File size: 17,391 Bytes
3094730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import List, Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmdet.models.utils import multi_apply
from mmdet.utils import ConfigType, OptInstanceList
from mmengine.dist import get_dist_info
from mmengine.structures import InstanceData
from torch import Tensor

from mmyolo.registry import MODELS
from ..layers import ImplicitA, ImplicitM
from ..task_modules.assigners.batch_yolov7_assigner import BatchYOLOv7Assigner
from .yolov5_head import YOLOv5Head, YOLOv5HeadModule


@MODELS.register_module()
class YOLOv7HeadModule(YOLOv5HeadModule):
    """YOLOv7Head head module used in YOLOv7."""

    def _init_layers(self):
        """initialize conv layers in YOLOv7 head."""
        self.convs_pred = nn.ModuleList()
        for i in range(self.num_levels):
            conv_pred = nn.Sequential(
                ImplicitA(self.in_channels[i]),
                nn.Conv2d(self.in_channels[i],
                          self.num_base_priors * self.num_out_attrib, 1),
                ImplicitM(self.num_base_priors * self.num_out_attrib),
            )
            self.convs_pred.append(conv_pred)

    def init_weights(self):
        """Initialize the bias of YOLOv7 head."""
        super(YOLOv5HeadModule, self).init_weights()
        for mi, s in zip(self.convs_pred, self.featmap_strides):  # from
            mi = mi[1]  # nn.Conv2d

            b = mi.bias.data.view(3, -1)
            # obj (8 objects per 640 image)
            b.data[:, 4] += math.log(8 / (640 / s)**2)
            b.data[:, 5:] += math.log(0.6 / (self.num_classes - 0.99))

            mi.bias.data = b.view(-1)


@MODELS.register_module()
class YOLOv7p6HeadModule(YOLOv5HeadModule):
    """YOLOv7Head head module used in YOLOv7."""

    def __init__(self,
                 *args,
                 main_out_channels: Sequence[int] = [256, 512, 768, 1024],
                 aux_out_channels: Sequence[int] = [320, 640, 960, 1280],
                 use_aux: bool = True,
                 norm_cfg: ConfigType = dict(
                     type='BN', momentum=0.03, eps=0.001),
                 act_cfg: ConfigType = dict(type='SiLU', inplace=True),
                 **kwargs):
        self.main_out_channels = main_out_channels
        self.aux_out_channels = aux_out_channels
        self.use_aux = use_aux
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        super().__init__(*args, **kwargs)

    def _init_layers(self):
        """initialize conv layers in YOLOv7 head."""
        self.main_convs_pred = nn.ModuleList()
        for i in range(self.num_levels):
            conv_pred = nn.Sequential(
                ConvModule(
                    self.in_channels[i],
                    self.main_out_channels[i],
                    3,
                    padding=1,
                    norm_cfg=self.norm_cfg,
                    act_cfg=self.act_cfg),
                ImplicitA(self.main_out_channels[i]),
                nn.Conv2d(self.main_out_channels[i],
                          self.num_base_priors * self.num_out_attrib, 1),
                ImplicitM(self.num_base_priors * self.num_out_attrib),
            )
            self.main_convs_pred.append(conv_pred)

        if self.use_aux:
            self.aux_convs_pred = nn.ModuleList()
            for i in range(self.num_levels):
                aux_pred = nn.Sequential(
                    ConvModule(
                        self.in_channels[i],
                        self.aux_out_channels[i],
                        3,
                        padding=1,
                        norm_cfg=self.norm_cfg,
                        act_cfg=self.act_cfg),
                    nn.Conv2d(self.aux_out_channels[i],
                              self.num_base_priors * self.num_out_attrib, 1))
                self.aux_convs_pred.append(aux_pred)
        else:
            self.aux_convs_pred = [None] * len(self.main_convs_pred)

