Spaces:
Runtime error
Runtime error
File size: 17,391 Bytes
3094730 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import List, Optional, Sequence, Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmdet.models.utils import multi_apply
from mmdet.utils import ConfigType, OptInstanceList
from mmengine.dist import get_dist_info
from mmengine.structures import InstanceData
from torch import Tensor
from mmyolo.registry import MODELS
from ..layers import ImplicitA, ImplicitM
from ..task_modules.assigners.batch_yolov7_assigner import BatchYOLOv7Assigner
from .yolov5_head import YOLOv5Head, YOLOv5HeadModule
@MODELS.register_module()
class YOLOv7HeadModule(YOLOv5HeadModule):
"""YOLOv7Head head module used in YOLOv7."""
def _init_layers(self):
"""initialize conv layers in YOLOv7 head."""
self.convs_pred = nn.ModuleList()
for i in range(self.num_levels):
conv_pred = nn.Sequential(
ImplicitA(self.in_channels[i]),
nn.Conv2d(self.in_channels[i],
self.num_base_priors * self.num_out_attrib, 1),
ImplicitM(self.num_base_priors * self.num_out_attrib),
)
self.convs_pred.append(conv_pred)
def init_weights(self):
"""Initialize the bias of YOLOv7 head."""
super(YOLOv5HeadModule, self).init_weights()
for mi, s in zip(self.convs_pred, self.featmap_strides): # from
mi = mi[1] # nn.Conv2d
b = mi.bias.data.view(3, -1)
# obj (8 objects per 640 image)
b.data[:, 4] += math.log(8 / (640 / s)**2)
b.data[:, 5:] += math.log(0.6 / (self.num_classes - 0.99))
mi.bias.data = b.view(-1)
@MODELS.register_module()
class YOLOv7p6HeadModule(YOLOv5HeadModule):
"""YOLOv7Head head module used in YOLOv7."""
def __init__(self,
*args,
main_out_channels: Sequence[int] = [256, 512, 768, 1024],
aux_out_channels: Sequence[int] = [320, 640, 960, 1280],
use_aux: bool = True,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
**kwargs):
self.main_out_channels = main_out_channels
self.aux_out_channels = aux_out_channels
self.use_aux = use_aux
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
super().__init__(*args, **kwargs)
def _init_layers(self):
"""initialize conv layers in YOLOv7 head."""
self.main_convs_pred = nn.ModuleList()
for i in range(self.num_levels):
conv_pred = nn.Sequential(
ConvModule(
self.in_channels[i],
self.main_out_channels[i],
3,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
ImplicitA(self.main_out_channels[i]),
nn.Conv2d(self.main_out_channels[i],
self.num_base_priors * self.num_out_attrib, 1),
ImplicitM(self.num_base_priors * self.num_out_attrib),
)
self.main_convs_pred.append(conv_pred)
if self.use_aux:
self.aux_convs_pred = nn.ModuleList()
for i in range(self.num_levels):
aux_pred = nn.Sequential(
ConvModule(
self.in_channels[i],
self.aux_out_channels[i],
3,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg),
nn.Conv2d(self.aux_out_channels[i],
self.num_base_priors * self.num_out_attrib, 1))
self.aux_convs_pred.append(aux_pred)
else:
self.aux_convs_pred = [None] * len(self.main_convs_pred)
def init_weights(self):
"""Initialize the bias of YOLOv5 head."""
super(YOLOv5HeadModule, self).init_weights()
for mi, aux, s in zip(self.main_convs_pred, self.aux_convs_pred,
self.featmap_strides): # from
mi = mi[2] # nn.Conv2d
b = mi.bias.data.view(3, -1)
# obj (8 objects per 640 image)
b.data[:, 4] += math.log(8 / (640 / s)**2)
b.data[:, 5:] += math.log(0.6 / (self.num_classes - 0.99))
mi.bias.data = b.view(-1)
if self.use_aux:
aux = aux[1] # nn.Conv2d
b = aux.bias.data.view(3, -1)
# obj (8 objects per 640 image)
b.data[:, 4] += math.log(8 / (640 / s)**2)
b.data[:, 5:] += math.log(0.6 / (self.num_classes - 0.99))
mi.bias.data = b.view(-1)
def forward(self, x: Tuple[Tensor]) -> Tuple[List]:
"""Forward features from the upstream network.
Args:
x (Tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
Tuple[List]: A tuple of multi-level classification scores, bbox
predictions, and objectnesses.
