_cfg: OptMultiConfig = None):
        super().__init__(init_cfg=init_cfg)

        self.head_module = MODELS.build(head_module)
        self.num_classes = self.head_module.num_classes
        self.featmap_strides = self.head_module.featmap_strides
        self.num_levels = len(self.featmap_strides)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        self.loss_cls: nn.Module = MODELS.build(loss_cls)
        self.loss_bbox: nn.Module = MODELS.build(loss_bbox)
        self.loss_obj: nn.Module = MODELS.build(loss_obj)

        self.prior_generator = TASK_UTILS.build(prior_generator)
        self.bbox_coder = TASK_UTILS.build(bbox_coder)
        self.num_base_priors = self.prior_generator.num_base_priors[0]

        self.featmap_sizes = [torch.empty(1)] * self.num_levels

        self.prior_match_thr = prior_match_thr
        self.near_neighbor_thr = near_neighbor_thr
        self.obj_level_weights = obj_level_weights
        self.ignore_iof_thr = ignore_iof_thr

        self.special_init()

    def special_init(self):
        """Since YOLO series algorithms will inherit from YOLOv5Head, but
        different algorithms have special initialization process.

        The special_init function is designed to deal with this situation.
        """
        assert len(self.obj_level_weights) == len(
            self.featmap_strides) == self.num_levels
        if self.prior_match_thr != 4.0:
            print_log(
                "!!!Now, you've changed the prior_match_thr "
                'parameter to something other than 4.0. Please make sure '
                'that you have modified both the regression formula in '
                'bbox_coder and before loss_box computation, '
                'otherwise the accuracy may be degraded!!!')

        if self.num_classes == 1:
            print_log('!!!You are using `YOLOv5Head` with num_classes == 1.'
                      ' The loss_cls will be 0. This is a normal phenomenon.')

        priors_base_sizes = torch.tensor(
            self.prior_generator.base_sizes, dtype=torch.float)
        featmap_strides = torch.tensor(
            self.featmap_strides, dtype=torch.float)[:, None, None]
        self.register_buffer(
            'priors_base_sizes',
            priors_base_sizes / featmap_strides,
            persistent=False)

        grid_offset = torch.tensor([
            [0, 0],  # center
            [1, 0],  # left
            [0, 1],  # up
            [-1, 0],  # right
            [0, -1],  # bottom
        ]).float()
        self.register_buffer(
            'grid_offset', grid_offset[:, None], persistent=False)

        prior_inds = torch.arange(self.num_base_priors).float().view(
            self.num_base_priors, 1)
        self.register_buffer('prior_inds', prior_inds, persistent=False)

    def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
        """Forward features from the upstream network.

        Args:
            x (Tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
        Returns:
            Tuple[List]: A tuple of multi-level classification scores, bbox
            predictions, and objectnesses.
        """
        return self.head_module(x)

    def predict_by_feat(self,
                        cls_scores: List[Tensor],
                        bbox_preds: List[Tensor],
                        objectnesses: Optional[List[Tensor]] = None,
                        batch_img_metas: Optional[List[dict]] = None,
                        cfg: Optional[ConfigDict] = None,
                        rescale: bool = True,
                        with_nms: bool = True) -> List[InstanceData]:
        """Transform a batch of output features extracted by the head into
        bbox results.
        Args:
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            objectnesses (list[Tensor], Optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).
            batch_img_metas (list[dict], Optional): Batch image meta info.
                Defaults to None.
            cfg (ConfigDict, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.
            with_nms (bool): If True, do nms before return boxes.
                Defaults to True.

        Returns:
            list[:obj:`InstanceData`]: Object detection results of each image
            after the post process. Each item usually contains following keys.

            - scores (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes (Tensor): Has a shape (num_instances, 4),
              the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        assert len(cls_scores) == len(bbox_preds)
        if objectnesses is None:
            with_objectnesses = False
        else:
            with_objectnesses = True
            assert len(cls_scores) == len(objectnesses)

        cfg = self.test_cfg if cfg is None else cfg
        cfg = copy.deepcopy(cfg)

        multi_label = cfg.multi_label
        multi_label &= self.num_classes > 1
        cfg.multi_label = multi_label

        num_imgs = len(batch_img_metas)
        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]