    def init_weights(self):
        """Initialize the bias of YOLOv5 head."""
        super(YOLOv5HeadModule, self).init_weights()
        for mi, aux, s in zip(self.main_convs_pred, self.aux_convs_pred,
                              self.featmap_strides):  # from
            mi = mi[2]  # nn.Conv2d
            b = mi.bias.data.view(3, -1)
            # obj (8 objects per 640 image)
            b.data[:, 4] += math.log(8 / (640 / s)**2)
            b.data[:, 5:] += math.log(0.6 / (self.num_classes - 0.99))
            mi.bias.data = b.view(-1)

            if self.use_aux:
                aux = aux[1]  # nn.Conv2d
                b = aux.bias.data.view(3, -1)
                # obj (8 objects per 640 image)
                b.data[:, 4] += math.log(8 / (640 / s)**2)
                b.data[:, 5:] += math.log(0.6 / (self.num_classes - 0.99))
                mi.bias.data = b.view(-1)

    def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
        """Forward features from the upstream network.

        Args:
            x (Tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
        Returns:
            Tuple[List]: A tuple of multi-level classification scores, bbox
            predictions, and objectnesses.
        """
        assert len(x) == self.num_levels
        return multi_apply(self.forward_single, x, self.main_convs_pred,
                           self.aux_convs_pred)

    def forward_single(self, x: Tensor, convs: nn.Module,
                       aux_convs: Optional[nn.Module]) \
            -> Tuple[Union[Tensor, List], Union[Tensor, List],
                     Union[Tensor, List]]:
        """Forward feature of a single scale level."""

        pred_map = convs(x)
        bs, _, ny, nx = pred_map.shape
        pred_map = pred_map.view(bs, self.num_base_priors, self.num_out_attrib,
                                 ny, nx)

        cls_score = pred_map[:, :, 5:, ...].reshape(bs, -1, ny, nx)
        bbox_pred = pred_map[:, :, :4, ...].reshape(bs, -1, ny, nx)
        objectness = pred_map[:, :, 4:5, ...].reshape(bs, -1, ny, nx)

        if not self.training or not self.use_aux:
            return cls_score, bbox_pred, objectness
        else:
            aux_pred_map = aux_convs(x)
            aux_pred_map = aux_pred_map.view(bs, self.num_base_priors,
                                             self.num_out_attrib, ny, nx)
            aux_cls_score = aux_pred_map[:, :, 5:, ...].reshape(bs, -1, ny, nx)
            aux_bbox_pred = aux_pred_map[:, :, :4, ...].reshape(bs, -1, ny, nx)
            aux_objectness = aux_pred_map[:, :, 4:5,
                                          ...].reshape(bs, -1, ny, nx)

            return [cls_score,
                    aux_cls_score], [bbox_pred, aux_bbox_pred
                                     ], [objectness, aux_objectness]


@MODELS.register_module()
class YOLOv7Head(YOLOv5Head):
    """YOLOv7Head head used in `YOLOv7 <https://arxiv.org/abs/2207.02696>`_.

    Args:
        simota_candidate_topk (int): The candidate top-k which used to
            get top-k ious to calculate dynamic-k in BatchYOLOv7Assigner.
            Defaults to 10.
        simota_iou_weight (float): The scale factor for regression
            iou cost in BatchYOLOv7Assigner. Defaults to 3.0.
        simota_cls_weight (float): The scale factor for classification
            cost in BatchYOLOv7Assigner. Defaults to 1.0.
    """

    def __init__(self,
                 *args,
                 simota_candidate_topk: int = 20,
                 simota_iou_weight: float = 3.0,
                 simota_cls_weight: float = 1.0,
                 aux_loss_weights: float = 0.25,
                 **kwargs):
        super().__init__(*args, **kwargs)
        self.aux_loss_weights = aux_loss_weights
        self.assigner = BatchYOLOv7Assigner(
            num_classes=self.num_classes,
            num_base_priors=self.num_base_priors,
            featmap_strides=self.featmap_strides,
            prior_match_thr=self.prior_match_thr,
            candidate_topk=simota_candidate_topk,
            iou_weight=simota_iou_weight,
            cls_weight=simota_cls_weight)