"""
assert len(x) == self.num_levels
return multi_apply(self.forward_single, x, self.main_convs_pred,
self.aux_convs_pred)
def forward_single(self, x: Tensor, convs: nn.Module,
aux_convs: Optional[nn.Module]) \
-> Tuple[Union[Tensor, List], Union[Tensor, List],
Union[Tensor, List]]:
"""Forward feature of a single scale level."""
pred_map = convs(x)
bs, _, ny, nx = pred_map.shape
pred_map = pred_map.view(bs, self.num_base_priors, self.num_out_attrib,
ny, nx)
cls_score = pred_map[:, :, 5:, ...].reshape(bs, -1, ny, nx)
bbox_pred = pred_map[:, :, :4, ...].reshape(bs, -1, ny, nx)
objectness = pred_map[:, :, 4:5, ...].reshape(bs, -1, ny, nx)
if not self.training or not self.use_aux:
return cls_score, bbox_pred, objectness
else:
aux_pred_map = aux_convs(x)
aux_pred_map = aux_pred_map.view(bs, self.num_base_priors,
self.num_out_attrib, ny, nx)
aux_cls_score = aux_pred_map[:, :, 5:, ...].reshape(bs, -1, ny, nx)
aux_bbox_pred = aux_pred_map[:, :, :4, ...].reshape(bs, -1, ny, nx)
aux_objectness = aux_pred_map[:, :, 4:5,
...].reshape(bs, -1, ny, nx)
return [cls_score,
aux_cls_score], [bbox_pred, aux_bbox_pred
], [objectness, aux_objectness]
@MODELS.register_module()
class YOLOv7Head(YOLOv5Head):
"""YOLOv7Head head used in `YOLOv7 <https://arxiv.org/abs/2207.02696>`_.
Args:
simota_candidate_topk (int): The candidate top-k which used to
get top-k ious to calculate dynamic-k in BatchYOLOv7Assigner.
Defaults to 10.
simota_iou_weight (float): The scale factor for regression
iou cost in BatchYOLOv7Assigner. Defaults to 3.0.
simota_cls_weight (float): The scale factor for classification
cost in BatchYOLOv7Assigner. Defaults to 1.0.
"""
def __init__(self,
*args,
simota_candidate_topk: int = 20,
simota_iou_weight: float = 3.0,
simota_cls_weight: float = 1.0,
aux_loss_weights: float = 0.25,
**kwargs):
super().__init__(*args, **kwargs)
self.aux_loss_weights = aux_loss_weights
self.assigner = BatchYOLOv7Assigner(
num_classes=self.num_classes,
num_base_priors=self.num_base_priors,
featmap_strides=self.featmap_strides,
prior_match_thr=self.prior_match_thr,
candidate_topk=simota_candidate_topk,
iou_weight=simota_iou_weight,
cls_weight=simota_cls_weight)
def loss_by_feat(
self,
cls_scores: Sequence[Union[Tensor, List]],
bbox_preds: Sequence[Union[Tensor, List]],
objectnesses: Sequence[Union[Tensor, List]],
batch_gt_instances: Sequence[InstanceData],
batch_img_metas: Sequence[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (Sequence[Tensor]): Box scores for each scale level,
each is a 4D-tensor, the channel number is
num_priors * num_classes.
bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale
level, each is a 4D-tensor, the channel number is
num_priors * 4.
objectnesses (Sequence[Tensor]): Score factor for
all scale level, each is a 4D-tensor, has shape
(batch_size, 1, H, W).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of losses.
"""
if isinstance(cls_scores[0], Sequence):
with_aux = True
batch_size = cls_scores[0][0].shape[0]
device = cls_scores[0][0].device
bbox_preds_main, bbox_preds_aux = zip(*bbox_preds)
objectnesses_main, objectnesses_aux = zip(*objectnesses)
cls_scores_main, cls_scores_aux = zip(*cls_scores)
head_preds = self._merge_predict_results(bbox_preds_main,
objectnesses_main,
cls_scores_main)
head_preds_aux = self._merge_predict_results(
bbox_preds_aux, objectnesses_aux, cls_scores_aux)
else:
with_aux = False
batch_size = cls_scores[0].shape[0]
device = cls_scores[0].device
head_preds = self._merge_predict_results(bbox_preds, objectnesses,
cls_scores)
# Convert gt to norm xywh format
# (num_base_priors, num_batch_gt, 7)
# 7 is mean (batch_idx, cls_id, x_norm, y_norm,
# w_norm, h_norm, prior_idx)
batch_targets_normed = self._convert_gt_to_norm_format(
batch_gt_instances, batch_img_metas)
scaled_factors = [
torch.tensor(head_pred.shape, device=device)[[3, 2, 3, 2]]
for head_pred in head_preds
]
loss_cls, loss_obj, loss_box = self._calc_loss(
head_preds=head_preds,
head_preds_aux=None,
batch_targets_normed=batch_targets_normed,
near_neighbor_thr=self.near_neighbor_thr,
scaled_factors=scaled_factors,
batch_img_metas=batch_img_metas,
device=device)
if with_aux:
loss_cls_aux, loss_obj_aux, loss_box_aux = self._calc_loss(
head_preds=head_preds,
head_preds_aux=head_preds_aux,
batch_targets_normed=batch_targets_normed,
near_neighbor_thr=self.near_neighbor_thr * 2,
scaled_factors=scaled_factors,
batch_img_metas=batch_img_metas,
device=device)
loss_cls += self.aux_loss_weights * loss_cls_aux
loss_obj += self.aux_loss_weights * loss_obj_aux
loss_box += self.aux_loss_weights * loss_box_aux
_, world_size = get_dist_info()
return dict(
loss_cls=loss_cls * batch_size * world_size,
loss_obj=loss_obj * batch_size * world_size,
loss_bbox=loss_box * batch_size * world_size)
def _calc_loss(self, head_preds, head_preds_aux, batch_targets_normed,
near_neighbor_thr, scaled_factors, batch_img_metas, device):
loss_cls = torch.zeros(1, device=device)
loss_box = torch.zeros(1, device=device)
loss_obj = torch.zeros(1, device=device)
assigner_results = self.assigner(
head_preds,
batch_targets_normed,
batch_img_metas[0]['batch_input_shape'],
self.priors_base_sizes,
self.grid_offset,
near_neighbor_thr=near_neighbor_thr)
# mlvl is mean multi_level
mlvl_positive_infos = assigner_results['mlvl_positive_infos']
mlvl_priors = assigner_results['mlvl_priors']
mlvl_targets_normed = assigner_results['mlvl_targets_normed']
if head_preds_aux is not None:
# This is mean calc aux branch loss
head_preds = head_preds_aux
for i, head_pred in enumerate(head_preds):
batch_inds, proir_idx, grid_x, grid_y = mlvl_positive_infos[i].T
num_pred_positive = batch_inds.shape[0]
target_obj = torch.zeros_like(head_pred[..., 0])
# empty positive sampler
if num_pred_positive == 0:
loss_box += head_pred[..., :4].sum() * 0
loss_cls += head_pred[..., 5:].sum() * 0
loss_obj += self.loss_obj(
head_pred[..., 4], target_obj) * self.obj_level_weights[i]
continue
priors = mlvl_priors[i]
targets_normed = mlvl_targets_normed[i]
head_pred_positive = head_pred[batch_inds, proir_idx, grid_y,
grid_x]
# calc bbox loss
grid_xy = torch.stack([grid_x, grid_y], dim=1)
decoded_pred_bbox = self._decode_bbox_to_xywh(
head_pred_positive[:, :4], priors, grid_xy)
target_bbox_scaled = targets_normed[:, 2:6] * scaled_factors[i]
loss_box_i, iou = self.loss_bbox(decoded_pred_bbox,
target_bbox_scaled)
loss_box += loss_box_i
# calc obj loss
target_obj[batch_inds, proir_idx, grid_y,
grid_x] = iou.detach().clamp(0).type(target_obj.dtype)
loss_obj += self.loss_obj(head_pred[..., 4],
target_obj) * self.obj_level_weights[i]
# calc cls loss
if self.num_classes > 1:
pred_cls_scores = targets_normed[:, 1].long()
target_class = torch.full_like(
head_pred_positive[:, 5:], 0., device=device)
target_class[range(num_pred_positive), pred_cls_scores] = 1.
loss_cls += self.loss_cls(head_pred_positive[:, 5:],
target_class)
else:
loss_cls += head_pred_positive[:, 5:].sum() * 0
return loss_cls, loss_obj, loss_box
def _merge_predict_results(self, bbox_preds: Sequence[Tensor],
objectnesses: Sequence[Tensor],
cls_scores: Sequence[Tensor]) -> List[Tensor]:
"""Merge predict output from 3 heads.
Args:
cls_scores (Sequence[Tensor]): Box scores for each scale level,
each is a 4D-tensor, the channel number is
num_priors * num_classes.
bbox_preds (Sequence[Tensor]): Box energies / deltas for each scale
level, each is a 4D-tensor, the channel number is
num_priors * 4.
objectnesses (Sequence[Tensor]): Score factor for
all scale level, each is a 4D-tensor, has shape
(batch_size, 1, H, W).
Returns:
List[Tensor]: Merged output.
"""
head_preds = []
for bbox_pred, objectness, cls_score in zip(bbox_preds, objectnesses,
cls_scores):
b, _, h, w = bbox_pred.shape
bbox_pred = bbox_pred.reshape(b, self.num_base_priors, -1, h, w)
objectness = objectness.reshape(b, self.num_base_priors, -1, h, w)
cls_score = cls_score.reshape(b, self.num_base_priors, -1, h, w)
head_pred = torch.cat([bbox_pred, objectness, cls_score],
dim=2).permute(0, 1, 3, 4, 2).contiguous()
head_preds.append(head_pred)
return head_preds
def _decode_bbox_to_xywh(self, bbox_pred, priors_base_sizes,
grid_xy) -> Tensor:
bbox_pred = bbox_pred.sigmoid()
pred_xy = bbox_pred[:, :2] * 2 - 0.5 + grid_xy
pred_wh = (bbox_pred[:, 2:] * 2)**2 * priors_base_sizes
decoded_bbox_pred = torch.cat((pred_xy, pred_wh), dim=-1)
return decoded_bbox_pred
|