        # If the shape does not change, use the previous mlvl_priors
        if featmap_sizes != self.featmap_sizes:
            self.mlvl_priors = self.prior_generator.grid_priors(
                featmap_sizes,
                dtype=cls_scores[0].dtype,
                device=cls_scores[0].device)
            self.featmap_sizes = featmap_sizes
        flatten_priors = torch.cat(self.mlvl_priors)

        mlvl_strides = [
            flatten_priors.new_full(
                (featmap_size.numel() * self.num_base_priors, ), stride) for
            featmap_size, stride in zip(featmap_sizes, self.featmap_strides)
        ]
        flatten_stride = torch.cat(mlvl_strides)

        # flatten cls_scores, bbox_preds and objectness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
                                                  self.num_classes)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
            for bbox_pred in bbox_preds
        ]

        flatten_cls_scores = torch.cat(flatten_cls_scores, dim=1).sigmoid()
        flatten_bbox_preds = torch.cat(flatten_bbox_preds, dim=1)
        flatten_decoded_bboxes = self.bbox_coder.decode(
            flatten_priors[None], flatten_bbox_preds, flatten_stride)

        if with_objectnesses:
            flatten_objectness = [
                objectness.permute(0, 2, 3, 1).reshape(num_imgs, -1)
                for objectness in objectnesses
            ]
            flatten_objectness = torch.cat(flatten_objectness, dim=1).sigmoid()
        else:
            flatten_objectness = [None for _ in range(num_imgs)]

        results_list = []
        for (bboxes, scores, objectness,
             img_meta) in zip(flatten_decoded_bboxes, flatten_cls_scores,
                              flatten_objectness, batch_img_metas):
            ori_shape = img_meta['ori_shape']
            scale_factor = img_meta['scale_factor']
            if 'pad_param' in img_meta:
                pad_param = img_meta['pad_param']
            else:
                pad_param = None

            score_thr = cfg.get('score_thr', -1)
            # yolox_style does not require the following operations
            if objectness is not None and score_thr > 0 and not cfg.get(
                    'yolox_style', False):
                conf_inds = objectness > score_thr
                bboxes = bboxes[conf_inds, :]
                scores = scores[conf_inds, :]
                objectness = objectness[conf_inds]

            if objectness is not None:
                # conf = obj_conf * cls_conf
                scores *= objectness[:, None]

            if scores.shape[0] == 0:
                empty_results = InstanceData()
                empty_results.bboxes = bboxes
                empty_results.scores = scores[:, 0]
                empty_results.labels = scores[:, 0].int()
                results_list.append(empty_results)
                continue

            nms_pre = cfg.get('nms_pre', 100000)
            if cfg.multi_label is False:
                scores, labels = scores.max(1, keepdim=True)
                scores, _, keep_idxs, results = filter_scores_and_topk(
                    scores,
                    score_thr,
                    nms_pre,
                    results=dict(labels=labels[:, 0]))
                labels = results['labels']
            else:
                scores, labels, keep_idxs, _ = filter_scores_and_topk(
                    scores, score_thr, nms_pre)

            results = InstanceData(
                scores=scores, labels=labels, bboxes=bboxes[keep_idxs])

            if rescale:
                if pad_param is not None:
                    results.bboxes -= results.bboxes.new_tensor([
                        pad_param[2], pad_param[0], pad_param[2], pad_param[0]
                    ])
                results.bboxes /= results.bboxes.new_tensor(
                    scale_factor).repeat((1, 2))

            if cfg.get('yolox_style', False):
                # do not need max_per_img
                cfg.max_per_img = len(results)

            results = self._bbox_post_process(
                results=results,
                cfg=cfg,
                rescale=False,
                with_nms=with_nms,
                img_meta=img_meta)
            results.bboxes[:, 0::2].clamp_(0, ori_shape[1])
            results.bboxes[:, 1::2].clamp_(0, ori_shape[0])

            results_list.append(results)
        return results_list

    def loss(self, x: Tuple[Tensor], batch_data_samples: Union[list,
                                                               dict]) -> dict:
        """Perform forward propagation and loss calculation of the detection
        head on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`], dict): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            dict: A dictionary of loss components.
        """

        if isinstance(batch_data_samples, list):
            losses = super().loss(x, batch_data_samples)
        else:
            outs = self(x)
            # Fast version
            loss_inputs = outs + (batch_data_samples['bboxes_labels'],
                                  batch_data_samples['img_metas'])
            losses = self.loss_by_feat(*loss_inputs)