    def loss_by_feat(
            self,
            cls_scores: Sequence[Union[Tensor, List]],
            bbox_preds: Sequence[Union[Tensor, List]],
            objectnesses: Sequence[Union[Tensor, List]],
            batch_gt_instances: Sequence[InstanceData],
            batch_img_metas: Sequence[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (Sequence[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_priors * num_classes.
            bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_priors * 4.
            objectnesses (Sequence[Tensor]): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
        Returns:
            dict[str, Tensor]: A dictionary of losses.
        """

        if isinstance(cls_scores[0], Sequence):
            with_aux = True
            batch_size = cls_scores[0][0].shape[0]
            device = cls_scores[0][0].device

            bbox_preds_main, bbox_preds_aux = zip(*bbox_preds)
            objectnesses_main, objectnesses_aux = zip(*objectnesses)
            cls_scores_main, cls_scores_aux = zip(*cls_scores)

            head_preds = self._merge_predict_results(bbox_preds_main,
                                                     objectnesses_main,
                                                     cls_scores_main)
            head_preds_aux = self._merge_predict_results(
                bbox_preds_aux, objectnesses_aux, cls_scores_aux)
        else:
            with_aux = False
            batch_size = cls_scores[0].shape[0]
            device = cls_scores[0].device

            head_preds = self._merge_predict_results(bbox_preds, objectnesses,
                                                     cls_scores)

        # Convert gt to norm xywh format
        # (num_base_priors, num_batch_gt, 7)
        # 7 is mean (batch_idx, cls_id, x_norm, y_norm,
        # w_norm, h_norm, prior_idx)
        batch_targets_normed = self._convert_gt_to_norm_format(
            batch_gt_instances, batch_img_metas)

        scaled_factors = [
            torch.tensor(head_pred.shape, device=device)[[3, 2, 3, 2]]
            for head_pred in head_preds
        ]

        loss_cls, loss_obj, loss_box = self._calc_loss(
            head_preds=head_preds,
            head_preds_aux=None,
            batch_targets_normed=batch_targets_normed,
            near_neighbor_thr=self.near_neighbor_thr,
            scaled_factors=scaled_factors,
            batch_img_metas=batch_img_metas,
            device=device)

        if with_aux:
            loss_cls_aux, loss_obj_aux, loss_box_aux = self._calc_loss(
                head_preds=head_preds,
                head_preds_aux=head_preds_aux,
                batch_targets_normed=batch_targets_normed,
                near_neighbor_thr=self.near_neighbor_thr * 2,
                scaled_factors=scaled_factors,
                batch_img_metas=batch_img_metas,
                device=device)
            loss_cls += self.aux_loss_weights * loss_cls_aux
            loss_obj += self.aux_loss_weights * loss_obj_aux
            loss_box += self.aux_loss_weights * loss_box_aux

        _, world_size = get_dist_info()
        return dict(
            loss_cls=loss_cls * batch_size * world_size,
            loss_obj=loss_obj * batch_size * world_size,
            loss_bbox=loss_box * batch_size * world_size)

    def _calc_loss(self, head_preds, head_preds_aux, batch_targets_normed,
                   near_neighbor_thr, scaled_factors, batch_img_metas, device):
        loss_cls = torch.zeros(1, device=device)
        loss_box = torch.zeros(1, device=device)
        loss_obj = torch.zeros(1, device=device)

        assigner_results = self.assigner(
            head_preds,
            batch_targets_normed,
            batch_img_metas[0]['batch_input_shape'],
            self.priors_base_sizes,
            self.grid_offset,
            near_neighbor_thr=near_neighbor_thr)
        # mlvl is mean multi_level
        mlvl_positive_infos = assigner_results['mlvl_positive_infos']
        mlvl_priors = assigner_results['mlvl_priors']
        mlvl_targets_normed = assigner_results['mlvl_targets_normed']