        return losses

    def loss_by_feat(
            self,
            cls_scores: Sequence[Tensor],
            bbox_preds: Sequence[Tensor],
            objectnesses: Sequence[Tensor],
            batch_gt_instances: Sequence[InstanceData],
            batch_img_metas: Sequence[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (Sequence[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_priors * num_classes.
            bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_priors * 4.
            objectnesses (Sequence[Tensor]): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).
            batch_gt_instances (Sequence[InstanceData]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (Sequence[dict]): Meta information of each image,
                e.g., image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
        Returns:
            dict[str, Tensor]: A dictionary of losses.
        """
        if self.ignore_iof_thr != -1:
            # TODO: Support fast version
            # convert ignore gt
            batch_target_ignore_list = []
            for i, gt_instances_ignore in enumerate(batch_gt_instances_ignore):
                bboxes = gt_instances_ignore.bboxes
                labels = gt_instances_ignore.labels
                index = bboxes.new_full((len(bboxes), 1), i)
                # (batch_idx, label, bboxes)
                target = torch.cat((index, labels[:, None].float(), bboxes),
                                   dim=1)
                batch_target_ignore_list.append(target)

            # (num_bboxes, 6)
            batch_gt_targets_ignore = torch.cat(
                batch_target_ignore_list, dim=0)
            if batch_gt_targets_ignore.shape[0] != 0:
                # Consider regions with ignore in annotations
                return self._loss_by_feat_with_ignore(
                    cls_scores,
                    bbox_preds,
                    objectnesses,
                    batch_gt_instances=batch_gt_instances,
                    batch_img_metas=batch_img_metas,
                    batch_gt_instances_ignore=batch_gt_targets_ignore)

        # 1. Convert gt to norm format
        batch_targets_normed = self._convert_gt_to_norm_format(
            batch_gt_instances, batch_img_metas)

        device = cls_scores[0].device
        loss_cls = torch.zeros(1, device=device)
        loss_box = torch.zeros(1, device=device)
        loss_obj = torch.zeros(1, device=device)
        scaled_factor = torch.ones(7, device=device)

        for i in range(self.num_levels):
            batch_size, _, h, w = bbox_preds[i].shape
            target_obj = torch.zeros_like(objectnesses[i])

            # empty gt bboxes
            if batch_targets_normed.shape[1] == 0:
                loss_box += bbox_preds[i].sum() * 0
                loss_cls += cls_scores[i].sum() * 0
                loss_obj += self.loss_obj(
                    objectnesses[i], target_obj) * self.obj_level_weights[i]
                continue

            priors_base_sizes_i = self.priors_base_sizes[i]
            # feature map scale whwh
            scaled_factor[2:6] = torch.tensor(
                bbox_preds[i].shape)[[3, 2, 3, 2]]
            # Scale batch_targets from range 0-1 to range 0-features_maps size.
            # (num_base_priors, num_bboxes, 7)
            batch_targets_scaled = batch_targets_normed * scaled_factor

            # 2. Shape match
            wh_ratio = batch_targets_scaled[...,
                                            4:6] / priors_base_sizes_i[:, None]
            match_inds = torch.max(
                wh_ratio, 1 / wh_ratio).max(2)[0] < self.prior_match_thr
            batch_targets_scaled = batch_targets_scaled[match_inds]

            # no gt bbox matches anchor
            if batch_targets_scaled.shape[0] == 0:
                loss_box += bbox_preds[i].sum() * 0
                loss_cls += cls_scores[i].sum() * 0
                loss_obj += self.loss_obj(
                    objectnesses[i], target_obj) * self.obj_level_weights[i]
                continue

            # 3. Positive samples with additional neighbors

            # check the left, up, right, bottom sides of the
            # targets grid, and determine whether assigned
            # them as positive samples as well.
            batch_targets_cxcy = batch_targets_scaled[:, 2:4]
            grid_xy = scaled_factor[[2, 3]] - batch_targets_cxcy
            left, up = ((batch_targets_cxcy % 1 < self.near_neighbor_thr) &
                        (batch_targets_cxcy > 1)).T
            right, bottom = ((grid_xy % 1 < self.near_neighbor_thr) &
                             (grid_xy > 1)).T
            offset_inds = torch.stack(
                (torch.ones_like(left), left, up, right, bottom))

            batch_targets_scaled = batch_targets_scaled.repeat(
                (5, 1, 1))[offset_inds]
            retained_offsets = self.grid_offset.repeat(1, offset_inds.shape[1],
                                                       1)[offset_inds]

            # prepare pred results and positive sample indexes to
            # calculate class loss and bbox lo
            _chunk_targets = batch_targets_scaled.chunk(4, 1)
            img_class_inds, grid_xy, grid_wh, priors_inds = _chunk_targets
            priors_inds, (img_inds, class_inds) = priors_inds.long().view(
                -1), img_class_inds.long().T

            grid_xy_long = (grid_xy -
                            retained_offsets * self.near_neighbor_thr).long()
            grid_x_inds, grid_y_inds = grid_xy_long.T
            bboxes_targets = torch.cat((grid_xy - grid_xy_long, grid_wh), 1)

            # 4. Calculate loss
            # bbox loss
            retained_bbox_pred = bbox_preds[i].reshape(
                batch_size, self.num_base_priors, -1, h,
                w)[img_inds, priors_inds, :, grid_y_inds, grid_x_inds]
            priors_base_sizes_i = priors_base_sizes_i[priors_inds]
            decoded_bbox_pred = self._decode_bbox_to_xywh(
                retained_bbox_pred, priors_base_sizes_i)
            loss_box_i, iou = self.loss_bbox(decoded_bbox_pred, bboxes_targets)
            loss_box += loss_box_i

            # obj loss
            iou = iou.detach().clamp(0)
            target_obj[img_inds, priors_inds, grid_y_inds,
                       grid_x_inds] = iou.type(target_obj.dtype)
            loss_obj += self.loss_obj(objectnesses[i],
                                      target_obj) * self.obj_level_weights[i]

            # cls loss
            if self.num_classes > 1:
                pred_cls_scores = cls_scores[i].reshape(
                    batch_size, self.num_base_priors, -1, h,
                    w)[img_inds, priors_inds, :, grid_y_inds, grid_x_inds]

                target_class = torch.full_like(pred_cls_scores, 0.)
                target_class[range(batch_targets_scaled.shape[0]),
                             class_inds] = 1.
                loss_cls += self.loss_cls(pred_cls_scores, target_class)
            else:
                loss_cls += cls_scores[i].sum() * 0

        _, world_size = get_dist_info()
        return dict(
            loss_cls=loss_cls * batch_size * world_size,
            loss_obj=loss_obj * batch_size * world_size,
            loss_bbox=loss_box * batch_size * world_size)

    def _convert_gt_to_norm_format(self,
                                   batch_gt_instances: Sequence[InstanceData],
                                   batch_img_metas: Sequence[dict]) -> Tensor:
        if isinstance(batch_gt_instances, torch.Tensor):
            # fast version
            img_shape = batch_img_metas[0]['batch_input_shape']
            gt_bboxes_xyxy = batch_gt_instances[:, 2:]
            xy1, xy2 = gt_bboxes_xyxy.split((2, 2), dim=-1)
            gt_bboxes_xywh = torch.cat([(xy2 + xy1) / 2, (xy2 - xy1)], dim=-1)
            gt_bboxes_xywh[:, 1::2] /= img_shape[0]
            gt_bboxes_xywh[:, 0::2] /= img_shape[1]
            batch_gt_instances[:, 2:] = gt_bboxes_xywh

            # (num_base_priors, num_bboxes, 6)
            batch_targets_normed = batch_gt_instances.repeat(
                self.num_base_priors, 1, 1)
        else:
            batch_target_list = []
            # Convert xyxy bbox to yolo format.
            for i, gt_instances in enumerate(batch_gt_instances):
                img_shape = batch_img_metas[i]['batch_input_shape']
                bboxes = gt_instances.bboxes
                labels = gt_instances.labels

                xy1, xy2 = bboxes.split((2, 2), dim=-1)
                bboxes = torch.cat([(xy2 + xy1) / 2, (xy2 - xy1)], dim=-1)
                # normalized to 0-1
                bboxes[:, 1::2] /= img_shape[0]
                bboxes[:, 0::2] /= img_shape[1]

                index = bboxes.new_full((len(bboxes), 1), i)
                # (batch_idx, label, normed_bbox)
                target = torch.cat((index, labels[:, None].float(), bboxes),
                                   dim=1)
                batch_target_list.append(target)

            # (num_base_priors, num_bboxes, 6)
            batch_targets_normed = torch.cat(
                batch_target_list, dim=0).repeat(self.num_base_priors, 1, 1)