        if head_preds_aux is not None:
            # This is mean calc aux branch loss
            head_preds = head_preds_aux

        for i, head_pred in enumerate(head_preds):
            batch_inds, proir_idx, grid_x, grid_y = mlvl_positive_infos[i].T
            num_pred_positive = batch_inds.shape[0]
            target_obj = torch.zeros_like(head_pred[..., 0])
            # empty positive sampler
            if num_pred_positive == 0:
                loss_box += head_pred[..., :4].sum() * 0
                loss_cls += head_pred[..., 5:].sum() * 0
                loss_obj += self.loss_obj(
                    head_pred[..., 4], target_obj) * self.obj_level_weights[i]
                continue

            priors = mlvl_priors[i]
            targets_normed = mlvl_targets_normed[i]

            head_pred_positive = head_pred[batch_inds, proir_idx, grid_y,
                                           grid_x]

            # calc bbox loss
            grid_xy = torch.stack([grid_x, grid_y], dim=1)
            decoded_pred_bbox = self._decode_bbox_to_xywh(
                head_pred_positive[:, :4], priors, grid_xy)
            target_bbox_scaled = targets_normed[:, 2:6] * scaled_factors[i]

            loss_box_i, iou = self.loss_bbox(decoded_pred_bbox,
                                             target_bbox_scaled)
            loss_box += loss_box_i

            # calc obj loss
            target_obj[batch_inds, proir_idx, grid_y,
                       grid_x] = iou.detach().clamp(0).type(target_obj.dtype)
            loss_obj += self.loss_obj(head_pred[..., 4],
                                      target_obj) * self.obj_level_weights[i]

            # calc cls loss
            if self.num_classes > 1:
                pred_cls_scores = targets_normed[:, 1].long()
                target_class = torch.full_like(
                    head_pred_positive[:, 5:], 0., device=device)
                target_class[range(num_pred_positive), pred_cls_scores] = 1.
                loss_cls += self.loss_cls(head_pred_positive[:, 5:],
                                          target_class)
            else:
                loss_cls += head_pred_positive[:, 5:].sum() * 0
        return loss_cls, loss_obj, loss_box

    def _merge_predict_results(self, bbox_preds: Sequence[Tensor],
                               objectnesses: Sequence[Tensor],
                               cls_scores: Sequence[Tensor]) -> List[Tensor]:
        """Merge predict output from 3 heads.

        Args:
            cls_scores (Sequence[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_priors * num_classes.
            bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_priors * 4.
            objectnesses (Sequence[Tensor]): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, 1, H, W).

        Returns:
              List[Tensor]: Merged output.
        """
        head_preds = []
        for bbox_pred, objectness, cls_score in zip(bbox_preds, objectnesses,
                                                    cls_scores):
            b, _, h, w = bbox_pred.shape
            bbox_pred = bbox_pred.reshape(b, self.num_base_priors, -1, h, w)
            objectness = objectness.reshape(b, self.num_base_priors, -1, h, w)
            cls_score = cls_score.reshape(b, self.num_base_priors, -1, h, w)
            head_pred = torch.cat([bbox_pred, objectness, cls_score],
                                  dim=2).permute(0, 1, 3, 4, 2).contiguous()
            head_preds.append(head_pred)
        return head_preds

    def _decode_bbox_to_xywh(self, bbox_pred, priors_base_sizes,
                             grid_xy) -> Tensor:
        bbox_pred = bbox_pred.sigmoid()
        pred_xy = bbox_pred[:, :2] * 2 - 0.5 + grid_xy
        pred_wh = (bbox_pred[:, 2:] * 2)**2 * priors_base_sizes
        decoded_bbox_pred = torch.cat((pred_xy, pred_wh), dim=-1)
        return decoded_bbox_pred