        # (num_base_priors, num_bboxes, 1)
        batch_targets_prior_inds = self.prior_inds.repeat(
            1, batch_targets_normed.shape[1])[..., None]
        # (num_base_priors, num_bboxes, 7)
        # (img_ind, labels, bbox_cx, bbox_cy, bbox_w, bbox_h, prior_ind)
        batch_targets_normed = torch.cat(
            (batch_targets_normed, batch_targets_prior_inds), 2)
        return batch_targets_normed

    def _decode_bbox_to_xywh(self, bbox_pred, priors_base_sizes) -> Tensor:
        bbox_pred = bbox_pred.sigmoid()
        pred_xy = bbox_pred[:, :2] * 2 - 0.5
        pred_wh = (bbox_pred[:, 2:] * 2)**2 * priors_base_sizes
        decoded_bbox_pred = torch.cat((pred_xy, pred_wh), dim=-1)
        return decoded_bbox_pred

    def _loss_by_feat_with_ignore(
            self, cls_scores: Sequence[Tensor], bbox_preds: Sequence[Tensor],
            objectnesses: Sequence[Tensor],
            batch_gt_instances: Sequence[InstanceData],
            batch_img_metas: Sequence[dict],
            batch_gt_instances_ignore: Sequence[Tensor]) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (Sequence[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_priors * num_classes.
            bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_priors * 4.
            objectnesses (Sequence[Tensor]): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).
            batch_gt_instances (Sequence[InstanceData]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (Sequence[dict]): Meta information of each image,
                e.g., image size, scaling factor, etc.
            batch_gt_instances_ignore (Sequence[Tensor]): Ignore boxes with
                batch_ids and labels, each is a 2D-tensor, the channel number
                is 6, means that (batch_id, label, xmin, ymin, xmax, ymax).
        Returns:
            dict[str, Tensor]: A dictionary of losses.
        """
        # 1. Convert gt to norm format
        batch_targets_normed = self._convert_gt_to_norm_format(
            batch_gt_instances, batch_img_metas)

        featmap_sizes = [cls_score.shape[2:] for cls_score in cls_scores]
        if featmap_sizes != self.featmap_sizes:
            self.mlvl_priors = self.prior_generator.grid_priors(
                featmap_sizes,
                dtype=cls_scores[0].dtype,
                device=cls_scores[0].device)
            self.featmap_sizes = featmap_sizes

        device = cls_scores[0].device
        loss_cls = torch.zeros(1, device=device)
        loss_box = torch.zeros(1, device=device)
        loss_obj = torch.zeros(1, device=device)
        scaled_factor = torch.ones(7, device=device)

        for i in range(self.num_levels):
            batch_size, _, h, w = bbox_preds[i].shape
            target_obj = torch.zeros_like(objectnesses[i])

            not_ignore_flags = bbox_preds[i].new_ones(batch_size,
                                                      self.num_base_priors, h,
                                                      w)

            ignore_overlaps = bbox_overlaps(self.mlvl_priors[i],
                                            batch_gt_instances_ignore[..., 2:],
                                            'iof')
            ignore_max_overlaps, ignore_max_ignore_index = ignore_overlaps.max(
                dim=1)

            batch_inds = batch_gt_instances_ignore[:,
                                                   0][ignore_max_ignore_index]
            ignore_inds = (ignore_max_overlaps > self.ignore_iof_thr).nonzero(
                as_tuple=True)[0]
            batch_inds = batch_inds[ignore_inds].long()
            ignore_priors, ignore_grid_xs, ignore_grid_ys = get_prior_xy_info(
                ignore_inds, self.num_base_priors, self.featmap_sizes[i])
            not_ignore_flags[batch_inds, ignore_priors, ignore_grid_ys,
                             ignore_grid_xs] = 0

            # empty gt bboxes
            if batch_targets_normed.shape[1] == 0:
                loss_box += bbox_preds[i].sum() * 0
                loss_cls += cls_scores[i].sum() * 0
                loss_obj += self.loss_obj(
                    objectnesses[i],
                    target_obj,
                    weight=not_ignore_flags,
                    avg_factor=max(not_ignore_flags.sum(),
                                   1)) * self.obj_level_weights[i]
                continue

            priors_base_sizes_i = self.priors_base_sizes[i]
            # feature map scale whwh
            scaled_factor[2:6] = torch.tensor(
                bbox_preds[i].shape)[[3, 2, 3, 2]]
            # Scale batch_targets from range 0-1 to range 0-features_maps size.
            # (num_base_priors, num_bboxes, 7)
            batch_targets_scaled = batch_targets_normed * scaled_factor

            # 2. Shape match
            wh_ratio = batch_targets_scaled[...,
                                            4:6] / priors_base_sizes_i[:, None]
            match_inds = torch.max(
                wh_ratio, 1 / wh_ratio).max(2)[0] < self.prior_match_thr
            batch_targets_scaled = batch_targets_scaled[match_inds]

            # no gt bbox matches anchor
            if batch_targets_scaled.shape[0] == 0:
                loss_box += bbox_preds[i].sum() * 0
                loss_cls += cls_scores[i].sum() * 0
                loss_obj += self.loss_obj(
                    objectnesses[i],
                    target_obj,
                    weight=not_ignore_flags,
                    avg_factor=max(not_ignore_flags.sum(),
                                   1)) * self.obj_level_weights[i]
                continue

            # 3. Positive samples with additional neighbors

            # check the left, up, right, bottom sides of the
            # targets grid, and determine whether assigned
            # them as positive samples as well.
            batch_targets_cxcy = batch_targets_scaled[:, 2:4]
            grid_xy = scaled_factor[[2, 3]] - batch_targets_cxcy
            left, up = ((batch_targets_cxcy % 1 < self.near_neighbor_thr) &
                        (batch_targets_cxcy > 1)).T
            right, bottom = ((grid_xy % 1 < self.near_neighbor_thr) &
                             (grid_xy > 1)).T
            offset_inds = torch.stack(
                (torch.ones_like(left), left, up, right, bottom))

            batch_targets_scaled = batch_targets_scaled.repeat(
                (5, 1, 1))[offset_inds]
            retained_offsets = self.grid_offset.repeat(1, offset_inds.shape[1],
                                                       1)[offset_inds]

            # prepare pred results and positive sample indexes to
            # calculate class loss and bbox lo
            _chunk_targets = batch_targets_scaled.chunk(4, 1)
            img_class_inds, grid_xy, grid_wh, priors_inds = _chunk_targets
            priors_inds, (img_inds, class_inds) = priors_inds.long().view(
                -1), img_class_inds.long().T

            grid_xy_long = (grid_xy -
                            retained_offsets * self.near_neighbor_thr).long()
            grid_x_inds, grid_y_inds = grid_xy_long.T
            bboxes_targets = torch.cat((grid_xy - grid_xy_long, grid_wh), 1)

            # 4. Calculate loss
            # bbox loss
            retained_bbox_pred = bbox_preds[i].reshape(
                batch_size, self.num_base_priors, -1, h,
                w)[img_inds, priors_inds, :, grid_y_inds, grid_x_inds]
            priors_base_sizes_i = priors_base_sizes_i[priors_inds]
            decoded_bbox_pred = self._decode_bbox_to_xywh(
                retained_bbox_pred, priors_base_sizes_i)

            not_ignore_weights = not_ignore_flags[img_inds, priors_inds,
                                                  grid_y_inds, grid_x_inds]
            loss_box_i, iou = self.loss_bbox(
                decoded_bbox_pred,
                bboxes_targets,
                weight=not_ignore_weights,
                avg_factor=max(not_ignore_weights.sum(), 1))
            loss_box += loss_box_i

            # obj loss
            iou = iou.detach().clamp(0)
            target_obj[img_inds, priors_inds, grid_y_inds,
                       grid_x_inds] = iou.type(target_obj.dtype)
            loss_obj += self.loss_obj(
                objectnesses[i],
                target_obj,
                weight=not_ignore_flags,
                avg_factor=max(not_ignore_flags.sum(),
                               1)) * self.obj_level_weights[i]

            # cls loss
            if self.num_classes > 1:
                pred_cls_scores = cls_scores[i].reshape(
                    batch_size, self.num_base_priors, -1, h,
                    w)[img_inds, priors_inds, :, grid_y_inds, grid_x_inds]

                target_class = torch.full_like(pred_cls_scores, 0.)
                target_class[range(batch_targets_scaled.shape[0]),
                             class_inds] = 1.
                loss_cls += self.loss_cls(
                    pred_cls_scores,
                    target_class,
                    weight=not_ignore_weights[:, None].repeat(
                        1, self.num_classes),
                    avg_factor=max(not_ignore_weights.sum(), 1))
            else:
                loss_cls += cls_scores[i].sum() * 0

        _, world_size = get_dist_info()
        return dict(
            loss_cls=loss_cls * batch_size * world_size,
            loss_obj=loss_obj * batch_size * world_size,
            loss_bbox=loss_box * batch_size * world_size)